This is a preprint version of the following article, published by Springer (doi:http://dx.doi.org/10.1007/s11042-013-1550
R.Yus,S.llarri, andE. Mena,"Real-timeSelectiorof VideoStreamdor Live TV BroadcastingBasedon Query-by-ExampléJsinga
3D Model', MultimediaToolsandApplications,ISSN1380-7501(print version),ISSN 1573-7721(electronicversion),Springer,
2013.

Real-time Selection of Video Streamsfor Live TV
Broadcasting Based on Query-by-Example Using a 3D
Model

Roberto Yus?, Sergio llarri?, Eduardo Mena?

“University of Zaragoza, Maria de Luna 1, Zaragoza, Spain

Abstract

The emergence of low-cost cameras with nearly professiona features in the
consumer market represents a new important source of video information. For
example, using an increasing number of these cameras in live TV broadcastings
enables obtaining varied contents without affecting the production costs. How-
ever, searching for interesting shots (e.g., a certain view of a specific car in arace)
among many video sources in real-time can be difficult for a Technical Director
(TD). So, TDs require a mechanism to easily and precisely represent the kind of
shot they want to obtain abstracting them from the need to be aware of al the
views provided by the cameras.

In this paper we present our proposal to help a TD to visualy define, using
an interface for the definition of 3D scenes, an interesting sample view of one
or more objects in the scenario. We recreate the views of the cameras in a 3D
engine and apply 3D geometric computations on their virtual view, instead of
analyzing the real images they provide, to enable an efficient and precise real-
time selection. Specifically, our system computes a similarity measure to rank
the candidate cameras. Moreover, we present a prototype of the system and an
experimental evaluation that shows the interest of our proposal.

Keywords:
Query by example, Camera shot similarity computation, User interfacesto
manage 3D scenes

Email addresses: ryus@unizar .es (Roberto Yus), silarri@unizar.es (Sergio llarri),
emena@unizar.es (Eduardo Mena)

Administrador
Cuadro de texto
This is a preprint version of the following article, published by Springer (doi:http://dx.doi.org/10.1007/s11042-013-1550-5):
R. Yus, S. Ilarri, and E. Mena, "Real-time Selection of Video Streams for Live TV Broadcasting Based on Query-by-Example Using a 3D Model", Multimedia Tools and Applications, ISSN 1380-7501 (print version), ISSN 1573-7721 (electronic version), Springer, 2013.

1. Introduction

Nowadays the consumer market offers cameras with very interesting features
at low prices. These cameras offer a good image quality, they can be remotely
controlled, etc. So, they can be used in TV broadcastings combined with pro-
fessional cameras. Thisis very interesting for broadcasting corporations because
they are focusing their efforts on the enrichment of their offers but at the same
time trying to reduce their production costs. Thanks to the low cost of these cam-
eras, many of them can be used, for example in the live broadcasting of a sport
event. Thisallows an enrichment of the content consumer experience, as they can
provide new kinds of shots, without having a big impact on the total number of
cameramen required. However, the higher the number of cameras employed in
a live broadcasting, the more difficult the selection of the camera that must be
broadcasted.

Among the many tasks of a Technical Director (TD), the person responsi-
ble for the content production, the selection of the cameras is probably the most
challenging one. He/she has to be aware of all the shots that the cameras in the
scenario are providing to select the best one and broadcast it. Depending on the
situation the TD could be interested in certain specific shots of the objects in-
volved. For example, the TD in charge of the live broadcasting of a car race could
be interested, at the last lap of the race, in a shot that shows the cars fighting for
thefirst position. A system to provide automatically the TD with the cameras that
are obtaining these interesting shots (asin [1, 2, 3, 4]), would be very useful for
broadcasting corporations. However, a challenge for this kind of systemsis how
to obtain a precise definition of what an interesting shot for the TD is, to query
the available cameras in order to retrieve those that can provide a similar shot.
Both [1] and [3] are focused on the automatic selection of the best camera view
in ball sports without interaction of the TD, and specifically they considered that
an interesting shot is the one that obtains the best view of the ball and the one that
providesaclear view, respectively. In[2] the use of location-dependent queries[5]
was proposed as the basic building block for monitoring sport events and help the
TD in the broadcasting task; however, the system had several limitations, as it
was not able to manage 3D models of the queries and the scenes, and occlusions
among objects were not taken into account. In [4] the TD can input his’/her de-
sired shot in terms of the specific objects involved (by selecting their name from
alist), the minimum percentage of them that must be covered by the camera (as
a percentage), the kind of view that the camera must obtain of the object (select-
ing between front/rear, top/bottom, and/or right/left side), etc. However, defining

these parametersis not aways easy, and so it would be interesting to have instead
amore intuitive mechanism, such as a visual interface to define a sample shot.

The problem of retrieving information using an example defined by the user
is known in the literature as Query-By-Example (QBE) [6] and was initially con-
ceived for querying relational databases about numeric values or text. However,
due to the rapid growth in the number and size of image databases, Query-By-
Image (QBI) [7] was introduced!. To query-by-image a multimedia source, the
user selects animagethat is used as a prototype/template of the target. Then, low-
level features (such as information about the color distribution, texture, shapes,
etc.) of the exampleimage and other images are obtained to compute their similar-
ity. The problem of QBI isto find the proper query image that precisely represents
the scene that the user has in his’/her mind. To overcome this, several aternatives
have been proposed. So, Query-By-Sketch [8] allows the user to sketch/paint the
example image. However, it is difficult for a user to draw a precise example shot
by hand, and therefore the accuracy of the retrieval is low. To avoid this prob-
lem, in works like [9] the user defines the example shot using “3D interfaces ex-
ploiting navigation and editing of 3D virtual environments’, which allows a very
precise definition of the type of image required. With both the approaches based
on sketches or the ones using a 3D interface, once the example shot is defined a
traditional QBI approach is performed.

In this paper we present our proposal to help a TD to visually define an in-
teresting example shot by using an interface for the definition of 3D scenes. The
TD easily express the shot he/she wants to obtain and this information is used
to continuously query-by-example the available cameras to obtain those that can
provide a similar shot?. One important difference with existing works is that, in-
stead of applying traditional image processing techniques over 2D projections of
3D query scenes and the candidate images, we propose obtaining high-level fea-
tures (related to the semantics of the specific objects in the scene) directly from
the 3D scenario. In thisway, information such as the specific objects in the scene,
the percentage of each object shown, the percentage of the scene filled by each
object, the specific viewpoint of each object shown, etc., can be obtained pre-
cisely and in real-time (in our prototype the 3D model of the scenario is refreshed

1QBI is QBE applied to Content-Based Image Retrieval (CBIR), by using an image as aquery.

2Broadcasters are now beginning to use 3D stereo cameras, which can be represented as two
traditional cameras (one per lens) in our approach, as considering the specia capabilities of 3D
stereo imagesis out of the scope of this paper.

once per second, so the computation time should not exceed one second); for ex-
ample, processing techniques over real images may find it very difficult to detect
the identity of certain objects (e.g., the “Kaiku” team rowing boat vs. any other
boat) or even the types of objects due to the well-known problem of the “semantic
gap” between the visual features and the richness of human semantics [10]. We
present a similarity function that uses the high-level information to measure the
similarity of the views provided by the available camera sources compared to the
user query image. In addition, we have devel oped a prototype to evaluate our pro-
posal and carried out tests with users. The results obtained show the interest of
our approach.

The rest of this paper is structured as follows. In Section 2 we explain the
use case we have considered and the context of our proposal. In Section 3 we
present the basics of our approach by introducing the sample shot definition and its
processing to extract high-level features. In Section 4 we explain the method that
we have devel oped to measure the similarity between two images. In Section 5we
show the tests performed to evaluate our proposal. In Section 6 we review some
related works. Finally, conclusions and future work are included in Section 7.

