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1. INTRODUCCIÓN 

Los contaminantes emergentes se definen como “contaminantes sintéticos o de origen 

natural previamente desconocidos o no reconocidos como tales cuya presencia en el medio 

ambiente no es necesariamente nueva ni llevan asociado un control, pero sí la 

preocupación por las posibles consecuencias de la misma”. El concepto de “emergente” es 

algo difuso dependiente tanto de la perspectiva como del tiempo en el que se hace (Field et 

al., 2006). La característica de estos grupos de contaminantes es que no necesitan persistir 

en el ambiente para causar efectos negativos, puesto que sus altas tasas de 

transformación/remoción se pueden compensar con su introducción continua en el medio 

ambiente debido a su alta producción mundial. Para la mayoría de estos contaminantes 

emergentes, la incidencia, la contribución de riesgo y los datos ecotoxicológicos no están 

disponibles por lo que es difícil predecir qué efectos sobre la salud pueden tener en seres 

humanos y organismos acuáticos (Barceló, 2003a, b). Estos contaminantes son un grupo 

variado de compuestos químicos que se encuentran entre otros en productos de consumo e 

industriales los cuales no están regulados ni monitorizados y cuya presencia en el medio 

ambiente viene siendo constatada desde hace años a niveles traza sobre todo en aguas 

residuales, medio ambiente acuático y aguas de consumo. Conforme pasa el tiempo surgen 

nuevos contaminantes emergentes, actualmente este grupo incluye compuestos 

biológicamente activos como fármacos, productos de higiene personal, productos de 

consumo doméstico o de origen agrícola e industrial, nanomateriales (NMs) (Chow, 2005; 

Colvin, 2003; Klaine et al., 2008; Navarro et al., 2008; Nel et al., 2006, 2013), plásticos 

(Cózar et al., 2014; Wright et al., 2013) y recientemente se están incluyendo con vista al 

futuro cercano los líquidos iónicos y priones (Richardson y Ternes, 2014) junto con los 

metabolitos y productos de transformación que de todos ellos se deriven.  

Los recientes avances en nanotecnología y el correspondiente aumento del uso de 

nanomateriales y nanopartículas (NPs) en casi todos los sectores de la sociedad han 

suscitado grandes incertidumbres y preocupación sobre el impacto de estos sobre el medio 

ambiente. El impacto de la contaminación puede ser especialmente relevante en sistemas 

costeros, donde se concentra una parte significativa de la actividad humana y donde van a 

parar la mayoría de contaminantes conocidos. Como consecuencia de las actividades 

antropogénicas acceden al medio ambiente y finalmente al medio marino: metales traza 

(minería y aplicaciones diversas), plaguicidas (agricultura, industria, aplicaciones 

forestales, urbanas o domésticas), aceites e hidrocarburos (vertidos directos y/o resultado 
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de la combustión de combustibles fósiles o materia orgánica), detergentes de uso 

doméstico e industrial, productos farmacéuticos (salud humana y aplicaciones 

veterinarias), productos de cuidado e higiene personal (cosmética, higiene, etc.), polímeros 

y materiales ignífugos, etc. Las NPs de origen natural (polvo atmosférico, aerosoles 

marinos, compuestos carbonaceos…) también se consideran contaminantes emergentes 

efectos toxicológicos desde un punto de vista clínico, químico, biológico, etc. 

Hacia el año 2008 se estimaba que en el año 2015 el peso económico de la nanotecnología 

supondría unos 2,2 billones de euros (Lux Research, 2008 y en libro de Kent), y en el 2017 

las ventas de productos nanotecnológicos alcance los 48.900 millones de dólares 

(www.bccresearch.com/report). A día de hoy algunos se cuestionan estas cifras y van más 

allá exponiendo que no hay ni habrá una industria nanotecnológica (www.azonano.com; 

www.cientifica.com/the-first-and-last-nanotech-conference/). Mientras que hace unos años 

los compuestos derivados del carbón eran los nanomateriales más usados a día de hoy 

(Figura 1) según el inventario de productos de consumo nanotecnológicos (CPI) existen 

1.814 productos de consumo de 622 compañías en 32 países. 

 

Figura 1. Nanomateriales incluidos en el CPI. 

 

Los productos de salud y bienestar abarcan la mayoría de productos (42% de total) siendo 

la plata el material más empelado (24%). Sin embargo el 49% de los productos no 

concretan información acerca de la composición del nanomaterial empleado (Vance et al., 

2015) (Figura 2). Además un alto porcentaje de los productos anteriores (71%) y de 

productos analizados en Singapur (Zhang et al., 2015) recientemente, no muestran la 

suficiente información que se están empleando nanomateriales en esos productos con el 

http://www.azonano.com/
http://www.cientifica.com/the-first-and-last-nanotech-conference/
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consiguiente peligro que puede suponer un mal uso de estos, como puede suceder con 

cremas solares y su ingesta (Moos et al., 2010). 

 

 

Figura 2. Productos disponibles que contienen nanomateriales desde 2007 (Vance et al, 

2015). 

 

Actualmente existen cientos de NPs/NMs en uso o en desarrollo que pueden ser 

clasificados de diferentes maneras; según su química, origen, morfología y estado y 

situación en un producto (Lead y Valsami Jones, 2014) (Figura 3). 
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Figura 3. Clasificación de nanomateriales según su dimensión (1), morfología (2), 

composición (3), uniformidad y estado de agregación/aglomeración (4) (Buzea et al., 

2007). 

 

Las NPs de origen natural son más abundantes (p.ej. millones de toneladas en polvo 

atmosférico en un año) y son bastante más heterogéneas en tamaño que las NPs artificiales. 

A grandes rasgos existen dos vías de acceso de las NPs artificiales al medio ambiente. Una 

es intencionada como las medicinas, agentes de diagnóstico médico, cosméticos, aditivos y 

envases alimentarios (Serpone et al., 2007; Chaudhry et al., 2008; Thomas et al., 2009) y la 

otra vía es accidental como incendios forestales, erupciones volcánicas, creadas por 

organismos, cristales naturales, exposición laboral, uso erróneo de un producto, 

remediaciones, aguas residuales, incineraciones o transporte (Farré et al., 2011; Rana y 

Kalaichelvan, 2013). Según Matranga y Corsi (2012) para el caso de las principales fuentes 

de NPs artificiales hacia el medio acuático proponen tres vías: 

 

a. Productos de cuidado personal, cosméticos y cremas solares (p. ej. NPs de ZnO y TiO2 a 

modo de filtros UV en cremas solares)  
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b. Aguas residuales, aunque hay poca información acerca de cómo interaccionan las NPs 

en los procesos de depuración de aguas o si las NPs son eliminadas en tales procesos.   

