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Abstract
We give accurate estimates for the constants

K(A(I),n, x) = sup
f∈A(I)

|Lnf (x) – f (x)|
ω2

σ (f ; 1/
√
n)

, x ∈ I,n = 1, 2, . . . ,

where I =R or I = [0,∞), Ln is a positive linear operator acting on real functions f
defined on the interval I,A(I) is a certain subset of such function, and ω2

σ (f ; ·) is the
Ditzian-Totik modulus of smoothness of f with weight function σ . This is done under
the assumption that σ is concave and satisfies some simple boundary conditions at
the endpoint of I, if any. Two illustrative examples closely connected are discussed,
namely, Weierstrass and Szàsz-Mirakyan operators. In the first case, which involves the
usual second modulus, we obtain the exact constants whenA(R) is the set of convex
functions or a suitable set of continuous piecewise linear functions.
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1 Introduction
Let I be a closed real interval with nonempty interior set I̊ . A function σ : I → [,∞) is
called a weight function if σ (y) > , y ∈ I̊ . The usual second order differences of a function
f : I →R are defined as

�
hf (y) = f (y + h) – f (y) + f (y – h), [y – h, y + h] ⊆ I, h ≥ .

Recall (cf. []) that the Ditzian-Totik modulus of smoothness of f with weight function σ

is defined by

ω
σ (f ; δ) = sup

{∣∣�hσ (y)f (y)
∣∣ :  ≤ h ≤ δ,

[
y – hσ (y), y + hσ (y)

] ⊆ I
}

, δ ≥ .

If σ ≡ , we simply denote by ω(f ; ·) = ω
σ (f ; ·) the usual second modulus of smooth-

ness of f . Also, we denote by C(I) the set of continuous functions f : I → R such that
 < ω

σ (f ; δ) < ∞, δ > .
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It is well known (see, for instance, [–], and []) that many sequences (Ln, n = , , . . .)
of positive linear operators acting on C(I) satisfy direct and converse inequalities of the
form

Kω

σ

(
f ;

√
n

)
≤ sup

x∈I

∣∣Lnf (x) – f (x)
∣∣ ≤ Kω


σ

(
f ;

√
n

)
, n = , , . . . , ()

where f ∈ C(I), K and K are absolute constants, and σ is an appropriate weight function
depending on the operators under consideration. From a probabilistic perspective, the
weight σ can be understood as follows. Let n = , , . . . and x ∈ I , and suppose that we have
the representation

Lnf (x) = Ef
(
Yn(x)

)
, f ∈ C(I),

where E stands for mathematical expectation and Yn(x) is an I-valued random variable
whose mean and standard deviation are, respectively, given by

E
(
Yn(x)

)
= x,

√
E
(
Yn(x) – x

) =
σ (x)√

n
. ()

In such a case, we can write

Lnf (x) = Ef
(

x +
σ (x)√

n
Zn(x)

)
, Zn(x) =

Yn(x) – x
σ (x)/

√
n

.

Since the standard deviation of Zn(x) equals , it seems natural to choose in () the weight
function σ defined in ().

Several authors have obtained estimates of the upper constant K in () for the ordinary
second modulus of smoothness, i.e., for σ ≡ . For instance, with regard to the Bernstein
polynomials, Gonska [] showed that  ≤ K ≤ ., Păltănea [] obtained K = .,
and finally this last author closed the problem in [] by showing that K =  is the best
possible constant. For the Weierstrass operator, Adell and Sangüesa [] gave K = ..
Finally, for a certain class of Bernstein-Durrmeyer operators preserving linear functions,
we refer the reader to Gonska and Păltănea [].

For the Ditzian-Totik modulus in strict sense, i.e., for nonconstant σ , some estimates are
also available. In this respect, Adell and Sangüesa [] showed that K =  for the Szàsz
operators and for the Bernstein polynomials. For such polynomials, the aforementioned
estimate was improved by Gavrea et al. [] and by Bustamante [], who obtained K = ,
and finally by Păltănea [], who showed that K = .. Referring to noncentered operators,
that is, operators for which the first equality in () is not fulfilled, we mention the estimates
for both K and K with regard to gamma operators proved in [].

Once it is known that a sequence (Ln, n = , , . . .) satisfies (), a natural question is to ask
for the uniform constants

sup

{ |Lnf (x) – f (x)|
ω

σ (f ; √
n )

: f ∈A(I), n = , , . . . , x ∈ I
}

= K
(
A(I)

)
, ()

as well as for the local constants

sup

{ |Lnf (x) – f (x)|
ω

σ (f ; √
n )

: f ∈A(I)
}

= K
(
A(I), n, x

)
, n = , , . . . , x ∈ I, ()
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where A(I) is a certain subset of C(I). Such questions are meaningful, because in specific
examples, the estimates for the constants in () and () may be quite different, mainly
depending on the degree of smoothness of the functions in the setA(I) and on the distance
from x to the boundary of I (see Section ).