2. Context

As an example of alive TV broadcasting we consider a specific sport event:
the rowing races of San Sebastian (Spain), which are very popular and attract a
lot of attention in the north of Spain. In this scenario the broadcasting corporation
combines professional cameras with low-cost remotely controlled cameras. For
example, each rowing boat is equipped with a low-cost camera and professional
cameras are placed in key positions in the scenario (on board other boats, on a
helicopter, along the promenade, etc.). Besides, each rowing boat isequipped with
a GPS transmitter and a compass that help the judges to determine the distance
between the boats and the |ocation of a boat with respect to itslane.

Asin al live broadcastings, the TD has to make quick decisions to select the
camera video stream to broadcast among the available sources. Depending on
his/her decisions, the content broadcasted will be more attractive from the audi-
ence perspective. In [4], we presented a system to help in the challenging task
of selecting a camerain live. The system is based on the use of an updated 3D
model of the scenario. We proposed generating and updating this 3D model using
the information availabl e about the objects and cameras involved (mainly location
information provided by GPS receivers on the rowing boats). Thanks to the 3D
model, the systemis able to obtain in real-time high-level features of each specific

4

object in the camera view by recreating them in a 3D engine (see Figure 1, where
only the interesting objects are recreated —in this case the rowing boats, which are
represented with a different color depending on its team-) and applying severa
3D computations (summarized in Section 3.3).

(b)

Figure 1. Real camera footage (@) and the camera view recreated by our system in a 3D engine

(0).

The interface of the system presented in [4] allows the TD to define the con-
straintsthat an interesting shot hasto fulfill. So, inthe example of Figure2the TD
has shown interest in obtaining “Any” camera that could provide a shot covering
acertain rowing boat (“Kaiku”). At least “50%" of the boat has to appear in the
shot, and the camera has to cover at least “ 75%” of the front view of the boat (a
shot covering 100% of the front view is obtained by a camera located in front of
the object pointing to it). This query can be defined quite quickly by the TD but
is not very intuitive because such an interface does not facilitate the TD the task
to clearly define the type of image of interest. Moreover, using this kind of defi-
nition, composing specific shots with several objectsinvolved is very difficult. To
overcome these problems, we propose in this paper an interface for the definition
of 3D scenes that supports a precise definition of the query shot required. This
interface, along with a novel and appropriate similarity function, will help the TD
to easily define the shot that he/she wants to obtain. So, instead of defining the
constraintsthat the shot hasto fulfill, the TD shows exactly the kind of shot he/she
wants and our system extracts the required constraints.

It is interesting to notice that the shots obtained at the same time instant by
different cameras can be very similar regarding features such as the color distri-
bution and that when the boats are shown from alarge distance or partially visible
it is hard to identify their specific teams. Moreover, the processing has to be per-
formed in real-time, and therefore the information of the available camera shots
has to be processed as quickly as possible. Due to all these reasons, applying tra-
ditional image processing techniques that obtain low-level features of the camera

5

Output data: Conditions:

] pistance] Time View | Front =
] Angles (panitit)] view —
Coverage View: | 75% x

Parameters: Coverage Object, isu% _"
Crigin camera Object to view: Objects in Area: | gl

[Any ¥ | Kaiku M| Max distance:

Name: Max time:

| LoadConfig | | Accept |

Figure 2: Example of low-level input form.

shotswould not be enough to provide an accurate answer to the TD. So, we need a
preci se mechanism to compute the similarity between two shotsin real-time based
on other high-level information.

3. Obtaining Shots Similar to a 3D Sample Scene

The goal of our proposal isto help a TD to define interesting shots precisely
and easily, use those example shots to query the available sources with a high
refreshment frequency (in our prototype once every second), and compute their
similarity to the images provided by the available cameras (see Figure 3). The
architecture of our approach is based on three main tasks:

e “Definition of the query by the user”: a user that interacts with the sys-
tem defines an exampl e shot using the “ Example Shot Definition Interface’
(explained in Section 3.1). The example shot will be processed to obtain
its features (the specific objectsinside, the percentage of them visible, their
viewpoint, etc.) by the* Scene Analysis’ module (explained in Section 3.3).

e “Real-time processing of the camera views’: by using a 3D model of the
scenario, our approach processes in real-time the views that the cameras
provide. First, the “3D Scene Generation” module uses the 3D model of
the scenario and information about the cameras to recreate their view in a
3D engine (explained in Section 3.2). Then, the virtual cameraview will be
processed by the “ Scene Anaysis’ module, asin the previoustask. Finally,
the “ Similarity Computation” module (explained in Section 4) evaluatesthe
similarity between the features extracted for each user query and each of the

cameraviews, and the measurements obtained are used to present aranking
of interesting shotsto the TD.

e “Update of the 3D model”: to obtain accurate results, the 3D model of the
scenario has to be updated with information as recent as possible. For this
task, the “3D Model Management” module periodically receives informa-
tion about the objects in the scenario and updates the 3D model (explained
in Section 3.2).

Definition of the query by the user : Real-time processing of the camera views : Update of the 3D model

: S B
: 2 : 4

Example Shot Definition : — : A \
— - e information about
H H objects (locations,
: " : directions, etc.)
: information about cameras :
(location, field-of-view,etc.)

3D Model

Management

3D Scene Generation («:----... :

Y :
Scene Analysis
: : k3D Model
: - : of scenario
[(object | sobj | %shot | . : Scene Analysis :
] 01 N N
C %shot = :
005 |

Orio_| 0.10 | 004 | : [object [Sobj [bject | sobj | %ahot |
example shot . Kovku | 067 Koiku | 0.78 007
H Orio | 054 [| I |
features : : ’

camera shots features :

Y

011 orio | 0.19 |

@) imilarity Computation
? mtts g A

: L=

: ranked list of %

: similar shots Similarity=0.8

Similarity=0.2

Figure 3: High-level architecture of the system and its three main tasks: definition of the query,
processing of the cameraviews, and update of the 3D model.

As an example, in Figure 3 the TD defines a shot containing two specific
rowing boats (“Kaku” —the green boat— and “Orio” —the blue one-). Then, our
approach processes the views provided by the cameras and determines that one of
them provides a shot very similar to the TD’s request, according to the features
computed (see some of the features of the query — example shot features’— and
the camera views — camera shot features’— in Figure 3).

7

3.1. Example Shot Definition

We propose the use of an interface for the definition of the example shot as a
3D scene. By using this kind of interface, the user is able to effectively represent
an interesting scene [9] involving a specific view of one or more objects of the
scenario. However, the selected interface has to fulfill some requirements. First,
it must provide the user with a mechanism to add his/her own objects to the scene
aswell as mechanismsto edit it (i.e., move and rotate the objects), and to set the
position and orientation of the virtual camera. Then, once the user has defined the
3D sample scene, the interface provides our system with the information shown
in Figure 4. Where the identification of a certain object is a unique name, its
orientation is given asthe rotation angles for the three axis of the plane (i.e., head-
ing, tilt, roll), and its distance to the camera is the distance between the centroid
of the object and the camera (vector with three components, for the X, Y, and Z
dimensions). In addition, the orientation of the camera is defined by its current
horizontal and vertical rotation (i.e., pan and tilt) and its Field-of-View (FOV) is
defined as the horizontal and vertical Angle-of-View.

|User Interface]

—Object info
—ldentification
—QOrientation
—Distance to camera

—Camera Info
—OQOrientation
—Field-of-View

Figure 4: Information provided by the example shot definition interface to the system.

