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RESUMEN 

El bioprocesado es una parte esencial de muchas industrias de alimentación, 

químicas y farmacéuticas. Los bioprocesos utilizan células microbianas, animales o 

vegetales y componentes de esas células, como por ejemplo enzimas, para producir 

nuevos productos y destruir residuos nocivos. Las técnicas biotecnológicas actuales 

ofrecen nuevas oportunidades para el desarrollo y mejora del bioprocesado. El 

presente trabajo se centra en la puesta en marcha de una línea de experimentación de 

bioprocesos a través de la utilización de un biorreactor discontinuo a escala de 

laboratorio perteneciente al Departamento de Ingeniería Química y Tecnologías del 

Medio Ambiente que nunca ha sido utilizado con fines de investigación. Para ello se ha 

estudiado la cinética fermentativa de Saccharomyces cerevisiae en presencia de 

lindano (γ-HCH), midiendo el crecimiento microbiano, el consumo de sustrato 

(glucosa) y la formación de producto (etanol) y realizando un ajuste experimental a 

distintos modelos cinéticos empíricos para la modelización del proceso bajo distintas 

temperaturas. Se ha conseguido una reproducibilidad en los experimentos muy 

significativa a través de los protocolos elaborados y de las condiciones de trabajo 

empleadas, siendo el modelo cinético que mejor ajusta los datos experimentales el 

denominado Tessier-Aiba, con el cual se han obtenido las energías de activación 

aparentes de proceso. La cinética fermentativa no se ve alterada bajo concentraciones 

por debajo de 2000 ppb de lindano en el medio de cultivo y no existen evidencias 

claras de su metabolización para su uso como fuente de carbono y energía. 

Palabras clave: bioproceso, biorreactor, Saccharomyces cerevisiae, lindano. 

  



 

 

ABSTRACT 

Bioprocessing is an essential part of many food, chemical and pharmaceutical 

industries. Bioprocess operations make use of microbial, animal and plant cells and 

components of cells such as enzymes to manufacture new products and destroy 

harmful wastes. Current biotechnological techniques offer new opportunities for the 

development and improvement of bioprocessing. This study is based on the use of a 

discontinuous laboratory bioreactor has never been used in this area. We have studied 

the kinetics fermentation of Saccharomyces cerevisiae in the presence of lindane (γ-

HCH) by measuring microbial growth, substrate consumption (glucose) and product 

formation (ethanol) and fitting with kinetics models for different temperatures. 

Reproducibility was very significant in the experiments. The kinetic model that best fits 

the experimental data is called Tessier -Aiba, with which have been obtained apparent 

activation energies of the process. Fermentation kinetics is constant with lindane 

concentrations below 2000 ppb in the culture medium and it isn't used as a source of 

carbon and energy. 

Key words: bioprocess, bioreactor, Saccharomyces cerevisiae, lindane. 
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1 INTRODUCCIÓN 

1.1 El lindano y su biorremediación 

El γ-Hexaclorociclohexano (γ-HCH) o comúnmente llamado lindano es uno de 

los ocho isómeros del 1, 2, 3, 4, 5, 6-hexaclorociclohexano. Posee excelentes 

cualidades biocidas, así como un proceso de fabricación relativamente sencillo, lo que 

ha resultado en elevados niveles de producción y utilización agrícola, forestal e incluso 

doméstica. Su toxicidad lo convierte en una sustancia peligrosa para el ser humano en 

última instancia. Actualmente está prohibido en toda Europa. 

Además, el proceso de fabricación de lindano ha generado una gran cantidad 

de residuos (mezclas heterogéneas de los diferentes isómeros de HCH) que durante 

décadas han sido vertidos sin ningún tipo de control en el medio. Actualmente, como 

bien sabemos en la Comunidad Autónoma de Aragón, existen numerosos medios 

contaminados por lindano (suelos, sedimentos, aguas continentales y oceánicas, aire, 

biota), lo que constituye un gran problema medio ambiental pendiente de resolver 

(Calvelo Pereira, 2008). 

La degradación biológica del lindano o biorremediación se puede llevar a cabo 

mediante diversos microorganismos facultativos, estrictamente anaerobios y aerobios 

(Jagnow, Haider, & Ellwardt, 1977; Mertens, Boon, & Verstraete, 2006). En algunos 

casos se han empleado medios de cultivo enriquecidos con glucosa, extracto de 

levadura, o peptona (degradación por co-metabolismo) en microorganismos como: 

Bacillus circulans o Bacillus brevis (Boyle, Häggblom, & Young, 1999; Gupta, Kaushik, 

& Kaushik, 2000; Sahu, Patnaik, Sharmila, & Sethunathan, 1990). Pero también se han 

encontrado especies capaces de aprovechar el lindano como única fuente de carbono 

y energía: Pseudomonas sp.(Sahu et al., 1990); Xanthomonas sp. ICH12 (Manickam, 

Misra, & Mayilraj, 2007); Streptomyces sp. M7 (Benimeli, Fuentes, Abate, & Amoroso, 

2008); Sphingobium japonicum UT26 (Nagata, Endo, Ito, Ohtsubo, & Tsuda, 2007). 

Mediante la biorremediación del lindano se busca que este sea mineralizado 

por completo y que no se generen metabolitos que resulten tóxicos como su precursor. 

Incluso, con el avance de las técnicas de biología molecular en algunos 

estudios ha sido posible determinar la serie de genes denominados lin, donde se 

encuentra la información para la degradación del lindano, como en el caso específico 

de la cepa Sphingobium japonicum UT26, para la cual se han identificado 17 genes lin 

para la mineralización de este contaminante (Nagata et al., 2007). 
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1.2 La levadura: Saccharomyces cerevisiae 

Según el CSIC, la levadura Saccharomyces cerevisiae está considerada por la 

comunidad científica como un potente modelo biológico de organismos eucariotas. Es 

la levadura del pan, del vino y de la cerveza y se ha convertido en un organismo de 

estudio común en el laboratorio. Las técnicas biotecnológicas actuales permiten 

modificar su genoma prácticamente a voluntad. Se puede eliminar, duplicar, 

reemplazar o modificar cualquier gen de la levadura sin afectar sustancialmente el 

resto del genoma. Esta facilidad con la que se pueden tratar genes concretos en la 

levadura es una gran ventaja para la experimentación biotecnológica (CSIC, 2011). 

Por todos estos motivos se ha elegido como microorganismo para el desarrollo del 

presente trabajo. 

La levadura Saccharomyces cerevisiae es un organismo unicelular eucariota, 

de forma más o menos redondeada. Se multiplica rápidamente por gemación (una 

forma asimétrica de reproducción asexual). A partir de una célula se origina una 

protuberancia que va creciendo y acaba dando lugar a otra célula, más pequeña (al 

principio) que la célula inicial y diferenciada genéticamente de la célula original (ver 

Figura 1.1). En condiciones adecuadas, este tipo de reproducción dura unas dos horas 

y permite la colonización total del medio de cultivo en cuestión de horas o días. El 

rápido crecimiento ha sido clave para su uso como herramienta para la investigación y 

las aplicaciones biotecnológicas (CSIC, 2011). 

 

Figura 1.1. Reproducción asexual de SC al microscopio (fuente: elaboración propia). 
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La Figura 1.1 presenta una fotografía realizada en el desarrollo el bioproceso 

estudiado en el presente trabajo. 

El ciclo sexual completo de la levadura (ver Figura 1.2) comienza con una 

célula diploide (32 cromosomas) que, en circunstancias de falta de nutrientes, esporula 

(ver Figura 1.3) generando cuatro esporas haploides (dos a y dos α). Cada espora por 

separado puede germinar y producir una colonia haploide (16 cromosomas), que se 

reproduce por gemación de forma indefinida. Si se encuentran una célula a con una α, 

actúan como gametos y se fusionan para dar lugar a un cigoto que, posteriormente, 

germina y origina una colonia diploide. Este ciclo presenta una complicación más, y es 

que las células a y α se pueden interconvertir la una con la otra (CSIC, 2011; Freeman, 

2009). 

 

Figura 1.2. Ciclo sexual de SC. 1 – Gemación, 2 – Fusión, 3 – Esporulación (fuente: 

Wikimedia Commons licencia Creative Commons). 

 

Figura 1.3. Proceso de esporulación de SC (Wikimedia Commons licencia Creative 

Commons). 

La levadura Saccharomyces cerevisiae es capaz de combinar un metabolismo 

fermentativo (anaerobio) con un metabolismo respirador (aerobio). En varias 
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aplicaciones biotecnológicas es imprescindible controlar esta alternancia entre 

metabolismo fermentativo y respirador. Si lo que se quiere producir es dióxido de 

carbono o etanol, debe favorecerse el metabolismo fermentativo. En cambio, si lo que 

se quiere es masa de levadura (biomasa) o cualquier producto celular (proteínas, 

polisacáridos y derivados o vitaminas), las condiciones más favorables se encuentran 

en el metabolismo respirador (Ward & Calvo Rebollar, 1991). 
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2 JUSTIFICACIÓN Y ANTECEDENTES 

2.1 Justificación 

La motivación inicial para la realización de este trabajo deriva de la idea de 

poner en marcha una línea de experimentación de bioprocesos basados en la 

utilización de un biorreactor a escala de laboratorio perteneciente al Departamento de 

Ingeniería Química y Tecnologías del Medio Ambiente de la Universidad de Zaragoza, 

que se encuentra en la Escuela Politécnica Superior de Huesca y que nunca se ha 

utilizado con fines de investigación ni docencia en este ámbito. 

Debido a que la contaminación por lindano en la Comunidad Autónoma de 

Aragón es un grave problema medioambiental no resuelto, se ha decidido iniciar una 

investigación sobre la interacción del lindano con Saccharomyces cerevisiae a nivel de 

su cinética fermentativa; un organismo modelo muy importante en la experimentación 

biotecnológica actual. 

2.2 Antecedentes 

Nunca se ha realizado ninguna investigación previa en la Universidad de 

Zaragoza en la que se haya utilizado el biorreactor comentado, para el desarrollo de 

algún bioproceso, por lo cual no existen protocolos establecidos ni condiciones de 

trabajo fijadas con anterioridad para la realización de este trabajo fin de grado. 

Por otro lado, no se han encontrado prácticamente estudios previos sobre la 

interacción del lindano con la levadura Saccharomyces cerevisiae, y en ninguno de los 

revisados se estudia la cinética fermentativa a escala de biorreactor para la 

modelización del bioproceso tal y como se pretende en este trabajo. 

