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Recently, differential scanning calorimetry (DSC) has been acknowledged as a novel tool for diagnosing and
monitoring several diseases. This highly sensitive technique has been traditionally used to study thermally
induced protein folding/unfolding transitions. In previous research papers, DSC profiles from blood
samples of patients were analyzed and they exhibited marked differences in the thermal denaturation
profile. Thus, we investigated the use of this novel technology in blood serum samples from 25 healthy
subjects and 30 patients with gastric adenocarcinoma (GAC) at different stages of tumor development with a
new multiparametric approach. The analysis of the calorimetric profiles of blood serum from GAC patients
allowed us to discriminate three stages of cancer development (I to III) from those of healthy individuals.
After a multiparametric analysis, a classification of blood serum DSC parameters from patients with GAC is
proposed. Certain parameters exhibited significant differences (P < 0.05) and allowed the discrimination of
healthy subjects/patients from patients at different tumor stages. The results of this work validate DSC as a
novel technique for GAC patient classification and staging, and offer new graphical tools and value ranges
for the acquired parameters in order to discriminate healthy from diseased subjects with increased disease
burden.

performed using DSC (Differential Scanning Calorimetry) due to its high sensitivity. In particular, the
thermodynamic parameters of protein thermal denaturation (unfolding) can be determined directly by this
technique'. In 2007, Chaires and co-workers proposed DSC technique as a potential tool for disease diagnosis and
monitoring through the analysis of blood plasma from patients®. The DSC thermogram of blood plasma from
healthy subjects contrasted with those from patients with different diseases (from inflammatory to oncology
pathologies)*'°. Taneva and co-workers confirmed these preliminary studies and reported new data revealing
marked multiple myeloma-induced modifications in blood serum thermograms''.They also reported colorectal
cancer-specific alterations in the thermal response of blood plasma proteome'?. All these works have contributed
to the validation of DSC as a potential non-invasive tool for diagnosing and discriminating several malignancies.
The underlying hypotheses in applying DSC in clinical diagnosis are: 1) the thermogram acquired from the
thermal denaturation reflects the complex protein and metabolite composition of the plasma sample (metabolites
may not undergo conformational transitions, but they can interact with proteins modulating their thermal
stability)*~; and 2) pathologies and disorders trigger alterations in protein and metabolite composition in plasma
(up- or down-regulation of specific proteins and the presence/absence of metabolites specifically related to the
disease), which will be mirrored in distorted thermally-induced conformational transitions and, therefore, dis-
torted thermograms when compared to those from healthy subjects. One of the main advantages of using DSC
with plasma samples is that a minimally invasive assay such as a routine blood test analysis could help to: 1)

T he precise determination of the thermally-induced conformational transitions of biomolecules can be
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diagnose the disease at an early stage; 2) monitor the remission of the
disease or relapse in treated patients; and 3) anticipate the decision
making process during medical treatment by predicting the evolu-
tion of the disease.

DSC blood plasma analysis has been applied to different cancer
patients®'* and different profile patterns have been determined.
With a final goal of implementing and including DSC tests within
routine clinical analyses of patients with different diseases, there are
some important specific requirements that need to be fulfilled and
considered before the test could be used in clinical practice (even
before sensitivity, specificity, precision and accuracy of the test could
be assessed). Patients in the study should be precisely characterized
and classified in order to minimize errors in defining the profile
parameters for a certain disease. In addition, it is necessary to optim-
ize experimental protocols and data analysis methodologies in order
to avoid or minimize potential errors (e.g. determination of protein
concentration). Furthermore, it is necessary to develop and imple-
ment a quantitative methodology for a multiparametric data analysis
able to capture the different features between healthy and unhealthy
individuals, as well as provide numerical ranges to discriminate the
key parameters.

Gastric adenocarcinoma (GAC) ranks as the fourth most common
cancer and the second most frequent cause of cancer deaths world-
wide'®. GAC is well known to be a heterogeneous and complex dis-
ease, and it is noteworthy that distinct clinical, epidemiological, and
molecular features have been reported among tumors arising from
the cardia or non-cardia region within the stomach, and among
intestinal and diffuse histological subtypes'*'>. These phenotypic
differences are determined by the combined effects of multiple envir-
onmental and host risk factors. Hence, the main goal of this work is
to validate the data analysis method developed in our group and its
application in the classification of a group of patients with different
GAC stages.