 

c. Aplicaciones antifouling en pinturas para prevenir la adhesión y el crecimiento de 

organismos acuáticos sobre los cascos de los barcos.  

 

Debido a la elevada concentración de electrolitos en el medio marino y estuarios, las NPs 

diseñadas basadas en metales (quantum dots, NPs de Ag, de Au…) u óxidos metálicos 

(Ag2O, TiO2, CeO2…) es poco probable que permanezcan con sus tamaños nanométricos 

debido a la complejación con iones del medio (Ag+ con Cl-), agregación tanto por 

mecanismos de hetero y homo agregación o mediante interacción con materia orgánica 

natural con iones divalentes dando lugar a agregados de gran tamaño (micras), las cuales se 

depositaran en el fondo marino (Nabiul Afrooz et al., 2013; Baker et al., 2013). Algunos 

estudios han mostrado toxicidad en plancton marino de NPs de TiO2 y ZnO2, aunque 

asociada a la formación de radicales OH
· 

y a la liberación de iones Zn2+ y su 

internalización por parte de las segundas (Miller et al., 2010; Miller et al., 2012). 

 

Para el caso de contaminantes clásicos (hidrocarburos aromáticos policíclicos, pesticidas, 

bifenilos policlorados, metales traza…) la incorporación de los contaminantes al medio 

marino puede producirse a través de fuentes puntuales y difusas. Una fuente puntual es 

aquella en la que existe un punto específico de descarga de contaminantes, como los 

vertidos urbanos, los vertidos industriales, navegación, los vertederos de residuos tóxicos y 

peligrosos, malas prácticas agrícolas, rebosados de alcantarillas y los vertederos 

industriales (Walsh, 1978, Mason, 2003). Este tipo de fuente ha sido la principal vía de 

entrada de plaguicidas en ríos de Alemania (Reichenberger, 2005). Las fuentes difusas son 

aquellas a las que no se les puede derivar de una fuente en concreto, en éstas se encuentran 

las escorrentías superficiales, erosión, aplicaciones en cultivos, las aguas subterráneas, la 

deposición atmosférica, etc. (Walsh, 1978; Reichenberger, 2005). 

Este trabajo pretende poner la atención sobre el papel que pueden tener las NPs naturales, y 

en concreto las biológicas, sobre la contaminación en el medio marino o como primer 

eslabón de la contaminación marina. 
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2. NANOPARTÍCULAS DE ORIGEN NATURAL 

Las nanopartículas naturales están presentes desde hace millones de años (Lippert y 

Zachos, 2007) se encuentran tanto en suelos, aire, agua (superficiales y subterráneas) y 

proceden de una actividad química natural o biológica. Ejemplos de NPs naturales son los 

filosilicatos, óxidos de metales, sustancias húmicas, alófanos e imogolita en suelos 

volcánicos, emisiones volcánicas, NPs derivadas de incendios forestales, o aerosoles 

marinos. La posible toxicidad de estas NPs viene dada tanto por los efectos que ellas 

mismas puedan ejercer sobre los organismos (problemas respiratorios y oculares) así como 

los posibles entes que puedan transportar como bacterias, hongos, virus y contaminantes 

químicos (Buzea et al., 2007). Las herramientas de análisis a día de hoy no sean capaces de 

distinguir nanopartículas naturales de nanopartículas artificiales por el hombre a bajas 

concentraciones en matrices medioambientales complejas (Nowack et al., 2015; Laborda et 

al., 2015). Para solventar este problema se emplean diferentes aproximaciones, empleo de 

ratios de elementos (Von der kammer et al., 2012), acoplando técnicas o por separado, en 

los casos que sea posible, para dilucidar el origen de las nanopartículas (Laborda et al., 

2015) o bien empleando técnicas de modelado junto con técnicas analíticas; en donde las 

primeras proporcionan una estimación sobre la presencia de determinadas Nps artificiales 

y las segundas proporcionan la caracterización física de estas dando lugar a la 

concentración total del nanomaterial (Nowack et al., 2015). Debido a que las NPs son 

especies sólidas la información cuantitativa que puede requerirse de ellas puede ser en 

concentración en masa, molar o en número. Por otro lado la información cualitativa no solo 

consiste en la detección de la NP sino que también se demanda información química 

(composición del núcleo y del recubrimiento; si lo hay) y caracterización física (tamaño, 

forma, estado de agregación/aglomeración…). Además las NPs pueden estar disueltas o 

embebidas en una matriz sólida y pueden liberar iones o NPs libres por lo que también 

estas especies han de considerarse. La necesidad de toda esta información resulta ligada a 

la presencia, destino y toxicidad de las NPs. 

En muestras ambientales suelen estar presentes tanto NPs naturales como artificiales, lo 

que supone todo un reto discernir unas de otras (Figura 4). Los métodos de marcaje 

(marcaje de fluorescencia, radiomarcaje, marcaje con isótopos estables) se suelen emplear 

para diferenciar NPs artificiales deliberadamente añadidas a una muestra ambiental. Pero al 

tratar con muestras reales los problemas surgen tanto con técnicas que no diferencian la 

naturaleza de las NPs como el DLS, pero también con técnicas que detectan NPs 
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compuestas de elementos específicos como la ICP-MS trabajando en modo single particle 

como acoplada a una técnica de separación en continuo o mediante el empleo de técnicas 

electroquímicas o sensores químicos. Por ejemplo, Von der Kammer et al, (2012) 

basándose en el principio por el cual las NPs naturales contienen cantidades significativas 

de elementos no presentes en la artificiales, propusieron el empleo de las ratios entre 

elementos. Por ejemplo los ratios Ti/Al y Ce/La para la identificación de TiO2 y CeO2 en 

materiales bulk, aunque supeditados a su combinación con AF4-ICP-MS y SP-ICP-MS. En 

cualquier, caso estas técnicas solo proporcionan evidencia de la presencia de uno o más 

elementos asociados a las NPs y no la naturaleza exacta de tales NPs. 

 

Figura 4. Esquema representando la complejidad existente a la hora de diferenciar NPs 

naturales de Nps artificiales y pùesta en juego de técnicas analíticas junto a modelaje 

medioambiental (Nowack et al., 2015). 

 

Una nanopartícula biológica natural consiste en un conjunto de moléculas o átomos 

sintetizados en un sistema biológico con al menos una dimensión en el rango 1-100 nm. 