Según la investigación más reciente realizada a escala de matraz, las 

exposiciones de lindano en concentración de 14,5 ppm durante 72 horas de 

experimento inhibían el crecimiento de la levadura, con una disminución de la 

producción de biomasa y pérdida de la viabilidad celular ralentizando su metabolismo 

energético (Pita, Alves-Pereira, & Ferreira, 2014). 

Incluso un estudio metabólico llevado a cabo por uno de los autores de la 

anterior investigación sugiere un posible uso del lindano como fuente de carbono en el 

crecimiento de Saccharomyces cerevisiae a nivel de matraz en ausencia de glucosa 

(Melicias Pita, 2014). 
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3 OBJETIVOS 

El objetivo general de este trabajo es analizar la influencia del lindano en los 

parámetros de la cinética fermentativa del metabolismo anaerobio en medio líquido de 

una cepa comercial seleccionada para vinificación de Saccharomyces cerevisiae. 

Para la consecución del objetivo general, se plantean los siguientes objetivos 

específicos: 

1. Estudio de la temperatura óptima de crecimiento de la levadura. Esta 

variable influye de forma importante sobre la velocidad metabólica, pues 

los microorganismos solo pueden crecer en un rango restringido de 

temperaturas (Doran, 1998). 

2. Ajuste de los resultados obtenidos a distintos modelos cinéticos, 

indicando el que mejor describa el comportamiento experimental, 

determinando parámetros cinéticos: velocidades específicas y 

rendimientos. 

3. Ensayo con lindano en esas condiciones óptimas determinadas para 

observar su efecto sobre la cinética fermentativa. 

El objetivo paralelo que se persigue es la puesta en marcha de un biorreactor a 

escala de laboratorio que nunca se ha utilizado con fines de investigación ni docencia 

en el ámbito de la ingeniería de bioprocesos y que pertenece al Departamento de 

Ingeniería Química y Tecnologías del Medio Ambiente de la Universidad de Zaragoza. 

Para ello se elaboraran los protocolos necesarios para el correcto seguimiento del 

bioproceso, así como las condiciones adecuadas de trabajo con vistas a una 

reproducibilidad experimental significativa. 
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4 MATERIAL Y MÉTODOS 

4.1 Microorganismo y sustrato 

4.1.1 Cepa 

El microorganismo utilizado en este trabajo es una cepa de Saccharomyces 

cerevisiae seleccionada para vinificación por la empresa Lallemand Inc. bajo el 

nombre comercial de Lalvin Clos (YSEO). 

En concreto, fue aislada en la Universidad Rovira i Virgili de Tarragona, por el 

Departamento de Bioquímica y Biotecnología en la zona del Priorato de la provincia de 

Tarragona, según las especificaciones aportadas por Lallemand Inc. 

Sus características microbiológicas y enológicas (Torija, Rozès, Poblet, 

Guillamón, & Mas, 2001; Torija, 2002) relevantes para la realización de este trabajo 

son: 

 Saccharomyces cerevisiae var. Cerevisiae. 

 Alta tolerancia al etanol (hasta un 17 %). 

 Corta fase de latencia. 

 Velocidad de fermentación regular. 

 Amplio rango de temperaturas de fermentación (de 13 a 32 °C). 

 Bajas necesidades de nitrógeno asimilable. 

 Baja producción de espuma. 

Se presenta en forma de levadura seca activa (LSA) envasada al vacío en 

paquetes de 500 g. Durante la realización de este proyecto, una vez abierto el 

paquete, se ha conservado en su envase original y en refrigeración a 4 °C. 

La levadura seca activa (LSA) se fabrica a partir de la deshidratación de una 

pasta de levadura, obtenida por fermentaciones de melazas dirigidas a la producción 

de biomasa. La biomasa obtenida tras la fermentación es lavada y concentrada 

mediante centrifugación hasta obtener una crema de levadura libre de melaza. La 

crema es filtrada, generalmente en filtros prensa, para adquirir la consistencia de una 

pasta, que posteriormente se extruye en finos filamentos para facilitar el secado. La 

deshidratación de la pasta de levadura extruida se realiza normalmente en secaderos 

de lecho fluidizado hasta una humedad residual del 8 % y a bajas temperaturas (35 - 

40 °C) durante 15-60 minutos dependiendo de la cantidad de materia a procesar y de 

las condiciones empleadas (Garre García, 2008). 
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4.1.2 Medio de cultivo 

Los microorganismos necesitan carbono, nitrógeno, minerales, a veces factores 

de crecimiento, agua y oxígeno (sin son aerobios) para formar su biomasa y como 

fuente de energía para la biosíntesis y mantenimiento celular (Ward & Calvo Rebollar, 

1991). 

El medio de cultivo líquido utilizado en este trabajo se ha preparado a partir de 

un medio deshidratado de glucosa y peptonas específico para el cultivo de levaduras 

fabricado por la empresa Panreac Química SLU bajo la denominación comercial: 

Glucosa Sabouraud, Caldo (Ph. Eur.) (Medio deshidratado) para microbiología (código. 

413804). 

Los componentes que forman el medio deshidratado son exactamente: 

 D(+)-glucosa. 

 Digerido péptico de tejido animal. 

 Digerido pancreático de caseína. 

Según las instrucciones de preparación que recomienda la casa comercial, al 

disolver 30 g de medio deshidratado en 1 L de agua destilada la composición que se 

tendrá es de 20 g/L de D(+)-glucosa, 5 g/L de digerido péptico de tejido animal y 5 g/L 

de digerido pancreático de caseína. 

Para el correcto seguimiento de los experimentos (ver apartado 4.8) se ha 

trabajado en todos los ensayos y preinóculos realizados a la mitad de concentración, 

es decir la concentración del medio de cultivo ha sido de 15 g/L aportando entonces: 

 10 g/L de D(+)-glucosa. 

 2,5 g/L de digerido péptico de tejido animal. 

 2,5 g/L de digerido pancreático de caseína. 

Tal y como indica la casa comercial, se esterilizó a 121 °C durante 15 minutos, 

procedimiento que se detalla en el apartado 4.3. 

Se eligió la glucosa para este estudio ya que Saccharomyces cerevisiae la 

metaboliza preferencialmente a otros azúcares. Además, la cepa utilizada es de 

vinificación y está enfocada a fermentar mosto, que contiene como azúcares 

mayoritarios glucosa y fructosa (Ward & Calvo Rebollar, 1991). 
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4.2 Equipos 

4.2.1 Biorreactor 

El reactor utilizado para este trabajo es un biorreactor a escala de laboratorio 

autoclavable modelo BioFlo 110 fabricado por la empresa Eppendorf Inc. (antes New 

Brunswick Co Científica., Inc.) de 7,5 litros que se muestra en la Figura 4.1. 

Se trata de un reactor de tipo tanque agitado (con sus módulos de control) que 

consta de los siguientes elementos principales: 

 Recipiente de vidrio con camisa de agua.  

 Calentador de la camisa de agua. 

 Eje con dos turbinas de disco tipo Rushton y motor. 

 Cuatro deflectores. 

 Sondas de temperatura, pH, oxígeno disuelto y espuma. 

 Cuatro bombas peristálticas para la adición de líquidos (ácidos y bases 

para el control del pH, anti-espumantes etc.). 

 Salida de toma de muestras directa. 

 Condensador. 

 Entradas de adición de aire y líquidos. 

 Sistema de monitorización y control. 

El diseño del biorreactor tiene que ser tal que asegure un ambiente uniforme y 

adecuado para los microorganismos (De Martín Barry, 2005). Para ello debe: 

a) Distribuir las células uniformemente en todo el volumen de cultivo a fin 

de prevenir la sedimentación o la flotación. 

b) Mantener constante y uniforme la temperatura. 

c) Minimizar los gradientes de concentración de nutrientes. 

d) Suministrar oxígeno a un ritmo tal que satisfaga el consumo en cultivos 

aeróbicos. 

e) El sistema debe ser tal que mantenga el cultivo puro, es decir libre de 

contaminación externa, una vez que el equipo ha sido esterilizado y 

posteriormente inoculado. 

f) Posibilidad de mantener constante el pH. 

g) Posibilidad de evitar pérdidas por evaporación. 

Para satisfacer los cuatro primeros puntos se necesita que el biorreactor esté 

provisto de un sistema de agitación, y además para el punto d) en cultivos aeróbicos 

se requiere de un sistema que inyecte aire en el cultivo. 
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La agitación del biorreactor utilizado se realiza mediante un eje provisto de dos 

turbinas tipo Rushton accionado por un motor. La velocidad de agitación (rpm) se 

puede ajustar mediante el sistema de control al que está conectado el biorreactor. El 

aire que se introduce al mismo debe ser estéril. Se inyecta por la parte inferior del 

tanque y es distribuido por una corona que posee pequeños orificios equidistantes. El 

chorro de aire que sale de cada orificio es “difuminado” por las paletas de la turbina 

inferior generándose de este modo miles de pequeñas burbujas de aire, desde las 

cuales difunde el oxígeno hacia el líquido. El sistema de agitación se completa con 

cuatro deflectores que tienen por finalidad romper el movimiento circular que provocan 

las turbinas al líquido, generando de este modo mayor turbulencia y mejor mezclado 

(De Martín Barry, 2005; Ratledge, Kristiansen, & Liras Padín, 2009). 

Para la medida del oxígeno se utiliza una sonda de oxígeno disuelto (OD) de la 

marca Mettler Toledo modelo InPro 6000. 

En nuestro caso, como estudiamos la cinética fermentativa en el metabolismo 

anaerobio no hemos necesitado la inyección de aire en el cultivo. 

 

Figura 4.1. Biorreactor BioFlo 110 con sus módulos de control (fuente: manual equipo). 

Para cumplir el punto b) el biorreactor dispone de un sistema de control de la 

temperatura que está formado por un circuito de agua corriente que atraviesa la 
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camisa junto con un calentador para dicha camisa de agua. El flujo de agua corriente 

que entra a la camisa está regulado por una electroválvula. Una sonda de temperatura 

Pt-100 mide la temperatura en continuo. 

Para mantener constante el pH, punto f), dos botellas de 500 mL rellenas con 

un ácido y una base están conectadas a dos bombas peristálticas que introducen 

pequeñas cantidades del ácido o de la base según se quiera disminuir o aumentar el 

pH del medio respectivamente. Para su medición en continuo se utiliza una sonda de 

pH de la marca Mettler Toledo modelo 405-DPAS-SC-K8S. 

La sonda de espuma detecta la formación de espuma y activa la bomba 

peristáltica que añade pequeñas dosis de anti-espumante. 

Por último, punto g), para evitar o minimizar las pérdidas por evaporación 

(Obom, Magno, & Cummings, 2013) se dispone de un condensador que es enfriado a 

través del paso de agua corriente. 

