000056219 001__ 56219
000056219 005__ 20210121114544.0
000056219 0247_ $$2doi$$a10.1007/JHEP01(2015)078
000056219 0248_ $$2sideral$$a91178
000056219 037__ $$aART-2015-91178
000056219 041__ $$aeng
000056219 100__ $$0(orcid)0000-0003-3669-6241$$aAsorey, M.$$uUniversidad de Zaragoza
000056219 245__ $$aTopological entropy and renormalization group flow in 3-dimensional spherical spaces
000056219 260__ $$c2015
000056219 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056219 5203_ $$aWe analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit ß/a « 1 of a massive field theory in 3-dimensional spherical spaces, M 3, with constant curvature 6/a 2. For masses lower than 2p/ß , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S top UV¿>¿S top IR . From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.
000056219 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000056219 590__ $$a6.023$$b2015
000056219 591__ $$aPHYSICS, PARTICLES & FIELDS$$b4 / 28 = 0.143$$c2015$$dQ1$$eT1
000056219 592__ $$a1.343$$b2015
000056219 593__ $$aNuclear and High Energy Physics$$c2015$$dQ1
000056219 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056219 700__ $$aBeneventano, C.G.
000056219 700__ $$0(orcid)0000-0002-5575-6775$$aCavero-Peláez, I.
000056219 700__ $$aD'Ascanio, D.
000056219 700__ $$aSantangelo, E.M.
000056219 7102_ $$12004$$2405$$aUniversidad de Zaragoza$$bDpto. Física Teórica$$cÁrea Física Teórica
000056219 773__ $$g2015, 1 (2015), [35 pp]$$pJ. high energy phys.$$tJournal of High Energy Physics$$x1126-6708
000056219 8564_ $$s660334$$uhttps://zaguan.unizar.es/record/56219/files/texto_completo.pdf$$yVersión publicada
000056219 8564_ $$s80329$$uhttps://zaguan.unizar.es/record/56219/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056219 909CO $$ooai:zaguan.unizar.es:56219$$particulos$$pdriver
000056219 951__ $$a2021-01-21-11:17:54
000056219 980__ $$aARTICLE