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Postulated by Pauli to explain the electronic structure of atoms and molecules, the exclusion principle
establishes an upper bound of 1 for fermionic natural occupation numbers {ni}. A recent analysis of the pure
N -representability problem provides a wide set of inequalities for the {ni}, leading to constraints on these
numbers. This has a strong potential impact on reduced density matrix functional theory as we know it. In this
work we continue our study of the nature of these inequalities for some atomic and molecular systems. The
results indicate that (quasi)saturation of some of them leads to selection rules for the dominant configurations
in configuration interaction expansions, in favorable cases providing means for significantly reducing their
computational requirements.
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I. INTRODUCTION

Fermionic natural occupation numbers (arranged in the
customary decreasing order ni � ni+1) fulfill the constraint
ni � 1, allowing no more than one electron in each quantum
state. This condition, formulated by Coleman [1], is necessary
and sufficient for a one-body reduced density matrix (1-RDM)
to be the contraction of an ensemble N -body density matrix,
provided that

∑
i ni = N .

In a seminal work, Borland and Dennis [2] observed that
for the rank 6 approximation of a pure-state N = 3 system,
belonging to the Hilbert space ∧3H6, the occupation numbers
satisfy the following additional conditions: n1 + n6 = n2 +
n5 = n3 + n4 = 1 and n4 � n5 + n6. The set of equalities
allows exactly one electron in the natural orbitals r and
7 − r . The analysis by Klyachko and coworkers [3,4] of the
pure N -representability problem for the 1-RDM establishes
a systematical approach, generalizing this type of constraint.
For a pure quantum system of N electrons arranged in m

spin orbitals, the occupation numbers satisfy a set of linear
inequalities, known as generalized Pauli constraints (GPCs),

D
μ

N,m(n) = κ
μ

0 + κ
μ

1 n1 + · · · + κμ
mnm � 0, (1)

with n := (n1, . . . ,nm), the coefficients κ
μ

j ∈ Z, and μ =
1,2, . . . ,rN,m. These conditions define a convex polytope of
allowed states in Rm. When one of the GPCs is completely
saturated [i.e., the equality holds in Eq. (1)], the system is said
to be pinned, and it lies on one of the facets of the polytope.

The nature of those conditions has been explored till
now in a few systems: a model of three spinless fermions
confined to a one-dimensional harmonic potential [5], the
lithium isoelectronic series [6], and ground and excited states
of some three- and four-electron molecules with the rank being
equal to twice the number of electrons [7]. For reasons that
remain mysterious, for all these systems some inequalities are
(quite often) nearly saturated; that is, in equations like (1),
equality almost holds [8]. This is the so-called quasipinning
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phenomenon, originally proposed by Schilling, Gross, and
Christandl [5].

The GPCs force a promissory rethinking of RDM functional
theory, with possibly revolutionary consequences [9]. Also,
violation of the GPCs has recently been identified as an
encoder of the openness of a quantum system [10].

Since the dimension of the Hilbert space in the configura-
tion interaction (CI) method grows binomially with the number
of electrons and of spin orbitals in the system, the method
easily becomes very demanding numerically. Moreover, the CI
expansion typically contains a great number of configurations
that are superfluous (with very small expansion coefficients)
for computing molecular electronic properties. Several ap-
proaches have been devised for selecting the most effective
configurations in CI expansions [11,12]. Quasipinning offers
another alley towards this end.

Let us consider one of the conditions of Eq. (1), μ, for
which pinning

D
μ

N,m(n) = 0 (2)

holds. An important superselection rule emerges for pinned
wave functions [13]. In fact, given a pinned system satisfying
equality (2), the corresponding wave function is an eigenfunc-
tion of a certain operator with eigenvalue 0. As discussed in this
paper, pinning enables the wave function to be described by
an ansatz based on this selection rule, reducing the number of
Slater determinants in the CI expansion. Recently, the stability
of this selection rule (the potential loss of information when
assuming pinning instead of quasipinning) has been measured
for systems with nondegenerated natural orbitals which are
close to the boundary of the polytope [14].

Here we examine the connection among pinning, quasip-
inning, and the excitation structure of the CI wave function
in more detail. We identify those configurations that are
negligible when imposing pinning on the wave function
and study the issue of the robustness of quasipinning with
increasing rank.

The paper is organized as follows. Section II elucidates
the superselection rule for pinned systems. Section III is of
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a mathematical nature, as well. It is shown that there is still
new wine in the old Borland-Dennis bottles: we prove, for not
very strongly correlated systems, that the spin-compensated
open-shell system ∧3H6 is always pinned to the boundary
of the polytope described by the Borland-Dennis conditions.
We then unveil a new regime for spin-compensated, strongly
correlated systems, and finally, we briefly discuss the relation
of GPCs to the linear equalities for reduced density matrices
analyzed by Davidson and coworkers over many years [15,16].

In Secs. IV and V we present results of numerical inves-
tigations for some atomic and molecular models: a lithium
atom with broken spherical symmetry and the three-electron
molecule He+

2 , respectively. In Sec. VI we explore the connec-
tions among quasipinning, pinning, and the excitation structure
of the CI wave function for three-electron systems. In the
following section we discuss four-electron systems. Finally,
in the last section (Sec. VIII) we summarize our conclusions.
Throughout the paper we employ Hartree’s atomic units (a.u.).

II. SUPERSELECTION RULES

In the full CI picture, the wave function in a given
one-electron basis is expressed as a linear combination of all
possible Slater determinants,

|�〉 =
∑
K

cK |K〉, (3)

with |K〉 denoting a determinant. Whenever we write expres-
sions of this type in this paper, they are eigenfunctions of the
spin operator Sz, belonging to the same eigenvalue. In general,
they will not be eigenfunctions of S2, so a spin adaptation is
needed [17].

A one-body density matrix is compatible with the pure-state
density matrix |�〉〈�| whenever its spectrum satisfies a set of
linear inequalities of type (1). For pinned systems, such that
condition (2) holds, the corresponding wave function belongs
to the 0-eigenspace of the operator

Dμ

N,m = κ
μ

0 1 + κ
μ

1 a
†
1a1 + . . . + κμ

ma†
mam,

where a
†
i and ai are the fermionic creation and annihilation

operators of the state i. By using the expression of the wave
function in the full CI picture, this condition can be recast into
a superselection rule for the Slater determinants that appear
in the CI decomposition. Given a pinned system that satisfies
equality (2), each Slater determinant appearing in expansion
(3) must be an eigenfunction of Dμ

N,m with an eigenvalue equal
to 0. The superfluous or ineffective configurations are thus
identified by means of the following criterion [13,18]:

if Dμ

N,m|K 〉 �= 0, then cK = 0.