En la Figura 4.2 se puede observar el esquema del modelo de biorreactor 

empleado así como la especificación de algunos de los elementos comentados. 

4.2.2 Equipos auxiliares 

Los equipos auxiliares necesarios para el desarrollo íntegro del proceso de 

fermentación se describen a continuación y se han utilizado para: 

Autoclave 

La esterilización del biorreactor así como de todo el material que va a estar en 

contacto con el microorganismo. 

Cámara de cultivo 

La preparación del preinóculo que requería el control de la temperatura durante 

su cultivo. Fabricante P Selecta modelo Medilow-S. A su vez, en el interior de la 

cámara se colocó un agitador magnético para mantener el cultivo agitado. 

Congelador y nevera 

La conservación de las muestras y de las levaduras secas activas (LSA) 

respectivamente. 

Centrifuga para tubos Eppendorf 

Centrifugar muestras en tubos tipo Eppendorf de 1,5 mL. Fabricante LLG 

Labware modelo uniCFUGE5. 
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Figura 4.2. Esquema del BioFlo 110 (fuente: manual equipo modificado) 
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Centrifuga para tubos Falcon refrigerada 

Centrifugar muestras en tubos tipo Falcon de 15 mL en refrigeración. 

Fabricante Orto Alresa modelo Digicen 20-R. 

Espectrofotómetro VIS 

La determinación del crecimiento microbiano así como la medida analítica de 

los azúcares, procesos que se detallan en sus respectivos apartados 4.4.1.2 y 4.4.2. 

Fabricante Unicam modelo Helios Epsilon. 

Cromatógrafo de gases inyección automática 

El análisis del etanol por cromatografía de gases con automuestreador para 16 

viales y detector FID. Las condiciones específicas utilizadas se detallan en su 

correspondiente ver apartado 4.4.3. Fabricante Agilent Technologies modelo 7820A 

GC. 

Cromatógrafo de gases inyección manual 

El análisis del lindano por cromatografía de gases con detector de captura 

electrónica (ECD). Las condiciones específicas utilizadas se detallan en su 

correspondiente apartado 4.5.2. Fabricante HP modelo 5890 Serie II. 

Microscopio óptico con cámara digital y cámara de recuento celular Bürker 

La determinación del número total de microorganismos. Se manejó un 

microscopio óptico de campo claro con cámara digital acoplada para captura de 

imágenes junto con una cámara de recuento celular Bürker. Fabricante microscopio: 

Optika modelo B-350. Fabricante cámara digital: Optika modelo 4083.B5. Fabricante 

cámara de recuento: Brand modelo Bürker. 

pH-metro 

El ajuste del pH en el preinóculo. Fabricante CRISON modelo GLP 21. 

Agitadores magnéticos y vórtex 

La agitación de disoluciones y tubos respectivamente. 

Micropipetas, pipetas y dispensadores 

La medición de distintos volúmenes. Se manejó un juego de 4 micropipetas 

(5000, 1000, 100, 10 µL). 
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Estufa 

La determinación del peso seco celular así como el secado de material de 

vidrio. Fabricante Raypa modelo DO-90. 

Baño de ultrasonidos 

La disolución de solutos y limpieza de material de vidrio. 

Baño de agua 

La preparación del preinóculo y el análisis de la glucosa. 

Balanzas 

La pesada de distintos solutos tanto en balanza granataria como en balanza 

analítica. 

Material de vidrio 

El manejo de distintos volúmenes. Matraces aforados, Erlenmeyers, probetas, 

tubos de ensayo, embudos decantadores, pipetas… 

4.3 Protocolo de fermentación 

4.3.1 Preparación del preinóculo e inoculación 

El preinóculo es el cultivo celular que se realiza para inocular el biorreactor con 

una determinada cantidad del mismo con el fin de que se inicie el bioproceso. 

Siguiendo el protocolo descrito en el Anexo 1. Protocolo de preparación del 

preinóculo, se preparó el preinóculo 12 horas antes de la inoculación del biorreactor. 

Las condiciones de cultivo del preinóculo serán las mismas condiciones del 

experimento que se vaya a llevar a cabo en el biorreactor. En nuestro caso, para la 

incubación del preinóculo en la cámara de cultivo, el pH inicial siempre se ajustará a 4, 

como se verá en el apartado 4.3.2, y la temperatura será la que se fije para ese 

determinado experimento. 

Se inocula el biorreactor para obtener una concentración del 2% (v/v) en 

inóculo (Govindaswamy & Vane, 2007; Mojović, Nikolić, Rakin, & Vukasinović, 2006) a 

través del puerto de inoculación (septum) con un embudo de vidrio previamente 

esterilizado. Es decir, para un volumen de trabajo de 5 L, que ha sido el utilizado en 

todos los experimentos en el biorreactor, se añadieron 100 mL del preinóculo. 
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4.3.2 Disoluciones correctoras del pH 

En las levaduras, los valores de pH comprendidos entre 3 y 6 son la mayoría 

de las veces favorables al crecimiento y actividad fermentativa. Se eligió un pH 

constante de 4 para todos los experimentos. El motivo de esta elección es que la cepa 

utilizada de Saccharomyces cerevisiae es de vinificación y está enfocada a fermentar 

mosto, que presenta un pH generalmente comprendido entre 3 y 3,9, debido a su 

elevado contenido en ácido tartárico, málico y cítrico principalmente (Pardo, 2003; 

Ward & Calvo Rebollar, 1991). 

Las soluciones correctoras del pH utilizadas son ácido cítrico 0,1 M y 

bicarbonato sódico 0,1 M. 

4.3.3 Preparación del biorreactor 

Los pasos generales a seguir para tener el biorreactor listo antes de cada 

experimento de fermentación son: 

1. Limpieza del biorreactor. Generalmente se parte del biorreactor con el 

caldo de cultivo del experimento anterior con la fermentación acabada. 

Lo primero es retirar dicho caldo de cultivo para proceder a la limpieza 

según las instrucciones que facilita el fabricante del biorreactor. En los 

experimentos con lindano, se incluye un aclarado de los elementos con 

acetona diluida en agua 1:2. 

2. Llenado del biorreactor con el medio de cultivo. Una vez realizada la 

limpieza y con todos los elementos homogeneizados con agua destilada 

se procede a la preparación del medio de cultivo (apartado 4.1.2) y al 

llenado del biorreactor con el mismo. Se ha trabajado en todos los 

experimentos a un volumen de 5 L. 

3. Calibración de la sonda de pH. Se calibra con las soluciones de 

calibración de pH 4 y 7. Se siguen las instrucciones del equipo. 

4. Esterilización del biorreactor. Con el biorreactor lleno con el medio de 

cultivo y con todas las sondas de medición y control colocadas (excepto 

la de temperatura que solo se autoclava la vaina) se esteriliza a 121 °C 

durante 15 minutos, siguiendo todas las instrucciones y consejos de 

precaución que se detallan en el manual del equipo. Además también 

se esterilizan a la vez las disoluciones del ácido y de la base así como 

todos los viales de recogida de muestras que se vayan a emplear. 
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5. Selección de las condiciones de operación. Una vez terminada la 

esterilización y cuando la temperatura del equipo haya descendido lo 

suficiente como para poder manipularlo se saca del autoclave y se 

realizan las conexiones con los módulos de control. Posteriormente se 

seleccionan las condiciones de agitación, temperatura y pH del 

experimento que se vaya a llevar a cabo esa semana. 

6. Polarización y calibración de la sonda de oxígeno disuelto (OD). 

Cuando se han alcanzado las condiciones de operación se procede a la 

polarización y posterior calibración de la sonda de oxígeno disuelto 

(OD). Teóricamente en la calibración, para establecer la mínima 

cantidad de oxígeno disuelto y calibrar así al 0 % de saturación, se hace 

pasar nitrógeno a través del sistema de aireación del biorreactor, 

comentado en el apartado 4.2.1. Posteriormente, para establecer el 100 

% de saturación se somete a burbujeo con aire. Ambas corrientes 

deben pasar por un filtro adecuado antes de introducirse en el 

biorreactor. Un truco ampliamente utilizado para calibrar el mínimo es 

establecer el 0 % con la sonda de OD desconectada 

momentáneamente. Para el resto de detalles se ha procedido según el 

manual del equipo. 

En este momento el biorreactor ya está listo para su inoculación tal y como se 

indica en el apartado 4.3.1. 

Se recomienda encarecidamente leer con detenimiento el manual del 

biorreactor antes de su utilización ya que se está manipulando un equipo caro y muy 

delicado. 

4.3.4 Sistema de monitorización y control 

El sistema de monitorización se basa en la conexión de los módulos de control 

del biorreactor a un ordenador que registra los datos a través del software 

BioCommand. 

Los parámetros que se han monitorizado a lo largo del tiempo han sido: 

 Temperatura. 

 pH. 

 Oxígeno disuelto (OD). 

La temperatura y el pH se han registrado en nuestro caso para confirmar que 

los valores establecidos para las condiciones de operación (apartado 4.3.3) se 
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mantienen constantes a lo largo del experimento, lo que indica que el control está 

actuando adecuadamente. 

Aunque estamos trabajando en condiciones anaerobias sin aporte de oxígeno, 

se ha monitorizado el oxígeno disuelto (OD) para observar su evolución con el tiempo, 

ya que al principio del experimento siempre existe una cantidad inicial de oxígeno 

disuelto (OD) en el medio de cultivo. 

El sistema de control se basa en los aspectos comentados en el apartado 4.2.1 

para la descripción de biorreactor. 

4.3.5 Toma de muestras 

La evolución del crecimiento microbiano así como del sustrato y producto se ha 

determinado a partir de muestras extraídas del biorreactor a lo largo del tiempo. El 

intervalo de muestreo, durante toda la duración del experimento, ha sido de 1 hora, 

excepto por la noche que no se han obtenido muestras. 

De forma general en cada muestreo se ha recogido un volumen aproximado de 

10 mL que se ha repartido para determinar (ver apartado 4.4): 

 Número total de células 

 Absorbancia para peso seco celular 

 Sustrato: Glucosa 

 Producto: Etanol 

De manera excepcional se ha recogido un volumen mayor de muestra (30 mL 

aproximadamente) en aquellos experimentos que se ha determinado directamente el 

peso seco celular (ver apartado 4.4.1.2) así como el análisis del lindano (ver apartado 

4.5.2). 

Para la recogida de muestras general se ha seguido el protocolo de muestreo 

detallado en el Anexo 2. Protocolo de toma de muestras. 

4.4 Medidas biológicas 

4.4.1 Determinación del crecimiento microbiano 

La determinación del crecimiento microbiano se puede realizar a partir de 

métodos directos o de métodos indirectos. 

