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Abstract

Although they have not yet been detected, axions and axion-like particles (ALPs) continue to maintain the interest
(even increasingly so) of the rare-event searches community as viable candidates for the Dark Matter of the Universe
but also as a solution for several other puzzles of astrophysics. Their property of coupling to photons has inspired
different experimental methods for their detection, one of which is the helioscope technique. The CERN Axion Solar
Telescope (CAST) is the most sensitive helioscope built up to date and has recently published part of the latest data
taken with the magnet bores gradually filled with *He, probing the mass range up to 1.17 eV. The International AXion
Observatory (IAXO) is being proposed as a facility where different axion studies can be performed, with the primary
goal to study axions coming from the Sun. Designed to maximize sensitivity, it will improve the levels reached by
CAST by almost 5 orders of magnitude in signal detection, that is more than one order of magnitude in terms of g, .
Here we will summarize the most important aspects of the helioscopes, and focus mainly on IAXO, based on the
recent papers [1, 2].
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1. Introduction

The discovery that the Universe has a very intense
Dark Side has supposed a revolution: 68% of the matter-
energy budget is in the form of Dark Energy, 27% is in
the form of Dark Matter (DM) and only 5% is ordinary
matter [3]. There is still a lot of speculation on the
nature of Dark Energy, however more is known about
the Dark Matter particle. The most sought-after option
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are the Weakly Interacting Massive Particles (WIMP),
while the other favourable candidate are the axions.
Axions arise as a consequence of a spontaneous
breaking of a global symmetry proposed to solve the
strong-CP problem [4, 5, 6] and since then have been
evoked in several occasions as solutions for other prob-
lems, one of which is the DM, as they can have been
copiously produced in the early Universe. They would
have a very small mass, interact only weakly with ordi-
nary matter, and have been restricted due to accelerator
experiments as well as astrophysical observations.

2. Axion helioscopes

2.1. Axion detection

The generic property of axions mostly exploited in
the experimental efforts to detect them, is their coupling
to photons, with a coupling constant g,,. This property
allows the photon-to-axion conversion in the presence
of an electromagnetic field, also known as the Primakoff
effect and is present in practically all the models. Al-
though the standard or QCD axions lie on a narrow band
in the my,, g,, parameter space, other Axion-Like Parti-
cles (ALPs) with a similar production mechanism may
exist; these could populate any part of the phase-space.
While trying to reach sensitivities that would allow to
enter the QCD axion band, all of the experiments would
be sensitive to a good part of the ALPs parameter space.

The experiments of the light-shining-through-a-wall
type, are trying to detect axions and axion-like particles
created in the same laboratory frame. Haloscopes are
using microwave cavities to look for QCD axions that
would constitute the DM of the halo of our galaxy; he-
lioscopes are employing magnetic fields to convert the
axions streaming out of the Sun to detectable x-ray pho-
tons.

The Primakoff effect will be in action in the core
of stars, where there is a high density of photons and
intense electromagnetic fields, which would make the
Sun a factory of axion production. The helioscope tech-
nique [7] is based on the inverse Primakoff effect, which
would allow solar axions streaming from the Sun to be
reconverted into photons in the presence of a transverse
electromagnetic field in a laboratory.

The pioneering helioscope was the Rochester-
Brookhaven-Florida experiment [8, 9] and afterwards
SUMICO [10, 11, 12] improved the results. CAST has
been the third helioscope built and so far the most sen-
sitive one. The TAXO project plans to improve the sen-
sitivity of CAST in the future. The principle of an en-
hanced helioscope is explained in Fig. 1(left).
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Figure 1: Left: Schematic of an enhanced axion helioscope: solar axions travelling through an intense transverse magnetic field with an axion-
sensitive area A, are converted into x-rays. With the help of x-ray focusing devices, these are concentrated onto a spot on low background detectors
(figure from [2]). Right: The solar axion flux as expected at the Earth. A value of 1 x 10710 GeV~! for gay is assumed.

As Fig. 1(right) shows, the expected signal is in the
energy range of 1-10 keV. The operation of a helio-
scope consists in following the Sun as long as techni-
cally possible, in axion sensitive conditions, and taking
background data when there is no alignment with the
Sun. The sought-after signal would be the excess of
photons in the expected energy range that the x-ray de-
tectors will register when tracking the Sun, compared
to the background gathered during the rest of the time.
The number of excess photons expected depends on the
very weak g,, coupling constant, which is a measure of
a helioscope’s sensitivity. According to the following
expression [13]

gh, ~ BPLPA b €,a7'1? €112, (1)

four are the main parameters to take into account when
designing a helioscope: a) time: the total time of data-
taking of the experiment ¢ and ¢, the fraction of time
the magnet tracks the Sun; b) magnet: the length L and
the strength B of the provided magnetic field as well as
the axion-sensitive area A; c) low-background x-ray de-
tectors: the background level b and their detection effi-
ciencies €; and d) x-ray focusing optics: their efficiency
€, and total focusing area a. The focusing devices are
an addition to the classical helioscope experiment, and
were implemented for the first time in the third genera-
tion axion helioscope, the CAST experiment.