The latter statement, for nondegenerate occupation numbers,
follows from a relatively well-known result in symplectic
geometry, whose proof can be traced back to the eighties [19].
The degenerate case needs a different kind of proof, which
is forthcoming [20]. It immediately demonstrates that the
(quasi)pinning phenomenon allows one to drastically reduce
the number of Slater determinants in CI expansions.

The criterion becomes even more strict when more than
one pinning constraint is satisfied. Were, for a given set of

constraints {μ1,μ2, . . . ,μr}, the corresponding GPCs to sat-
urate, the ineffective configurations would satisfy simultane-
ously the selection rules,

if Dμ1
N,mDμ2

N,m . . . Dμr

N,m|K〉 �= 0, then cK = 0.

Note that the order of the operators Dμ

N,m, Dν
N,m is irrelevant,

since they commute. For such selection rules, the occupation
numbers satisfy the following set of simultaneous equations:

D
μ1
N,m(n) = D

μ2
N,m(n) = · · · = D

μr

N,m(n) = 0.

For instance, the Borland-Dennis state ∧3H6 satisfies

(1 − a
†
1a1 − a

†
6a6)|�〉 = 0,

(1 − a
†
2a2 − a

†
5a5)|�〉 = 0,

(1 − a
†
3a3 − a

†
4a4)|�〉 = 0.

In general, it is not possible to saturate any arbitrary set of
GPCs simultaneously, but as we discuss later certain sets are
compatible with the rank of approximation when they are
pinned.

In the remaining sections of this paper, among other things,
we explore (in)effective configurations when a certain number
of pinning conditions are imposed. We mainly deal with three-
electron systems, with Hilbert space ∧3Hm,m � 6.

III. EXACT PINNING IN SPIN-COMPENSATED
CONFIGURATIONS FOR ∧3H6

For the rank 6 approximation for three-electron systems it
is known [2] that the natural occupation numbers satisfy the
constraints nr + n7−r = 1 (r = 1,2,3) and

2 − n1 − n2 − n4 � 0, (4)

where the numbers {ni} are arranged in the customary
decreasing order ni � ni+1 and fulfill the Pauli condition
n1 � 1. Inequality (4) together with the decreasing ordering
rule defines a polytope (Fig. 1). Clearly, the smallest possible
value for the first three occupation numbers, and the largest
for the last three, is 0.5.

The conditions nr + n7−r = 1 imply that in the natural
orbital basis, namely, {αi}6

i=1, every Slater determinant is com-
posed of three natural orbitals |αiαjαk〉, each one belonging
to one of three different sets, say,

αi ∈ {α1,α6}, αj ∈ {α2,α5}, and αk ∈ {α3,α4}.
This results in eight possible configurations:

|α1α2α3〉, |α1α2α4〉, |α1α3α5〉, |α1α4α5〉,
|α2α3α6〉, |α2α4α6〉, |α3α5α6〉, |α4α5α6〉.

A spin-compensated configuration consists of three spin
orbitals whose spin points down, and another three whose spin
points up. Such a configuration is in general favorable for the
energy in comparison with other types of arrangements [6].
The 1-RDM (a 6 × 6 matrix) is the direct sum of two (3 × 3)
matrices, one related to the spin up and the other related to the
spin down:

ρ1 = ρ
↑
1 ⊕ ρ

↓
1 .
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FIG. 1. (Color online) Polytope defined by the expression n4 �
n5 + n6, subject to the condition 0 � n6 � n5 � n4 � 0.5. The
saturation condition n5 + n6 = n4 is satisfied by the points on one of
the faces of the polytope, whereas on the edges n5 + n6 = 0.5 we have
n4 = 0.5 and for n4 = n5 we have n6 = 0. The single determinant
state is placed in the lower left corner ni = 0 of the polytope.

The wave function is an eigenstate of the total spin operator
Sz (and of S2 in the spin-restricted case). Therefore, each
acceptable Slater determinant will contain two spin orbitals
pointing up (for instance) and one pointing down. It follows
that the trace of one of those matrices will be equal to 1, while
the sum of the diagonal elements of the other one will be equal
to 2. Say,

Tr ρ
↑
1 = 2 and Tr ρ

↓
1 = 1.

For not very strongly correlated systems, two of the first
three occupation numbers belong to the matrix whose trace is
equal to 2. Hence, we have the two conditions ni + nj + nx =
2 and nk + ny + nz = 1, where i,j,k ∈ {1,2,3} and x,y,z ∈
{4,5,6}. For a given i and j there are three possible values of
x and therefore there are, in principle, nine possible solutions:

n1 + n2 + nx = 2 and n3 + ny + nz = 1,

n1 + n3 + nx = 2 and n2 + ny + nz = 1,

n2 + n3 + nx = 2 and n1 + ny + nz = 1.

However, we may easily dismiss all but one of them. For
instance, the case

n2 + n3 + n6 = 2 and n1 + n4 + n5 = 1

is impossible: using n1 = 1 − n6, one obtains −n6 + n4 +
n5 = 0. This would imply that n4 = n6 − n5 � 0, which is
out of the question. Also, for

n1 + n3 + n5 = 2 and n2 + n4 + n6 = 1,

using that n2 = 1 − n5, one obtains −n5 + n4 + n6 = 0,
which would imply that n4 = n5 − n6 < n5. Other cases are
easily seen to give rise to, at most, rank 4 or 5 for the wave

function, except for

n1 + n2 + n4 = 2 and n3 + n5 + n6 = 1,

which saturates the representability condition, (4). Therefore,
for not very strongly correlated systems the spin-compensated
wave function of ∧3H6 lies on one of the facets of the
Borland-Dennis-Klyachko polytope. This is in agreement with
the numerical results obtained previously [6,7]. A similar
phenomenon can be observed in the Hubbard model for three
fermions on three lattice sites with periodic conditions [21].