Los métodos directos consisten en realizar la determinación sobre el número 

de células, la masa de células seca o húmeda, el volumen de células empaquetadas o 

la turbidez del cultivo. En ocasiones no es posible realizar una medida directa por la 
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presencia de sólidos suspendidos u otros compuestos que interfieren en el medio de 

cultivo. Los métodos indirectos se basan en medir la formación de producto, la 

evolución del calor o la composición celular (Doran, 1998; Shuler & Kargi, 2014). 

En este trabajo se ha determinado el crecimiento microbiano a través del 

número de células y del peso seco celular. A su vez el peso seco celular se ha 

calculado mediante una relación con la turbidez del medio (absorbancia). 

4.4.1.1 Número de células 

El objetivo es calcular el número de células por unidad de volumen, 

generalmente en millones de células por mililitro. Se puede determinar generalmente 

de tres formas distintas según queramos distinguir entre células viables o no viables. 

Conteo directo con el microscopio mediante un hemocitómetro o cámara de 

recuento celular. El conteo puede ser manual o mediante un sistema automático. Se 

puede aplicar algún tipo de tinción para distinguir entre viables y no viables.  

Por otro lado, se puede realizar un conteo de colonias en placas Petri. El 

método consiste en diluir adecuadamente el caldo de cultivo, sembrar en placas Petri 

con un medio adecuado en agar e incubar hasta el crecimiento de colonias. Este 

método supone que de una sola célula viable se forma una colonia. Distingue por tanto 

únicamente células viables (Alan, 1999). 

El método utilizado en la realización de este trabajo es el de conteo directo 

automático al microscopio mediante cámara de recuento celular sin tinción. Por tanto 

no distinguimos entre células viables y no viables. 

El microscopio óptico utilizado (ver apartado 4.2.2) es de campo claro y posee 

una cámara digital acoplada para captura de imágenes. 

El hemocitómetro o cámara de recuento celular que se ha utilizado para el 

recuento automático es de tipo Bürker de cuadrícula doble y con pinzas. Se trata de un 

portaobjetos que tiene marcada una cuadrícula de dimensiones conocidas. Cuando se 

cubre con el cubreobjetos el espacio que queda entre el portaobjetos y el cubreobjetos 

es de 0,1 mm. La cuadrícula de recuento está formada por 9 cuadrados grandes de 1 

mm de arista, que a su vez están divididos en 16 cuadrados pequeños de arista 0,2 

mm. Cuando se observa al microscopio (en conteo manual) se cuentan las células que 

hay en varios cuadrados iguales de la cuadrícula, se calcula la media y así se 

determinan las células por unidad de área, y como la altura también es conocida se 

obtienen finalmente las células por unidad de volumen. En la Figura A 1 del Anexo 3 
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se pueden observar las dimensiones de uno de los 9 cuadrados grandes comentados 

de la cámara de recuento así como su aspecto general. 

Para el sistema automático de conteo se ha necesitado un software de captura 

de imagen y otro de procesamiento de imagen. El software de captura de imágenes 

utilizado ha sido OptikaView versión 7.1 desarrollado por el fabricante del microscopio. 

El software de procesamiento de las imágenes ha sido ImageJ versión 1.50b que es 

un software libre. Con el primero únicamente se han obtenido las imágenes y con el 

segundo se han tratado para determinar el número de células que hay en cada imagen 

capturada. 

Debido a que cada experimento suponía la adquisición de 85 imágenes y cada 

imagen se tenía que procesar individualmente, se recurrió a la implantación de una 

macro de conteo automática asociada a ImageJ desarrollada por Ivan V. Grishagin de 

la Universidad de California (Grishagin, 2015). Dicha macro se modificó para obtener 

un conteo óptimo que se ajustara a la calidad de nuestras imágenes capturadas. 

Finalmente se calculó el área que se observa en las imágenes con ImageJ y como la 

altura de la cámara de conteo es conocida (0,1 mm) se determinó el número de 

células totales por unidad de volumen. 

Todos los pasos anteriormente comentados se detallan en el Anexo 3. 

Protocolo de determinación del número total de microorganismos. 

La muestra que se utilizó para la determinación del número total de células se 

recogió según el apartado 4.3.5. 

4.4.1.2 Relación absorbancia y peso seco celular 

El peso seco celular es el método más usado para medir el crecimiento 

microbiano. Consiste en secar volúmenes conocidos de caldo de cultivo lentamente 

hasta peso constante previo lavado de las células. El lavado de las células consiste en 

centrifugar la muestra para separar el medio de cultivo y resuspender las células en 

agua destilada para su posterior secado. El objetivo es evitar el error que introducimos 

al secar las células junto con un medio de cultivo que varía su composición frente al 

tiempo. Además obtendríamos un peso después del secado que no correspondería 

únicamente a las células secas (Alan, 1999). 

En los casos en que las células no sedimenten fácilmente por centrifugación, 

como es el caso de células bacterianas, se filtran volúmenes conocidos de cultivo 

celular mediante filtros adecuados. Las células retenidas en el filtro se lavan con agua 
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destilada y finalmente los filtros se secan junto con las células retenidas en ellos (Rice, 

Sullivan, & Helbert, 1980). 

Sea cual sea el caso, el resultado se suele expresar en gramos de células 

secas por litro (g/L). 

Es importante añadir que en medios de cultivo que presentan sólidos en 

suspensión hay que corregir el peso seco medido con respecto al peso de los sólidos, 

ya que no suele ser posible separar con exactitud los sólidos de las células por 

centrifugación o filtración. Los medios de cultivo con sólidos en suspensión son 

comunes a nivel industrial. 

La principal desventaja de la determinación del crecimiento celular por peso 

seco es que es un método lento y sujeto a error si no se usan volúmenes de muestra 

relativamente grandes (Shuler & Kargi, 2014). 

Por otro lado, otro método muy utilizado es el de la turbidez o densidad óptica 

(absorbancia). Se basa en la capacidad que poseen las células suspendidas en un 

medio de cultivo líquido de absorber radiación electromagnética visible (luz). La 

intensidad de luz absorbida (absorbancia) está relacionada directamente con el 

número de células, aunque también puede influir el tamaño y la forma de estas. Se 

mide con un espectrofotómetro del espectro visible a longitudes de onda de entre 600 

y 700 nm generalmente. Lo adecuado es utilizar una longitud de onda que minimice la 

absorbancia del medio de cultivo. Para establecer el blanco algunos autores utilizan 

agua destilada (Alcón Martín, 1999) y otros el propio medio de cultivo estéril libre de 

células (Villar Moreno, 1992). 

Al igual que para el método anterior los sólidos en suspensión pueden resultar 

un problema así como otros componentes que también absorban cerca de la longitud 

de onda utilizada (Shuler & Kargi, 2014). 

Es muy práctico y común que la absorbancia se relacione linealmente con el 

peso seco celular (Govindaswamy & Vane, 2007). Dicho procedimiento consiste en 

medir la absorbancia y el peso seco celular en distintas muestras a lo largo de un 

experimento de cultivo. De esta manera se obtendrá la ecuación de una recta que 

podemos utilizar en experimentos en los que intervengan el mismo microorganismo y 

medio de cultivo en condiciones similares, para que con tan solo medir la absorbancia 

podamos calcular el peso seco celular (Alan, 1999). 

Es importante calcular la relación en toda la extensión del experimento ya que 

a valores de absorbancia altos puede ser que la relación empiece a ser no lineal. 

Posteriormente en otros experimentos las muestras que se salgan del intervalo lineal 
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se diluirán para obtener un valor de absorbancia que podamos interpolar en nuestra 

relación lineal. 

La relación absorbancia peso seco ahorra mucho tiempo y trabajo ya que la 

medición de la absorbancia es rápida e instantánea mientras que la determinación del 

peso seco celular es muy lenta e implica mucha más dedicación. 

En este trabajo se ha relacionado la absorbancia medida a 660 nm usando 

agua destilada como blanco (Alcón Martín, 1999; Govindaswamy & Vane, 2007) con el 

peso seco celular calculado según el Anexo 4. Protocolo de determinación del peso 

seco celular. 

La relación experimental que se ha obtenido se muestra en la ecuación (1). Se 

ha utilizado para calcular el peso seco celular a partir de la absorbancia en todos los 

experimentos realizados. Se ha calculado a partir del ajuste a una recta por mínimos 

cuadrados de los puntos que se representan en el gráfico de la Figura 4.3 obteniendo 

un coeficiente de correlación al cuadrado (r2) de 0,9864. 

𝑃𝑒𝑠𝑜 𝑠𝑒𝑐𝑜 𝑐𝑒𝑙𝑢𝑙𝑎𝑟 (
𝑔

𝐿
) = 0,9642 · 𝐴660 + 0,0125 

 
(1) 

 

 

Figura 4.3. Gráfico de relación absorbancia y peso seco celular o biomasa seca 
(fuente: elaboración propia) 

Los datos de peso seco y absorbancia que se muestran en la Figura 4.3 se 

obtuvieron en un experimento de fermentación en el biorreactor a 30 °C y pH 4 con el 
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microorganismo y medio de cultivo descritos en los apartados 4.1.1 y 4.1.2 

respectivamente. 

El intervalo de absorbancia ensayado en el cual podemos interpolar para 

obtener el peso seco celular dentro del rango lineal es 0,035 - 0,860. 

4.4.2 Análisis del sustrato: Glucosa 

El método analítico utilizado para analizar la evolución de la glucosa en los 

experimentos ha sido el método del fenol-ácido sulfúrico para la determinación total de 

hidratos de carbono (Dubois, Gilles, Hamilton, Rebers, & Smith, 1956). Como el único 

hidrato de carbono presente en nuestros experimentos es la glucosa (ver apartado 

4.1.2) el método utilizado es adecuado para observar su consumo. 

Los hidratos de carbono reaccionan por la combinación de ácidos fuertes y 

altas temperaturas para producir diversos derivados del furano que en presencia de 

fenol generan compuestos coloreados útiles para su análisis por espectrofotometría de 

absorción molecular (Nielsen, 2009). Dichas reacciones están impulsadas por el calor 

producido al añadir ácido sulfúrico a una muestra acuosa (Nielsen, 2007). 

El método detecta todas las clases de hidratos de carbono pero la absortividad 

de cada uno es diferente en el resultado final. Por ello, a menos que se conozca que la 

muestra solo contiene un tipo de carbohidrato (nuestro caso), se expresarán los 

resultados arbitrariamente en términos de un hidrato de carbono dado. Es decir, la 

recta de calibrado necesaria para la cuantificación se elaborará con un tipo de 

carbohidrato determinado. 