3. The CERN Axion Solar Telescope (CAST)

The CERN Axion Solar Telescope (CAST) presented
an important improvement in the sensitivity of the he-
lioscope technique, based on two major innovations; fo-
cusing optics and low background techniques for the de-
tectors. CAST is the first helioscope to use an x-ray tele-
scope, comprising of an x-ray focusing device coupled
to a Charged Coupled Device (CCD) camera, recycled

from the ABRIXAS and XMM-Newton space missions.
The addition of the telescope improved the signal-to-
noise ratio of the system and therefore the sensitivity of
the experiment. On the magnet front, CAST recycled a
decommissioned LHC prototype magnet, which reaches
9 T over a length of 10 m. The magnet has two bores
and has been equipped with up to four detectors; the x-
ray telescope mentioned above, and three Micromegas
detectors was the latest configuration. The total axion-
sensitive area achieved in this way is ~ 30 cm®. The
whole system is sitting on a movable platform con-
trolled by a tracking system, pointing it to the centre
of the Sun during 1.5 h twice a day, at sunrise and at
sunset.

Since 2003, when CAST started operating, data have
been taken in different experimental conditions which
gradually extended the axion mass sensitivity of the ex-
periment: from keeping the magnet bores under vac-
uum (m, <0.02 eV) [14, 15] to gradually filling them
with “He (m, <0.39 eV) [16] and later on with 3He.
The first part of the 3He data covered the mass range
up to m, ~0.64 eV [17] and in 2011 masses up to
m, ~1.17 eV were reached. A part of these data has
been analyzed and has shown no excess of signal over
background, leading to an upper bound of the axion-to-
photon constant of g,, < 3.3 X 10710 GeV~! for the
mass range between 0.64 eV and 1.17 eV [18]. CAST
has provided the most stringent limits on the axion-to-
photon coupling constant over a large part of the axion
masses and has covered -for the first time- part of the
QCD-favoured band for masses above ~0.15 eV, as can
be seen in Fig. 2.

Currently, CAST is revisiting the vacuum phase; this
time with the aim, on one hand to look at the low energy
part for evidence of other hypothetical particles such as
chameleons, which appear in Dark Energy models or
hidden photons [19], and on the other to exploit the
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Figure 2: Expanded view of the CAST results in the vacuum,*He
(in black) and the 3He phases with the new limit (in red). The limit
from SUMICO, the hot dark matter (HDM) bound and the horizontal
branch (HB) stars are also shown. The yellow band denotes typical
theoretical models, while the green solid line corresponds to E/N = 0
(KSVZ model).

unprecedented background levels reached by the Mi-
cromegas detectors of the experiment. A lot of effort has
been invested on the design of an efficient layout of the
detector, an appropriate shielding, as well as carefully
choosing the low-radioactivity materials in the vicinity
of the detectors. New Micromegas detectors of the mi-
crobulk type were installed in the experiment in 2013,
reaching levels down to 1 X 107% keV~! cm? s7! [20].
In the summer of 2014, a new x-ray focusing device
was installed in front of one of the new Micromegas
detectors and started taking data. This system is consid-
ered a pathfinder for the International AXion Observa-
tory IAXO).

4. TAXO: the International AXion Observatory

The IAXO project brings forward the idea of an en-
hanced axion helioscope, the ultimate generation exper-
iment that the helioscope technique can offer [13, 1]. A
schematic of the system is given in Fig. 3(left).

A magnet conceived for axion physics is one of the
first issues that the project addresses; the main disad-
vantage that the use of accelerator magnets (like the
one of CAST) presents for a helioscope is the small
axion-sensitive area they provide. An axion-dedicated
magnet will have to allow for bigger sensitive areas.

The studies for what the state-of-the-art technology can
offer for a magnet design has pointed to an ATLAS-
like toroidal magnet which will measure approximately
25 min length. It optimizes the features of the magnet in
order to maximize sensitivity and comprises eight coils
which provide bores with a diameter of close to 60 cm.
The improvement in sensitivity considering this and the
length, is enough to overcome the lower magnetic field
which this magnet will offer, of the order of 2.5 T.

The observation time will also be improved by almost
a factor 10 with respect to CAST, as the design foresees
that the magnet follow the Sun 12 h daily. The rest of
the time would be devoted to the very important back-
ground measurement and determination.