Methods

Subjects. Consecutive Spanish Caucasian patients with primary GAC identified by
endoscopic and pathological diagnosis at the Hospital Clinico Universitario Lozano
Blesa in Zaragoza, Spain, from 2010 to 2011 were invited to take part in the study. A
total of 30 GAC patients were initially selected as cases. Gastric tumors were grouped
according to their anatomical location as cardia GAC (located at the gastroesophageal
junction) and non-cardia or distal GAC. Moreover, non-cardia GACs were classified
according to the histological type as intestinal, diffuse, or undetermined'’. Patients
with local recurrence of GAC, non-adenocarcinoma histology, previous history of
other malignancies, absence of blood samples, or refusal to participate in the study
were considered non-eligible. At the time of inclusion, detailed information was
recorded concerning age, gender, smoking habits, tumor-node-metastasis stage
(TNM stage) according to the Union for International Cancer Control/American
Joint Committee on Cancer (UICC/AJCC) classification, presence of metastases,
tumour location, and histological subtype.

The control group consisted of 25 sex- and age- (=5 years) matched Spanish
Caucasian community volunteers apparently cancer-free, with no previous history of
gastric disease, recruited from the out-patient clinical services at the hospital.
Individuals with evidence for past or present gastric ulcer, immunosuppressive dis-
orders, and major systemic diseases were excluded.

Approximately 10 mL of peripheral blood from each patient and control subject
were collected into serum separator tubes for subsequent DSC analysis. Once pro-
cessed, 200 pL serum samples were aliquoted and stored at —80°C until analysis. All
participants gave written informed consent to the study protocol, which was prev-
iously approved and conducted in accordance with the Ethical Review Board for
Clinical Research of the Regional Government (CEIC Aragon). All experimental
protocols were approved by CEIC Aragon. All experiments were carried out in
accordance with the approved guidelines.

Protein concentration determination. Serum protein concentration was measured
by Bradford protein assay (Bio-Rad) using purified bovine serum albumin (BSA)
100X (10 mg/mL, New England BioLabs) in phosphate buffered saline (PBS) as
standard. Absorbance at 595 nm of two dilutions from each serum sample (1 : 17000
and 1:11333) was measured in triplicate in a Synergy HT multimode microplate
reader (BioTek Instruments).

Differential Scanning Calorimetry (DSC). The heat capacity of serum samples was
measured as a function of temperature, Cp(T), using a high-sensitivity differential
scanning VP-DSC microcalorimeter (MicroCal, Northampton, MA). Serum samples
and reference solutions were properly degassed and carefully loaded into the cells to
avoid bubble formation. The baseline of the instrument was routinely recorded before
experiments. Experiments were performed in diluted serum samples (1 : 25 in PBS) at
a scanning rate of 1°C/min. No precipitation/aggregation occurred during thermal
denaturation. Thermograms were baseline-corrected and analyzed using software
developed in our laboratory implemented in Origin 7 (OriginLab).

Data Analysis. We have developed a phenomenological model in which the complex
thermogram was deconvoluted in several individual transitions (peaks), modelling
each individual transition by the logistic peak or Hubbert function:

T—T,
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where A is the height of the peak (equivalent to the maximal unfolding heat capacity
Cp,max)> Tcis the center of the peak (equivalent to the mid-transition temperature T,,,),
and w is the width of the peak (Cp(T, = w) = 0.8 A and Cp(T, = 2 w) = 0.4 A). The
offset parameter Cp, (found to be always very close to 0 in the experimental data
analysis), was included as an adjustable parameter to counterbalance errors from
baseline correction. This function is able to reproduce accurately a two-state protein
unfolding curve even with a protein concentration normalization error, or when a
stabilizing interacting ligand is present. Moreover, it is a simple function and it
reproduces protein unfolding data much better than other similar curves (see
Results).

From our experience, a minimum set of six individual curves was necessary for

reproducing the serum thermograms:
m T—T,;
Cexp — ——¢f
§ P W
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Adding more terms in Eq. 2 does not improve the analysis; on the contrary, the
function gets over-parameterized and degeneracy and correlation among the para-
meters arises during non-linear fitting analysis.