La glucosa analizada por este procedimiento presenta su pico de mayor 

absorbancia a 490 nm (Dubois et al., 1956). 

Este método es sencillo, rápido, sensible, exacto, específico para los hidratos 

de carbono y ampliamente utilizado. Además, los reactivos que se emplean son 

baratos, fáciles de obtener y estables. El color que se produce en la reacción es 

estable durante varias horas y los resultados son reproducibles. Bajo las condiciones 

apropiadas este método es exacto hasta un ± 2 % (Nielsen, 2007). 

La recta de calibrado que se ha utilizado para la cuantificación del consumo de 

glucosa por este método en todos los experimentos es la que se muestra en la Figura 

4.4 y está elaborada con D(+)-glucosa. El coeficiente de correlación al cuadrado (r2) 

obtenido es de 0,9978. La expresión (2) muestra la ecuación de la recta ajustada 

utilizada despejada adecuadamente. 
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El protocolo seguido para la elaboración de la curva de calibrado así como para 

el análisis de las muestras recogidas en el biorreactor durante el experimento se 

detalla en el Anexo 5. Protocolo de análisis de glucosa. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑐𝑖ó𝑛 𝑔𝑙𝑢𝑐𝑜𝑠𝑎 (
𝜇𝑔

𝑚𝐿
) =

𝐴𝑏𝑠 − 0,0184

0,0199
 

 
(2) 

 

 

Figura 4.4. Recta de calibrado glucosa método fenol-sulfúrico (fuente: elaboración 
propia) 

El intervalo de concentración de glucosa lineal ensayado (patrones) para el que 

se puede interpolar con la ecuación (2) es 10-50 µg/mL con un intervalo de 

absorbancia de 0,203-1,011. Por ello todas las muestras analizadas han sido diluidas 

adecuadamente para su determinación. 

4.4.3 Análisis del producto: Etanol 

La determinación del etanol se ha llevado a cabo por el método analítico 

instrumental de cromatografía de gases (GC) con detector de ionización de llama 

(FID). 

El etanol es excretado por la levadura Saccharomyces cerevisiae como 

producto asociado directamente a su metabolismo energético en la fermentación 

anaerobia (ver apartado 4.6.4) (Doran, 1998). 
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La cromatografía de gases es una técnica analítica instrumental que permite 

separar, identificar y cuantificar compuestos afines en una mezcla. Para ello se hace 

pasar el analito (gas o líquido volátil) en forma gaseosa a través de una columna que 

contiene una fase estacionaria (líquido no volátil o sólido), arrastrado por una fase 

móvil gaseosa inerte. 

La muestra se inyecta en el inyector en el cual se evapora rápidamente. Ese 

vapor generado es arrastrado por el gas portador inerte (fase móvil gaseosa) a través 

de la columna donde los analitos se van separando, llegando a un detector a distintos 

tiempos (tiempo de retención) cuando salen de la columna. La separación se produce 

por la distinta afinidad de los analitos por la fase estacionaria, que es función de la 

polaridad. 

La columna debe estar suficientemente caliente a fin de que los analitos 

alcancen una presión de vapor suficiente para que se eluyan (salgan de la columna) 

en un tiempo razonable. Por este motivo la columna se encuentra dentro de un horno 

que controla su temperatura. A su vez el detector se mantiene a una temperatura más 

alta que la columna, de forma que los analitos se encuentran en forma gaseosa. 

Al final de la columna se coloca un detector que proporciona una señal analítica 

que se registra de forma continua y varía en función del tiempo conforme salen de la 

columna los analitos. Se obtiene una gráfica denominada cromatograma (ver Figura 

4.5) que nos permite identificar y cuantificar los componentes separados (picos) 

(Harris, 2001). 

 

Figura 4.5. Ejemplo genérico de un cromatograma (fuente: elaboración propia) 
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Para la identificación (análisis cualitativo) de un pico se puede comparar su 

tiempo de retención con el de una muestra auténtica del compuesto que se sospecha, 

en varias columnas de distintas polaridades.  

La cuantificación (análisis cuantitativo) se basa en el área del pico 

cromatográfico en la mayoría de los casos. Se suelen escoger condiciones en la que la 

respuesta es lineal, es decir, cuando el área del pico es proporcional a la cantidad de 

ese componente (recta de calibrado). Aunque lo más común es utilizar el área, en 

ocasiones si los picos son muy estrechos se puede sustituir el área por la altura del 

pico. Tanto el área del pico como su altura se miden automáticamente con un 

ordenador. (Harris, 2001). 

Las distintas condiciones cromatográficas empleadas en el análisis de etanol 

en nuestras muestras para los experimentos sin lindano se indican en la Tabla 4.1. 

Tabla 4.1. Condiciones cromatográficas empleadas en los experimentos sin lindano 

Volumen de inyección 1 µL 

Columna (fase estacionaria) Agilent 19091J-413 HP-5  30 m x 320 µm x 0,25  µm 

Gas portador (fase móvil) Helio 

Flujo columna 2 mL/min 

Razón de división (Split) 8:1 

Temperatura inyector 200 °C 

Temperatura horno 

Inicial 55 °C durante 1 min 

Rampa 2 °C/min hasta 60 °C durante 0 min 

Rampa 30 °C/min hasta 160 °C durante 5 min 

Temperatura detector 300 °C 

Replicas 2 

En la determinación del etanol en los experimentos con lindano se cambiaron 

algunas de las condiciones cromatográficas (temperatura del horno) ya que se observó 

que quedaban componentes retenidos en la columna entre inyecciones. Las 

condiciones empleadas se muestran en la Tabla 4.2. 

En el análisis de las muestras en cada experimento se pincharon los patrones 

para la recta de calibrado. Es decir, se obtuvo una recta de calibrado por cada análisis. 
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En la Figura 4.6 se muestra el ejemplo de una recta de calibrado para un experimento 

dado ajustando por mínimos cuadrados. El coeficiente de correlación al cuadrado (r2) 

resultante ha tenido un valor muy próximo a la unidad en todas las determinaciones de 

etanol. 

Tabla 4.2. Condiciones cromatográficas empleadas en los experimentos con lindano 

Volumen de inyección 1 µL 

Columna (fase estacionaria) Agilent 19091J-413 HP-5  30 m x 320 µm x 0,25  µm 

Gas portador (fase móvil) Helio 

Flujo columna 2 mL/min 

Razón de división (Split) 8:1 

Temperatura inyector 200 °C 

Temperatura horno 

Inicial 53 °C durante 1 min 

Rampa 2 °C/min hasta 60 °C durante 0 min 

Rampa 30 °C/min hasta 200 °C durante 10 min 

Temperatura detector 300 °C 

Replicas 2 

La ecuación (3) muestra la expresión genérica del ajuste a la recta despejado, 

que se ha utilizado para determinar el porcentaje de etanol (v/v). 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑐𝑖ó𝑛 𝑒𝑡𝑎𝑛𝑜𝑙 (%) 𝑣/𝑣 =
𝐴𝑟𝑒𝑎 𝑚𝑒𝑑𝑖𝑎 + 𝑂𝑟𝑑𝑒𝑛𝑎𝑑𝑎 𝑒𝑛 𝑒𝑙 𝑜𝑟𝑖𝑔𝑒𝑛

𝑃𝑒𝑛𝑑𝑖𝑒𝑛𝑡𝑒
 

 
(3) 

 

Para el análisis de las muestras así como para elaborar la recta de calibrado se 

ha seguido el protocolo detallado descrito en el Anexo 6. Protocolo de análisis de 

etanol. 

Aunque en la Figura 4.6 visualmente parezca que la recta pasa por el origen de 

coordenadas se puede comprobar en la ecuación del ajuste que no es así por su 

término independiente. 
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El intervalo de concentración aproximada de los patrones empleados es 0,01-

0,8 % etanol v/v. La señal obtenida para todas las muestras analizadas se ha podido 

interpolar directamente sin necesidad de realizar ningún tipo de dilución previa. 

Como se puede ver en la Tabla 4.1 y Tabla 4.2 se realizaron dos réplicas de 

cada muestra y patrones, es decir dos pinchazos. De esta manera se calculó el área 

media antes de aplicar la ecuación (3) o realizar el ajuste de la recta de calibrado. 

 

Figura 4.6. Ejemplo de recta de calibrado de etanol para un experimento dado (fuente: 
elaboración propia) 

4.5 Fermentación con lindano 
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La contaminación del medio de cultivo con lindano se realizó a partir de 
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La solubilidad del lindano en agua es de 7,3 mg/L a 25 °C (Richardson & Miller, 

1960). Mientras que a 35 °C aumenta hasta 11,4 mg/L (Biggar & Riggs, 1974). 

Se han preparado disoluciones madre a 5 mg/L aproximadamente en agua 

estéril a 35 °C. Para ello se ha pesado en balanza analítica una determinada cantidad 

de lindano en función del volumen a preparar. Se ha transvasado el soluto a un matraz 

aforado junto con agua destilada estéril a 35 °C hasta el enrase y se ha colocado en el 

baño de ultrasonidos durante 30 minutos para la completa disolución del soluto. 

Posteriormente se dejó enfriar a temperatura ambiente y se volvió a enrasar con agua 
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destilada estéril, ya que como antes se enrasó a 35 °C el volumen había disminuido al 

enfriarse. Finalmente se transvasó la disolución a un frasco de vidrio y se mantuvo en 

un baño de agua a 35 °C. 

A partir de estas disoluciones se contaminó el medio de cultivo, después de la 

esterilización en el biorreactor, con una cantidad determinada en función de la 

concentración de lindano que requiera el experimento (ver apartado 4.8). 

Como se puede observar se ha sido conservador en la concentración de 

lindano en la disolución madre, es decir, no hemos apurado hasta el límite de 

solubilidad a 35 °C ya que queríamos asegurar la estabilidad del lindano en disolución 

(evitar precipitación), debido a que los experimentos en el biorreactor fueron a una 

temperatura más baja. 

4.5.2 Análisis del lindano 

La determinación del lindano en las muestras se ha llevado a cabo por el 

método analítico instrumental de cromatografía de gases (GC) con detector de captura 

electrónica (ECD) previa extracción líquido-líquido en hexano. 

La extracción es el proceso de pasar un soluto de una fase a otra. Las razones 

más frecuentes por las que se usa una extracción en química analítica son aislar, 

concentrar o separar un analito de una especie que interferiría en su análisis. El caso 

más frecuente es la extracción de una disolución acuosa con un disolvente orgánico. 