Any external 3D computer graphics software able to provide this information
could be used as the interface of our system for modeling (e.g., Autodesk 3Ds
Max, Blender, SketchUp, €tc.), so we can exploit the functionality of external
3D software to define the scene in a comfortable way. As we explain later, in
our prototype we have used a Java 3D engine (JMonkey Engine), both for the
definition of the scenes and for the analysis of the camera views.

The use of interfaces for the definition of 3D scenes to query-by-example was
analyzed in [9], where the tests with users showed that the time needed to define
a complex query scene (involving the definition of a specific terrain and different

8

objects with textures, which are tasks not required in our approach) ranged be-
tween 10 and 100 seconds with the prototype presented in that paper. To facilitate
the work of a TD, our approach enables him/her to pre-define and store queries
that can be used as pattern queries. So, those queries can later be modified in real-
time according to the current needs (e.g., by rotating/moving the virtual camera,
moving/rotating the objects, changing the identification of the objects appearing
in the scene, etc.). For example, a TD in charge of the broadcasting of a rowing
boat race could pre-define (before the event) a pattern query with afull side view
of any rowing boat and then modify this scene during the broadcasting by rotating
the camera and indicating a specific identity for the boat (e.g., the one of the local
team). Of course, ad hoc queries completely defined during the broadcasting are
also supported.

3.2. 3D Model Management and Scene Generation

In order to process the views provided by the cameras in the scenario, we pro-
pose using an up-to-date 3D model of the scenario [4]. Using this 3D model we
perform the following process for each camerain the scenario to obtain high-level
features of their current views. First, we recreate the camera view in a 3D engine
by using information about the current location and direction of the different ob-
jectsand cameras (thisinformation could be provided by a GPS and a compass, as
in the experiments presented in Section 5). Then, we use the same scene analysis
method used for the sample shot (see Section 3.3). Due to the highly-dynamic
nature of the scenario where both objects and cameras move, and so the views of
the cameras change dynamically, we continuously perform the previous process
to obtain up-to-date information.

Obtaining in real-time the cameras that are able to provide the TD with the
required view is possible due to the up-to-date 3D model (see Figure 3 on the
right). In paralel with the processing of the user queries, the system efficiently
keeps the 3D model updated with the information of the objects and cameras in
the scenario (obtained from different sensors). It should be noted that thisis not an
overload for the system, as it only involves obtaining the interesting information
and storing it, and it can even be performed on another computer.

3.3. Scene Analysis
To obtain the information needed to compute the similarity between a shot

defined by the user and each current camera shot of all the camerasin the scenario,
we propose using the ideas we presented in [4]: recreate the scenein a 3D engine

and apply 3D computations to efficiently obtain (in real-time) the following high-
level features for each object in the scene:

| dentification of the specific object.

Percentage of the object visible (taking occlusionsinto account).

Percentage of the image that the object fills.

Location and orientation of the object in the image.

For each viewpoint of the object (front/rear, top/bottom, right/left side):

— Percentage of the viewpoint visible.
— Percentage of the image that the viewpoint fills.

To obtain thisinformation the system renders the 3D sceneinto 2D projections
and analyzes them. However, as this is a time-consuming task we have to mini-
mize the number of renderings needed. For this, the system uses different colors
and transparencies (based on color blending) to obtain as much information as
possible with each rendering. In this way, to obtain the percentage visible of a
certain (target) object taking occlusions into account (caused by other objects or
due to the fact that the object does not fit the camera FOV), the following steps
arefollowed:

1. Apply ared color to that target object, a green transparent color to other
objects in the scene, and a blue transparent color to the FOV of the camera
(see Figure 5(a)).

2. Obtain a rendering of the 3D scene and analyze the color channel of every
pixel in the following way:

e A pixel thatisred, blue, and green belongsto the object that the system
is considering but is currently occluded by other objects.
e A pixel that isred but not blueis apixel of the object outside the FOV.

e A pixel that isred and blue but not green isapixel of the object visible
in the camera shot.

3. Compute the percentage as the number of pixels of the object visible in the
camera shot divided by the total number of pixelsthat belong to the object.

10

@ (b)

Figure 5: Computation of the percentage of an object that a camerais viewing (a) and of the kind
of view obtained of another object (b).

In the same way, to check the viewpoints of the object being viewed the system
uses different colors and light sources, according to the following steps:

1. Set directional light sources to illuminate only the required viewpoints (for
example, in Figure 5(b) a red and a blue light sources illuminate only the
top and rear views of the object, respectively).

2. Obtain arendering of the 3D scene and analyze the color channel of every
pixel. In Figure 5(b) red pixels belongs to the top view and blue pixels to
the rear view3.

3. For each viewpoint move and rotate the camerato cover it completely. Then,
obtain and analyze arendering.

4. Compute the percentage by comparing the number of pixels of each color
in the different renderings.

In this way, depending on the information that has to be obtained from a 3D
scene, the number of renderings could change. In the best case (e.g., to obtain only
the percentage visible of an object), there will be asingle rendering per object. In
the worst case (e.g., to obtain all the information possible), there will be up to ten
renderings per object*.

With the high-level features extracted from the scene defined by the user and
the views of the cameras, the next step is to obtain a similarity measurement for

3Notice that the paddies are mainly shown in blue as they are considered as belonging to the
rear view of the object.

4One rendering to obtain the percentage visible of the object and the percentage of the shot
filled by it, and nine additional renderings to obtain the kind of view of the object (the system
needs one rendering per view covering it completely —up to 6 in total—, and 3 renderings more to
compute the percentage of each view covered).

11

each camera view. Thus, the different camera shots currently available can be
automatically ranked in decreasing order of similarity between the view they can
provide and the query image. In Section 4 we explain the method developed to
obtain the similarity between the example shot defined by the user and a shot
provided by a camera.

3.4. Query-by-Example 3D Prototype

We have developed a prototype that implements the ideas presented along this
section® and uses the similarity computation approach defined in Section 4. It
enables the user to define a sample shot and obtain the ranked list of the current
camera views according to their similarity (see Figure 6). The main components
of the prototype are:

e Shot definition interface: it alows the user to populate the 3D scene with
different objects, move/rotate them, and navigate the scene.

e Result set display: it shows the camera views ranked according to their
similarity to the user query.

Notice that the prototype enables the user to modify the different weights as-
signed to the features that our approach considers (see Section 4.4). In this way,
the user can refine the ranking criteria by using the sliders shown on the right of
the shot definition interface. The prototype has been developed as aJava program
and makes use of a powerful and free Java 3D engine called JMonkeyEngine®.
The 3D models of the objects represented (in our case study, rowing boats) have
been obtained and modified using SketchUp’. Finally, aMySOL database has been
used to store the updated 3D model of the scenario with the information of all the
objects and cameras involved.

4. Measuring the Similarity

To measure the similarity between the query image /,, defined by the user and
a candidate image /, we propose the following formula, that makes use of the
high-level features extracted from both images to take into account the similarity
of each specific object appearing in the two pictures:

SThe prototypeis available at http://sid.cps.unizar.es/MultiCAMBA/QBE.
6Seenttp://jmonkeyengine.com.
’Seehttp://www.sketchup.com.

12

Shot Definition Interface

Add "Any" boat

Add another object

Define object

Selected Object: |Kaiku |v Weights:
Wo
Move Selected Object: = lock
0 25 50 75 100
wi
®x y z
=0 lock
0 25 50 75 100
Rotate Selected Object Wy
O lock

Submit Query Shot

Ranked List of Similar Shots

Figure 6: Snapshot of the Query-by-Example 3D prototype.

n
S(Icp]) = z YOjSObjecl(0i7Iq71) (1)
i=1
Ctime (0,1,
Yo = np img(0,1g))
PClimg(0i,1g)
i=1

where n isthe number of objects, Sy e (0,14, 1) isthe similarity between the two
imagesif only the object o isconsidered, and y, isthe weight (relative importance)
assigned to this object in the query image /, defined by the user.