The aim of this paper is to give a general method to provide accurate estimates of the
constants in () and () when I = R or I = [,∞). In this last case, the main assumption
is that the weight function σ is concave and satisfies a simple boundary condition at the
origin (see () in Section ), whereas for I = R, σ is assumed to be constant. In view of
the probabilistic meaning of σ described in (), such assumptions do not seem to be very
restrictive and are fulfilled in the usual examples. The method relies upon the approxi-
mation of any function f ∈ C(I) by an interpolating continuous piecewise linear function
having an appropriate set of nodes, depending on the weight σ .

The main results are Theorems . and ., stated in Section . To keep the paper in
a moderate size, we only consider two illustrative examples. The first one is the classi-
cal Weierstrass operator, involving the usual second modulus of smoothness (see Corol-
lary .). In this case, we are able to obtain the exact constants in () and () when the set
A(R) is either the set of convex functions or a certain set of continuous piecewise linear
functions. The second example refers to the Szàsz-Mirakyan operators (Theorem .). In
this case, we give different upper estimates of the aforementioned constants, heavily de-
pending on the set of functions under consideration and on the kind of convergence we
are interested in, namely, pointwise convergence or uniform convergence. Both examples
are connected in the sense that, roughly speaking, the upper estimates for Szàsz-Mirakyan
operators are, asymptotically, the same as those for the Weierstrass operator. This is due
to the central limit theorem satisfied by the standard Poisson process, which can be used
to represent Szàsz-Mirakyan operators.

2 Continuous piecewise linear functions
If I = R, we fix x ∈ R and denote by N an ordered set of nodes {xi, i ∈ Z} with x = x. If
I = [,∞), we fix x >  and denote by N an ordered set of nodes {xi, i ≥ –(m + )} such
that  = x–(m+) < · · · < x– < x = x, for some m = , , , . . . . Also, we denote by L(I) the set
of continuous piecewise linear functions g : I → R whose set of nodes is N .

Given a sequence (ci, i ∈ Z), we denote by δci = ci+ – ci, i ∈ Z. We set y+ = max(, y),
y– = max(, –y), and denote by A the indicator function of the set A. For the sake of con-
creteness, we enunciate the following two lemmas for I = [,∞), although both of them
are also true for I = R. We start with the following auxiliary result taken from [].

Lemma . For any g ∈L([,∞)) and y ≥ , we have the representation

g(y) – g(x) –
c + c


(y – x)

=
δc


|y – x| +

∞∑

i=

δci(y – xi)+ +
–∑

i=–m

δci(y – xi)–, ()

where

ci =
g(xi) – g(xi–)

xi – xi–
, i ≥ –m. ()
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Lemma . If g ∈L([,∞)) and h ≥ , then

�
hσ (y)g(y) =

∞∑

i=–m

δci
(
hσ (y) – |y – xi|

)
+, y – hσ (y) ≥ . ()

Moreover, if σ =  and g ∈L(R) has set of nodes N = {x + iε, i ∈ Z}, for some ε > , then

ω(g; h) = h sup
{|δci|, i ∈ Z

}
,  ≤ h ≤ ε. ()

Proof Let i ≥ –m. Denote si(y) = |y – xi|/, y ≥ . It is easily checked that

�
hσ (y)si(y) =

(
hσ (y) – |y – xi|

)
+, h ≥ , y – hσ (y) ≥ .

This, together with () and the equalities

y+ =


(|y| + y

)
, y– =



(|y| – y

)
, y ∈R,

shows (). On the other hand, let  ≤ h ≤ ε and denote qi(y) = (h – |y – xi|)+, y ∈ R, xi =
x + iε, i ∈ Z. Suppose that y ∈ [xj, xj+], for some j ∈ Z. Since qi(y) = , i 
= j, j + , we have

h|δcj| =
∣∣�

hg(xj)
∣∣ ≤ sup

xj≤y≤xj+

∣∣�
hg(y)

∣∣ = sup
xj≤y≤xj+

∣∣δcjqj(y) + δcj+qj+(y)
∣∣

≤ max
(|δcj|, |δcj+|

)
sup

xj≤y≤xj+

(
qj(y) + qj+(y)

)
= h max

(|δcj|, |δcj+|
)
.

This shows () and completes the proof. �

From now on, we make the following assumptions with respect to the weight function σ .
If I = R, we assume that σ ≡ , whereas if I = [,∞), we assume that σ is concave (and
therefore nondecreasing) and satisfies the boundary condition

lim
y→

y
σ (y)

= . ()

Assumption () seems to be essential to guarantee a direct inequality (the upper bound in
()). Actually, for a weight function σ not satisfying (), it has been constructed in Section 
of [] a sequence (Ln, n = , , . . .) of positive linear operators not satisfying the upper
inequality in (). On the other hand, the concavity of σ readily implies that the function
r(y) = y/σ (y), y > , is continuous and strictly increasing. Thus, for any ε > , there is a
unique number aε such that

aε = εσ (aε) > . ()

Let ε > . We construct the set of nodes Nε as follows. If I = R, we fix x ∈ R and define
Nε = {xi, i ∈ Z} as

xi = x + iε, i ∈ Z. ()
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If I = [,∞), we define the new concave weight function

σε(y) = min

(
y
ε

,σ (y)
)

, y ≥ .