Se utilizan frecuentemente disolventes como el éter dietílico, el tolueno y el hexano, 

que son inmiscibles en agua y menos densos que ésta. Todos ellos forman una fase 

separada por encima de la fase acuosa. Entre los disolventes más densos que el agua 

se suelen encontrar el cloroformo, el diclorometano y el tetracloruro de carbono. Así 

pues en una extracción tenemos una mezcla de dos fases, una predominantemente 

acuosa y la otra predominantemente orgánica (Harris, 2001). 

La cromatografía de gases es una técnica analítica instrumental cuyo principio 

básico para el análisis ya se ha comentado en el apartado 4.4.3. 

Las condiciones cromatográficas empleadas para analizar el lindano disuelto 

en hexano tras la extracción líquido-líquido se muestran en la Tabla 4.3. 

En el análisis de las muestras en cada experimento con lindano se pincharon 

los patrones para la recta de calibrado. Es decir, se obtuvo una recta de calibrado por 

cada análisis. En la Figura 4.7 se muestra el ejemplo de una recta de calibrado para 

un experimento dado ajustando por mínimos cuadrados, con un coeficiente de 

correlación al cuadrado cercano a la unidad. 
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La ecuación (4) muestra la expresión genérica del ajuste a la recta despejado, 

que se ha utilizado para determinar la concentración de lindano en hexano. 

Posteriormente se han tenido que realizar los cálculos adecuados para conocer la 

concentración de lindano en la muestra sometida a extracción. 

Tabla 4.3. Condiciones cromatográficas para el análisis de lindano en hexano. 

Volumen de inyección 1 µL 

Columna (fase estacionaria) Agilent 19091J-433 HP-5  30 m x 250 µm x 0,25  µm 

Gas portador (fase móvil) Nitrógeno 

Flujo columna No se especifica 

Razón de división (Split) No se especifica (ajuste manual) 

Temperatura inyector 280 °C 

Temperatura horno 

Inicial 120 °C durante 3 min 

Rampa 30 °C/min hasta 190 °C durante 0 min 

Rampa 5 °C/min hasta 240 °C durante 5 min 

Temperatura detector 300 °C 

Replicas 3 

 

 

Figura 4.7. Ejemplo de recta de calibrado de lindano en hexano para un experimento 
dado (fuente: elaboración propia) 

y = 0,0061x - 0,0565 
R² = 0,9986 

0

0,5

1

1,5

2

2,5

0 100 200 300 400

A
re

a
 

Concentración lindano (ppb) 



  Material y métodos 

30 
 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑐𝑖ó𝑛 𝑙𝑖𝑛𝑑𝑎𝑛𝑜 (𝑝𝑝𝑏) =
𝐴𝑟𝑒𝑎 𝑚𝑒𝑑𝑖𝑎 + 𝑂𝑟𝑑𝑒𝑛𝑎𝑑𝑎 𝑒𝑛 𝑒𝑙 𝑜𝑟𝑖𝑔𝑒𝑛

𝑃𝑒𝑛𝑑𝑖𝑒𝑛𝑡𝑒
 

 
(4) 

 

El intervalo de concentración aproximada de los patrones es 50-350 ppb de 

lindano en hexano. 

Como se puede ver en la Tabla 4.3 se realizaron tres réplicas de cada muestra, 

es decir tres pinchazos. De esta manera se calculó el área media antes de aplicar la 

ecuación (4). 

Para el análisis de las muestras y sus cálculos así como para elaborar la recta 

de calibrado se ha seguido el protocolo detallado descrito en el Anexo 7. Protocolo de 

análisis de lindano. 

4.6 Crecimiento microbiano 

4.6.1 Fermentación discontinua 

En un reactor discontinuo, el crecimiento de las células tiene lugar en el interior 

del reactor, y al no haber una regeneración del medio de cultivo, el crecimiento se 

detiene cuando llega algún tipo de limitación. Limitaciones típicas son el consumo de 

un nutriente esencial o la acumulación de algún producto tóxico del metabolismo. 

La Figura 4.8 recoge las fases típicas de un crecimiento celular en discontinuo. 

Las diferentes fases de crecimiento se distinguen más fácilmente cuando se 

representa el logaritmo de la concentración de células viables frente al tiempo. La 

velocidad de crecimiento depende de la fase de crecimiento: 

 Fase de latencia o adaptación: Comienza inmediatamente después de 

la inoculación del biorreactor. La velocidad de crecimiento es 

prácticamente cero. Las células utilizan esta fase para adaptarse al 

nuevo ambiente, y en ocasiones se sintetizan nuevas enzimas o 

componentes estructurales. 

 Fase de aceleración: Se abandona la fase de latencia ya que las células 

ya están adaptadas al medio y comienza el crecimiento exponencial. 

 Fase de crecimiento: Las células se multiplican rápidamente 

incrementándose la concentración celular de forma exponencial con el 

tiempo. 

 Fase de deceleración: En esta fase la velocidad de crecimiento va 

decreciendo a medida que aparecen limitaciones. 



  Material y métodos 

31 
 

 Fase estacionaria: La velocidad de crecimiento se hace prácticamente 

nula. Cesa el crecimiento. 

 Fase de muerte: Se produce la disminución del número de células 

viables. 

Si en vez de representar la concentración de células viables se representa la 

concentración del número total de células (incluyendo las no viables también) lo que 

ocurre únicamente es que la fase de muerte no aparecerá, es decir, no se sabe en qué 

momento cesa la fase estacionaria (Casas Alvero, Gòdia Casablancas, & López 

Santín, 1998; Doran, 1998; Shuler & Kargi, 2014). 

 

Figura 4.8. Fases del crecimiento celular en reactor discontinuo (fuente: elaboración 
propia) 
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4.6.2.1 Cinética de crecimiento celular 

La velocidad de crecimiento en un cultivo celular requiere para su cálculo la 

medición de la concentración de células en el tiempo (ver apartado 4.4.1) y se 
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𝑟𝑋 =
𝑑𝑋

𝑑𝑡
= 𝜇 · 𝑋 

 
(5) 
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Donde: 

 𝑟𝑋 es la velocidad volumétrica de producción de biomasa (g·L-1·h-1). 

 𝑋 es la concentración de biomasa (g·L-1). 

 𝜇 es la velocidad específica de crecimiento (h-1). 

Las unidades indicadas para los parámetros anteriores son las que más se 

utilizan, y de aquí en adelante son las que se utilizarán. La masa de las células 

(biomasa) se expresa en peso seco generalmente tal y como se vio en el apartado 

4.4.1.2. 

Como se puede observar en la ecuación (5) el crecimiento celular puede 

considerarse como una reacción autocatalítica de primer orden. 

La velocidad específica de crecimiento 𝜇  depende de la concentración de 

nutrientes en el medio. Casi siempre, un único sustrato ejerce un efecto dominante 

sobre la velocidad de crecimiento. A dicho componente se le denomina sustrato 

limitante del crecimiento. El sustrato limitante del crecimiento es a menudo la fuente de 

carbono o nitrógeno. El modelo cinético más comúnmente utilizado, y que con 

frecuencia también forma parte de modelos más complejos, es la ecuación de Monod 

(6), que describe el crecimiento celular en función de la disponibilidad de un sustrato 

limitante. 

𝜇 = 𝜇𝑚
𝑆

𝐾𝑆 + 𝑆
 

 
(6) 

 

Donde: 

 𝑆 es la concentración de sustrato limitante del crecimiento (g·L-1). 

 𝜇𝑚 es la velocidad específica máxima de crecimiento (h-1). 

 𝐾𝑆 es la constante de sustrato (g·L-1). 

Los parámetros 𝜇𝑚  y 𝐾𝑆  son intrínsecos del sistema célula-sustrato. La 

velocidad específica máxima de crecimiento 𝜇𝑚  es el valor máximo que puede 

alcanzar la velocidad de crecimiento, cuando 𝑆 ≫  𝐾𝑆  y las concentraciones del resto 

de nutrientes no han cambiado de forma notable. La constante de sustrato 𝐾𝑆 

representa el valor de la concentración de sustrato limitante a la que la velocidad 

específica de crecimiento 𝜇 es la mitad de la máxima 𝜇𝑚. 
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Para valores de 𝑆  inferiores a 𝐾𝑆  la velocidad específica de crecimiento 𝜇 

depende de una forma lineal de 𝑆 , mientras que para valores superiores se hace 

independiente de 𝑆 (Doran, 1998). 

El modelo cinético de Monod (6) es muy simple y no siempre presenta una 

buena correlación con los datos experimentales de crecimiento de un determinado 

microorganismo. Por ello se han utilizado otros modelos cinéticos que se comentarán 

en el apartado 4.6.3. Además, debe tenerse en cuenta que en muchos casos el 

crecimiento celular se encuentra afectado por inhibición por el sustrato o inhibición por 

el producto, generándose entonces los denominados modelos cinéticos con inhibición. 

4.6.2.2 Cinética de formación de producto 

La velocidad de formación de producto en un cultivo celular requiere para su 

cálculo la medición de la concentración del producto en el tiempo (ver apartado 4.4.3) 

y se describe mediante la siguiente expresión (7): 

𝑟𝑃 =
𝑑𝑃

𝑑𝑡
=  𝑞𝑃 · 𝑋 

 
(7) 

 

Donde: 

 𝑟𝑃 es la velocidad volumétrica de formación de producto (g·L-1·h-1). 

 𝑃 es la concentración del producto (g·L-1). 

 𝑞𝑃 es la velocidad específica de formación de producto (h-1). 

 𝑋 es la concentración de biomasa (g·L-1). 

Los productos de fermentación pueden clasificarse de acuerdo a la relación 

existente entre la síntesis del producto y la generación de energía en la célula (Roels & 

Kossen, 1978; Stouthamer & Verseveld, 1985). Existen tres categorías: 

 Productos directamente asociados al metabolismo energético: Son los 

compuestos que excretan las células en su metabolismo energético 

(rutas de formación de ATP). Por ejemplo el etanol. 

 Productos indirectamente asociados al metabolismo energético: Son 

aquellos compuestos parcialmente asociados a la generación de 

energía porque requieren un aporte adicional de energía para su 

síntesis. Por ejemplo el ácido cítrico. 
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 Productos no asociados al metabolismo energético: Son aquellos 

compuestos que se forman en rutas muy alejadas del metabolismo 

energético. Por ejemplo los antibióticos. 

Como se puede deducir, la categoría que nos interesa en este trabajo es la 

primera, ya que el producto excretado por la levadura Saccharomyces cerevisiae es el 

etanol. 

Es importante destacar dentro de esta categoría, que el crecimiento es 

generalmente la función celular que más energía requiere, por lo tanto el producto se 

formará siempre que exista crecimiento. Sin embargo, también se necesita energía en 

las actividades del mantenimiento celular (movilidad celular, intercambios de 

componentes celulares, ajuste del pH interno etc.) que realizan las células vivas 

incluso en ausencia de crecimiento. 