The eight bores of the magnet are going to be
equipped with as many x-ray focusing optics. As men-
tioned already, the use of focusing devices is a feature
that can significantly enhance the performance of the
helioscope; they permit employing small-area x-ray de-
tectors with an affordable shielding while keeping the
sensitivity of the helioscope that the large-area openings
of the magnet grant. For this important part IAXO will
take advantage of existing technology as well, in order
to procure such large-size focusing devices; the NuS-
TAR satellite mission [21] developed x-ray optics with
sufficiently large throughput and small focal spot onto
which to concentrate the 2800 cm? area of each bore.

The detectors to equip the magnet, identified for the
baseline of the project, are microbulk Micromegas. The
order 107 keV~!' cm? s~! background levels achieved
with these detectors in CAST is encouraging [20]. This
result, in combination with the results of studies per-
formed at the Canfranc Underground Laboratory using
dedicated test benches, provides a strong indication that
the IAXO requirement of 10~7 keV~!' cm? s™! (or better)
background levels can be met. Adequate shielding that
will help reach these goals will be surrounding each of
the TAXO detectors.

An important milestone for IAXO has been achieved
with the installation of the pathfinder at CAST; a pro-
totype of the optics developed for IAXO, coupled to a
Micromegas detector surrounded by a complete shield-
ing. The operation and data taking with this line will
provide useful information and valuable experience for
the future project.

The sensitivity of IAXO with these characteristics, is
expected to be more than one order of magnitude better
than CAST (almost 5 orders of magnitude more sensi-
tive in detectable signal) which translates to a sensitivity
of g,, down to few times 10712 GeV~! for masses up to
approx. 0.02 eV, in the vacuum phase. The addition of a
system that will allow the extension of the sensitivity to
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Figure 3: Left: A drawing of IAXO on its rotating platform: the cryostat containing the dipole magnet can be seen, with eight telescopes attached
to it, and the shielded detectors. The human figure positioned at the feet of the structure gives an idea of the dimensions of the system. Right: The
expected sensitivity of IAXO in an extended version of the g4y-m, plot. Current bounds (solid colour) and future prospects (dashed area) of other
experiments (CAST, ADMX [22], ALPS-II [23]) can also be seen. The area below the red dashed line is viable ALP DM parameter space. The
region at low m, above the dashed grey line is the one invoked in the context of the transparency of the universe. The region excluded by H.E.S.S.
data [24] is shown in solid brown. For the sake of clarity the labels of the other bounds have been removed. For those,we refer to [2].

higher masses through the injection of a light gas could
take place in a later phase. Fig. 3(right) shows how
IAXO would be able to probe large parts of the phase-
space in which reside not only the ‘standard’ axion but
also ALPs from many interesting models and theories,
such as those in which the axion is postulated as part
of the DM of the Universe. At the lower axion-mass
end, below 1077 eV, IAXO would test the hypothesis
of ALPs which have been proposed as an explanation
to anomalies in light propagation over astronomical dis-
tances [25].

Axion helioscopes can also study the axion-to-
electron coupling (g,.), allowed in non-hadronic mod-
els, in combination with the axion-to-photon coupling,
as CAST has already done [26]. Axions with g, of few
x10713 are proposed as an explanation of the anoma-
lous cooling in white dwarfs from astrophysical obser-
vations [27], making these studies attractive; in fact
IAXO would have enough sensitivity to directly mea-
sure the solar axions produced via this mechanism.

As a generic search facility, IAXO could also serve
for studies of hidden photons, chameleons or similar.
The direct search of relic axions that would have been
produced in the early stages of the Universe is also be-
ing studied [28], as the design of the magnet could ac-
commodate the necessary equipment such as microwave
cavities or dish antennas.

IAXO has presented a Letter of Intent to CERN [2]
and is currently working towards a Technical Design
Report.

5. Conclusions

Axion helioscopes continue to present an attractive
technique to look for axions and axion-like particles.
IAXO is an ambitious project that aims at building a
dedicated axion facility, that will surpass current sensi-
tivities by more than an order of magnitude. The pro-
posal is based on well-known technologies for the main
features of the project, i.e. the magnet, the x-ray focus-
ing devices and the low-background detectors. In the
meantime, CAST, the most sensitive helioscope so far,
has published part of the data from the *He phase during
which it entered well into the QCD-axion region at the
upper masses end, setting an upper limit for the coupling
constant of g,, > 3.3 X 10719 GeV~! for m, between
0.64 eV and 1.17 eV. Currently the experiment is revis-
iting the vacuum phase with increased sensitivity and is
also looking for other exotica such as chameleons. In
the summer of 2014, a prototype x-ray focusing device,
built with the technology to be employed for the IAXO
optics, was installed and coupled to a Micromegas de-
tector, covering an important benchmark for the IAXO
project.
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