The wave function for this configuration for ∧3H6 in the
basis of natural orbitals can now be written in terms of the
1-RDM matrix,

|�〉3,6 = c123|α1α2α3〉 + c145|α1α4α5〉 + c246|α2α4α6〉, (5)

with the proviso that |c123| � |c145| � |c246|. It is now patent
that |�〉 can be elegantly rewritten as

√
n3 |α1α2α3〉 + √

n5 |α1α4α5〉 + √
n6 |α2α4α6〉, (6)

in analogy to the Löwdin-Shull functional for the two-electron
case [22]. Note that, just like in the Löwdin-Shull functional,
only doubly excited configurations are permitted here [23].
(We understand excitations with respect to the “best density”
Slater determinant, in the sense of [24]).

The pinned configuration

(n1,n2,n3) = (
3
4 , 3

4 , 1
2

)
is far from the “Hartree-Fock” (1,1,1) state. Now, a little sur-
prise awaits us: for spin-compensated, very strongly correlated
systems it is possible to show, by the same method as above,
the identity

n1 + n2 + n3 = 2;

equivalently, n4 + n5 + n6 = 1. (7)

In terms of ρ1 the wave function then reads

|�〉 = √
n4|α1α2α4〉 + √

n5|α1α3α5〉 + √
n6|α2α3α6〉,

living in the 0-eigenspace of the operator

2 − a
†
1a1 − a

†
2a2 − a

†
3a3.

We note that overlap of those wave functions with the |α1α2α3〉
state is 0. For the case n4 = n5 = n6 = 1/3 this was noted
by Kutzelnigg and Smith [24]. The Borland-Dennis-Klyachko
constraint becomes, in this case,

2 − (n1 + n2 + n4) = n3 − n4 � 0.

Therefore in this regime it is possible to determine |�〉 from
ρ1 even without Klyachko pinning. The border between the
two regimes is given by the degeneracy line n3 = n4 = 1

2 .
Inequality (4) together with the pinning, (7), cut out a new
facet on the polytope of allowed states (Fig. 2).

In summary, the Borland-Dennis-Klyachko polytope of
states is still too large. In fact, the spin-compensated states
lie either on the n1 + n2 + n4 = 2 facet of the polytope
(when closer to the single-determinant state) or on the plane
n4 + n5 + n6 = 1 (when farther from the single-determinant
state). The edge n3 = n4 is shared by these two planes. Since
the exact expressions given above for the spin-compensated
formulation of the system ∧3H6 lead to a diagonal 1-RDM,
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FIG. 2. (Color online) Polytope defined by the expression n4 �
n5 + n6, subject to the condition 0 � n6 � n5 � n4 � 0.5, plus the
condition n4 + n5 + n6 � 1. The saturation condition n4 + n5 +
n6 = 1 is satisfied by the points on the face of the polytope whose
vertices are ( 1

2 , 1
2 ,0), ( 1

2 , 1
4 , 1

4 ), and ( 1
3 , 1

3 , 1
3 ).

without any restriction on the amplitudes cijk (provided, of
course, that the orbitals are orthonormal), for such a simple
system one does not need a previous CI calculation to compute
the natural orbitals or the value of the ground-state energy [8].

A well-known extension of density functional theory is the
pair-density functional theory, which is based on the diagonal
elements of the 2-RDM [25]. It is known that the corresponding
representability constraints are expressed in terms of the latter
elements. For the system ∧3H6 there are, in total, 70 Slater hull
inequalities, grouped into three permutation classes [15,16].
Since the 2-RDM is a positive semidefinite matrix its diagonal
elements are never negative. The first class is thus given by 15
inequalities,

〈n̂i n̂j 〉 � 0, 1 � i < j � 6,

where n̂i := a
†
i ai is the occupation number operator; the

second class contains 10 inequalities, namely,

〈(n̂f + n̂g + n̂h)2 + (n̂i + n̂j + n̂k)2〉 � 5, (8)

provided that 1 � f,g,h,i,j,k � 6; and the last one is deter-
mined by 45 inequalities of the type

〈(n̂f + n̂g)(n̂h + n̂i) + n̂f n̂g + n̂hn̂i + n̂j n̂k〉 � 1. (9)

For the wave function, (5), the majority of these inequalities
are pinned. Six inequalities of the first class are completely
saturated, namely,

〈n̂i n̂7−i〉 = 0 and 〈n̂3n̂5〉 = 〈n̂3n̂6〉 = 〈n̂5n̂6〉 = 0.

For the second class [Eq. (8)] we have that all are pinned save

〈(n̂1 + n̂2 + n̂3)2 + (n̂4 + n̂5 + n̂6)2〉 = 5 + 4n3 > 5,

〈(n̂1 + n̂4 + n̂5)2 + (n̂2 + n̂3 + n̂6)2〉 = 5 + 4n5 > 5,

〈(n̂2 + n̂4 + n̂6)2 + (n̂1 + n̂3 + n̂5)2〉 = 5 + 4n6 > 5.

Since the occupation numbers are arranged in decreasing order,
the strongest nonpinned inequality is the first one. The number
of linearly independent inequalities belonging to the third class
[Eq. (9)] drops to only 9. For instance,

〈(n̂1 + n̂6)(n̂2 + n̂3) + n̂1n̂6 + n̂2n̂3 + n̂4n̂5〉 = 1 + n3 > 1.

In the end, we deal with 21 inequalities instead of 70, a
remarkable reduction. It is worth mentioning that the N -
representability constraints for the ensemble 2-RDM contain
as a subset all of these “classical” N -representability condi-
tions [26,27].

IV. NUMERICAL INVESTIGATIONS: LITHIUM WITH
BROKEN SPHERICAL SYMMETRY

In the previous paper [6] we obtained rank 6, 7, and 8
approximations for the lithium isoelectronic series by using
a set of helium-like one-particle wave functions in addition
to one hydrogen-like wave function. Guided by the classical
work of Shull and Löwdin [22], for the former we employed
the set of orthonormal spatial orbitals

δn(α,r) := Dn

√
α3

π
L2

n−1(2αr)e−αr , n = 1,2, . . . ,

where D−2
n = (n−1

2 ), and we use the standard definition of the

associated Laguerre polynomials L
ζ
n [28]. For the hydrogen-

like function we used

ψ(β,r) = 1

4

√
β5

6π
r e−βr/2.