La velocidad específica de formación de producto 𝑞𝑃 asociado directamente al 

metabolismo energético viene dada por la ecuación (8). 

 𝑞𝑃 = 𝑌𝑃𝑋 · 𝜇 +𝑚𝑝 
 

(8) 
 

Donde: 

 𝑌𝑃𝑋 es el rendimiento teórico de producto a partir de biomasa (g·g-1). 

 𝜇 es la velocidad específica de crecimiento (h-1). 

 𝑚𝑝  es la velocidad específica de formación de producto debido al 

mantenimiento celular (h-1). 

El concepto de rendimiento se tratará con más detalle en el apartado 4.6.2.4. 

Si se combinan las expresiones (5), (7) y (8) se consigue la expresión general 

(9) para la velocidad de formación de producto asociado directamente al metabolismo 

energético. 

𝑟𝑃 =
𝑑𝑃

𝑑𝑡
= 𝑌𝑃𝑋 · 𝑟𝑋 +𝑚𝑝 · 𝑋 

 
(9) 

 

Como se puede observar en los términos de la ecuación (9) la expresión 

considera la formación de producto asociada al crecimiento y la asociada a las 

actividades de mantenimiento celular (Casas Alvero et al., 1998; Doran, 1998). 
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En este trabajo se ha modificado la ecuación (9) considerando que el término 

asociado al mantenimiento sigue una dependencia de tipo potencial con la 

concentración de biomasa, incluyendo un exponente 𝑞. La expresión utilizada (10) 

generaliza el caso anterior, el cual sería un caso particular para 𝑞 = 1. 

𝑟𝑃 =
𝑑𝑃

𝑑𝑡
= 𝑌𝑃𝑋 · 𝑟𝑋 +𝑚𝑝 · 𝑋

 𝑞 

 
(10) 

 

4.6.2.3 Cinética de consumo de sustrato 

La velocidad de consumo de sustrato en un cultivo celular requiere para su 

cálculo la medición de la concentración del sustrato en el tiempo (ver apartado 4.4.2) y 

se describe mediante la expresión (11): 

(−𝑟𝑆) =
𝑑𝑆

𝑑𝑡
= 𝑞𝑆 · 𝑋 

 
(11) 

 

Donde: 

 (−𝑟𝑆) es la velocidad volumétrica de consumo de sustrato (g·L-1·h-1). 

 𝑆 es la concentración del sustrato (g·L-1). 

 𝑞𝑆 es la velocidad específica de consumo de sustrato (h-1). 

 𝑋 es la concentración de biomasa (g·L-1). 

La cinética de consumo de sustrato se divide en: 

 Consumo de sustrato en ausencia de formación de producto: En 

ausencia de formación de producto se supondrá que todo el sustrato 

que entra a la célula se utiliza para el crecimiento y las funciones de 

mantenimiento. 

 Consumo de sustrato con formación de producto: El consumo de 

sustrato dependerá de si la formación de producto está asociada o no al 

metabolismo energético (ver apartado 4.6.2.2).  

 Cuando se forman productos asociados directamente al 

metabolismo energético la síntesis del compuesto es 

consecuencia inevitable del consumo de sustrato que se 

utiliza para el crecimiento y el mantenimiento celular. 



  Material y métodos 

36 
 

 Cuando el producto no está asociado o parcialmente asociado 

al metabolismo energético existe un flujo separado de 

sustrato para la síntesis de producto, además del consumo de 

sustrato para el crecimiento y mantenimiento. 

Como se puede deducir, el tipo de cinética que interesa para este trabajo es la 

del consumo de sustrato con formación de producto asociado directamente al 

metabolismo energético, ya que el producto excretado por la levadura Saccharomyces 

cerevisiae es el etanol (ver apartado 4.6.2.2). 

La velocidad específica de consumo de sustrato 𝑞𝑆 con formación de producto 

asociado directamente al metabolismo energético viene dada por la ecuación (12). 

𝑞𝑆 =
1

𝑌𝑋𝑆
· 𝜇 + 𝑚𝑆 

 
(12) 

 

Donde: 

 𝑌𝑋𝑆 es el rendimiento teórico de biomasa a partir de sustrato (g·g-1). 

 𝜇 es la velocidad específica de crecimiento (h-1). 

 𝑚𝑆 es la velocidad específica de consumo de sustrato para actividades 

del mantenimiento celular (h-1). 

El concepto de rendimiento se tratará con más detalle en el apartado 4.6.2.4. 

Si se combinan las expresiones (5), (11) y (12) se consigue la ecuación 

expresión general (13) para la velocidad de consumo de sustrato con formación de 

producto asociado directamente al metabolismo energético. 

(−𝑟𝑆) =
𝑑𝑆

𝑑𝑡
=
1

𝑌𝑋𝑆
· 𝑟𝑋 +𝑚𝑆 · 𝑋 

 
(13) 

 

Hay que destacar que esta expresión es válida también para la cinética de 

consumo de sustrato en ausencia de formación de producto como se puede deducir 

según lo explicado (Casas Alvero et al., 1998; Doran, 1998). 

Al igual que en el caso de la cinética de formación de producto, ecuación (10), 

se ha utilizado la ecuación (14) considerando que el término asociado al 

mantenimiento sigue también una dependencia de tipo potencial, que incluye un 

exponente 𝑝: 
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(−𝑟𝑆) =
𝑑𝑆

𝑑𝑡
=
1

𝑌𝑋𝑆
· 𝑟𝑋 +𝑚𝑆 · 𝑋

 𝑝 

 
(14) 

 

4.6.2.4 Rendimientos 

Los rendimientos más utilizados en el ámbito de los cultivos celulares se 

definen según las ecuaciones (15), (16) y (17). 

𝑌𝑋𝑆 =
𝑚𝑎𝑠𝑎 𝑜 𝑚𝑜𝑙𝑒𝑠 𝑑𝑒 𝑏𝑖𝑜𝑚𝑎𝑠𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑑𝑎

𝑚𝑎𝑠𝑎 𝑜 𝑚𝑜𝑙𝑒𝑠 𝑑𝑒 𝑠𝑢𝑠𝑡𝑟𝑎𝑡𝑜 𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑑𝑜
 

 
(15) 

 

𝑌𝑃𝑆 =
𝑚𝑎𝑠𝑎 𝑜 𝑚𝑜𝑙𝑒𝑠 𝑑𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜 𝑓𝑜𝑟𝑚𝑎𝑑𝑜

𝑚𝑎𝑠𝑎 𝑜 𝑚𝑜𝑙𝑒𝑠 𝑑𝑒 𝑠𝑢𝑠𝑡𝑟𝑎𝑡𝑜 𝑐𝑜𝑛𝑠𝑢𝑚𝑖𝑑𝑜
 

 
(16) 

 

𝑌𝑃𝑋 =
𝑚𝑎𝑠𝑎 𝑜 𝑚𝑜𝑙𝑒𝑠 𝑑𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑜 𝑓𝑜𝑟𝑚𝑎𝑑𝑜

𝑚𝑎𝑠𝑎 𝑜 𝑚𝑜𝑙𝑒𝑠 𝑑𝑒 𝑏𝑖𝑜𝑚𝑎𝑠𝑎 𝑝𝑟𝑜𝑑𝑢𝑐𝑖𝑑𝑎
 

 
(17) 

 

Es importante destacar en el ámbito del metabolismo celular que estos 

rendimientos pueden ser: 

 Teóricos: Son esencialmente relaciones estequiométricas. A menudo 

son difíciles de calcular ya que la estequiometría de la producción de 

biomasa y de formación de producto se conoce únicamente para 

fermentaciones relativamente sencillas. Si las rutas son complejas los 

cálculos estequiométricos llegan a ser demasiado complicados. 

Normalmente se refieren a un rendimiento máximo posible ya que 

representan el rendimiento en ausencia de reacciones paralelas. 

 Observados: Son los rendimientos calculados a partir de los datos 

experimentales recogidos para las especies que se relacionan. 

Normalmente son los únicos rendimientos disponibles. Tienen en 

cuenta las reacciones simultáneas que se dan en el metabolismo 

celular. En cuanto a la nomenclatura se suelen distinguir de los teóricos 

añadiendo una prima (𝑌′). 
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4.6.3 Modelos cinéticos de crecimiento microbiano 

La velocidad específica de crecimiento 𝜇  se puede expresar a través de 

multitud de modelos cinéticos además de Monod. Los utilizados en los ajustes de 

nuestros datos experimentales se muestran a continuación (Casas Alvero et al., 1998). 

Se respeta la misma nomenclatura adoptada en apartados anteriores, incluyendo 

nuevos parámetros empíricos. 

Tessier 1 

𝜇 = 𝜇𝑚 · (1 − 𝑒
−𝑆
𝐾𝑆) 

 
(18) 

 

Tessier 2 

𝜇 = 𝜇𝑚 · (1 − 𝑒
−𝑆 𝑛

𝐾𝑆 ) 

 
(19) 

 

Tessier 3 

𝜇 = 𝜇𝑚 · (1 − 𝑒
−𝑆
𝐾𝑆)

𝑛

 

 
(20) 

 

Konak 

𝜇 = 𝜇𝑚 ·

(

 
 
1 −

1

(1 +
𝑏 − 1
𝐾𝑆

· 𝑆)

1
𝑏−1

)

 
 

 
 

(21) 
 

Moser 1 

𝜇 = 𝜇𝑚 ·
𝑆𝑛

𝐾𝑆 + 𝑆𝑛
 

 
(22) 

 

Moser 2 

𝜇 = 𝜇𝑚 · (
𝑆

𝐾𝑆 + 𝑆
)
𝑛

 

 
(23) 
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Contois 1 

𝜇 = 𝜇𝑚 ·
𝑆

𝐵 · 𝑋 + 𝑆
 

 
(24) 

 

Contois 2 

𝜇 = 𝜇𝑚 · (
𝑆

𝐵 · 𝑋 + 𝑆
)
𝑛

 

 
(25) 

 

Webb 1 

𝜇 = 𝜇𝑚 ·
𝑆 · (1 +

𝛽 · 𝑆
𝐾𝑖𝑆

)

𝐾𝑆 + 𝑆 · (1 +
𝑆
𝐾𝑖𝑆
)
 

 
(26) 

 

Webb 2 

𝜇 = 𝜇𝑚 ·
𝑆 · (1 +

𝑆
4 · 𝐾𝑆

)

𝐾𝑆 + 𝑆 · (1 +
𝑆

4 · 𝐾𝑆
)
 

 
(27) 

 

El modelo de inhibición por producto que hemos considerado se presenta en la 

ecuación (28) a través del modelo de Monod, pero el término exponencial que 

multiplica (factor de inhibición) se puede combinar con todos los modelos comentados 

anteriormente. Se ha elegido este modelo ya que fue desarrollado para la cinética de 

inhibición por producto debida al etanol (Aiba, Shoda, & Nagatani, 2000). 