We fix x >  and define Nε = {xi, i ≥ –(m + )}, for some m = , , . . . , as follows. We start
from the point x = x, move to the right by choosing xi+ – xi = εσε(xi+), i = , , , . . . , then
move to the left by xi+ – xi = εσε(xi+), i = , . . . , –m, and lastly setting x–(m+) = . In other
words,

x–(m+) = , x = x, xi+ – xi = εσε(xi+), i ≥ –(m + ). ()

It is easy to check that x–m is the unique node in the interval (, aε]. On the other hand,
the weight σε is very appropriate to simplify notations near the origin. For instance, we
always have y – hσε(y) ≥ , y ≥ ,  ≤ h ≤ ε. Finally, we mention that the procedure to
build up the set Nε defined in () is close in spirit to the so-called ‘canonical sequence’ in
Păltănea [], Section .. (see also Gonska and Tachev [, ] and Bustamante []).

To close this section, we give the following two auxiliary results. The first one is con-
cerned with the symmetric function

ψ(y) =


|y| +

∞∑

i=

(|y| – i
)

+, y ∈R. ()

Also, denote by �x� and x� the floor and the ceiling of x ∈R, respectively, that is,

�x� = sup{k ∈ Z : k ≤ x}, x� = inf{k ∈ Z : k ≥ x}.

Lemma . Let c ≥  and let ψ be as in (). Then,

max

( |y|


+ c
(|y| – 

)
+,ψ(y)

)
≤ c + 


y +


(c + )

=: ϕc(y), y ∈R. ()

Proof No generality is lost if we assume that y ≥ . If  ≤ y ≤ , inequality () is equivalent
to the obvious inequality ((c + )y – ) ≥ . Suppose that  ≤ y. In this case, the inequality
y/ + c(y – ) ≤ ϕc(y) is equivalent to ((c + )y – (c + )) ≥ , which is obviously true. On
the other hand, it is readily seen that ϕ(y) ≤ ϕc(y), c ≥ . The inequality ψ(y) ≤ ϕ(y) is
equivalent to

y


+
�y�∑

i=

(y – i) ≤ y


+




,

also equivalent to

η(y) := (y – ) ≥ 
�y�∑

i=

(y – i) = �y�(y –
(
 + �y�)) =: ν(y). ()

It is easily checked that

η

(
m +




)
= ν

(
m +




)
, η′

(
m +




)
= ν ′

(
m +




)
, m = , , . . . .
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These equalities imply (), since η is convex and ν is linear in each interval [m, m + ),
m = , , . . . . The proof is complete. �

The second one is the following lemma proved in Păltănea [], Lemma .. or in
Bustamante [].

Lemma . Let I be a real interval and let f : I → R be a function such that f (c) = f (d) = ,
for some c, d ∈ I with c ≤ d. If σ is a concave weight function on I , then

sup
c≤y≤d

∣∣f (y)
∣∣ ≤ ω

σ

(
f ;

d – c
σ ((c + d)/)

)
.

3 Main results
As usual, assume that I = R or I = [,∞). Let Y be a random variable taking values in I
and fix x ∈ I̊ . Assume that

EY = x, E(Y – x) < ∞. ()

We will consider the following subsets of functions in C(I): Ccx(I) is the set of convex func-
tions, Lε(I), ε > , is the set of functions in L(I) whose set of nodes is Nε , as defined in
Section , and Lα(I), α ∈ (, ], is the set of functions f such that w

σ (f ; δ) ≤ δα , δ ≥ .
For technical reasons, we start with the case I = [,∞) and fix x > . For any ε > , we

define the function gε ∈Lε([,∞)) as

gε(y) =



|y – x|
εσε(x)

+
∞∑

i=

(y – xi)+

εσε(xi)
+

–∑

i=–m

(y – xi)–

εσε(xi)
, y ≥ , ()

as well as the quantity

δε = max

{
xi+ – xi

σ ((xi + xi+)/)
: i ≥ –(m + )

}
. ()

With these notations, we enunciate our first main result.