Applying a variational procedure for the state |δ1↑δ1↓ψ↑〉
results in α = 2.68 and β = 1.27, and the total energy
associated with this Slater determinant becomes −7.4179 a.u.,
reasonably close to the Hartree-Fock energy, −7.4327 a.u.

Now we examine the GPC when the spherical symmetry
of the central potential is broken by considering the following
Hamiltonian:

H (Z,γ ) = 1

2

3∑
i=1

| pi |2 −
3∑

i=1

Z

|r i |
(

1 + γ
x2

i

|r i |2
)

+
3∑

i < j

1

|r i − rj | . (10)

The case H (3,0) is the Hamiltonian of lithium, whose accurate
energy value is −7.47806 a.u.

A motivation behind this model is to lift constraints on the
possible occupation numbers due to the spherical symmetry
of the isolated Li atom. Lowering the symmetry makes the
model more flexible and allows us to envisage more general
cases. In addition, the model can serve to describe a Li
atom embedded in some environment that does not provide
covalent interactions with the Li atom. We have performed
the calculations of this section by searching those values of
α and β for which the approximation to the ground state
leads to the minimum energy with spin-compensated linear
combinations of Slater determinants. Analytical expressions
for the electron integrals were computed using Mathematica
[29] and orthonormalized orbitals were obtained by the
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Gram-Schmidt procedure. Computations were performed with
36-decimal floating-point precision.

A. Rank 6

The spin-restricted rank 6 approximation for H (3,γ ) is
always pinned to the boundary of the polytope, as we have
shown in the general case in Sec. III. It is interesting to examine
the spectral trajectory of the “best” spin-restricted state in
∧3H6 as a function of the parameter γ by means of minimizing
the CI states on the manifold (α,β). To this end we choose as
a one-particle Hilbert space the set

{δ1↑,δ1↓,ψ↑,ψ↓,δ2↑,δ2↓}.
The Hilbert space factorizes then in the direct product of two
spin-orbital sectors, ∧3 H6 → H3 ⊗ ∧2H3. There are nine
configurations in all, eight of which belong to the j = 1

2
representation:

|δ1↑δ1↓ψ↑〉, |δ1↑δ1↓δ2↑〉, |ψ↑ψ↓δ1↑〉, |ψ↑ψ↓δ2↑〉,
|δ2↑δ2↓δ1↑〉, |δ2↑δ2↓ψ↑〉, |δ1↑ψ↓δ2↑〉 − |δ1↓ψ↑δ2↑〉,
|δ1↑ψ↑δ2↓〉 − |δ1↓ψ↑δ2↑〉.
(The configuration |δ1↑ψ↓δ2↑〉 + |δ1↓ψ↑δ2↑〉 +
|δ1↑ψ↑δ2↓〉 belongs to the representation j = 3

2 ).
In order to quantify the position of the set of occupation

numbers on the boundary of the polytope, one may define
ξ 2 := ∑3

i=1(1 − ni)2 as the euclidean distance between the
spectrum of the state and the extreme point (1,1,1) of
the polytope, corresponding to the spectrum of a single
determinant. Figure 3 shows ξ for small values of γ of the
electronic Hamiltonian given in (10). For decreasing γ the
spectrum of the one-body density departs farther from that
extremum. The kinematics, however, keeps the state pinned
to the boundary of the Borland-Dennis-Klyahcko polytope,
since its natural occupation numbers maintain the condition
1 + n3 = n1 + n2.

A similar behavior is observed for a unrestricted description
using, for instance, the set

{δ1↑,δ1↓,ψ↑,δ2↑,δ2↓,δ3↑}
as the one-particle Hilbert space. However, the energy pre-
dicted by the latter configuration is slightly worse than the one
predicted by the spin-restricted case.

FIG. 3. The distance ξ between the spectrum of the ground state
and the extreme point of the polytope as a function of γ ∈ [−0.1,0.1]
for the spin-restricted rank 6 approximation to the Hamiltonian
H (3,γ ) given by (10).

B. Rank 7

There are four GPC for the three-electron system in a rank
7 configuration ∧3H7:

D1
3,7 = 2 − n1 − n2 − n4 − n7 � 0,

D2
3,7 = 2 − n1 − n2 − n5 − n6 � 0,

(11)
D3

3,7 = 2 − n2 − n3 − n4 − n5 � 0,

D4
3,7 = 2 − n1 − n3 − n4 − n6 � 0.

For lithium-like atoms, calculations [6,7] had shown that the
first of these four inequalities is completely saturated.

For the rank 7 approximation to the Hamiltonian, (10), we
choose

{δ1↑,δ1↓,ψ↑,δ2↑,δ2↓,δ3↑,δ3↓}
as the one-particle Hilbert space. Other types of configurations
are possible too, but they lead to higher values for the ground-
state energy. There are 18 configurations in total, but only 14
of them belong in the j = 1

2 representation. For any γ , the
occupation numbers satisfy

n1 + n2 + n4 + n7 = 2 and n3 + n5 + n6 = 1, (12)

implying that the first GPC of (11) is completely saturated. The
Hilbert space of this system then splits into the direct product
of two spin-orbital sectors, ∧3 H7 → H3 ⊗ ∧2H4.

Also, the following interesting system was analyzed in [13].
The first excited state of beryllium, with spin (S,Sz) = (1,1),
fills the lowest three shells, 1s, 2s, and 2p. In a reasonable
approximation, the first natural orbital is completely occupied
and the last two are empty (thus n9 = n10 = 0). The seven
remaining natural orbitals are organized in such a way that the
first inequality in (11) is saturated too.

For lithium we found previously [6] that the GPC could be
split into two groups differing in how close the equalities were
obeyed; i.e., one may talk about two scales of quasipinning.
Here we observe the same phenomenon. In fact, the value
of the constraint D2

3,7 is always below 1.3717 × 10−5, taking
its maximum for γ = 0.01 (i.e., practically at the “physical
point”), as indicated in Fig. 4.

