000056334 001__ 56334
000056334 005__ 20200221144335.0
000056334 0247_ $$2doi$$a10.2147/IJN.S108812
000056334 0248_ $$2sideral$$a95654
000056334 037__ $$aART-2016-95654
000056334 041__ $$aeng
000056334 100__ $$0(orcid)0000-0002-6256-742X$$aOrtiz de Solorzano, I..$$uUniversidad de Zaragoza
000056334 245__ $$aContinuous synthesis of drug-loaded nanoparticles using microchannel emulsification and numerical modeling: Effect of passive mixing
000056334 260__ $$c2016
000056334 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056334 5203_ $$aBy using interdigital microfluidic reactors, monodisperse poly(d, l lactic-co-glycolic acid) nanoparticles (NPs) can be produced in a continuous manner and at a large scale (~10 g/h). An optimized synthesis protocol was obtained by selecting the appropriated passive mixer and fluid flow conditions to produce monodisperse NPs. A reduced NP polydispersity was obtained when using the microfluidic platform compared with the one obtained with NPs produced in a conventional discontinuous batch reactor. Cyclosporin, an immunosuppressant drug, was used as a model to validate the efficiency of the microfluidic platform to produce drug-loaded monodisperse poly(d, l lactic-co-glycolic acid) NPs. The influence of the mixer geometries and temperatures were analyzed, and the experimental results were corroborated by using computational fluid dynamic three-dimensional simulations. Flow patterns, mixing times, and mixing efficiencies were calculated, and the model supported with experimental results. The progress of mixing in the interdigital mixer was quantified by using the volume fractions of the organic and aqueous phases used during the emulsification–evaporation process. The developed model and methods were applied to determine the required time for achieving a complete mixing in each microreactor at different fluid flow conditions, temperatures, and mixing rates.
000056334 536__ $$9info:eu-repo/grantAgreement/EC/FP7/614715/EU/A Photo-triggered On-demand Drug Delivery System for Chronic Pain/NANOHEDONISM
000056334 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000056334 590__ $$a4.3$$b2016
000056334 591__ $$aPHARMACOLOGY & PHARMACY$$b37 / 256 = 0.145$$c2016$$dQ1$$eT1
000056334 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b29 / 87 = 0.333$$c2016$$dQ2$$eT2
000056334 592__ $$a1.173$$b2016
000056334 593__ $$aBioengineering$$c2016$$dQ1
000056334 593__ $$aBiomaterials$$c2016$$dQ1
000056334 593__ $$aBiophysics$$c2016$$dQ1
000056334 593__ $$aOrganic Chemistry$$c2016$$dQ1
000056334 593__ $$aMedicine (miscellaneous)$$c2016$$dQ1
000056334 593__ $$aDrug Discovery$$c2016$$dQ1
000056334 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ2
000056334 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056334 700__ $$0(orcid)0000-0002-4678-7465$$aUson, L.
000056334 700__ $$0(orcid)0000-0002-6277-7996$$aLarrea, A.$$uUniversidad de Zaragoza
000056334 700__ $$0(orcid)0000-0002-1002-1396$$aMiana, M.$$uUniversidad de Zaragoza
000056334 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000056334 700__ $$0(orcid)0000-0003-3165-0156$$aArruebo, M.$$uUniversidad de Zaragoza
000056334 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000056334 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000056334 773__ $$g11 (2016), 3397-3416$$pInt. j. nanomed.$$tInternational Journal of Nanomedicine$$x1176-9114
000056334 8564_ $$s15784365$$uhttps://zaguan.unizar.es/record/56334/files/texto_completo.pdf$$yVersión publicada
000056334 8564_ $$s45367$$uhttps://zaguan.unizar.es/record/56334/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056334 909CO $$ooai:zaguan.unizar.es:56334$$particulos$$pdriver
000056334 951__ $$a2020-02-21-13:46:54
000056334 980__ $$aARTICLE