Theorem . Let x >  and ε > . For any f ∈ C([,∞)), we have

∣∣Ef (Y ) – f (x)
∣∣ ≤ Egε(Y )ω

σ (f ; ε) +
(
 + Egε(Y )

)
ω

σ (f ; δε). ()

If, in addition, f ∈ Ccx([,∞)), then

∣∣Ef (Y ) – f (x)
∣∣ ≤ Egε(Y )

(
ω

σ (f ; ε) + ω
σ (f ; δε)

)
. ()

Proof Let f̃ ∈Lε([,∞)) be defined as

f̃ (xi) = f (xi), xi ∈Nε , i ≥ –(m + ). ()

Applying Lemma . to the function f – f̃ and recalling (), we have, for i ≥ –(m + ),

sup
xi≤y≤xi+

∣∣f (y) – f̃ (y)
∣∣ ≤ ω

σ

(
f ;

xi+ – xi

σ ((xi + xi+)/)

)
≤ ω

σ (f ; δε). ()
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This readily implies that

∣∣Ef (Y ) – Ef̃ (Y )
∣∣ ≤ ω

σ (f ; δε). ()

On the other hand, let xi ∈Nε , i ≥ –m. Since σε is nondecreasing, we have from (), (),
and ()

|δci| =
∣∣∣∣
f̃ (xi+) – f̃ (xi)

xi+ – xi
–

f̃ (xi) – f̃ (xi–)
xi – xi–

∣∣∣∣

=
∣∣∣∣
f̃ (xi + εσε(xi)) – f (xi)

εσε(xi)
–

f (xi) – f (xi–)
εσε(xi)

∣∣∣∣

≤ 
εσε(xi)

(
ω

σε
(f ; ε) +

∣∣f̃
(
xi + εσε(xi)

)
– f

(
xi + εσε(xi)

)∣∣)

≤ 
εσε(xi)

(
ω

σ (f ; ε) + ω
σ (f ; δε)

)
, ()

where in the last inequality we have used () and the fact that ω
σε

(f ; ·) ≤ ω
σ (f ; ·), since

σε ≤ σ . Finally, EY = x, by assumption (). We thus have from ()

Ef̃ (Y ) – f (x) =
δc


E|Y – x| +

∞∑

i=

δciE(Y – xi)+ +
–∑

i=–m

δciE(Y – xi)–,

which implies, by virtue of () and (), that

∣∣Ef̃ (Y ) – f (x)
∣∣ ≤ Egε(Y )

(
ω

σ (f ; ε) + ω
σ (f ; δε)

)
. ()

Thus, inequality () follows from () and ().
Suppose that f ∈ Ccx([,∞)). By subtracting an affine function, if necessary, we can as-

sume without loss of generality that f (y) ≥ f (x) = , y ∈ I . The convexity of f and () imply
that

Ef (Y ) ≤ Ef̃ (Y ).

This, together with (), shows () and completes the proof. �

In the case σ =  and I = R, Theorem . takes on a simpler form.

Theorem . Let x ∈R, ε > , and let ψ be as in (). Then,

sup
g∈Lε (R)

|Eg(Y ) – g(x)|
ω(g; ε)

= sup
f ∈Ccx(R)

|Ef (Y ) – f (x)|
ω(f ; ε)

= Eψ

(
Y – x

ε

)
. ()

If f ∈ C(R), then

∣∣Ef (Y ) – f (x)
∣∣ ≤ Eψ

(
Y – x

ε

)
ω(f ; ε) + ω

(
f ;

ε



)
. ()
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Proof Let g ∈ Lε(R). By (), the set of nodes under consideration in this case is Nε =
{x + εi, i ∈ Z}. Thus, we have from Lemma . and ()

∣∣Eg(Y ) – g(x)
∣∣ =

∣∣∣∣∣
δc


E|Y – x| +

∞∑

i=

δciE(Y – xi)+ +
–∑

i=–∞
δciE(Y – xi)–

∣∣∣∣∣

≤ ε sup
i∈Z

|δci|
(




E
∣∣∣∣
Y – x

ε

∣∣∣∣ +
∞∑

i=

E
(

Y – x
ε

– i
)

+
+

–∑

i=–∞
E
(

Y – x
ε

– i
)

–

)

= ω(g; ε)Eψ

(
Y – x

ε

)
, ()

where the last equality follows from () and (). On the other hand, the function

ψε(y) = ψ

(
y – x

ε

)
, y ∈R,

belongs to Lε(R) and satisfies ψε(x) =  and ω(ψε ; ε) = , as follows from (). This, to-
gether with (), shows that ψε is a maximal function in Lε(R), i.e.,

sup
g∈Lε (R)

|Eg(Y ) – g(x)|
ω(g; ε)

= Eψ

(
Y – x

ε

)
.

To prove the remaining statements, we follow the same steps as those in the proof of
Theorem .. Specifically, let f ∈ C(R) and let f̃ ∈Lε(R) be such that

f̃ (xi) = f (xi), xi = x + εi, i ∈ Z.