×

FIG. 4. Second GPC D2
3,7 for the ground state of the Hamiltonian

H (3,γ ) in a rank 7 approximation as a function of γ ∈ [−0.1,0.1].
For γ = 0.01, the constraint reaches its maximum value (namely,
1.3717 × 10−5).
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×

FIG. 5. (Color online) Third and fourth GPCs for the ground state
of the Hamiltonian H (3,γ ) in a rank 7 approximation as a function
of γ ∈ [−0.1,0.1].

On the other hand, the remaining two GPCs, D3
3,7 and

D4
3,7, take values around 7 × 10−5. As shown in Fig. 5,

D3
3,7 decreases when the value of γ grows, while the last

one increases when γ increases. Note the crossover of two
constraints also close by γ = 0.

C. On the energies

Finally, Fig. 6 depicts the ground-state energy predicted
by our model for the spin-restricted version of the rank 6
approximation as a function of γ . For H (3,0) the ground-state
energy is −7.4311 a.u. For rank 7 and γ = 0, the calculated
energy for this model is equal to −7.4458 a.u., lower than
the Hartree-Fock energy for lithium. Remarkably, the rank
8 approximation for this model gives −7.4548 a.u. for the
ground-state energy of lithium, which represents more than
50% of its correlation energy [6].

V. THE MOLECULAR SYSTEM He+
2

In this section we study the behavior of the occupation
numbers of helium’s molecular ion He+

2 . The goal is to
explore the GPCs along the dissociation path of this three-
electron system, whose symmetry is lower than spherical,
identifying those almost saturated. The Hartree-Fock energy
for this system is −4.9 a.u. [30], with a 6-31G basis set.
The equilibrium bond length is 2.08 a.u. [30]. The computed
value for the ground-state energy is approximately −4.99 a.u.
[30,31]. Therefore the correlation energy is equal to 90 mHa.
We have approximated the atomic orbitals by employing a
6-31G basis set [32]. We here report our results for (rank 6, 7,
and 8) CI approximations for this diatomic ion.

FIG. 6. Ground-state energy for the spin-restricted rank 6 ap-
proximation to the Hamiltonian H (3,γ ) given by (10) as a function
of γ ∈ [−0.1,0.1].

A. GPC for the He+
2 ground state

For a dimer with atomic charges Z the energy is given by
the expression

−
∫ (

1

2
∇2

r +
∑

μ∈{A,B}

Z

|r − Rμ|
)

ρ1(x,x′)
∣∣∣∣

x=x′
dx

+
∫

ρ2(x1,x2)

|r1 − r2| dx1 dx2 + Z2

|R| .

The two atoms are located at RA and RB and separated
by R := RA − RB . The standard quantum-chemical notation,
x := (r,ς ), with ς ∈ {↑,↓} is employed. The molecular
orbitals are constructed as linear combinations of the atomic 1s

and 2s orbitals, which are in turn solutions of the Hartree-Fock
equations. In the rest of this subsection, standard notation for
the bonding (gerade) and antibonding (ungerade) molecular
orbitals is used. The ground-state configuration of He+

2 is
classified as 2�u and the starting configuration is a single
Slater determinant, |1σ

↑
g 1σ

↓
g 1σ

↑
u 〉.

Table I lists the results for the energy and for the natural
orbital occupancy numbers from rank 6 up to rank 8 approxi-
mations for the ground state of He+

2 . The rank 6 approximation
is obtained through a spin-compensated configuration,

{1σ ↑
g ,1σ ↓

g ,1σ ↑
u ,1σ ↓

u ,2σ ↑
g ,2σ ↓

g }.
Higher-rank configurations are obtained by successively
adding the orbitals {2σ

↑
u ,2σ

↓
u }.

A number of findings can now be identified.
(a) For rank 6, the spin-compensated configuration gives

the Borland-Dennis-Klyachko saturation condition 1 + n3 =
n1 + n2.

(b) For rank 7, we obtain the following values for the GPC:

D1
3,7 = 2.42 × 10−5, D2

3,7 = 0,

D3
3,7 = 1.24 × 10−3, D4

3,7 = 1.39 × 10−3.

TABLE I. Occupation numbers and energies for rank 6 to rank 8 for He+
2 in its equilibrium geometry, employing 6-31G basis set.

Rank Energy n1 n2 n3 n4(10−3) n5(10−3) n6(10−3) n7(10−3) n8(10−4)

6 −4.9125 0.9992 0.9949 0.9941 5.8086 5.0914 0.7172 — —
7 −4.9194 0.9973 0.9941 0.9915 7.1019 5.8950 2.5530 1.3220 —
8 −4.9239 0.9968 0.9932 0.9901 8.4888 6.8304 3.0819 1.3665 0.1178
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TABLE II. First 19 GPCs for the system ∧3H8 and numerical
values for He+

2 at its equilibrium geometry.

Generalized Pauli condition for ∧3H8 ×103

0 � D1
3,8 = 2 − (n1 + n2 + n4 + n7) 0.0570

0 � D2
3,8 = 2 − (n1 + n2 + n5 + n6) 0

0 � D3
3,8 = 2 − (n2 + n3 + n4 + n5) 1.2712

0 � D4
3,8 = 2 − (n1 + n3 + n4 + n6) 1.4854

0 � D5
3,8 = 1 − (n1 + n2 − n3) 0.0452

0 � D6
3,8 = 1 − (n2 + n5 − n7) 1.2594

0 � D7
3,8 = 1 − (n1 + n6 − n7) 1.4736

0 � D8
3,8 = 1 − (n2 + n4 − n6) 1.3164

0 � D9
3,8 = 1 − (n1 + n4 − n5) 1.5306

0 � D10
3,8 = 1 − (n3 + n4 − n7) 2.7449

0 � D11
3,8 = 1 − (n1 + n8) 3.1772

0 � D12
3,8 = −(n2 − n3 − n6 − n7) 1.3046

0 � D13
3,8 = −(n4 − n5 − n6 − n7) 2.7901

0 � D14
3,8 = −(n1 − n3 − n5 − n7) 1.5188

0 � D15
3,8 = 2 − (n2 + n3 + 2n4 − n5 − n7 + n8) 7.7980

0 � D16
3,8 = 2 − (n1 + n3 + 2n4 − n5 − n6 + n8) 5.9792

0 � D17
3,8 = 2 − (n1 + 2n2 − n3 + n4 − n5 + n8) 5.0983

0 � D18
3,8 = 2 − (n1 + 2n2 − n3 + n5 − n6 + n8) 3.0082

0 � D19
3,8 = −(n1 + n2 − 2n3 − n4 − n5) 5.4973

The constraint due to spin has “jumped,” with respect to the
lithium series!