Estas partículas incluyen estructuras intracelulares como los magnetosomas y ensamblajes 

extracelulares como lipoproteínas y virus (Stanley, 2014). Sus funciones son diversas entre 

la que se encuentran el almacenamiento de minerales, comunicación intercelular, 

propagación de material genético, regular el ciclo biogeoquímico, regular el ciclo de 

nutrientes, actuar como agentes de organomineralización, influir en la muerte del plancton, 

interactuar con el cambio climático o influir en la contaminación marina (Wilhelm y Suttle, 

2000; Bratbak y Heldal, 2000; Rohwer y Thurber, 2009; Brussaard et al., 2008; Danovaro 
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et al., 2002, 2008, 2011; Suttle, 1994, 2000, 2005, 2007; Sandaa, 2008; Breitbart, 2012; 

Jover et al., 2014; Pacton et al., 2014; Stanley, 2014; Weitz et al., 2014). Pese a la 

ubicuidad y la importancia en los procesos naturales que desempeñan los virus acuáticos y 

en concreto el virioplancton, nuestro entendimiento sobre su papel en el océano es limitado 

y aún más en sistemas de agua dulce debido en parte a la inconsistencia metodológica 

(Liang et al., 2014; Danovaro et al., 2005; Middelboe et al., 2008b). Debido a las 

particularidades de estas NPs las técnicas para su caracterización suelen tener el fin de su 

identificación como virus o como subpoblaciónes de ellos, en donde se emplean técnicas 

de ensayos en placa, anticuerpos, la técnica de dilución extinción en presencia del huésped 

adecuado o marcadores moleculares (Brusaard et al., 2010). Para eludir las dificultades que 

los métodos de cultivo presentan se emplean técnicas moleculares (p. ej. electroforesis en 

gel de campo pulsado, electroforesis en gel desnaturalizante en gradiente…) las cuales 

dieron lugar al nacimiento de la ecología microbiana molecular proporcionando una huella 

de la riqueza y la dinámica de las comunidades acuáticas de los virus (Sandaa et al., 2010). 

En cuanto a su conteo tres técnicas son las que predominan: microscopía electrónica de 

transmisión (TEM) microscopía de epifluorescencia (EFM) y citometría de flujo (FCM). 

Pese a que los datos obtenidos por estos métodos pueden estar positivamente 

correlacionados, los resultados no pueden compararse entre unas técnicas y otras (p. ej. 

EFM suele dar valores más altos que TEM). Incluso dentro de la misma técnica el empleo 

de diferentes protocolos lleva a discrepancias en la precisión de los resultados (Liang et al., 

2014). 

 

3. NANOPARTÍCULAS DE ORIGEN BIOLÓGICO 

Exosomas 

Bajo este nombre se han agrupado otros como vesículas de membrana, vesículas de 

membrana externas, vesículas bacterianas…las cuales son liberadas desde bacterias, 

microbios eucariotas como hongos y parásitos, arquea, y plancton (Figura 5). Fueron 

descritos por primera vez en 1980 como nanovesículas expulsadas mediante exocitosis 

(Johnstone et al., 1987). Se caracterizan por tener una doble membrana lipídica externa 

compuesta por un alto porcentaje de colesterol y esfingolípidos en cuyo interior alojan una 

gran cantidad de proteínas y ácidos nucleicos y presentan un tamaño entre 50-169 nm. 
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Figura 5. Exosomas liberados desde bacterias (A), arquea (B), hongos (C) y fitoplancton 

(Prochlorococcus) (D (Scanlan, 2014; Deatherage y Cookson, 2012). 

 

Se han descrito multitud de funciones entre las que se encuentran la eliminación de 

proteínas de membrana, actuando en la respuesta inmune o transportando de ARN vírico 

(Petgel et al., 2010; Burger et al., 2013) (Figura 6). Hoy en día se están estudiando como 

posibles biomarcadores de enfermedades, en vacunas contra tumores o transportadores de 

fármacos (Viaud et al., 2010; Jang et al., 2013). 
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Figura 6. Impacto de la liberación de exosomas. A) liberación de polisacáridos a la 

superficie celular, los cuales a su vez sirven como comunicación entre bacterias y 

arqueas (B). C) en microbios patógenos liberación de toxinas entre otras a células 

huésped. D) estimulación del sistema inmune. E) y F) interacción y presentación con 

antígenos (Deatherage y Cookson, 2012). 
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Lipoproteínas 

Las lipoproteínas son estructuras autoensambladas complejas rodeadas de una monocapa 

compuestas por lípidos, proteínas especializadas y apolipoproteínas que transportan agua y 

lípidos en el medio interno acuoso de vertebrados e insectos (Figura 7). 

 

Figura 7. Estructura de una lipoproteína 

(http://www.slideshare.net/sharimycin/lipoprotein-metabolism-shariq). 

Existen cuatro tipos según su contenido proteico, tamaño y densidad: quilomicrones, 

lipoproteínas de muy baja densidad, lipoproteínas (de su metabolismo aparece un tipo 

llamado lipoproteína de densidad intermedia), de baja densidad y lipoproteínas de alta 

densidad (Tabla 1). 

Tabla 1. Composición y tipos de lipoproteínas (Stanley, 2014). 

 

La función de estas proteínas es el transporte de triacilglicéridos, ésteres de colesterol y 

vitaminas grasas solubles desde el hígado hacia tejidos periféricos y viceversa (HDL). Su 

capacidad de autoensamblaje, su capacidad para llegar a tejidos específicos y su capacidad 

de transporte han despertado gran interés para su uso como agentes de diagnóstico y fines 

terapeuticos (Lou et al., 2005; Ryan, 2010). 

http://www.slideshare.net/sharimycin/lipoprotein-metabolism-shariq


12 
 

Ferritina 

Es una nanopartícula inorgánica producida por bacterias, arqueas y eucariotas. Actúan 

como nanocajas proteicas sintetizando y almacenando óxidos de hierro y secuestrando 

iones hierro potencialmente peligrosos (Theil, 2013), además presentan propiedades 

magnéticas complejas. En eucariotas consta de dos partes, una exterior formando una 

coraza hueca (apoferritina) compuesta por 24 subunidades helicoidales; y una parte interior 

en donde se alojan hasta unos 4.500 átomos de hierro (Figura 8). Ambas partes tienen 

utilidades por separado ya que la apoferritina puede emplearse para la síntesis de 

nanopartículas (Yamasita et al., 2010) y el núcleo de hierro como agente de contraste (Doll 

et al., 2013). 

 

Figura 8. Representación esquemática de aprferritina y ferritina (Yamashita et al., 

2010). 