Looking at (), we have in this case

sup
xi≤y≤xi+

∣∣f (y) – f̃ (y)
∣∣ ≤ ω

(
f ;

ε



)
, i ∈ Z. ()

In the same way, inequality () becomes |δci| ≤ ε–ω(f ; ε), i ∈ Z, which implies that

∣∣Ef̃ (Y ) – f (x)
∣∣ ≤ Eψ

(
Y – x

ε

)
ω(f ; ε). ()

Therefore, inequality () readily follows from () and (). Finally, if f ∈ Ccx(R), we have
from ()

∣∣Ef (Y ) – f (x)
∣∣ ≤ ∣∣Ef̃ (Y ) – f (x)

∣∣ ≤ Eψ

(
Y – x

ε

)
ω(f ; ε).

This, together with the fact that ψ ∈ Ccx(R), shows the second equality in (). The proof
is complete. �

4 The Weierstrass operator
We illustrate Theorem . by considering the classical Weierstrass operators (Wn, n =
, , . . .), which allow for the following probabilistic representation

Wnf (x) = Ef
(

x +
Z√

n

)
=

∫

R

f
(

x +
θ√
n

)
ρ(θ ) dθ , x ∈R, n = , , . . . ,
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where f ∈ C(R) and Z is a random variable having the standard normal density ρ and the
distribution function �, respectively, defined by

ρ(θ ) =
√
π

e–θ/, θ ∈R; �(u) =
∫ u

–∞
ρ(θ ) dθ , u ∈ R.

Also, we consider the constant

K =
√
π

+ 
∞∑

i=

(
ρ(i) – i

(
 – �(i)

))
= . . . . , ()

as follows from numerical computations.

Corollary . Let x ∈ R, n = , , . . . , and let ψ and K be as in () and (), respectively.
Then,

sup
g∈L/

√
n(R)

|Wng(x) – g(x)|
ω(g; /

√
n)

= sup
f ∈Ccx(R)

|Wnf (x) – f (x)|
ω(f ; /

√
n)

= Eψ(Z) = K .

If f ∈ C(R), then

∣∣Wnf (x) – f (x)
∣∣ ≤ Kω(f ; /

√
n) + ω(f ; /

√
n).

If f ∈ Lα(R), for some α ∈ (, ], then

∣∣Wnf (x) – f (x)
∣∣ ≤ (

K + –α
)
n–α/. ()

Proof Corollary . is a direct consequence of Theorem . by choosing ε = /
√

n and
Y = x + Z/

√
n. It remains to show that Eψ(Z) = K , as defined in (). To this end, note that

E(Z – i)+ =
∫ ∞

i
(θ – i)ρ(θ ) dθ = ρ(i) – i

(
 – �(i)

)
, i = , , . . . .

We therefore have from () and the symmetry of Z,

Eψ(Z) = EZ+ + 
∞∑

i=

E(Z – i)+ =
√
π

+ 
∞∑

i=

(
ρ(i) – i

(
 – �(i)

))
= K .

This completes the proof. �

It should be observed that the constant in () is less or equal than  if

α ≥ –
log( – K)

log 
= . . . . .

5 The Szàsz-Mirakyan operator
In this section, we will apply Theorem . to the classical Szàsz-Mirakyan operators
(Ln, n = , , . . .). From a probabilistic viewpoint, such operators can be represented as fol-
lows. Let (Nλ,λ ≥ ) be the standard Poisson process, i.e., a stochastic process starting at
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the origin, having independent stationary increments and nondecreasing paths such that

P(Nλ = k) = e–λ λk

k!
, k = , , . . . , λ ≥ . ()

Let n = , , . . . and x ≥ . Thanks to (), the Szàsz-Mirakyan operator Ln can be written
as

Lnf (x) =
∞∑

k=

f
(

k
n

)
e–nx (nx)k

k!
= Ef

(
Nnx

n

)
, ()

where f ∈ C([,∞)). It is well known that

E
(

Nnx

n

)
= x, E

(
Nnx

n
– x

)

=
x
n

. ()

Accordingly, we choose in this case (recall (), (), and (), as well as the subsequent
comments)

σε(y) = min

(
y
ε

,σ (y)
)

, σ (y) =
√

y, y ≥ ; ε =
√
n

, aε =

n

. ()

As follows from (), the set of nodes Nε = {xi, i ≥ –(m + )}, for ε = /
√

n, is given by

x–(m+) = , x = x, xi+ – xi =
√

xi+

n
, i ≥ –m, ()

x–m being the unique node in the interval (, /n]. In order to apply Theorem . to Szàsz-
Mirakyan operators, we need to estimate the quantities δε and Egε(Nnx/n), for ε = /

√
n.

In this regard, the following two auxiliary results will be useful.

Lemma . If n = , , . . . , then δ/
√

n ≤ /
√

n, where δε is defined in ().

Proof Denote

q(xi) =
xi+ – xi

σ ((xi + xi+)/)
=

√
xi+

n(xi + xi+)
, i ≥ –m, ()

where the last equality follows from (). Observe that

q(x–(m+)) =
x–m√
x–m

<
√
n

.