(c) For the latter rank, two scales of quasipinning are
clearly identified. Compared with the lithium-like atom, the
first level of quasipinning is here more meaningful and
probably more useful in order to reduce the number of Slater
determinants, since the distance to the “Hartee-Fock” point is
bigger, namely, ξ = 1.06 × 10−2.

It is a fact of life that the number of GPCs grows very
rapidly with rank. For rank 8 there are 31 inequalities [4].
They have been listed in a plain-text format [33]. Of these, 19
constraints are listed in Table II. The first four are equal to the
Klyachko conditions for ∧3H7.

Several scales of quasipinning can be identified here, as
well. Most important is the robustness of quasipinning. In
particular, the quantity D2

3,8, found to be exactly 0 in the
previous rank, remains in a saturated regime. The first and
fifth inequalities belong to a strongly quasipinned regime too.
For the remaining inequalities we have

D2
3,8 � D5

3,8 � D1
3,8 � D6

3,8 � D3
3,8

� D12
3,8 � D8

3,8 � D7
3,8 � D4

3,8 � . . . .

B. Occupation numbers and potential curves

Potential energy curves for the three different ranks of the
CI approximation for He+

2 are presented in Fig. 7. At the
equilibrium geometry, as also reported in Table I, a larger rank
results in a lower ground-state energy. All approximations
behave similarly around the equilibrium distance. At large
interatomic distances, the value predicted by the rank 8
configuration is −4.845 a.u. which is to be compared with the
total energy of the two separated compounds (He and He+):
−4.903 a.u. [34].

FIG. 7. (Color online) He+
2 potential energy curves for the three

ranks of CI approximation ∧3Hm, m ∈ {3,6,7,8} using 6-31G as a
basis set.

Figure 8 displays rank 7 GPCs as functions of the
interatomic distance in atomic units. There are again two scales
of quasipinning. The first two GPCs remain in a strongly
pinned regime, since for these, D

μ

3,7 is very close to 0. For
those, we notice a sharp crossover at lengths shorter than
that of equilibrium. In fact, one of them is always completely
saturated: in the region R < 1.25 a.u., i.e., D1

3,7 = 0 is a very
good approximation, whereas for R > 1.25 a.u., D2

3,7 = 0 is
also very good. Unfortunately, we do not yet have a good
description for this apparent quenching of degrees of freedom,
which surely deserves further investigation.

For rank 8, several scales of quasipinning can be ob-
served for He+

2 . Our main result is again the robustness of

FIG. 8. (Color online) Rank 7 GPCs as functions of the inter-
atomic distance in atomic units. Vertical lines mark the equilibrium
bond lengths.

012512-7



CARLOS L. BENAVIDES-RIVEROS AND MICHAEL SPRINGBORG PHYSICAL REVIEW A 92, 012512 (2015)

FIG. 9. (Color online) Rank 8 GPCs as functions of the inter-
atomic distance. Vertical lines mark the equilibrium bond lengths.

quasipinning. In particular, we observe that the quantities
D1

3,8 and D2
3,8, found to be exactly 0 for some bond-length

regime at rank 7, remain in a strongly saturated regime,
as shown in Fig. 9. The Hilbert space of this system then
splits into the direct product of two spin-orbital sectors,

∧3 H8 → H4 ⊗ ∧2H4. Also, D5
3,8 is found to be very close

to 0.
To a second quasipinning regime belong the quantities

D3
3,8, D4

3,8, D6
3,8, D7

3,8, D8
3,8, D9

3,8, D12
3,8, D14

3,8.

As shown in Fig. 9, these GPCs behave roughly in the
same way for increasing bond lengths. Their values tend
asymptotically to approximately the same value for large
interatomic distances.

Finally, a third quasipinning sector appears to be composed
of D10

3,8, D13
3,8, D15

3,8, D18
3,8, D19

3,8.

VI. QUASIPINNING AND EXCITATIONS

From the seminal work by Löwdin and Shull it is known
that the transformation to natural orbitals removes all single
(S) excitations of the wave function of two-electron systems
[22]. For the singlet state the general wave function can be
written exactly as

|�(x1,x2)〉 = 1√
2

(↑1↓2 − ↓1↑2)
∞∑
i=1

ci |αi(r1)αi(r2)〉.

Again, we have used x := (r,ς ), with ς being the spin
coordinates {↑,↓}. A similar expression can be found for the
triplet state [35].

It is also remarkable that the wave function, (5), does not
contain S or triple (T) excitations of the best single-determinant
state |0〉 := |α1α2α3〉. The Slater determinants |α1α4α5〉 and
|α2α4α6〉 correspond to double (D) excitations of this state.

Single excitations cannot be completely removed from the
CI wave function of general many-electron systems when
written in terms of natural orbitals. However, Mentel and
coworkers [36] have recently shown that writing the wave
function in the basis of natural orbitals leads to a sharp drop of
the coefficients of Slater determinants containing just single
excitations. For the BH molecule, the sum of squares of CI
coefficients of singles falls from 1.5 × 10−3 to 5.3 × 10−6

when switching to the natural orbital basis. In this section and
the next we argue that this phenomenon is a consequence of
the near-saturation of some Klyachko selection rules on the
occupation numbers.

A. Selection rule for excitations in ∧3H6

This case has been just discussed. Even if the number of
basis spin orbitals pointing up is different from the number
pointing down, an eventual saturation of condition (4) would
lead to the situation summarized in Table III. A double
excitation is also removed thereby.

TABLE III. Number of Slater determinants in the total and force-
pinned CI expansions of the wave function for the system ∧3H6.

Condition |0〉 S D T Total

CI 1 3 3 1 8
D1

3,6|�〉 = 0 1 0 2 0 3
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TABLE IV. Number of Slater determinants in the total and force-
pinned CI expansions of the wave function for the system ∧3H7.