Therefore, for any given serum thermogram eighteen parameters (4;, T,;; and w;,
for each of the six individual transitions), were obtained after data analysis. This set of
parameters constitutes the basis for the multiparametric comparative quantitative
methodology aimed at establishing classification criteria among healthy subjects and
GAC patients. Polar or polygonal plots, constructed with the three sets of parameters
(A;, T,;and w;, with i = 1 to 6), can be used as a graphical tool for classification (see
Results).

Other useful statistical parameters can be defined for each thermogram, as
explained in the Results section. In particular, the area under the curve (AUC), and the
average temperature or the first moment of the thermogram, T,,, defined according
to the following expressions:

Cp(T)=Cpo+

(1)

Co(T)=Crot+ Y0, 2)

AUC=) | Gp(T)

oSG ®
Zj CP(TJ')

where j runs over the entire range of experimental points in the thermogram. The
deconvolution of Cp(T) into six individual logistic peak curves (Eq. 2) allows the
analytical calculation of AUC:

AUC= Y9 4Aiw, (4)

The height of the second peak, A,, was selected as a normalizing factor. The reasons
for applying this normalization were based on the fact that A, is one of the main
differential features observed among thermograms (see Results), and that normal-
izing with this peak makes protein concentration normalization unnecessary along
the data analysis. Thus, the normalized area under the curve, AUC,, and the nor-
malized heights, A;,,, were defined as:

Thermograms were not normalized according to the total protein concentration. Cr(T))
The multiparametric analysis reported in this work employs a final set of parameters AUC, = Z,‘ A
independent of sample protein concentration. Serum is a complex mixture of pro- (5)
teins, and, therefore, total protein concentration determined by colorimetric methods A= Ai
is considerably affected by inherent uncertainties. TA
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Figure 1| A two-state protein unfolding curve was simulated
corresponding to a mid-transition temperature of 50°C, an unfolding
enthalpy of 70 kcal/mol, and an unfolding heat capacity change of

1.5 kcal/K-mol (open circles). Non-linear fitting analysis using the
Hubbert function (continuous line) provides an excellent fit of the
simulated data (R* = 0.99998, y*> = 189); the Gaussian function
(discontinuous line) provides an acceptable fit only (R* = 0.99792, 3> =
18980). Inset: Residual plot for each fitting analysis.

It is important to indicate that only the parameter A; would be dependent on
protein concentration (i.e. it would be affected by protein concentration normaliza-
tion uncertainties), while T,; and w; are independent of normalizing factors (i.e.
concentration- or scale-independent). Additional protein concentration-independ-
ent parameters for classifying GAC serum thermograms (area of the normalized
heights polygon, AP,; skewness of the thermogram, g;) will be defined in the Results
section.

Results

Deconvolution of thermograms into individual transitions. First
of all, we assessed the appropriateness of the logistic peak function
(Eq. 1) to reproduce protein thermal unfolding curves. Several types
of curves were simulated using conventional protein unfolding
models (two-state unfolding, three-state unfolding, and ligand
dissociation coupled unfolding models). An excellent fit was
obtained in all cases. Using other peak-shaped functions (e.g.

Gaussian curve) lead to significantly less satisfactory results.
Figure 1 shows a representative result from this test.

Next, the thermograms from serum samples were analyzed using
Eq. 2. As anticipated, the combination of six logistic peak curves was
able to successfully reproduce the experimental curves. Figure 2
shows typical thermograms and their deconvolution into individual
thermal transitions applying the phenomenological model. It can be
clearly seen that the global thermal behavior of serum samples,
reflecting its protein and metabolite composition, is captured by
the deconvolution procedure. Furthermore, individual traits, corres-
ponding to individual transitions that in principle could be identified
with major proteins in serum plasma*, can be also observed. For
example, peaks 2, 3 and 4 constitute the main transitions in healthy
subjects; however, peak 2 is largely attenuated in GAC patients
(Figure 2). Thus, peak 2 is, by far, one of the main discriminating
features between subjects, and it was selected as a normalization
factor.