 

Magnetita 

Un grupo de bacterias procariotas llamadas magnetotácticas poseen un orgánulo 

especializado llamado magnetosoma, compuesto por una bicapa lipídica y un núcleo 

magnético formado por magnetita (Fe3O4) o greigita (Fe3S4) con un diámetro entre 50-70 

nm (Figura 9). Una característica que refleja que en la escala nano el “tamaño sí importa” 

viene dada por el hecho que los cristales de magnetita cuando son inferiores a 35 nm son 

superparamagnéticos y por encima de este tamaño forman un único dominio estable 

(Araraki et al., 2008). El magnetosoma ayuda a las bacterias a alinearse con el campo 

magnético de la Tierra y alcanzar regiones de mayor concentración de oxígeno (Lefevre y 
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Bazylinski, 2013). Aunque la magnetita también ha sido encontrada en otros organismos 

como tordos, abejas, moluscos y humanos. 

 

Figura 9. Micrografía TEM de una cadena magnetosoma de una célula de 

Magnetococcus marinus MC-1 mostrando los cristales de magnetita y la membrana del 

magnetosoma (flecha). 

 

Virus 

La historia sobre los virus marinos se remonta a la primera mitad del siglo XX cuando se 

observaron y aislaron los primeros bacteriófagos (fagos) marinos por primera vez (ZoBell, 

1946; Spencer, 1955) (Figura 10). 

 

Figura 10. Esquema del desarrollo de la ecología viral (Rowher y thurber, 2009). 
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Aunque su presencia no fue explicada hasta la hipótesis del “ciclo marino microbiano” 

(Figura 11) (Pomeroy, 1974) y no fue hasta finales de los años 80 cuando se reconoció la 

abundancia de los virus y su impacto en los océanos (Bergh et al. 1989).  

 

 

 

Figura 11. Virus y el ciclo microbiano, mostrando el papel de los virus como motores de 

la producción de materia orgánica disuelta en el medio acuático (Wommack y Colwell, 

2000). 

 

En los 90 se aprendió bastante sobre la diversidad genética de fagos y virus eucarióticos y 

la importancia del plancton marino. Numerosos estudios han demostrado la contribución 

de virus y protistas al ciclo biogeoquímico debido a la lisis del plancton (Braback et al., 

1993; Fuhrman y Noble, Suttle, 1994; 1995; Glober et al., 1997; Wommack et al., 1999) 
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(Figura 11). A principios del siglo XXI se secuenciaron los primeros genomas de virus 

marinos y la genómica y metagenómica se emplearon para caracterizar la diversidad de los 

virus (ARN y ADN) en agua marina así como sus efectos sobre la ecología y fisiología de 

sus huéspedes (Rohwer y Thurber, 2009). 

Se estima que existen alrededor de 1030 virus (virioplancton) en el océano (10-20 fM; 107 

virus mL-1) siendo un orden de magnitud mayor que el número de procariotas que son el 

segundo grupo más abundante (Wommack y Colwell, 2000) aunque en biomasa ocupan el 

segundo lugar detrás de los procariotas (Suttle, 2005) (Figura 12). Aunque la mayoría del 

virioplancton está formado por fagos (Wommack et al., 2000), en un estudio reciente se ha 

estimado la diversidad viral en agua de mar entorno a más de 100.000 tipos diferente de 

virus (Angly et al., 2014). Los fagos pueden clasificarse según su morfología en 

icosaédricos, filamentosos, con cola, sin cola o según sea el tipo de bacteria a la que 

infectan (.http://depa.fquim.unam.mx/amyd/archivero/Clase10_23132.pdf). Además de los 

fagos existen lo llamados virus parecidos a partículas (VLP), los cuales no tienen 

capacidad de infección. La abundancia del virioplancton generalmente es mayor en la zona 

eufótica (desde la superficie hasta unos 80 m) y en zonas costeras, y a partir de ahí decrece 

exponencialmente con la profundidad, además también se han observado variaciones 

estacionales en su abundancia (Cochran y Paul, 1998; Breitbart, 2012) en donde las 

condiciones específicas de cada región ejercen una presión selectiva para la existencia de 

unos virus u otros (Angly et al., 2014). 

 

Figura 12. Biomasa y abundancia relativa de virus, procariotas y protistas (Cuttle, 

2007). 
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Los virus no solo se encuentran en la columna de agua sino que también en los sedimentos 

y además en esta matriz su abundancia es mayor (Danovaro et al., 2005; Middelboe et al., 

2008a,b). Se ha estimado que la producción viral en sedimentos costeros es una o dos 

veces mayor que la del virioplancton indicando que su volumen puede ser mayor en 

sedimentos que en la columna de agua (Hewson y Fuhrman, 2003; Mei y Danovaro, 2004, 

2005). 

El conocimiento actual de la ecología viral plantea bastantes cuestiones básicas sobre la 

distribución y actividad sobre los virus bentónicos. Los estudios sobre virus en sistemas de 

agua dulce han sido posteriores al del medio marino produciéndose un rápido aumento 

desde el año 2005 (Middelboe et al., 2008b). Esto queda reflejado por ejemplo en la 

paradoja aún sin resolver sobre la elevada abundancia viral (Middelboe et al., 2008a,b) y el 

poco impacto en sistemas bentónicos de agua dulce (Bettarel et al., 2006; Filippini et al., 

2006; Weitz et al., 2014), mientras los virus en sedimentos marinos tienden a multiplicarse 

a elevadas velocidades (Danovaro et al., 2008; Middelboe, 2008a). Una de las posibles 

explicaciones sea la derivada de emplear diferentes aproximaciones y métodos para su 

medida como antes se comentó (Middelboe et al., 2008b; Liang et al., 2014). Pese a las 

abundancias de los virus en los sedimentos, estudios realizados en sedimentos marinos 

profundos muestran valores bajos de abundancia entre virus y bacterias (Danovaro y 

Serresi, 2000; Danovaro et al., 2002). Esta discrepancia entre abundancias entre 

sedimentos de sistemas costeros y sedimentos de zonas profundas puede deberse a las 

diferentes condiciones ambientales y bióticas (Danovaro et al., 2005). Sin embargo el 

análisis de sedimentos en perfiles de profundidad de abundancias virales muestran que 

existen grandes cantidades de virus en capas de sedimento profundas y donde unos 

estudios muestran una disminución de la abundancia en sedimentos anóxicos otros 

muestran un aumento con la profundidad o una mayor abundancia en sedimentos anóxicos 

que en sistemas oxigenados e incluso no presentan variación significativa con la 

profundidad (Danovaro et al., 2005; Paul et al., 1993; Drake et al., 1998; Hewson y 