For i ≥ –m, we have from () and ()

q(xi) =
xi+

n(xi+ –
√

xi+/n)
≤ 

n
,

since xi+ ≥ /n. This, together with (), completes the proof. �

With the notations given in () and (), we state the following lemma.
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Lemma . Let n = , , . . . and x > . If x > aε = /n, then:
(a) For any –s = –, . . . , –m + , we have

–(s+)∑

i=–m


εσε(xi)

E
(

Nnx

n
– xi

)

–
≤ P

(
Nnx ≤ nx–s – �) ≤ nx

(n(x – x–s) + ) .

(b) For any l = , , . . . , we have

∞∑

i=l+


εσε(xi)

E
(

Nnx

n
– xi

)

+
≤ P

(
Nnx ≥ �nxl�

) ≤ x
n(xl – x) .

(c) If x– ≥ aε = /n, then


εσε(x)

E
∣∣∣∣
Nnx

n
– x

∣∣∣∣ +


εσε(x–)
E
(

Nnx

n
– x–

)

–

+
∞∑

i=


εσε(xi)

E
(

Nnx

n
– xi

)

+
≤ c + 


+


(c + )

, c =
√

x
x–

. ()

If x ≤ aε = /n, then

∞∑

i=


εσε(xi)

E
(

Nnx

n
– xi

)

+
≤ P(Nnx ≥ ). ()

Proof Let λ > . We first claim that

E(Nλ – u)– ≤ uP
(
Nλ = u – �), u ≤ λ, ()

as well as

E(Nλ – u)+ ≤ λP
(
Nλ = �u�), u ≥ λ. ()

In fact, it follows from () that kP(Nλ = k) = λP(Nλ = k – ), k = , , . . . . Therefore,

E(Nλ – u)– =
∑

k<u

(u – k)P(Nλ = k) = uP(Nλ < u) – λP(Nλ < u – )

= uP
(
Nλ ∈ [u – , u)

)
+ (u – λ)P(Nλ < u – ) ≤ uP

(
Nλ = u – �),

thus showing (). Inequality () follows in a similar way. Second, we claim that


εσε(xi)

E
(

Nnx

n
– xi

)

–
≤ n(xi+ – xi)P

(
Nnx = nxi – �), ()

for i = –m, . . . , –(s + ). Actually, suppose that i = –m + , . . . , –(s + ). By (), (), and (),
the left-hand side in () is bounded above by

εσε(xi)
n(εσε(xi)) E(Nnx – nxi)– ≤ n(xi+ – xi)P

(
Nnx = nxi – �).
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As seen in (), we have x–m ≤ aε = /n < x–m+. Therefore,


εσε(x–m)

E
(

Nnx

n
– x–m

)

–

= P(Nnx = ) ≤ √
nx–m+P(Nnx = )

≤ n(x–m+ – x–m)P
(
Nnx = nx–m – �).

Claim () is shown. On the other hand, it follows from () that the function h(k) =
P(Nλ = k) is nondecreasing for  ≤ k ≤ �λ�. This implies that

–(s+)∑

i=–m

(nxi+ – nxi)P
(
Nnx = nxi – �)

≤
∫ nx–s


P
(
Nnx = u – �)du

=
nx–s–�–∑

k=

P(Nnx = k) +
∫ nx–s

nx–s–�
P
(
Nnx = u – �)du

≤ P
(
Nnx ≤ nx–s – �). ()

On the other hand, by Markov’s inequality, we have

P
(
Nnx ≤ nx–s – �) ≤ P

(
Nnx – nx ≤ n(x–s – x) – 

)

≤ E(Nnx – nx)

(n(x – x–s) + ) =
nx

(n(x – x–s) + ) ,

where the last equality follows from (). This, together with () and (), shows part (a).
Part (b) follows in a similar manner, using () instead of ().

To show part (c), note that σε(xi) = σ (xi), i ≥ –, because x– ≥ aε = /n. Consider the
function

hε(y) =


εσ (x)

∣∣∣∣
y
n

– x
∣∣∣∣ +


εσ (x–)

(
y
n

– x–

)

–
+

∞∑

i=


εσ (xi)

(
y
n

– xi

)

+
, y ≥ .

If y < nx, it is easily checked from () and () that

hε(y) =



∣∣∣∣
y – nx√

nx

∣∣∣∣ + c
(∣∣∣∣

y – nx√
nx

∣∣∣∣ – 
)

+
≤ ϕc

(∣∣∣∣
y – nx√

nx

∣∣∣∣

)
, ()

where the last inequality follows from Lemma .. Similarly, if y ≥ nx and i ≥ , we have


εσ (xi)

(
y
n

– xi

)

+
=

√
x
xi

(
y – nx√

nx
–

√x + · · · + √xi√
x

)

+
≤

(∣∣∣∣
y – nx√

nx

∣∣∣∣ – i
)

+
,

thus implying, by virtue of Lemma ., that

hε(y) ≤ 


∣∣∣∣
y – nx√

nx

∣∣∣∣ +
∞∑

i=

(∣
∣∣∣
y – nx√

nx

∣∣∣∣ – 
)

+
≤ ϕc

(∣
∣∣∣
y – nx√

nx

∣∣∣∣

)
. ()
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We therefore have from (), (), and ()

Ehε(Nnx) ≤ Eϕc

(∣∣∣∣
Nnx – nx√

nx

∣∣∣∣

)
=

c + 


+


(c + )
.