The height of a given peak is related to the concentration and
unfolding enthalpy of the protein components associated with that
peak. If a certain metabolite interacts with any of the protein com-
ponents responsible for that peak, it will also affect the height and the
center of that peak. Thus, the changes observed between thermo-
grams from healthy and diseased subjects reflect the interplay
between disease-specific protein up-/down-regulation (affecting
the concentration and, therefore, the heights, A;, of the different
peaks) and the presence of disease-specific metabolites (potentially
interacting with serum proteins and affecting the centers, T, of the
peaks; stabilizing ligands induce increments in T, ;, whereas destabi-
lizing ligands induce decrements in T, ;). Therefore, in principle it is
not straightforward to assign and explain the specific changes
observed between two given thermograms in terms of serum com-
position and components interactions, and a phenomenological
approach is more convenient. In general, it was found that the
heights of the individual peaks showed larger modifications between
thermograms than the corresponding widths and centers. Yet, as
mentioned above, this fact does not mean that the differences were
due only or mainly to changes in the concentration of specific
proteins.

Graphical multiparametric thermogram comparison between
subjects. Next, we constructed three parameter-specific polar or
polygonal plots for each thermogram. Using the six heights A, six
centers T.; and six widths w; associated with the individual
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Figure 2 | Experimental serum thermograms from a healthy subject (A) and a patient with stage I gastric adenocarcinoma (B). (Bottom plot) Global
thermograms showing the experimental points (open circles; one of every three experimental points is shown for clarity) and the fitting curve
(continuous line); (Top plot) Deconvolution of the global thermogram showing the individual numbered transitions.
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transitions in a given thermogram, three irregular hexagons were
plotted in a way that the vertices were situated from the geometric
center at a distance equal to a given parameter value. Figure 3 shows
the graphical comparison between some of the healthy subjects and
some of the gastric cancer patients at different tumour stages (stages I
to IIT). Because errors in protein concentration normalization would
only alter the heights of the peaks, normalized heights, according to
Eq. 5, have been plotted.

It can be observed from these polygonal plots that the normalized
heights A;/A, show larger inter-group variability than the centers T ;
or the widths w;, and that the normalized heights increase with the
TNM stage of the GAC. In addition, there was some intra-group
variability regarding the heights A;/A, and the widths w;.

Global and local geometric thermogram parameters for classifying
subjects. Two central tendency parameters were calculated from each
thermogram: the area under the curve (AUC) and the first moment or
average temperature of the thermogram (T,,). Because AUC might be
affected by protein concentration normalization errors, AUC was
normalized according to Eq. 5. T,, was slightly different from the
median temperature (temperature value dividing the thermogram
into two equal halves), but it was always very close and usually both
differed in much less than 1°C.

From Figure 4A it is apparent that T, increases with AUC,, and,
importantly, the different patient groups cluster in well-defined

regions (Figure 4A). Therefore, AUC, is one of the main explicative
parameters for classifying patients.

Observing the normalized height polygonal plot, it is possible to
summarize the observed increment in normalized heights according to
the severity of the disease in a single parameter: the area of the normal-
ized height polygon, AP,, which can be expressed analytically as:

V3 AA;
6 ili4+1
AP, = E =174 A2

It can be clearly seen that AP, increases with AUC,, and, again, the
different patient groups cluster in well-defined regions (Figure 4B). It
is important to point out that such trend is not present if the area of
the non-normalized height polygon is employed, even if normalized
by protein concentration (not shown).

Other global and local geometric parameters, such as those
obtained by normalizing by A3, A, and A5, were evaluated and plot-
ted in order to explore other possibilities; however, no clear trend and
patient clustering were observed. In particular, normalizing AUC
according to Aj, another important thermogram transition, did
not improve the results (not shown). Since thermograms corres-
ponding to GAC patients showed a marked attenuation in the second
individual transition compared to the healthy subjects, skewness g;
and kurtosis g, were calculated for the thermograms:

Figure 3 | Polygonal plots for normalized heights A;/A; (top), centers T ; (middle) and widths w; (bottom) for selected patients corresponding to the
four subject groups: healthy subjects (first column), stage I-GAC patients (second column), stage II-GAC patients (third column), and

stage-III GAC patients (fourth column). Each vertex corresponds to a given thermal transition, starting from 0° (first transition) to 360° (sixth
transition). The distance from the center to any vertex is equal to the corresponding value of the parameter.
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and only g; showed a clear trend and subject clustering according
to severity of the disease (Figure 4C).