Fuhrman, 2003; Bird et al., 2001; Middelboe et al ., 2003; Mei y Danovaro, 2004; Taylor 

et al ., 2001, 2003; Weinbauer, 2004).  
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Plancton 

El término plancton (del griego (πλαγκτός [plagktós], ‘errantes’) incluye a aquellos 

organismos acuáticos que viven sin estar ligados a otros y que no tienen la capacidad de 

moverse en contra de las corrientes que los rodean. Es un término inusual ya que hace 

referencia a un medio de locomoción en lugar de su pertenencia a una u otra familia 

genética. Otros términos relacionados son el necton (organismos nadadores activos) y 

neuston (organismos que viven en la interfase agua-aire). Existen varias formas de 

clasificación del plancton. En una de ellas el plancton se clasifica en holoplancton 

(organismos que pasan todo su ciclo vital perteneciendo al plancton) y meroplancton 

(organismos que solo durante una parte de su vida integran la comunidad planctónica) 

(Figura 13), en donde además se han añadido los virus ya que la clasificación no los 

incluía. 

Sin embargo para el objeto de este trabajo del trabajo fin del  “Máster de Nanotecnología 

Medioambiental” nos centraremos en la clasificación por tamaño del plancton en la cual 

encontramos el nicho de este estudio. La clasificación por tamaños propuesta por (Sieburth 

y Smetacek, 1978) (Figura 14). 

Según (Strickland, 1983) existen tres clases de interacciones entre el plancton y la 

contaminación. La primera es el efecto nocivo directo de los contaminantes sobre el 

plancton, el segundo es el efecto que produce el plancton sobre los contaminantes y el 

tercero y de mayor interés es el papel que juega el plancton en la biomagnificación de los 

contaminantes y sus efectos sobre la cadena trófica hasta llegar al ser humano. Un grado 

más de complejidad aparece en modelos matemáticos en donde se incluye la interacción de 

tres elementos zooplancton-fitoplanton-contaminante. En un estudio reciente (Rana et al., 

2015) estudian el efecto de NPs sobre plancton, en donde el zooplancton actúa como 

predador el fitoplancton como presa y NPs son añadidas al sistema. Este es el primer 

modelo matemático que estudia el impacto de NPs sobre la interacción fitoplancton-

zooplancton. Sus resultados mostraron que debido a la interacción NPs-fitoplanton 

(internalización/adsorción) disminuye la población tanto de de fitoplancton como de 

zooplancton (desestabilización del sistema a través de una bifurcación de Hopf), y 

conforme las NPs son eliminadas del medio el sistema gana en estabilidad. Las NPs juegan 

un papel importante en un sistema simple como este por lo que la introducción de NPs al 
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medio acuático puede tener consecuencias no solo a nivel de primario sino sobre la cadena 

alimenticia. 
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Figura 13. Clasificación del plancton I. 

G.        Virus
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Figura 14. Distribución de los diferentes compartimentos trófico-taxonómicos del 

plancton (Sieburth y Smetacek, 1978). 

4. INTERACCIONES BIOFISICOQUÍMICAS EN LA INTERFASE NANO-

BIO   

Los estudios dirigidos a las relaciones entre los contaminantes tanto clásicos como 

emergentes con la fracción por debajo de la barrera de los 100 nm que está presente en el 

medio marino (virioplancton, NPs naturales, proteínas…) inexistentes. La mayoría de ellos 

se encarga de las distintas fracciones superiores (picoplancton: 0,2–2,7 μm; pico + 

nanoplancton: 0,2–20 μm; microplancton: 20–50 μm; y mesoplancton: 50–200 μm). La 

bioacumulación de contaminantes orgánicos persistentes (POPs) y metales traza en 

plancton ha sido ampliamente estudiada en diferentes zonas del planeta (Taylor et al., 

1991; Broman et al., 1992; Larsson et al., 2000; Berglund et al., 2001; Abarnou et al., 

2002; Okumura et al., 2004; Wang et al., 2005; Jiménez et al., 2011; Berrojalbiz et al., 
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2010; Galbán-Malagón et al., 2013; Frouin et al., 2013; Marion et al., 2014; Morales et al., 

2015; Echeveste et al., 2010a,b, 2012, 2014; Knauer y Martin, 1972; Kuiper, 1981a,b) 

(Figura 15), en donde el coeficiente de reparto entre lípidos y agua juega un papel 

fundamental (Swackhamer et al., 1993; Sobek et al., 2006). 

 

 

Figura 15. Distribución global de POPs. Dibenzo-p-dioxinas policloradas (arriba), 

dibenzofuranos policlorados (centro) y bifenilos policlorados tipo dioxina (abajo) 

(Morales et al., 2015). 

 

En el extenso trabajo realizado por González-Dávila (1995) se pone de manifiesto la 

interacción de metales traza con el fitoplancton y la importancia de la liberación de materia 
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extracelular para complejarlos y disminuir su toxicidad. Aunque según con qué tipo de 

contaminantes nos encontremos esta materia extracelular (EPS) no es capaz de disminuir la 

toxicidad de quantum dots aunque sí poder desestabilizarlos (Zhang et al., 2012). Existen 

muy pocos trabajos en los que se ha puesto de manifiesto la presencia de metales unidos a 

fracciones de plancton del rango de las NPs trabajos en los que se pone de manifiesto la 

presencia de metales unidos a materia extracelular de diatomeas (Alvarado-Quiroz et al., 

2006; Zhang et al., 2008), la asociación de determinados metales (Cd, Cr, Cu, y Zn con 

proteínas de rangos de tamaño diferentes procedentes de plancton (García-Otero et al., 

2013a,b,c,d) o con materia disuelta orgánica de menos de 100 nm (García-Otero et a., 

2015). 

La lisogenia es el proceso por el cual un virus mantiene una simbiosis estable con su 

huésped al contrario que la replicación lítica. El ADN inyectado en el huésped se 

denomina profago y se replicará durante la división normal de la célula/bacteria (Figura 

16). Este estado “lisogénico” continuará hasta que el profago es activado espontáneamente 

debido a la inducción de un agente mutagénico como la radiación ultravioleta (UV-C; 

<300 nm) o la mitomicina C (Ackermann y DuBow 1987). 

  

Figura 16. Ciclo lítico y ciclo lisogénico 

(http://depa.fquim.unam.mx/amyd/archivero/Clase10_23132.pdf ). 