13

To avoid overwhelming the user by requesting him/her to enter the weight for
each object, we advocate using an objective value extracted from the scene. So,
we consider that the user defines indirectly the importance of each object in the
scene by adjusting the percentage of the image occupied by each of them. So,
as shown in Formula 2, y, represents the percentage of the image filled by object
o in the query image I, (pctimg(0,1,)) relative to the part of the image filled with
objects (X1 pctimg(0i,1)); this percentage is computed regarding only the part of
the image filled with objects (as we are interested here in identifying the relative
importance of the objects, rather than the amount of space they occupy in the
image). For example, if we consider the upper-left image of Figure 6 as the query
image defined by the user, the yellow and red objects (close to the camera) are
clearly expected to be more important for the user than the other objects because
they fill a greater amount of the shot.

In the rest of this section, we explain the different factors that define the com-
putation of S, ;... (0,1;,1) for a given object o, a query image /,, and an image
1.

4.1. Differences in the Percentage Visible of Each Object

The first aspect that we consider to obtain the similarity of an object in two
imagesisthe percentage of it that isbeing covered and the percentage of theimage
that it fills. In this way, we compare the percentage of the object o visible in the
query image /, defined by the user with the percentage visible in the candidate
image /, as well asthe percentage of each image (/, and /) occupied by o:

Apct pilo, Iy, 1 Apct- 0,11
SPCtObj(Ovltpl) =1- (woi 0 J(4) i lmg(q)
petonj(0,1y) DCting(0,1y)

)

Apcty(o,1,,1) = min(pct(o,1,), | pcte(o,1) — pete(o,1,)|), with x = {obj,img}

(4)
where in relation to the first addend pct,;(0,1) and pct,p;(0,1,) obtain the per-
centage of the object visible, taking occlusions into account, in image / and /,,
respectively; in relation to the second addend, pct;ng(0,I) and pctipg(o,1,) ob-
tain the percentage of the corresponding images filled by the object. In addi-
tion, we normalize the difference between these percentages (Apctng(0,1,,1) and
Apctop(0,14,1)) to obtain avaue between 0 and 1 that measures their similarity.
Notice that, as we want to obtain an objective measurement, we consider that,

14

for example, given the percentage visible of an object in the query image x%, an
image that shows (x +y)% is as similar as an image that shows (x — y)%. In this
way, an image that does not show the object (i.e., it shows (x —x)% of it) is con-
sidered as similar as one that shows (x +x’)% with x < x’ < 1.0 (percentages are
expressed here as values between 0 and 1); this is the motivation for the use of
the min operator in Formula 4. Moreover, we assign each factor aweight ,; and
,;;, and to preserve the objectivity we consider that @,; = @,;; = 1/2.

4.2. Differences in the Viewpoint of Each Object

The second aspect that we consider isthe kind of view obtained of the objectin
the two images. As part of the high-level features of a scene we consider that the
following views of an object can be obtained: top/bottom, front/rear, and left/right
side. So, the following formula defines the similarity of an object in two images
according to the kind of view obtained:

ApCtview(Viqual) _.ApCtimg(Vivqu)
pCtview(Vh[q) . pCtimg(Vi7[q>

Clime(V, 1,
= np 2(vi 1) (6)

chtimg(vl-,lq)
i=1

Sviews(0 Iqul z ’}/V, (y;) ©)

Apcty(v, Iy, 1) = min(pct (v, 1), |pete(v, 1) — pete(v,1,)]), with x = {view,img}

(7)
where n is the number of views, v is the vector that contains the views to check,
whose components belong to the set {front, rear, top, bottom, left, right}, and
v; represents the view in position i of v. For each view of an object (front, rear,
top, bottom, right side, and left side) we compute the similarity according to the
percentage of the view obtained (pctyiew(vi, 1)) and the percentage of the image
filled with this view (pcting(vi,I)). We normalize the difference between these
percentages (Apctyiew(vi, Iy, 1) and Apctimg(vi,14,1)) to obtain a value between 0
and 1. We consider that the percentage of the view obtained and the percentage of
theimagefilled with this view have the same importance to compute the similarity
of an object (so, in our prototype the weights used for them are o,,; = ®,;; = 1/2).
Moreover, we assign each view a weight 7y, according to their importance in the
image. For example, in Figure 6, regarding the yellow boat, the user seemsto be
interested in atop and rear view of such a boat.

15

4.3. Differences in the Location of Each Object

The location of each object within the image is an important parameter to
take into account when computing the similarity. We consider the location of the
camera and the object in the 3D scene to measure this factor. In particular, we use
the angle defined by the bisector of the FOV of the camera and the vector defined
by the location of the camera and the centroid (of the volume) of the object. For
the sake of clarity, we further decompose the vector in terms of its horizontal
and vertical components. To illustrate this, Figure 7 shows the different angles
involved in the horizontal plane of two scenes (it would be similar for the vertical
plane).

T - Angle bisector of B!y

(b)

Figure 7: Horizontal angles involved in the computation of the similarity between two images (a)
and (b).

So, we define the similarity of an object in two images according toitslocation
as.

Aoy, Aoy,

Stocation(0,1g,1) = 1— (ay; p— + oy maxv) (8
maxy = (Bh+\oc1| ﬁh+\o¢) — (9)
maxv:max(ﬁv—HOCS\ ﬁv+’a4‘>_5 (10)
A0y = Min(max;, |, — o), with x = {h,v} (11

where oy, and o, are the angles that define the location of the object in the hori-
zontal and vertical plane of the sample scene 7, defined by the user, respectively.

16

Similarly, oy, and o, measure the location for the scene we are comparing 7, with
(i.e.,,imagel). Besides, Aoy, and Aay, stand for the difference in the location of the
object in both scenes in the horizontal and vertical plane, respectively. As before,
we consider the absolute value of these differences and we normalize them by us-
ing max;, and max,, (the maximum value of ¢y, and o, for an object to beinside the
FOV of acamera). In Formula9 and 10, ¢ is a small value greater than 0, which
must be subtracted from max(% +|oul, B—2’7 +|or|) and max(% + \ocg\,% + | oul)
(used in the computation of max;, and max,) in order to have the target object
within the view of the camera. We consider that the similarity of an object’s lo-
cation in the horizontal and vertical planes have the same importance (so, in our
prototype the weights used for them are w;; = wy; = 1/2).

4.4. Summing Up: Differences in Each Object

To compute the similarity between two images according to object o we take
into account the percentage of the object visible, the viewpoint of the camera, and
the location of the object in the image, which are computed as explained in the
previous subsections. First, we check if object o (that appearsin theimage /,) is
visiblein theimage 7; if thisis not the case, then the similarity is 0. Otherwise, if
theobjectisvisibleintheimage I (partially or completely), the similarity between
the two images regarding that object is:

Sobject(07[q7[> = a)oSpctObj(Ovlq?[) + a)VSVl'ZWS(07[q7]) + wlSlocation(07]q7[> (12)

where S,.05(0,1;,1) stands for the similarity according to the percentage of the
object covered in the image and the percentage of the image filled by the object
(see Section 4.1); Syiews (0,1, 1) representsthe similarity according to the different
views of the object (see Section 4.2); and finally, Siscation(0,14,1) is the similarity
according to the location of the object in both images (see Section 4.3). In the
formula, w,, w,, and w, are the weights assigned to each factor and by default
w, = w, = w; =1/3. So, in our proposal the three weightsare equal, asthereisno
objective criterion to assign different weights to them. Indeed, thisis completely
subjective. For example, for auser two images could be more similar if they show
the same percentage of the object (regardless of the percentage of the object or the
kind of view obtained), and for another user two images could be more similar if
they show the object in the same locations.