Condition |0〉 S D T Total

D1
3,7|�〉3,7 = 0 1 6 9 2 18

D2
3,7D1

3,7|�̃〉3,7 = 0 1 0 8 0 9

B. Selection rules for excitations in ∧3H7

The four Klyachko inequalities for the three-electron
system in a rank 7 approximation ∧3H7 were given in Eq. (11).
The corresponding operators are

D1
3,7 = 2 − a

†
1a1 − a

†
2a2 − a

†
4a4 − a

†
7a7,

D2
3,7 = 2 − a

†
1a1 − a

†
2a2 − a

†
5a5 − a

†
6a6,

D3
3,7 = 2 − a

†
2a2 − a

†
3a3 − a

†
4a4 − a

†
5a5,

D4
3,7 = 2 − a

†
1a1 − a

†
3a3 − a

†
4a4 − a

†
6a6.

As discussed above, for the lithium isoelectronic series [6], for
the system described by the Hamiltonian of Eq. (10) and for the
first excited state of beryllium in a rank 10 approximation [13],
the first of the four inequalities (11) is completely saturated.
Accordingly, for all these systems, the exact wave function
satisfies the condition

D1
3,7|�〉3,7 = 0.

This implies that in the natural orbital basis, every Slater
determinant is composed of three natural orbitals, two of them
belonging to the set {α1,α2,α4,α7} and one belonging to the set
{α3,α5,α6}. Then the system ∧3H7 is reduced to H3 ⊗ ∧2H4,
with, in total, 18 of these Slater determinants.

Imposing, in addition, saturation of the second inequality
of (11), i.e., D2

3,7D1
3,7|�̃〉3,7 = 0, the singles and the triples

are completely removed from the expression, as reported in
Table IV. The corresponding wave function |�̃〉3,7 is written in
terms of the inicial configuration |α1α2α3〉, plus the following
eight configurations:

|α1α4α5〉, |α2α4α6〉, |α1α5α7〉, |α2α5α7〉,
(13)

|α1α4α6〉, |α2α4α5〉, |α1α6α7〉, |α2α6α7〉.

C. Selection rules for excitations in ∧3H8

The empirical evidence discussed earlier shows that the
inequalities for the following GPCs are almost or completely
saturated:

D1
3,8, D2

3,8, D5
3,8.

Imposing the saturation of the second and fifth constraints, say,
the singles and the triples are removed completely, as reported
in Table V. The corresponding wave function |�̃〉3,8 is written
in terms of the nineconfigurations of the pinned rank 7 wave
function, (13), plus the configurations

|α1α5α8〉, |α2α6α8〉, |α2α5α8〉, |α1α6α8〉.

TABLE V. Number of Slater determinants in the total and force-
pinned CI expansions of the wave function for the system ∧3H8.

Condition |0〉 S D T Total

D2
3,8|�〉3,8 = 0 1 7 13 3 24

D5
3,8D2

3,8|�̃〉3,8 = 0 1 0 12 0 13

D. He+
2 : Electronic energy and pinning truncations

An idea behind quasipinning is to approximate the wave
function through a truncated expansion by using the selection
rules that emerge after imposing pinning. Therefore, it is a
relevant issue to examine how the electronic energy is affected
as the number of configurations is reduced in the truncation.
Here we explore the ground-state energy for the helium dimer
He+

2 for different pinned wave functions, compared with the
energy predicted by the CI expansion within the same rank. (It
must be said beforehand that, contrary to the case of lithium-
like systems, up to rank 8, less than 30% of the absolute
correlation energy is recovered. This is due partly to a less
than optimal choice of the basis set and partly to the difficulty
of capturing some aspects of correlation with such short basis
sets).

Table VI lists the value of the correlation energy for
(force-pinned and complete) wave functions for rank 6 up
to rank 8 approximations for the ground state of He+

2 . It
is remarkable that the force-pinned wave function |�̃〉3,7

reconstructs 99.79% of the rank 7 correlation energy, em-
ploying just nine configurations. The CI rank 8 wave function
contains 24 Slater determinants belonging to the Hilbert space
∧2H4 ⊗ H4. The correlation energy is 24.64 mHa. The pinned
wave function |�̃〉3,8 reconstructs 99.51% of this available
correlation energy, employing 13 Slater determinants.

Figure 10 shows the absolute value of the correlation
energy along the dissociation path for CI rank 6 up to rank
8 expansions (|�〉3,6, |�〉3,7, |�〉3,8) and for the pinned wave
functions |�̃〉3,7 and |�̃〉3,8. It is also remarkable that the
pinned rank 7 and rank 8 wave functions almost contain
the complete correlation energy to the corresponding rank
of approximation along the complete path, demonstrating the
negligible role of the single and triple excitations. These results
suggest that even though that saturation of one GPC notably
reduces the number of Slater determinants, remarkably good
values for the correlation energies are obtained.

TABLE VI. Ground-state correlation energies predicted for the
complete and force-pinned CI wave functions for He+

2 in rank 6 up
to rank 8 approximations. Values are given in mHa.

Wave function |E − EHF|
|�〉3,6 13.22
|�̃〉3,7 20.12
|�〉3,7 20.17
|�̃〉3,8 24.56
|�〉3,8 24.64
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FIG. 10. (Color online) Absolute value of the correlation energy
|E − EHF| for CI expansion and pinned wave functions for rank 6 up
to rank 8 approximations, along the dissociation path for He+

2 . The
pinned wave function |�̃〉3,6 is equivalent to the CI rank 6 expansion,
so it is not included. Values are given in mHa.

VII. ON FOUR-ELECTRON SYSTEMS

For the case of a four-electron system with an eight-
dimensional one-electron Hilbert space, ∧4H8, there are, in
total, 14 GPC. Derived initially by Klyachko [4], they read

D
μ

4,8 :=
8∑

i=1

κ
μ

i ni � 0,

(14)

D
7+μ

4,8 := 2 −
8∑

i=1

κ
μ

9−ini � 0,

for 1 � μ � 7 and provided that n1 � 1. The coefficients κ
μ

i

are listed in Table VII.
For quantum states with an even number of fermions,

vanishing total spin, and time-reversal symmetry, Smith
proved that a 1-RDM is pure N -representable if and only
if all its eigenvalues are doubly degenerated [37]. Therefore,
for these systems, the occupation numbers obey

n2i−1 = n2i , i = 1,2, . . . . (15)

The double degeneracy of the occupation numbers forces the
GPCs for the system ∧4H8 to reduce to the traditional Pauli
exclusion principle [7]. Therefore, a state will be pinned only
if it is pinned to the traditional Pauli conditions, which only

TABLE VII. Sets of coefficients for the GPC of (14) for the
system ∧4H8.