Por otro lado no todas las bacterias son propensas a esta inducción (pseudolisogenia) y 

estos dos agentes inductivos no se suelen encontrar en medios marinos. La pseudolisogenia 



Implicaciones de  nanomateriales  naturales en procesos de contaminación 

23 
 

no supone una interacción tan estable entre en virus y el huésped como ocurre en la 

lisogenia sino que el ADN del fago no se replica y se segrega por igual en toda la progenie, 

y no puede ser estimulada por agentes inductores químicos o físicos (Wommack et al., 

2000). Este mecanismo se formuló para poder explicar la alta producción sostenida de 

virioplancton pese a condiciones medioambientales pobres en nutrientes (Wommack et al., 

2000). Sin embargo en el medio acuático existe una enorme variedad de compuestos 

(PAHs, PCBs, pesticidas, surfactantes, fármacos, nanopartículas…) que podrían ejercer 

esta función inductiva. Los trabajos llevados a cabo por (Cochran y Paul, 1998; Jiang y 

Paul, 1996) mostraron que PAHs, PCBs y pesticidas tienen la capacidad de inducir 

lisogenia con un aumento del número de virus (profagos) (128,8% - 1336% incluidos 

porcentajes de ambos artículos) en diferentes zonas marinas. Contaminantes emergentes 

como las cremas y aceites solares han demostrado también inducir un aumento en la 

cantidad de virus marinos presentes en el medio además de inducir en diferente proporción 

el ciclo lítico (Danovaro y Corinalesi, 2003; Danovaro et al., 2003). 

Las interacciones entre contaminantes NPs y organismos a grandes rasgos (para una visión 

más detallada ver “understanding biophysicochemical interactions at the nano–bio 

interface” Nel et al., 2009) pueden ser: entre contaminante y organismo, entre NPs y 

organismo, disminución de la concentración del contaminante por sorción con las NPs, 

ingesta de NPs con contaminantes sorbidos (Figura 17). 

 

Figura 17. Vías de interación entre NPs, contaminantes y organismos; a) entre 

contaminantes y organismo, b) entre NPs y organismo, c)disminución de la 

concentración del contaminante por sorción con las NPs y d) ingesta de NPs con 

contaminantes sorbidos (Nowack y Bucheli, 2007). 
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Las NPs diseñadas como los fullerenos, zeolitas, nanotubos de carbono o NPs de hierro ya 

llevan siendo tiempo estudiadas como vectores de contaminación llevando asociadas 

diferentes tipos de contaminantes (metales traza, dioxinas, PAHs, DDTs, PBDEs, PCBs, 

pesticidas y fármacos) en diferentes compartimentos ambientales (Biswas y Wu, 2005; 

Wigginton, 2007; Christian et al., 2008; Nowack y Bucheli, 2007; Burger et al., 2009; 

Chen et al., 2014). Pero también las nanopartículas naturales son objeto de estudio así 

como su rol como transportadores de contaminantes (Trivedi et al., 2003; Hasselov et al., 

2008; Bakshi et al., 2015) o vectores de contaminación en el suelo; sirva como ejemplo el 

proyecto europeo (Natural nanoparticles in soils as possible environmental vectors for 

contaminants; BMBF MOE 09/R51). Holden et al, (2014) analizaron más de 600 artículos 

entre 2008-2013, de los cuales 271 trataban sobre las consecuencias de las concentraciones 

de exposición en organismos acuáticos, aunque sin tener en cuenta a los virus por 

considerarlos que no tenían repercusión medioambiental, algo que no se corresponde con 

la importancia de los virus marinos en el medio ambiente como ya hemos visto. 

Como ya se ha perfilado antes los virus juegan papeles de gran importancia en los 

ecosistemas marinos y fruto de ello son las numerosas recopilaciones y estudios sobre 

ellos. Uno de sus más importantes roles es el que desempeñan en el ciclo biogeoquímico, 

debido a la infección y posterior lisis de sus huéspedes liberando y añadiendo desde la fase 

particulada a la fase disuelta tanto nutrientes (fósforo, nitrógeno, hierro…) como 

contaminantes y sus metabolitos los cuales son captados por plancton, bacterias, 

diatomeas…..incorporándose de nuevo a la cadena trófica, el llamado viral shunt (Figura 

18). 
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Figura 18. Viral shunt (Suttle, 2005, 2007). 

Las interacciones tanto de virus eucariotas como procariotas han sido largamente 

estudiadas (Figura 19), sin embargo, supone un interrogante su posible contribución a la 

dispersión y o transferencia de contaminantes tanto a los huéspedes infectados como al 

provocar la lisis de organismos que ya posean esos contaminantes y pasen a la fase disuelta 

desde fase particulada. Además actualmente existen estudios dirigidos a nuevas formas de 

repercusión de los virus marinos sobre el cambio climático en cuanto al posible rol que los 

virus puedan tener con el ciclo del metanol en aguas costeras 

(http://www.pml.ac.uk/pmlsite/media/PMLMedia/Documents/Marine_Viruses_and_Alcoh

ol_in_seawater_final.pdf 

 

Figura 19. Diferentes interacciones entre virus marinos y sus huéspedes (A; Rohwher y 

Vega y B)Breitbart, 2012) . 

A

B

http://www.pml.ac.uk/pmlsite/media/PML
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La superficie vírica posee dominios tanto hidrofílicos como hidrofóbicos, en donde en 

estas últimas se ha observado un importante papel en medios porosos (Bales et al., 1991; 

Sobsey y Meschke, 2003). La hidrofobicidad viene dada por el balance de grupos amino en 

la superficie, por lo que algunos virus son más hidrofóbicos que otros. Para la 

solubilización de una sustancia hidrofóbica en agua ha de vencerse una barrera 

termodinámica en donde los puentes de hidrógeno del agua han de reorganizarse al 

máximo para rodear a la sustancia hidrofóbica. La presencia de los llamados agentes 

caotrópicos permiten la solubilización de estos compuestos hidrofóbicos en agua. Un 

agente caotrópico es un compuesto de pequeño tamaño que perturba esta barrera por medio 

de la disminución de la estructura ordenada del agua. Por otro lado un agente 

anticaotrópico actúa de forma contraria aumentando la estructura ordenada aumentando la 

barrera e impidiendo la solubilización de compuestos hidrofóbicos en agua (Gerba y 

Goyal, 1992). Otro posible mecanismo de adsorción sobre la superficie de los virus es 

mediante el enlace covalente o iónico. Este tipo de unión suele provocar inactivación en 

los virus o bien provocar la liberación de su contenido mediante cambios conformacionales 

en la cápsida (Yeager y O´Brien, 1979). Existen otros factores que pueden afectar a la 

adsorción tales como el potencial zeta, la fuerza iónica, punto isoeléctrico o el pH aunque 

estos dos últimos en sistemas marinos tendrán menor importancia debido a la poca 

variación que en mar abierto experimentan. La versatilidad para formar enlaces que 

ofrecen las cápsidas están siendo empleadas en virus de humanos, animales y plantas para 

la obtención desde nanocomposites, sensores o sondas fluorescentes (Capek, 2015). 