17

5. Experimental Evaluation

In this section we explain the experimental evaluation performed to evaluate
our proposal. For the tests, the prototype presented in Section 3.4 was run on
an Intel Corei5-480M with graphics card NVIDIA GeForce GT 540M, which is
nowadays a graphics card in the mid/low-range. In addition, we recreated a sce-
nario corresponding to arowing boat race where there are four rowing boats mov-
ing according to the real GPS location information captured during a 20-minutes
real race celebrated in San Sebastian (Spain) in 2010. In the scenario considered
there are four cameras (each rowing boat has a camera aboard, on its bow) set
with the same configuration as the cameras used in the real race, that is, horizon-
tal angle-of-view 70°, vertical angle-of-view 45°, pan range +130°, and tilt range
+90°.

In the following we describe the tests carried out to evaluate the computing
time, the ranking obtained, and the user satisfaction when entering an arbitrary

guery image.

5.1. Evaluation of the Computing Time

In our first experiment, we want to evaluate the processing time needed by
the system to compute the views of the cameras in the scenario. In this highly-
dynamic environment, it isvery important to process each camera view as soon as
possible, asthe goal isto help the TD to take better decisionsin real-time. Asour
approach depends on the location and direction of the objects and cameras in the
scenario, and in the real scenario we consider in our tests that thisinformation is
updated once every second, the system has to be able to perform the processing in
less than one second to provide the TD with updated and accurate information.

In this test, we have defined an example of the most challenging query im-
age of the scenario, where the TD wants to view all the four rowing boats (see
Figure 6). Thisis the worst-case mentioned in Section 3.3, as the system has to
generate and analyze up to ten renderings per camera when al the rowing boats
are visible. For the test, we have rotated automatically each camera to view the
most prominent boat of the query whenever possible. The results obtained are
shown in Table 1. The minimum time needed to process the camera views was
achieved in situations where some cameras did not view any boat and other cam-
eras viewed the boats from a large distance. The maximum time needed by the
system was achieved in situations where all the cameras viewed the maximum
number of rowing boats possible from a close distance (notice that the maximum
number of visible rowing boats for a camera on board a rowing boat is three, as

18

a camera cannot view its own boat). Finaly, the average time for the test shows
that our approach is good enough for real-time processing.

Minimum | Maximum | Average
0.148s 0.784s 0.395s

Table 1: Minimum, maximum, and average processing times of our system in atest.

The computing time can obvioudly increase with the number of objects and
cameras in the scenario and it is aso highly dependent on the performance of the
graphics card used to perform the computations. So, even though we observed a
good performance in our use case scenario, in more complicated situations with a
high number of cameras and/or objectsit isinteresting to use a better graphics card
(e.0., just replacing astandard integrated graphics card with the mid/low-range GT
540M card used in the experiments divides the processing time by six, and replac-
ing it with a mid-range NVIDIA GeForce GTX550 Tl by twelve). Moreover,
it is also possible to process the views in parallel on different computers, as we
maintain the 3D model of the scenario updated in a database that can be accessed
concurrently. These strategies will help to keep the processing time under one
second even in complex scenarios, which would be needed for a smooth real-time
operation.

5.2. Evaluation of the Ranking

The purpose of this experiment is to evaluate the ranked answer provided by
the system for a given query image. The ranking criteria are very important be-
cause, due to the need of selecting the next camera to broadcast as quickly as
possible, the TD will consider only the first positionsin the ranking.

In [11] the authors emphasized that “image retrieval is only meaningful in its
service to people, performance characterization must be grounded in human eval-
uation”. However, evaluating an image retrieval system is a difficult task [12]
and testing it with real usersis time-consuming (so, in many approaches tests are
performed with a limited number of participants [9, 8]). Moreover, in our case
finding real TDs with experience in the live broadcasting of sport events able to
take part in our experiments was not possible, although it would have been very
interesting. So, for our test, 10 users familiarized with the use of 3D interfaces
were recruited and we used four query images that could be interesting for a TD
(see Figure 8). The users were presented with 45 images given in arbitrary order
(see Figure 9) and the four queries, and their goal was to select the images that

19

they considered similar to each query and then to rank the selected images accord-
ing to their similarity. To accomplish this task, the users were alowed to choose
the order in which they wanted to answer the queries and modify their previous
answers whenever necessary. We have selected these 45 images as they show dif-
ferent numbers of objectsin different configurations. The number is high enough
to obtain at least five similar images per query image and at the same timeis low
enough for the users to be able to check all the images correctly (the higher the
number of images available, the higher the difficulty to keep the concentration of
the user to verify them all carefully, as the amount of information that can be kept
in the working memory of humansis considered to be limited [13]).

@ (b) (©

(d)

Figure 8: Query images used in the tests.

Considering an image as similar to another oneisavery subjective matter. For
some users an image is similar to a query image if it shows the same objects, for
othersif it showsthe same percentage of the object, and for othersif the viewpoint
of the most prominent object is the same. So, as explained in Section 4, we used
weights equally distributed when computing the similarity in our tests. According
to the results obtained from the users concerning the number of similar imagesfor
each query (see Figure 10), we can observe three kinds of users. some users have
a*“demanding profile”, asthey select only afew picturesas similar (e.g., the ninth
user); other usershave a“lax profile”, asthey select more images than the average
(e.g., second and eighth users); finally, the rest of users have an “average profile”.
Thus, we think that the system has to rank all the images without discarding any
image: if we considered instead a rop-k ranking, the appropriate £ would depend

20

Figure 9: Set of 45 images used in the tests.

on the subjectivity of the specific user and the specific query and set of images
available. However, ranking all the images also emphasizes the importance of
providing agood ordering, such that imagesthat are very different from the query
image have to be placed at the end of the result list.

16

14 ﬂ

- 12

@

Y] —

K

¥ 10

- B

o)

©

£ 8

s

g 6

2 \

[-

3

z 4
2 M M M M
0 — - — — - — - —

Query 1 Query 2 Query 3 Query 4

Figure 10: Number of images selected by the users as similar to each query image.

The next step is to compare the users' rankings with the ranking provided by
our system. Asthe users rankingsfor aquery could include different images and
a different number of results, we have to compare partial lists of varying length.

21

It is interesting to consider that it is quite common for a user to make a precise
definition of the firsts positions of a ranking and the precision decreases as the el-
ement islocated in the last positions. This has been confirmed by some users, that
have explained that the images they placed at the end of the list had all approx-
imately the same similarity to the query image (according to their opinion). So,
wewill focus on thefirst five images of each users' sranking (five isthe maximum
number of images selected for all the users for al the queries) to compare it with
the system’s ranking. Kendall’s tau [14] is a measure widely used to compare
rankings. However, it has the limitation that the rankings to compare have to con-
tain the same elements (i.e., they have to be full rankings). In [15] a generalized
Kendall’s tau that overcomes this limitation is presented, that can be applied to
compare top-k lists:

K= Y K(un) (13)
i,jJEP(T1,72)

where 71 and 17 are the lists to compare and P(71, 72) is the union set of the ele-

mentsin both lists. In addition, KT.};’.) (11, 72) = 1if any of the following conditions
hold: (a) i and j appear in both lists but in reverse order (i.e., i is ranked higher
than j in one list but lower in the other); (b) i and ; both appear in one list (and
j is ahead i) and exactly one of i or j appears in the other list; (c) ¢, but not j,
appears in one list, and j, but not i, appears in the other top-k list. Otherwise,
IZI.%?) (11, 2) = 0, aswe are considering the “ optimistic approach” of Kendall’stau
with p = 0 (i.e., k), which is a frequent instantiation of Kendall’s tau in the
literature. In order to normalize K(? in such a way that two identical lists have
a value of 1 and two lists that share no element have a value of O, we use the
normalized K [16]:

K0 T1, T2

ko1 K0

We have computed the normalized distance, K, between our system’s ranking
and the users’ ranking (the results are shown in Figure 11, where K (u;,s) repre-
sents the K value between the ranking provided by the user user; and the ranking
of the system s). Values below 0.5 usually indicate that the system does not se-
lect some images that appear in the user’s ranking, and values above 0.5 indicate
that the system selects all the images selected by the user but the order is exactly
the same only if the value of K is 1. So, for Query 3 and Query 4 the similarity
between the rankings provided by the users and the one provided by the system

(14)

22

is particularly high, as with the dataset used in the experiments the users found it
quite easy to select and rank images similar to those query images. However, for
Query 1 the users found more difficulties to rank the images, as there is a higher
number of images that could be considered similar to the query image; in the
ranking provided, for example, some users considered as more similar the images
where a similar percentage of the green rowing boat was shown, whereas others
considered more similar the images that showed a similar perspective.

10

09 -
08 -
0,7 -
06 -

05 -

K distance

04 -

0,3

02 -

01

0,0

Query 1

Figure 11: Comparing the ranking of images obtained by our system (s) and the users' rankings
(u;) for each query (normalized Kendall tau distance K (u ;,9)).

However, it has to be noticed that different users usually propose different
rankings for the same set of images (i.e., there is some disagreement between the
users about the best ranking, due to the subjectivity of the process). Therefore,
comparing only the system’s ranking with each of the users' rankings would be
unfair. To take the subjectivity into account, we apply a ssimilar approach to the
one used in [17] to obtain the level of disagreement between the system and the
users. First, we define for each query a global level of disagreement between all
the users and the system, called System Disagreement (SD):

M
Y Kis
SD=1- ’:34 (15)

where K; ; is the normalized distance K for each of the users' rankings compared
with the ranking provided by our system, and M is the number of users (10 in our

23

case). The value of SD can be interpreted intuitively as follows. Considering the
extreme cases, SD = 0 would mean that the system obtains exactly the same re-
sults (the same imagesin the same order) than all the users (thiswould be possible
only if all the users provided exactly the same answer), and SD = 1 would mean
that the system results are completely different from the results provided by any
of the users. For the intermediate cases, the rankings provided by the users and
the system are more similar when the value of SD islow.

Then, we define for each query a global level of disagreement among all the
users called Tester’s Disagreement (TD), as the users play the role of testers for
our system:

-1
> Kij
1,j#i
M—-1
M
where X; ; is the normalized distance K for two users' rankings. The value of 7D
can be interpreted similarly to what was explained before for the value of SD, but
inthiscase T'D measures the difference among the rankings provided by the users.
In Figure 12 we show theresulting SD and TD for each of the four queries. As
K = 1 indicates that the two selected rankings are exactly the same, we consider
that the ranking of similar picturesfor aquery imageiscorrect aslongasSD < T'D
(i.e., when the disagreement between the users and the system is not higher than
the disagreement between the users themselves). According to this, the system
always behaves well except for the last query (Query 4), where SD = 0.31 and
TD = 0.27. So, we analyze this query in the following to explain this behavior.
Figure 13(a) shows the ranking of images that the system obtains for Query
4. We noticed that the system locates in the fourth position an image that was
not present in any of the users’ top-5 rankings. This was the cause that led to
obtainingaSD dlightly greater than 7D for thisquery. Thereason for thisbehavior
is related to the weights assigned to each term of the similarity function used
by our system (Formula 12 in Section 4.4). Specifically, we consider by default
w; =w, =w, = 1/3, asthereisno objective criterion to assign different weights.
However, analyzing the users rankings for the last query, we have noticed that
for most of them the percentage of the objects viewed and the percentage of the
shot occupied by the objects were more important than other factors. Taking this
into account, we have also set the weights w, = 0.7, w,, = 0.25, and w; = 0.05,
and reevaluated the query, obtaining a new ranking (see Figure 13(b)) and a new

M
j=

Mz

1

TD=1-"1 (16)

24

N System Disagreement (SD) =Tester Disagreement (TD)

Level of Disagreement

Query 2 Query 3

Figure 12: Tester Disagreement and System Disagreement.

SD = 0.27, which makes the disagreement between the system and the users equal
to the disagreement between the users. So, by adapting the weights used in the
similarity function (which can be performed easily by using the dliders available
in the GUI, as shown in Figure 6), we can customize the system according to
the preferences of a specific user. Another example of the potential interest of
adjusting the weightsis presented in the following section.

Position 1 Position 2 Position 3 Position 4 Position 5
@

Position 1 Position 2 Position 3 Position 4 Position 5
(b)

Figure 13: Ranking obtained by the system for Query 4: before (a) and after (b) modifying the
weights of the similarity formula.

25

5.3. Evaluation of the User Satisfaction when Entering an Arbitrary Query

We have performed other tests where “expert” users (persons who are not
only familiar with the use of 3D interfaces but also fond of photography) have
used the prototype to formulate their own queries. In this section, for illustration
purposes, we explain some results obtained with one of these expert users. Similar
conclusions can be drawn from the tests performed with other expert users.

First, we asked the user to define aquery scene; the user found no difficultiesin
performing this task to compose the wanted query image. Afterwards, to expand
the dataset used in the previous tests, we generated some images by moving the
rowing boats in the scene and by moving/rotating the camera randomly. Then,
based on the new dataset of images that we generated, the system presented to
the user aranked list of images similar to his query image (see Figure 14(a)) and
we asked him to make some comments about the results. He pointed out that, for
him, the second image was more similar to the query than the first one, due to the
viewpoint of the camera. He aso noted that the rest of the images were somewhat
similar to the query but he would rule out them compared to the first and second
ones (the user showed a “demanding profile”).

Query Image Position 1 Position 2 Position 3 Position 4 Position 5
S$=0.72 S$=0.67 S$=0.63 S$=0.63 S=0.61
@
Query Image Position 1 Position 2 Position 3 Position 4 Position 5
S=0.75 S=0.73 S=0.59 S$=0.58 S$=0.52

(b)

Figure 14: Ranking of images obtained for a user query: before (a) and after (b) modifying the
weights of the similarity formula.

We analyzed the user answer and decided to modify the weights of the simi-
larity function (Formula 12) to match his preferences. By increasing the weight of
the views and decreasing the weight of the location (we used w, = 0.3, w,, = 0.6,
and w; = 0.1) we obtained a new ranking (see Figure 14(b)) where the positions
of the first two images are inverted, as the user would have expected. Moreover,

26

by adapting the weights to the preferences of that specific user, the differences
between the computed similarity of the image in the second position and the
third, fourth, and fifth increased from 0.04, 0.04, and 0.06 (in Figure 14(a)), to
0.14, 0.15, and 0.21 (in Figure 14(b)), respectively; this means that with the new
weights the last three images were considered by the system much less similar to
the query image than before. So, it is possible to fine-tune the weights according
to the preferences of the user. Some complementary works have proposed to auto-
matically infer suitable preference weights based on past user’s interactions with
the system [18].