μ κ
μ

1 κ
μ

2 κ
μ

3 κ
μ

4 κ
μ

5 κ
μ

6 κ
μ

7 κ
μ

8

1 −1 0 0 1 0 1 1 0
2 −1 0 0 1 1 0 0 1
3 −1 0 1 0 0 1 0 1
4 −1 1 0 0 0 0 1 1
5 0 −1 0 1 0 1 0 1
6 0 0 −1 1 0 0 1 1
7 0 0 0 0 −1 1 1 1

TABLE VIII. Number of Slater determinants in the full and
pinned CI expansions of the wave function for the spin-restricted
system ∧4H8 with Sz = 1.

Condition |0〉 S D T Total

CI 1 6 9 0 16
D14

4,8|�〉 = 0 1 0 9 0 10

occurs for a single-determinant wave function. For instance,

D1
4,8 := −n1 + n4 + n6 + n7 = 2(1 − n1),

D8
4,8 := 2 − n2 − n3 − n5 + n8 = 2n8,

D14
4,8 := 2 − n1 − n2 − n3 + n4 = 2(1 − n1).

Chakraborty and Mazziotti [7] computed the occupation
numbers for the ground state of some four-electron molecules
for rank equal to twice the number of electrons, employing
a STO-3G basis set. In this range of approximation, the two
energetically lowest orbitals of LiH are completely occupied
(therefore D1

4,8 = 0) and the Shull-Löwdin functional guaran-
tees that doubly excited determinants completely govern rank
8 CI calculations for this molecule.

However, there are important effects of dynamical electron
correlation which involve the core electrons, and the molecule
cannot be considered a two-electron system. In fact, for higher
ranks the two biggest occupation numbers (n1 = n2) become
smaller than 1. The first (and the second as well) occupation
number of BH is very close to 1, and accordingly D1

4,8
is quasipinned. For LiH and BeH2, the seventh occupation
number is almost 0, and hence for these systems D8

4,8 is
quasipinned.

In a spin-compensated description, the system ∧4H8 with
total spin component Sz equal to 1 contains 16 configurations,
corresponding to ∧3H4 ⊗ H4. The CI expansion only con-
tains double or single excitations. In a spin-uncompensated
description, the system ∧4H8 with total spin component Sz

equal to 1 would contain 30 configurations, corresponding to
∧3H5 ⊗ H3. Note that if the GPC

D14
4,8 = 2 − n1 − n2 − n3 + n4 � 0 (16)

is completely saturated, the corresponding wave function is a
member of the 0-eigenspace of the operator:

D14
4,8 = 2 − a

†
1a1 − a

†
2a2 − a

†
3a3 + a

†
4a4; (17)

and for both configurations, single and triple excitations are
entirely suppressed. This is a nontrivial fact. See Tables VIII
and IX. Besides the initial configuration,

|α1α2α3α4〉,

TABLE IX. Number of Slater determinants in the full and pinned
CI expansions of the wave function for the spin-unrestricted system
∧4H8 with Sz = 1.

Condition |0〉 S D T Total

CI 1 8 16 5 30
D14

4,8|�〉 = 0 1 0 11 0 12
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the configurations present in the expansion are just double
excitations of this state, which, in addition, do not contain the
fourth natural orbital α4.

In general, for the system ∧NHm, the condition

(N − 2) + nN = n1 + . . . + nN−1

has as a consequence that only double excitations become the
relevant configurations in a CI expansion [38]. Moreover, the
only configuration containing the orbital αN is |α1α2 · · · αN 〉.

For the larger system ∧4H10, the occupation numbers are
bounded by 121 constraints [4,33]. We postpone their study.

VIII. CONCLUSION

The recent solution of the pure N -representability problem,
due to Klyachko, promises to generate a wide set of conditions
(the GPCs) on the natural occupation numbers for fermionic
systems. The Klyachko algorithm does indeed produce sets of
linear inequalities with integer coefficients for those numbers.
The derivation of these inequalities, and of their consequences,
is still a work in progress.

For reasons that nobody has been quite able to fathom yet,
some of these inequalities appear to be nearly saturated, in a
far from random way: this is the quasipinning phenomenon. A
research program is born around these facts.

By means of both theoretical and numerical results, in this
paper we have continued to explore the nature of pinning and
quasipinning in some atomic and molecular models (mainly
perturbed lithium with broken spherical symmetry and the
dimer ion He+

2 ), for several finite-rank approximations whose
GPCs are known.

We sum up our opinions on the outcomes of that program,
so far.

(a) Saturation of some of the GPCs leads to strong selection
rules for identifying the most (in)effective configurations in CI
expansions. In simple cases, this provides means for reducing
the number of Slater determinants in the CI picture and
therefore reducing the computational requirements [5,6,13].
In general, it does provide insights into the structure of the
wave function, which brute force methods are unable to do.

(b) However, it is unlikely that the Klyachko paradigm will
be relevant for computational quantum chemistry, at least in
the short run. The main problem is the dramatic increase in
the number of GPCs with the rank of the spin orbital systems
introduced in the calculations.

(c) The robustness of the near-saturation of a particular
type of constraint conspires to “explain” why double exci-
tations govern CI calculations of electron correlation, when
using natural orbitals [38].

(d) A natural question is whether the exact “Löwdin-Shull”
formula, (6), for three-electron systems can be generalized to
a higher rank. The answer is a qualified, approximate yes, the
price to pay being to invoke a second type of constraint less
strongly quasipinned than the one referred to in point (c). We
refrain from going into the details here.

(e) A very promising avenue of research is to use the
GPCs to improve on the 1-RDM theory. There are now
quite a few physically motivated density matrix functionals
in the literature, built from the knowledge of the natural
orbitals and occupation numbers, which can be traced back
to the one proposed by Müller 30 years ago [39]; they have
mostly amounted to figuring out ansatze for reasonable two-
body reduced density matrices, failing, to date, to fulfill one
physical requirement or another [40]. The approach discussed
in this paper suggests constructing a 1-RDM by restricting
the minimization set to the subset of GPC-honest systems. A
promising start in this direction is [9].
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