De esta forma los virus no solo reciclan estos compuestos sino que también liberan otros 

de que de otra forma no estarían presentes por procesos naturales. Aunque queda bastante 

por saber desde su repercusión sobre la diversidad de sus huéspedes (Middelboe et al., 

2008b) al impacto total de los virus sobre los procesos a escala global (cómo las funciones 

fisiológicas codifican dentro de los ciclos biogeoquímicos la influencia de genomas 

víricos), qué es lo que controla su actividad (Weitz et al., 2014) e incluso aún persiste el 

debate sobre si considerarlos organismos vivos o no (Bratbak y Heldal, 2000; Brusaard et 

al., 2008), sin embargo, no cabe duda que la influencia que estos ejercen sobre el resto de 

organismos los hace los últimos reguladores a nivel nanométrico de la vida. 
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5. UNA BREVE APROXIMACION A LAS TÉCNICAS ANALÍTICAS DE 

CARACTERIZACIÓN Y DETECCIÓN DE NANOPARTICULAS 

 

El desarrollo y los avances en la generación de nuevas NPs ha llevado también 

asociada la necesidad de desarrollar las técnicas necesarias para su detección y 

caracterización. A día de hoy las NPs puras se pueden caracterizar mediante 

técnicas como la ultracentrifugación, difracción de rayos-X o dispersión de rayos-X 

en ángulo pequeño, etc. Los últimos avances en la detección y caracterización de 

NPs artificiales consideran no solo el nanomaterial puro sino también las especies 

químicas que de él puedan derivarse en el sistema de estudio. Excepto cuando se 

trata de un nanomaterial puro la mayoría de las muestras requieren algún tipo de 

preparación anterior a su análisis. Estos tipos de pretratamientos de la muestra 

pueden ser: digestión (ácida, básica o enzimática), separación/preconcentración 

(centrifugación, filtración, ultrafiltración, diálisis, extracción en fase líquida, 

extracción en fase sólida con los correspondientes pasos de purificación o clean 

up). Mediante la digestión se puede llegar a la disolución del nanomaterial (algunos 

requieren condiciones especiales como el agua regia para el oro, peróxido de 

hidrógeno para el CeO2 o el ácido fluorhídrico para el TiO2) y la matriz en la que 

está contenido ya sea un alimento o un tejido biológico (Tadjiki et al., 2009; 

Wagner et al., 2015). Para el caso de las digestiones básicas se suele empelar 

hidróxido de tetrametilamonio para degradar a matrices orgánicas (Loeschner et al., 

2014) mientras que las digestiones enzimáticas hacen uso de proteasas y pectinas 

las cuales solubilizan las proteínas y las paredes celulares (Peters 2014, 2015). En 

el caso de las etapas de separación/preconcentración la centrifugación es el método 

más simple para aislar NPs tanto de suspensiones acuosas, de especies disueltas y 

NPs asociadas a compuestos de alto peso molecular como la materia orgánica 

disuelta cuando la ultracentrifugación falla (Unrine et al., 2012). 

Las técnicas principales hoy en día para la detección y caracterización de NPs 

artificiales son: microscopía electrónica (microscopía electrónica de barrido o 

SEM, microscopía electrónica de transmisión o TEM, espectroscopía de pérdida de 

energía electrónica o EELS, espectroscopía dispersiva de rayos-X…), técnicas de 

dispersión de la radiación (difracción láser de partículas o LD, dispersión de 
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radiación estática o SLS, dispersión de radiación en multiángulo o MALS, 

dispersión de la radiación dinámica o DLS y análisis de rastreo de partículas), 

técnicas de espectrometría atómica (espectrofotometría de absorción atómica 

electrotérmica o ET-AAS, espectrometría de emisión óptica mediante acoplamiento 

inductivo de plasma o ICP-OES, análisis de partículas individuales mediante 

espectrometría de masas mediante acoplamiento inductivo o single particle ICP-

MS y espectroscopía de absorción de rayos-X), técnicas de separación en continuo 

(fraccionamiento de flujo en campo o FFF con sus diferentes modalidades: SdFFF, 

FlFFF o AF4 , electroforesis y sus diferentes modalidades: electroforesis en gel o 

GE, electroforesis en gel de poliacrilamida o PAGE, cromatografía hidrodinámica o 

HDC….), técnicas electroanalíticas (voltametría de partículas inmovilizadas o VIP 

y culombimetría de colisión de partículas o PCC) y sensores químicos (sensores 

basados en resonancia de plasmón superficial, sensores fluorescentes, 

piezoeléctricos…) (Richardson y Ternes, 2014; Laborda et al., 2015; Bakshi et al., 

2015; Nowack et al., 2015). 

La microscopía electrónica se considera como la herramienta más poderosa para el 

análisis de nanomateriales debido a su capacidad de visualizar NPs, y por 

consiguiente obtener información acerca de su tamaño, forma, estado de agregación 

así como la interpretación de los resultados obtenidos por otras técnicas (Calzolai y 

Rossi, 2012; Sadik et al., 2014). Entre las diferentes técnicas de microscopía 

electrónica, la SEM alcanza la mayoría de los requisitos necesarios para la 

caracterización de NMs en matrices complejas. En algunos casos la TEM se emplea 

para el estudio de determinados recubrimientos de las NPs (Lewicka et al., 2011). 