This shows (). Finally, we will show inequality (). From () and (), we get

∞∑

i=


εσε(xi)

E
(

Nnx

n
– xi

)

+

≤
∞∑

i=

x
ε
√xi

P
(
Nnx = �nxi�

)
=

∞∑

i=

nx√nxi
P
(
Nnx = �nxi�

)

≤
∞∑

i=

P
(
Nnx = �nxi�

) ≤ P(Nnx≥),

since, by assumption and (), we have nx ≤  < nxi and nxi+ –nxi = √nxi+ > , i = , , . . . .
This shows () and completes the proof. �

Denote

Kn(x) = Eg/
√

n

(
Nnx

n

)
, n = , , . . . , x > , ()

where gε is defined in (). For the Szàsz-Mirakyan operator defined in (), we enunciate
the following result.

Theorem . Let n = , , . . . , x > , and σ (y) = √y, y ≥ . Then:
(a) If f ∈ C([,∞)), then

∣∣Lnf (x) – f (x)
∣∣ ≤ Kn(x)ω

σ

(
f ;

√
n

)
+

(
 + Kn(x)

)
ω

σ

(
f ;

√
n

)
.

(b) If f ∈ Ccx([,∞)), then

∣∣Lnf (x) – f (x)
∣∣ ≤ Kn(x)

(
ω

σ

(
f ;

√
n

)
+ ω

σ

(
f ;

√
n

))
.

(c) If f ∈ Lα([,∞)), for some α ∈ (, ], then

∣∣Lnf (x) – f (x)
∣∣ ≤ (

Kn(x) + –α/( + Kn(x)
))

n–α/.

The upper constants Kn(x) defined in () satisfy the following properties:

lim
n→∞ Kn(x) = K = . . . . , x > , ()

where K is the same constant as that in (), as well as

 ≤ sup
{

Kn(x) : n = , , . . . , x > 
} ≤  +




. ()
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Proof Parts (a)-(c) are direct consequences of Theorem ., by choosing ε = /
√

n and
Y = Nnx/n, taking into account that δ/

√
n ≤ /

√
n, as follows from Lemma ..

To show (), fix x >  and  < τ < x. Choose n large enough so that aε = /n < x – τ . Let
s = , , . . . and l = , , . . . be such that

x–(s+) < x – τ ≤ x–s, xl ≤ x + τ < xl+. ()

Let i = , . . . , l – . From (), (), and (), we see that


εσε(xi)

E
(

Nnx

n
– xi

)

+
=

√
x
xi

E
(∣∣∣∣

Nnx – nx√
nx

∣∣∣∣ – x̄i

)

+
, x̄i =

√xi + · · · + √xi√
x

.

Again by (), this implies that

√
x

x + τ
E
(∣∣∣∣

Nnx – nx√
nx

∣∣∣∣ – i
√

x + τ

x

)

+

≤ 
εσε(xi)

E
(

Nnx

n
– xi

)

+
≤ E

(∣∣∣∣
Nnx – nx√

nx

∣∣∣∣ – i
)

+
. ()

Similarly, we have, for i = –s, . . . , –,

E
(∣∣∣∣

Nnx – nx√
nx

∣∣∣∣ – i
)

+
≤ 

εσε(xi)
E
(

Nnx

n
– xi

)

–

≤
√

x
x – τ

E
(∣∣∣∣

Nnx – nx√
nx

∣∣∣∣ – i
√

x – τ

x

)

+
. ()

On the other hand, by the central limit theorem for the standard Poisson process, the
random variable (Nnx – nx)/

√
nx converges in law to the standard normal random variable

Z, as n → ∞. Therefore, by the Helly-Bray theorem (cf. Billingsley [], pp.-), we
get from Lemma ., (), and ()

E
|Z|


+
√

x
x + τ

∞∑

i=

E
(

|Z| – i
√

x + τ

x

)

+
+

–∑

i=–∞
E
(|Z| – i

)
+

≤ lim
n→∞

Kn(x) ≤ lim
n→∞ Kn(x)

≤ E
|Z|


+
∞∑

i=

E
(|Z| – i

)
+ +

√
x

x – τ

–∑

i=–∞
E
(

|Z| – i
√

x – τ

x

)

+
.