6. Related Work

The problem of retrieving interesting images for a user has received signif-
icant research attention. Some of the proposed solutions imply the use of key-
words (e.g., one of the interaction modes proposed in [19]) or a query language
(e.g., [2]) to retrieve the relevant images, whereas others consider a visual input
to retrieve similar images. Keyword-based interfaces for image retrieval involve
severa difficulties, such as the selection of appropriate keywords by the user, se-
mantic issues (e.g., there may be several possible meanings for a given keyword,
synonyms for the input keywords, etc.), and the need to annotate the existing im-
ages with the keywords that can apply to them. Among the proposals based on
visual examples, which are content-based image retrieval techniques (based on
the analysis of different types of visual or textual features [20, 21, 22]), we can
distinguish several approaches:

e Query-By-Icons (e.9., [23]). Theideaisto place iconsthat represent objects
in a scene. The spatial organization of the icons is then used to retrieve
images where the corresponding objects appear with asimilar arrangement.
This approach requires the previous annotation of the existing images with
information about the identities of the objects represented.

e Query-By-Sketch (e.9., [8]). In this case, the user draws a sketch of the
type of image he/she is interested in. A suitable user’s sketching ability
is required and the system must be able to deal with imprecision in the
drawings.

e Query-By-Image (e.g., one of the interaction modes proposed in [19]). The
input is now a sample image (or a set of sample images) that is used by the
system to retrieve other similar images.

27

e Query-By-Virtual-Example [24]. Thisterm was proposed in [24] to denote
a solution where the input image is composed by combining the synthesis
of user’'s gestures in front of a videocamera, a background image, and 3D
object models. So, theinput exampleis created by using virtual reality tech-
niques. A Support Vector Machine (SVM) [25] and 3D SIFT features [26]
are used to compute the similarity of images. However, the authors ac-
knowledge that the performance of their approach is still far from satisfac-
tory.

e Query-By-Scene (€.9., [9]). In this category, we could include approaches
where the input is avirtual 3D scene built by the user using a 3D interface.
In[9] the scene created by the user is projected onto a2D image and then the
color spatial distribution is compared with the color distribution of existing
imagesto compute a similarity measure. So, even though we share the same
basic idea—using a 3D scene to define a query image for QBIl—, the image
retrieval approach is different. Instead of measuring the similarity in terms
of low-level features, which could lead to losing some of the semantics of
the image (due to the “semantic gap”), we use high-level semantic features,
extracted from the 3D scene, that enable the system to identify accurately
the kind of objects and their specific identity inside a view.

Combinations of several methods are also possible. For example, in [27] a
unified framework to integrate keywords and visual featuresfor imageretrieval is
proposed. Some proposals advocate including additional user interaction to pro-
vide information to the system about how satisfactory the results obtained are,
in order to improve future iterations for results, or to fine-tune systems' parame-
ters[18]. Asan example, [28] considersthat clicksin image search logs represent
implicit relevance judgments that express the user’s intent and also relations be-
tween documents. A recent survey on interactive content-based image retrieval is
presented in [29]. A survey on image retrieval and automatic image annotation
can be found in [30].

Finally, it isinteresting to mention that other proposals focus on the problem
of retrieving 3D object models (e.g, [31, 32, 33, 34, 35]) or videos (e.g., [36]) in-
stead of images. To improve the efficiency and accuracy of view-based 3D object
retrieval, in [35] the authors propose to select the most interesting 2D views using
aprobabilistic Bayesian method (4daptive Views Clustering), whereasin [33] the
authors present an algorithm that minimizes the number of query views required
based on information extracted from the query and the users' relevance feedback.

28

In [34] the query to retrieve 3D modelsisaset of views, but no camera constraint
must be specified (so, any view set captured by any camera array can be used
as a query). In [32] the authors present an algorithm to retrieve 3D models by
querying-by-sketch based on the alignment of 3D modelsto 2D sketches. In [31]
an Interaction Metadata Query sub-Language is presented to enable 3D model re-
trieval using interaction metadata. Concerning video retrieval, in [37] the authors
propose the use of an ontology to find concepts related to a query.

Although there are some similarities between the proposals described in this
section and the work presented in this paper, there are also significant differences.
First, we focus on real-time TV broadcasting scenarios where the goal is to effi-
ciently retrieve images provided by cameras instead of images from a preexisting
image collection stored in arepository. So, both the precision and the performance
of theretrieval processare key. Besides, several existing techniques(e.g., based on
indexing or annotation of theimages) cannot be applied dueto the highly-dynamic
nature of the scenario. Second, we do not apply real-image processing techniques
but geometric computations based on the 3D modelsavailable: 3D representations
of the real scene are automatically built by taking into account raw data such as
the GPS locations of the objects and their 3D models. Identify some semantic
features that our approach can consider using real-image processing techniques
is too time-consuming for real-time scenarios (e.g., with our approach we know
the identity of each object, and so for example we can know that a camera pro-
vides a view of the rowing boat of a certain team even if only a small portion is
captured by the camera, which would be very challenging by using image pro-
cessing techniques). Even though we use a 3D reconstruction of the cameraviews
and the user query, traditional 3D matching techniques cannot be applied to our
problem, as we are interested in computing the similarity considering a specific
viewpoint of the 3D models (defined by the virtual camera), and so we are not
interested in the similarity between the 3D models themselves. Besides, we tackle
the two main research topicsin the field of querying-by-example on images [24]:
the development of an appropriate similarity measure and an efficient method to
compute it in real-time. Asfar as we know, no other work focuses on retrieving
images in real-time from cameras by reconstructing a virtual scenario.

7. Conclusions and Future Work

In this paper, we have presented a proposal to help a Technical Director (TD)
to visually define an interesting example shot (with a certain view of one or more
objects) by using an interface for the definition of 3D scenes. In this way, it en-

29

ablesthe TD to easily express the shot he/she wantsto obtain. The shot defined is
then analyzed by the system and evaluated over the camera sources continuously
to retrieve the shots that are similar to his’/her example. To this end, our system
relieson a 3D model of the scene generated based on information about the inter-
esting objects and cameras in the scenario (location, direction, and approximate
3D extent). In some situations it could be challenging to obtain this information
for certain objects (e.g., it could be difficult to obtain the real-time precise loca-
tion of aball or the extent of soccer players that move their limbs while running).
However, our approach does not rely on a specific technology to obtain this in-
formation nor requires a 100% precision of these data to effectively distinguish
between cameras that are interesting or not for a given query. The main features
of the proposal are:

o An interface for the definition of 3D scenes enables the user to define an
interesting shot easily and precisely, that is used for querying-by-example.

e High-level features (such as the specific objects in a shot, their visible per-
centage, their viewpoint, etc.) are extracted from the example shot and the
current camera views efficiently.

e A similarity measurement is presented to obtain an objective value to com-
pare two camerashots. Thisvalueisused by the systemto provide aranking
list of similar images for a query. Moreover, the system can be fine-tuned
to the preferences of specific users.

e The performance of the system is suitablefor itsuse in real-time live broad-
casting scenarios. We use efficient geometric computations to compare the
3D model defining the query image with recreated 3D modelsthat represent
the views provided by the cameras.

Besides, we have developed a prototype of the system that has been used to
evaluate the proposal. We have presented some experiments with usersto evaluate
both the ability of our system to work in real-time and to obtain results similar to
those that a human could obtain. As future work, we plan to apply relevance
feedback techniques [18] to automatically set appropriate weights according to
the preferences of the user, inferred from his/her interactions with the system. It
would also be very interesting to further test the system with real TDsin specific
gport events. The evaluation with real TDs will also help us to determine their
preferred way to submit queries to the system (i.e., using predefined queries —
with or without parametrization— vs. ad hoc queries). Even though the use case

30

scenario considered in this paper is that of rowing boat races, the proposal could
be applied to other sport events as long as the interesting objects are modeled in
3D and a mechanism is available to obtain the extent and location of the objects
inreal time.

Acknowledgments.