De las técnicas de dispersión de la radiación mencionadas la DLS es la técnica más 

comúnmente empleada para la medición del tamaño de NPs en suspensiones 

acuosas mediante la medida del movimiento Browniano a través de fluctuaciones 

dependiente del tiempo en la intensidad de la radiación dispersada causada por 

interferencias destructivas y constructivas. Esta técnica es susceptible a errores en 

la medida debido a la polidispersidad de muestras medioambientales por lo que 

suele acoplarse a un detector tipo FFF o HDC. El empleo del MALS acoplado a 

FFF o HDC proporciona información sobre la forma. El rastreo de NPs es una 

técnica emergente de dispersión de la radiación capaz de obtener la distribución de 

tamaños y la concentración de NPs diseñadas en muestras medioambientales (Brar 

y Verma, 2011; Gallego-Urrea et al., 2011). Las técnicas de espectrometría atómica 
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empleadas en solitario no son específicas para NPs a excepción del single particle 

ICP-MS. Esta técnica es capaz de proporcionar información sobre la concentración 

en número de una suspensión de NPs así como el contenido en masa elemental por 

NP. La disposición de información adicional acerca de la naturaleza de las NPs 

(forma, composición y densidad) se puede calcular el tamaño del núcleo de las NPs 

así como su distribución en número (Laborda et al., 2014). Esta técnica ha sido 

empleada para detectar la liberación de NPs desde envoltorios de comidas, la 

presencia de NPs en suplementos alimentarios, aguas residuales, tejidos biológicos 

o sangre (Mitrano et al, 2012; Reed et al 2014; Echegoyen y Nerín, 2013; Peters et 

al., 2015; Jenkins et al., 2015). La espectroscopía de absorción de rayos-X es una 

técnica que no requiere preparación, o muy poca, de la muestra específica de 

elementos capaz de proporcionar información cualitativa específica de especies 

metálicas/metaloides así como su distribución en cantidad, siendo su principal 

limitación su sensibilidad (mg kg-1) (Laborda et al., 2015). Las diferentes técnicas 

de separación en continuo han demostrado ser una herramienta útil para la 

separación de NPs basándose en su tamaño, superficie, densidad y carga. Su 

acoplamiento a técnicas de detección selectivas proporcionan una base sólida para 

la resolución de problemas en matrices complejas (Howard, 2010). El 

fraccionamiento el flujo por campo comprende una serie de técnicas de separación, 

en donde esta tiene lugar en un canal fino, alargado y sin fase estacionaria, debida a 

la acción de un campo externo perpendicular al flujo. Según sea la naturaleza del 

campo externo aparecen las diferentes técnicas (campo centrífugo = SdFFF, flujo = 

FlFFF, flujo asimétrico = AF4…). Nanopartículas de Ag Au, Se, SiO2, TiO2 and 

ZnO en diferentes matrices como cremas solares, comida, productos de consumo, 

medioambiental o biológicas han sido realizadas con éxito (Contado y Pagnoni, 

2008; Heroult et al., 2014; Peters et al., 2014; Koopmans et al., 2015; Somchue et 

al., 2014). Las técnicas electroforéticas están basadas en la migración de especies 

cargadas bajo la influencia de un campo eléctrico, en donde la GE y la PAGE son 

las dos técnicas de separación y caracterización (tamaño, forma y funcionalización 

de la recubierta) de NPs más empleadas, siendo su uso en muestras reales aún 

escaso. La ventaja de emplear electroforesis en gel respecto a otras técnicas de 

separación es la alta resolución alcanzable y la capacidad de analizar tanto especies 

iónicas y NPs (Surugau y Urban, 2009; Fedotov et al., 2011; López-Lorente et al., 

2011). La cromatografía hidrodinámica basa su separación en el diferente gradiente 
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de velocidades, que se establece a través de una columna con relleno no poroso, 

entre los diferentes tamaños de las especies a separar. Su aplicación para la 

determinación de NPs diseñadas en matrices complejas es aún escasa, limitándose 

hasta la fecha a la identificación de NPs diseñadas y naturales de TiO2, SiO2, 

Al2O3, Fe2O3, Ag y Au en aguas procedentes de lodos de plantas depuradoras, ríos, 

aguas sintéticas y cremas solares (Metreveli et al., 2014; Tiede et al., 2009; 2010; 

Proulx y Wilkinson, 2014; Philippe y Schaumann, 2014). 

Las técnicas electroanalíticas suponen una alternativa eficiente y barata para la 

detección, caracterización del tamaño del tamaño y cuantificación de las NPs. 

Mientras que la VIP es sensible al estado de oxidación de los elementos que pueden 

componer una muestra, y se puede obtener el tamaño y la concentración en masa la 

PCC es capaz de proveer información específica (distribución de tamaños y 

concentraciones en número) sobre NPs en un modo similar al SP-ICP-MS. Hasta la 

fecha estas técnicas han sido aplicadas a NPs de Ag, Au, Cu, Ni, Pt, Pd, CeO2, 

CuO, Fe2O3, Fe3O4, IrO, NiO, TiO2, y CdSe (Laborda et al., 2015). En cuanto a los 

sensores químicos, su bajo coste, sensibilidad de respuesta, portabilidad y simpleza 

los hace adecuados para el monitoreo de NPs diseñadas, aunque el número de ellos 

desarrollados y aplicados para el análisis de muestras reales es bajo y aún está lejos 

de tener éxito en su aplicación para muestras reales (Sadik et al., 2009). En el caso 

de encontrarnos con el análisis de nanopartículas en el aire los retos suponen su 

conteo y la medida de su tamaño en donde para lo primero se emplean el contador 

de partículas condensadas (CPC) en donde el tamaño de las partículas detectables 

más pequeñas se puede ajustar regulando la temperatura de condensación, y el 

electrómetro de copa de Faraday (FCE) y para el segundo propósito se emplea un 

analizador de movilidad diferencial(DMA) 

(http://www.invassat.gva.es/documents/161660384/161741789). Después de la 

toma de las muestras los análisis pueden llevarse a cabo mediante cromatografía 

líquida de alta eficacia (HPLC), cromatografía de gases (GC) o mediante ICP-MS. 

Las principales aplicaciones de estos métodos están destinadas a medir la polución 

originada por fuentes primarias como el tráfico (sulfatos, hidrocarburos, metales…) 

o los ambientes laborales (carbón, metales…) (Charron y Harrison, 2009). En 

ambientes naturales los estudios son muy escasos habiéndose encontrado que la 

composición de la atmósfera marina hasta en un 60% estaba formada por NPs de 

sal marina (Clarke et al., 2006). 

http://www.invassat.gva.es/documents/161660384/161741789
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6. CONCLUSIONES   

A lo largo de este trabajo bibliográfico se ha puesto de manifiesto la importancia que las 

nanopartículas naturales y en concreto la de las biológicas como es el virioplancton, en un 

contexto científico actual muy enfocado hacia la síntesis y caracterización de 

nanopartículas en todo tipo de sistemas y las posibles aplicaciones que están puedan tener. 

Con este trabajo pretendemos poner un foco de atención y un posible nuevo campo de 

estudio especifico sobre el posible impacto que los nanomateriales pueden tener como 

primer eslabón de la contaminación marina y por ende global. 
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