Thus, () follows from () and Corollary . by letting τ →  in these last inequalities.
To show (), let d be the largest solution to the equation

d –
√

d –
√

d –
√

d = , d =
 +

√
 +

√
 + 

√



= . . . . ()

and define the points

x� =
d
n

, x�
– = x� – εσ

(
x�

)
=

d –
√

d
n

, x�
– = x�

– – εσ
(
x�

–
)

=

n

. ()
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We distinguish the following cases:
Case .  < x ≤ x�

– = /n. Since ENnx/n = x, we have from ()


εσε(x)

E
∣∣∣∣
Nnx

n
– x

∣∣∣∣ =


x
E
∣∣∣∣
Nnx

n
– x

∣∣∣∣ =

x

E
(

Nnx

n
– x

)

–
= P(Nnx = ).

We therefore have from () and ()

e–nx = P(Nnx = ) ≤ Kn(x) ≤ P(Nnx = ) + P(Nnx ≥ ) = . ()

Letting x →  in (), we get the first inequality in ().
Case . x�

– = /n < x ≤ x�
–. From (), we see that x– ≤ x�

– –εσ (x�
–) = /n, thus implying

that


εσε(x–)

E
(

Nnx

n
– x–

)

–
= P(Nnx = ) ≤ P(N = ) = e–.

Hence, we have from (), (), (), and Lemma .

Kn(x) ≤ e– +


εσε(x)
E
∣∣∣∣
Nnx

n
– x

∣∣∣∣ +
∞∑

i=


εσε(xi)

E
(

Nnx

n
– xi

)

+

≤ e– +



E
∣∣∣∣
Nnx – nx√

nx

∣∣∣∣ +
∞∑

i=

E
(∣∣∣∣

Nnx – nx√
nx

∣∣∣∣ – i
)

+
≤ e– + Eψ

(∣∣∣∣
Nnx – nx√

nx

∣∣∣∣

)

≤ e– + Eϕ

(∣∣∣∣
Nnx – nx√

nx

∣∣∣∣

)
= e– +




+



< ,

where we have used () in the last equality.
Case . x�

– < x ≤ x�. Again by (), we see that x– ≤ /n < x–. Thus,


εσε(x–)

E
(

Nnx

n
– x–

)

–
+


εσε(x–)

E
(

Nnx

n
– x–

)

–

= P(Nnx = ) +
√

n
x–

(
x–P(Nnx = ) +

(
x– –


n

)
P(Nnx = )

)
. ()

Set λ = nx and note that λ > nx�
– = d –

√
d, as follows from (). Since nx– = nx –

√
nx =

λ –
√

λ, the right-hand side in () becomes after some simple computations

(
 + λ –

√
λ

√
λ –

√
λ

)
e–λ ≤ ( + λ)e–λ ≤ ( + d –

√
d)e–(d–

√
d) ≤ ., ()

as follows from (). As in Case , we have from () and ()

Kn(x) ≤ . + Eϕ

(∣∣∣∣
Nnx – nx√

nx

∣∣∣∣

)
= . +




+



< .

Case . x� < x. We claim that

–∑

i=–m


εσε(xi)

E
(

Nnx

n
– xi

)

–
≤ P

(
Nnx ≤ nx– – �) ≤ 


. ()
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Actually, the first inequality in () readily follows from Lemma .(a). As far as the second
one is concerned, observe that nx– = nx –

√
nx < nx – , which implies that nx– – � ≤

nx – � ≤ �nx� – . Therefore,

P
(
Nnx ≤ nx– – �) ≤ P

(
Nnx ≤ �nx� – 

) ≤ P
(
N�nx� ≤ �nx� – 

)
, ()

since N�nx� ≤ Nnx. On the other hand, it has been shown in [] that the sequence (P(Nk ≤
k – ), k = , , . . .) strictly increases to /. This, together with (), shows claim ().

Finally, it is easy to see that the function
√

x/x–, x ≥ x�, strictly decreases. It therefore
follows from () that

√
x

x–
≤

√
x�

x�
–

=

√
d

d –
√

d
=: c�. ()

We thus have from (), (), and Lemma .(c)

Kn(x) ≤ 


+
c� + 


+


(c� + )

= . . . . ≤  +



.

The proof is complete. �

As mentioned in the Introduction, Theorem . illustrates that the estimates of the gen-
eral constants in () and () may be quite different. Such estimates mainly depend on
two facts: the set of functions under consideration (parts (a)-(c) in Theorem .), and the
kind of estimate we are interested in, namely, pointwise estimate or uniform estimate (see
equations () and (), respectively).
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11. Păltănea, R: Approximation Theory Using Positive Linear Operators. Birkhäuser Boston, Boston (2004).
doi:10.1007/978-1-4612-2058-9.

12. Adell, JA, Sangüesa, C: Real inversion formulas with rates of convergence. Acta Math. Hung. 100(4), 293-302 (2003).
doi:10.1023/A:1025139103991
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