000056266 001__ 56266
000056266 005__ 20210121114459.0
000056266 0247_ $$2doi$$a10.3762/bjnano.6.136
000056266 0248_ $$2sideral$$a91641
000056266 037__ $$aART-2015-91641
000056266 041__ $$aeng
000056266 100__ $$0(orcid)0000-0001-8053-4798$$aRodríguez, L.A.
000056266 245__ $$aInfluence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition
000056266 260__ $$c2015
000056266 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056266 5203_ $$aIron nanostructures grown by focused electron beam induced deposition (FEBID) are promising for applications in magnetic sensing, storage and logic. Such applications require a precise design and determination of the coercive field (HC), which depends on the shape of the nanostructure. In the present work, we have used the Fe2(CO)9 precursor to grow iron nanowires by FEBID in the thickness range from 10 to 45 nm and width range from 50 to 500 nm. These nanowires exhibit an Fe content between 80 and 85%, thus giving a high ferromagnetic signal. Magneto-optical Kerr characterization indicates that HC decreases for increasing thickness and width, providing a route to control the magnetization reversal field through the modification of the nanowire dimen- sions. Transmission electron microscopy experiments indicate that these wires have a bell-type shape with a surface oxide layer of about 5 nm. Such features are decisive in the actual value of HC as micromagnetic simulations demonstrate. These results will help to make appropriate designs of magnetic nanowires grown by FEBID.
000056266 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-27553-C02$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2011-28532-C03-02$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-51982-C2-1-R
000056266 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000056266 590__ $$a2.778$$b2015
000056266 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b61 / 271 = 0.225$$c2015$$dQ1$$eT1
000056266 591__ $$aPHYSICS, APPLIED$$b30 / 145 = 0.207$$c2015$$dQ1$$eT1
000056266 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b34 / 83 = 0.41$$c2015$$dQ2$$eT2
000056266 592__ $$a1.001$$b2015
000056266 593__ $$aElectrical and Electronic Engineering$$c2015$$dQ1
000056266 593__ $$aPhysics and Astronomy (miscellaneous)$$c2015$$dQ1
000056266 593__ $$aMaterials Science (miscellaneous)$$c2015$$dQ1
000056266 593__ $$aNanoscience and Nanotechnology$$c2015$$dQ2
000056266 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056266 700__ $$aDeen, L.
000056266 700__ $$0(orcid)0000-0002-6180-8113$$aCórdoba, R.
000056266 700__ $$0(orcid)0000-0002-6761-6171$$aMagén, C.$$uUniversidad de Zaragoza
000056266 700__ $$aSnoeck, E.
000056266 700__ $$aKoopmans, B.
000056266 700__ $$0(orcid)0000-0001-9566-0738$$aDe Teresa, J.M.$$uUniversidad de Zaragoza
000056266 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000056266 773__ $$g6, 1 (2015), 1319-1331$$pBeilstein j. nanotechnol.$$tBEILSTEIN JOURNAL OF NANOTECHNOLOGY$$x2190-4286
000056266 8564_ $$s5102255$$uhttps://zaguan.unizar.es/record/56266/files/texto_completo.pdf$$yVersión publicada
000056266 8564_ $$s71367$$uhttps://zaguan.unizar.es/record/56266/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056266 909CO $$ooai:zaguan.unizar.es:56266$$particulos$$pdriver
000056266 951__ $$a2021-01-21-10:50:33
000056266 980__ $$aARTICLE