The results shown previously can be summarized providing the
value ranges for the main global and local discriminating parameters
(Table 1, Figure 5). According to a parametric (two-sample t-Student
test) and a non-parametric hypothesis test (Mann-Whitney test),
some differences are statistically significant (P < 0.05), as indicated
in Figure 5.

The main analysis in this study was carried out comparing ther-
mograms obtained from healthy individuals and thermograms
obtained from GAC patients stratified according to the stage of the
tumour (TNM stages I to III). However, analysis according other
categories such as localization of the tumour (cardia/non-cardia),
histopathological type (intestinal/diffuse) or status of infection with
Helicobacter pylori, did not reveal any clear trend or defined patient
clustering (data not shown).

Discussion

Differential scanning calorimetry (DSC) has been recently proven to
be a suitable technique for detecting differences among blood plasma
proteome/interactome in healthy individuals and patients from a
variety of pathologies® . Hence, this technique offers a rapid, inex-
pensive, non-invasive, easy procedure to be included as a comple-
mentary tool in standard clinical tests with a direct application in
patient staging and classification, as well as in screening and mon-
itoring risk-related subpopulations or groups of patients under
surveillance.

The simplicity of the practical procedure for obtaining the ther-
mogram from blood serum/plasma is counterbalanced by difficulties
in the interpretation of the data and in the extraction of useful
information. Blood serum/plasma is a complex system and a realistic
data analysis of the thermogram based on biophysical models on
protein unfolding and its coupling with ligand interactions is unfea-
sible. Up to now only qualitative or semiquantitative data analysis
procedures based on evaluating metric-associated thermogram sim-
ilarity*'""* or comparing apparent geometric features in the ther-
mogram'”'® have been developed and applied with certain, but
limited, success. Therefore, there is a need for new data analysis
methodologies providing graphical or numerical comparison tools,
as well as practical numerical ranges for thermogram classification.
Of course, other experimental and/or clinical techniques can be
employed in parallel with DSC in order to obtain additional useful
information from blood serum/plasma; however the full capability of
DSC as an analytical technique to extract information from blood
serum/plasma has not been explored in depth yet.

In this report we studied serum samples from healthy controls and
patients with GAC at different TNM stages. The main goal was to
develop a robust data analysis methodology based on a phenomeno-
logical model that allows a detailed description of the serum/plasma
thermogram and able to reproduce the experimental data, providing
graphical comparison tools, as well as parameter value ranges for
patient classification.

The thermograms from healthy subjects were clearly different
from those corresponding to GAC patients. Because the serum is a
complex mixture of many proteins and metabolites (many of them
interacting with proteins), the development of a model for data ana-
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Figure 4 | Global and local parameters from the serum thermograms. (A)
T,,vs. AUC,; (B) AP, vs. AUC,; (C) g; vs. AUC,. The different subject
groups are colour coded: healthy subjects (black), stage I GAC patients
(green), stage IT GAC patients (orange), stage III GAC patients (red).

lysis based on well-known realistic thermally-induced conforma-
tional transition model in proteins is unfeasible: 1) although the
behavior of plasma can be accounted for by about a dozen of pro-
teins®~, using realistic models for protein unfolding (e.g. two-state
and three-state unfolding mechanisms) relies on the precise concen-
tration determination for individual proteins, whereas in our case
only total concentration of protein can be determined; 2) accounting
for the modulating effect of protein-interacting metabolites on pro-
tein thermal stability is not viable, because information about meta-
bolite identities and concentrations, as well as binding affinities and
enthalpies would be required. The identification of proteins and
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Table 1 | Mean values and standard errors for the main discriminating parameters for classifying GAC patients from DSC thermograms
Healthy Stage | Stage |l Stage Il
AUC, 28=x5 46 + 6 66 =9 100 = 20
AP, 1.3x0.5 41 61 14=5
Tav 68.1 =0.2 68.5 0.3 69.2 0.3 69.5+0.4
g 0.14 = 0.04 0.05 = 0.01 0.03 = 0.01 0.02 = 0.01

metabolites responsible for the observed thermogram changes would
need the involvement of additional experimental techniques (e.g. gel
electrophoresis or mass spectrometry)'**’. Nevertheless, our main
goal was to explore the possibilities offered by DSC alone and the
multiparametric analysis that can be performed by using a phe-
nomenological model.