Thisresearch work has been supported by the CICY T project TIN2010-21387-
C02-02 and DGA-FSE. We would also like to thank the anonymous reviewers for
their useful comments.

References

[1]

[2]

[3]

[4]

[3]

[6]

[7]

K. Chai, S. Leg, S. Y., Automatic broadcast video generation for ball sports
from multiple views, in: International Workshop on Advanced Image Tech-
nology (IWAIT’09), 2009.

S. llarri, E. Mena, A. lllarramendi, R. Yus, M. Laka, G. Marcos, A friendly
location-aware system to facilitate the work of technical directors when
broadcasting sport events, Mobile Information Systems 8 (1) (2012) 17-43.

J. Wang, C. Xu, E. Chng, H. Lu, Q. Tian, Automatic composition of broad-
cast sports video, Multimedia Systems 14 (4) (2008) 179-193.

R. Yus, E. Mena, J. Bernad, S. Ilarri, A. lllarramendi, L ocation-aware system
based on a dynamic 3D model to help in live broadcasting of sport events,
in: 19th ACM International Conference on Multimedia (MM 2011), ACM,
2011, pp. 1005-1008.

S. llarri, E. Mena, A. lllarramendi, Location-dependent query processing:
Where we are and where we are heading, ACM Computing Surveys 42 (3)
(2010) 12:1-12:73.

M. M. Zloof, Query by example, in: AFIPS National Computer Conference,
AFIPS Press, 1975, pp. 431-438.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, Query
by image and video content: The QBIC system, Computer 28 (9) (1995) 23
-32.

31

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. D. Bimbo, P. Pala, Visua image retrieval by elastic matching of user
sketches, IEEE Transactions on Pattern Analysis and Machine Intelligence
19 (2) (1997) 121-132.

J. Assfalg, A. D. Bimbo, P. Pala, Three-dimensional interfaces for querying
by example in content-based image retrieval, IEEE Transactions on Visual-
ization and Computer Graphics 8 (4) (2002) 305-318.

Y. Liu, D. Zhang, G. Lu, W.-Y. Ma, A survey of content-based image re-
trieval with high-level semantics, Pattern Recognition 40 (1) (2007) 262—
282.

N. Shirahatti, K. Barnard, Evaluating image retrieval, in: Conference on
Computer Vision and Pattern Recognition (CVPR’05), Vol. 1, IEEE Com-
puter Society, 2005, pp. 955-961.

B. Thomee, A picture is worth a thousand words — Content-based image
retrieval techniques, Ph.D. thesis, Leiden University (Germany) (November
2010).

G. A. Miller, The magical number seven, plus or minustwo: Some limitson
our capacity for processing information, Psychological Review 63 (2) (1956)
81-97.

M. G. Kendall, A New Measure of Rank Correlation, Biometrika 30 (1/2)
(1938) 81-93.

R. Fagin, R. Kumar, D. Sivakumar, Comparing top k lists, in: 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA'03), Society for
Industrial and Applied Mathematics, 2003, pp. 28-36.

F. McCown, M. L. Nelson, Agreeing to disagree: Search engines and their
public interfaces, in: Seventh ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL’07), ACM, 2007, pp. 309-318.

R. Trillo, L. Po, S. llarri, S. Bergamaschi, E. Mena, Using semantic tech-
nigues to access web data, Information Systems. Special Issue on Semantic
Integration of Data, Multimedia, and Services 36 (2) (2011) 117-133.

Y. Rui, T. S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: A power
tool for interactive content-based image retrieval, |EEE Transactions on Cir-
cuits and Systems for Video Technology 8 (5) (1998) 644—655.

32

[19] Y. Lu, H. Zhang, L. Wenyin, C. Hu, Joint semantics and feature based image

retrieval using relevance feedback, |EEE Transactions on Multimedia 5 (3)
(2003) 339-347.

[20] D. C. G. Pedronette, R. da Silva Torres, R. T. Calumby, Using contextual

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

spaces for image re-ranking and rank aggregation, Multimedia Tools and
ApplicationsPublished online: 31 May 2012.

Z. Shi, X. Liu, Q. Li, Q. He, Z. Shi, Extracting discriminative features for
CBIR, Multimedia Tools and Applications 61 (2) (2012) 263-279.

X.-Y. Wang, B.-B. Zhang, H.-Y. Yang, Content-based image retrieval by in-
tegrating color and texture features, Multimedia Tools and A pplicationsPub-
lished online: 03 April 2012.

V. N. Gudivada, V. V. Raghavan, Design and evaluation of algorithms for
imageretrieval by spatial similarity, ACM Transactions on Information Sys-
tems 13 (2) (1995) 115-144.

K. Shirahama, K. Uehara, Query by virtual example: Video retrieval using
example shots created by virtual reality techniques, in: 2011 Sixth Inter-
national Conference on Image and Graphics (ICIG 2011), IEEE Computer
Society, 2011, pp. 829-834.

M. A. Hearst, S. Dumais, E. Osman, J. C. Platt, B. Scholkopf, Support vector
machines, |EEE Intelligent Systemsand their Applications 13 (4) (1998) 18—
28.

P. Scovanner, S. Ali, M. Shah, A 3-dimensional SIFT descriptor and its ap-
plication to action recognition, in: 15th International Conference on Multi-
media (MULTIMEDIA'07), ACM, 2007, pp. 357-360.

E. Cheng, F. Jing, L. Zhang, A unified relevance feedback framework for
web image retrieval, IEEE Transactions on Image Processing 18 (6) (2009)
1350-1357.

D. Morrison, T. Tsikrika, V. Hollink, A. P de Vries, Eric Bruno,
S. Marchand-Maillet, Topic modelling of clickthrough datain image search,
Multimedia Tools and ApplicationsPublished online: 16 March 2012.

33

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

B. Thomee, M. S. Lew, Interactive search in image retrieval: A survey, In-
ternational Journal on Multimedialnformation Retrieval 1 (2) (2012) 71-86.

R. Datta, D. Joshi, J. Li, J. Z. Wang, Image retrieval: ldeas, influences, and
trends of the new age, ACM Computing Surveys 40 (2) (2008) 5:1-5:60.

J. Chmielewski, Finding interactive 3D objects by their interaction proper-
ties, Multimedia Tools and ApplicationsPublished online: 04 June 2012.

B. Li, H. Johan, Sketch-based 3D model retrieval by incorporating 2D-3D
alignment, Multimedia Tools and A pplications 65 (3) (2013) 363—-385.

Y. Gao, M. Wang, Z.-J. Zha, Q. Tian, Q. Dai, N. Zhang, Less is more: Ef-
ficient 3-D object retrieval with query view selection, |EEE Transactions on
Multimedia 13 (5) (2011) 1007-1018.

Y. Gao, J. Tang, R. Hong, S. Yan, Q. Dai, N. Zhang, T.-S. Chua, Camera
constraint-free view-based 3-D object retrieval, IEEE Transactions on Image
Processing 21 (4) (2012) 2269-2281.

T. F. Ansary, M. Daoudi, J.-P. Vandeborre, A bayesian 3-D search engine us-
ing adaptive viewsclustering, |EEE Transactionson Multimedia9 (1) (2007)
78-88.

G. Erozel, N. K. Cicekli, I. Cicekli, Natural language querying for video
databases, Information Sciences 178 (12) (2008) 2534-2552.

K. Shirahama, K. Uehar, Video retrieval from few examples using ontol-
ogy and rough set theory, in: 12th International Workshop of the Multi-
media Metadata Community, Second Workshop on Semantic Multimedia
Database Technologies (SMDT 2010), Vol. 680, CEUR Workshop Proceed-
ings (CEUR-WS.org), 2010, pp. 5-16.

34

