000056221 001__ 56221
000056221 005__ 20200221144246.0
000056221 0247_ $$2doi$$a10.1021/acs.jafc.5b04634
000056221 0248_ $$2sideral$$a93989
000056221 037__ $$aART-2016-93989
000056221 041__ $$aeng
000056221 100__ $$0(orcid)0000-0002-5904-8506$$aBueno, M.$$uUniversidad de Zaragoza
000056221 245__ $$aRelease and Formation of Oxidation-Related Aldehydes during Wine Oxidation
000056221 260__ $$c2016
000056221 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056221 5203_ $$aTwenty-four Spanish wines were subjected to five consecutive cycles of air saturation at 25 °C. Free and bound forms of carbonyls were measured in the initial samples and after each saturation. Nonoxidized commercial wines contain important and sensory relevant amounts of oxidation-related carbonyls under the form of odorless bound forms. Models relating the contents in total aldehydes to the wine chemical composition suggest that fermentation can be a major origin for Strecker aldehydes: methional, phenylacetaldehyde, isobutyraldehyde, 2-methylbutanal, and isovaleraldehyde. Bound forms are further cleaved, releasing free aldehydes during the first steps of wine oxidation, as a consequence of equilibrium shifts caused by the depletion of SO2. At low levels of free SO2, de novo formation and aldehyde degradation are both observed. The relative importance of these phenomena depends on both the aldehyde and the wine. Models relating aldehyde formation rates to wine chemical composition suggest that amino acids are in most cases the most important precursors for de novo formation.
000056221 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T53$$9info:eu-repo/grantAgreement/ES/MINECO/AGL2010-230183$$9info:eu-repo/grantAgreement/ES/MINECO/AGL2012-40180-C03-02
000056221 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056221 590__ $$a3.154$$b2016
000056221 591__ $$aCHEMISTRY, APPLIED$$b13 / 72 = 0.181$$c2016$$dQ1$$eT1
000056221 591__ $$aAGRICULTURE, MULTIDISCIPLINARY$$b2 / 56 = 0.036$$c2016$$dQ1$$eT1
000056221 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b17 / 129 = 0.132$$c2016$$dQ1$$eT1
000056221 592__ $$a1.304$$b2016
000056221 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000056221 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2016$$dQ1
000056221 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000056221 700__ $$0(orcid)0000-0001-7931-574X$$aCarrascón, V.$$uUniversidad de Zaragoza
000056221 700__ $$0(orcid)0000-0002-4353-2483$$aFerreira, V.$$uUniversidad de Zaragoza
000056221 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000056221 773__ $$g64, 3 (2016), 608-617$$pJ. agric. food chem.$$tJournal of Agricultural and Food Chemistry$$x0021-8561
000056221 8564_ $$s334861$$uhttps://zaguan.unizar.es/record/56221/files/texto_completo.pdf$$yPreprint
000056221 8564_ $$s27940$$uhttps://zaguan.unizar.es/record/56221/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000056221 909CO $$ooai:zaguan.unizar.es:56221$$particulos$$pdriver
000056221 951__ $$a2020-02-21-13:25:10
000056221 980__ $$aARTICLE