The phenomenological model employed in this work allows the
decomposition of the thermogram into individual thermal transi-
tions, each one characterized by three parameters (height, center
and width). Among the different peak-associated curves that were
tested, the logistic peak curve or Hubbert curve was the most appro-
priate for reproducing the data, as confirmed by fitting analysis of
protein unfolding curves. Although the individual transitions in the
thermogram reflect the unfolding of major protein components in
blood plasma and their interaction with metabolites, there is no need
for identifying such components.

Global geometric traits (area under the curve AUC, average tem-
perature T,,, height- polygon area AP, skewness g;) together with
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local geometric traits (parameters from individual transitions: A;, T, ;
w;) can be employed in order to establish differential features among
thermograms and define clustering regions for patients belonging to a
given category (healthy, TNM stage I GAC, stage II or stage III).
Using global and local geometric traits at the same time helps in
overcoming the typical drawbacks of using those separately (either
too many details and parameters hiding the essential information, or
too few details and parameters loosing essential information).

In particular, the deconvolution of the thermogram into indi-
vidual components allows a rapid quantitative and qualitative
inspection of the main differences between two given thermograms.
In addition, polygonal or polar plots provide a graphical tool for a
quick review of the main differences among the thermograms and
the identification of differential features leading to clustering of
patients according to given categories. In the polygonal plots, differ-
ences in the individual transitions from two given thermograms are
quickly detected as differences in the size and/or the shape (biases or
deviations) of the corresponding polygons.
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indicates differences statistically significant (P < 0.05) regarding the previous subject group. The double asterisk indicates differences statistically
significant (P < 0.05) regarding the healthy subjects group. Two-sample t-Student (parametric) and Mann-Whitney (non-parametric) tests were

employed.
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The goal of this study was to go deeper into the DSC thermogram
data analysis and explore different possibilities for extracting useful
information. This is a proof-of-principle preliminary report showing
that DSC alone is an invaluable technique for detecting subtle differ-
ences in the plasma proteome/interactome of patients that allow
discriminating between different progression stages in GAC.
Although the number of subjects in this study is not large (25 healthy
control subjects, and 30 patients distributed into GAC categories),
many of the observed differences are statistically significant

(Figure 5). Patient clustering into well-defined regions according to
the explicative parameters here defined can be clearly observed
(Figure 6). In the cases where the differences that are not statistically
significant at this point (e.g. some differences in T,, or g;), an extre-
mely large number of subjects would be required to achieve statistical
significance, considering the small differences in the mean values and
the rather large variability; in addition, in a particular realization for a
given unknown subject that would not have added value because of
such large variability.

It is important to emphasize that the most important global and
local differential parameters for classifying patients into categories
do not have to be the same for every disease. Each disease will require
a different set and/or different value ranges of the main discriminat-
ing parameters. In the case of GAC patients, the area under the curve,
the average temperature, the skewness of the thermogram and the
area of the normalized heights polygon as global geometric para-
meters, and the height of the second individual transition as a local
geometric parameter, seem to be the most useful set of parameters for
classifying and clustering GAC patients according to the progression
stage of the tumor. Thus, an unknown patient will be represented by
a set of parameters {p;; i = 1, ..., m} obtained from the experimental
thermogram, and, depending on the particular values of these para-
meters, that patient would be ascribed to a certain group associated
with a certain disease (with a certain probability).

This work suggests that changes in DSC thermograms from serum
samples correlate with the severity of GAC. The physiological cause
underlying and triggering the observed differences between DSC
thermograms from healthy subjects and GAC patients with different
disease burden remains unclear. However, they reveal the potential
of the technique and the methodology for establishing biomarkers
for disease burden in patients with application in GAC patient sta-
ging. The phenomenological model employed in the data analysis
provides graphical and numerical tools for quantitating the observed
differences among thermograms, as well as for discriminating and
clustering subjects. Thus, DSC represents a rapid, inexpensive, non-
invasive, easy technique complementary to existing cancer dia-
gnostic and prognostic tools, and appropriate for standard clinical
tests with a direct application in patient staging and classification, as
well as in screening and monitoring risk-related subpopulations or
groups of patients under surveillance.
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