Aiba 

𝜇 = 𝜇𝑚
𝑆

𝐾𝑆 + 𝑆
· 𝑒
−𝑃
𝐾𝑃  

 
(28) 

 

4.6.4 Fermentación alcohólica y balance de materia 

Aproximadamente el 96 % de la fermentación del etanol se lleva a cabo 

mediante cepas de Saccharomyces cerevisiae o especies relacionadas, durante su 

metabolismo anaerobio. El etanol se produce en la ruta de Embden-Meyerhof-Parnas 

(EMP) cuya reacción global es la siguiente: 

𝐺𝑙𝑢𝑐𝑜𝑠𝑎 
                              
→          2 𝐸𝑡𝑎𝑛𝑜𝑙 + 2 𝐷𝑖ó𝑥𝑖𝑑𝑜 𝑑𝑒 𝑐𝑎𝑟𝑏𝑜𝑛𝑜 
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Expresado en fórmula molecular 

𝐶6𝐻12𝑂6  
                              
→          2 𝐶2𝐻6𝑂 + 2 𝐶𝑂2 

El rendimiento teórico de 1 g de glucosa es de 0,51 g de etanol y 0,49 g de 

dióxido de carbono. Sin embargo, en la práctica, aproximadamente el 10 % de la 

glucosa se transforma a biomasa y el rendimiento en etanol y dióxido de carbono 

alcanzan el 90 % del valor teórico (rendimiento observado). Además también se 

genera ATP ya que el etanol es un producto asociado al metabolismo energético como 

se ha visto en el apartado 4.6.2.2 (Ward & Calvo Rebollar, 1991). 

Con esta información, a pesar de no medir el dióxido de carbono producido en 

nuestro ensayo, se ha cerrado un balance de materia al biorreactor en los ajustes de 

los datos experimentales a los modelos, para cada experimento. 

La materia se conserva durante los procesos químicos y físicos ordinarios. Si 

consideramos que nuestro sistema es el biorreactor podemos aplicarle la ecuación 

general del balance de materia (29) (Díaz, 2012). 

𝐸 − 𝑆 + 𝐺 − 𝐶 = 𝐴 

 
(29) 

 

Donde: 

 𝐸 masa que entra a través de los límites del sistema. 

 𝑆 masa que sale a través de los límites del sistema. 

 𝐺 masa generada dentro del sistema. 

 𝐶 masa consumida dentro del sistema. 

 𝐴 masa acumulada dentro del sistema. 

Durante la fermentación no entra masa al sistema ya que estamos en un 

reactor discontinuo y la cantidad de disolución correctora del pH que es introducida se 

considera despreciable. La masa que sale del sistema en la toma de muestras no se 

tiene en cuenta en relación con el volumen total del biorreactor. 

La masa generada corresponde principalmente a la biomasa, el etanol y el 

dióxido de carbono. Este último se estima por su relación estequiométrica con el 

etanol. La masa consumida se supone que únicamente pertenece a la glucosa, pues al 

ser una fermentación anaerobia el oxígeno no interviene y, así mismo, puede 

considerarse despreciable el consumo de peptonas como fuente de nitrógeno. 
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4.6.5 Efecto de la temperatura en la cinética celular 

La temperatura ejerce un marcado efecto sobre la velocidad metabólica. La 

temperatura tiene una influencia directa sobre la velocidad de reacción de acuerdo a la 

ley de Arrhenius, además de poder cambiar la configuración de los constituyentes 

celulares, especialmente las proteínas y los componentes de membrana. La expresión 

(30) representa la ecuación de Arrhenius. 

𝑘 = 𝐴 · 𝑒
−𝐸𝑎
𝑅·𝑇  

 
(30) 

 

Donde: 

 𝑘 es una constante cinética. 

 𝐴 es la constante de Arrhenius. 

 𝐸𝑎 es la energía de activación. 

 𝑅 es la constante de los gases ideales. 

 𝑇 es la temperatura absoluta. 

De manera aproximada puede decirse que la velocidad específica de 

crecimiento 𝜇 se duplica por cada 10 °C de aumento de la temperatura, hasta que 

empieza a producirse la rotura estructural de proteínas y lípidos celulares. Otras 

constantes cinéticas también presentan una dependencia de la temperatura del tipo 

Arrhenius (Doran, 1998). 

Se ha realizado una reparametrización de la ecuación (30) con el fin de obtener 

una convergencia adecuada en los ajustes experimentales.  

Para ello se elige la temperatura media 𝑇𝑚 entre las ensayadas obteniéndose 

que: 

𝑘𝑚 = 𝐴 · 𝑒
−𝐸𝑎
𝑅·𝑇𝑚 

 
(31) 

 

Combinando las ecuaciones (30) y (31) se obtiene que: 

𝑘 = 𝑘𝑚 · 𝑒
−𝐸𝑎·𝑉𝑇 

𝑑𝑜𝑛𝑑𝑒    𝑉𝑇 =
𝑇𝑚 − 𝑇

𝑅 · 𝑇 · 𝑇𝑚
 

 
(32) 
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4.7 Cálculo de los parámetros cinéticos 

Dado que los modelos cinéticos quedan formulados en forma de un sistema de 

ecuaciones diferenciales lineales (ODEs) y algebraicas, que no tiene solución 

analítica, se han utilizado métodos numéricos para calcular la evolución de la 

concentración de biomasa, sustrato y producto con el tiempo. Debido a su simplicidad 

y suficiente precisión, se ha utilizado el método de Euler, dado que, en el presente 

caso, permite obtener la misma precisión que otros métodos de orden superior, como 

los de Runge-Kutta. 

4.7.1 Ajuste y discriminación de modelos 

Para el ajuste de los datos experimentales a los distintos modelos planteados 

en el apartado 4.6.3 se ha utilizado como “Función Objetivo” a maximizar, el 

denominado Criterio de Selección de Modelos (CSM) (33) definido como: 

𝐶𝑆𝑀 = ln (
𝑆𝑅𝑇

𝑆𝑅𝐶
) − 2

𝑝

𝑛
 

 
(33) 

 

Donde los términos SRT y SST vienen dados por: 

𝑆𝑅𝑇 =∑(𝑦𝑜𝑏𝑠𝑖 − 𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )
2

𝑛

𝑖=1

 

 
(34) 

 

𝑆𝑅𝐶 =∑(𝑦𝑜𝑏𝑠𝑖 − 𝑦𝑐𝑎𝑙𝑖)
2

𝑛

𝑖=1

 

 
(35) 

 

Y siendo 

 𝑝 es el número de variables de decisión. 

 𝑛 es el número total de datos observados. 

 𝑦𝑜𝑏𝑠𝑖 dato observado 𝑖. 

 𝑦𝑐𝑎𝑙𝑖 dato calculado 𝑖. 

Si se compara el ajuste obtenido con varios modelos, el más significativo es el 

que da un valor mayor del CSM. 

El coeficiente R2 para el ajuste viene dado por la ecuación (36). 
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𝑅2 = 1 −
𝑆𝑅𝑇

𝑆𝑅𝐶
 

 
(36) 

 

El cálculo y maximización del CSM se ha realizado mediante el complemento 

Solver® de Microsoft Office Excel®. 

La “Función Objetivo” particularizada (37) es: 

𝐶𝑆𝑀 = ln (
𝑆𝑅𝑇𝑋
𝑆𝑅𝐶𝑋

) + ln (
𝑆𝑅𝑇𝑆
𝑆𝑅𝐶𝑆

) + ln (
𝑆𝑅𝑇𝑃
𝑆𝑅𝐶𝑃

) − 2
𝑝

𝑛
 

 
(37) 

 

Se indica mediante los subíndices 𝑋 , 𝑆  y 𝑃  el conjunto de datos para la 

biomasa, el sustrato y el producto respectivamente. 

El modelo que mejor se ajusta a los datos experimentales es aquel que 

presenta el valor más alto del CSM. 

Así mismo, para el análisis estadístico de los parámetros calculados a partir del 

Solver, se ha utilizado la macro Solver Statistics de Excel (Billo, 2011), que devuelve 

las desviaciones estándar de los parámetros, según una distribución t-student inversa, 

con un nivel de confianza del 95%. 

4.7.2 Cálculo del efecto de la temperatura de reacción 

Una vez ajustadas las constantes cinéticas para un determinado modelo según 

el apartado 4.7.1 en cada temperatura ensayada, se ha procedido a realizar un ajuste 

global. Es decir, se ha maximizado con el complemento Solver®, la función objetivo 

(38) siendo las variables de decisión las constantes cinéticas para todas las 

temperaturas ensayadas y restringidas a la no negatividad. 

𝐶𝑆𝑀𝑔𝑙𝑜𝑏𝑎𝑙 =∑𝐶𝑆𝑀𝑇 

 
(38) 

 

El subíndice 𝑇 indica la temperatura del experimento para el cual se calcula el 

CSM de un determinado modelo cinético. 

Posteriormente, basándonos en la ecuación de Arrhenius (32), se ha 

representado 𝑘  frente a 𝑉𝑇 y se ha realizado un ajuste exponencial en Excel para 

cada constante cinética, observando así su relación con la temperatura según 

Arrhenius. Así obtenemos la energía de activación (𝐸𝑎) para cada constante cinética. 
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Obsérvese que para el ajuste con Solver únicamente se tienen en cuenta las 

ecuaciones que dependen de la variable tiempo (𝑡), por ello podemos denominar a 

este ajuste monovariable. 

Por otro lado se ha realizado un ajuste multivariable. El ajuste multivariable se 

basa en estimar las constantes cinéticas de los modelos teniendo en cuenta a la vez 

las variables tiempo (𝑡)  y temperatura (𝑇) . Es decir, se ha maximizado con el 

complemento Solver, la función objetivo (38) siendo las variables de decisión la 

energía de activación (𝐸𝑎) y la constante media (𝑘𝑚) de la ecuación de Arrhenius 

(32), para cada constante cinética de los modelos y restringidas a la no negatividad. 

Con este método se fuerza a las constantes cinéticas a ajustarse cumpliendo la 

ecuación de Arrhenius. Por ello se le denomina ajuste monovariable y multirespuesta. 

4.8 Diseño de experimentos 

4.8.1 Experimentos preliminares 

Los experimentos preliminares se plantearon para establecer los criterios que 

permitieron diseñar adecuadamente los experimentos definitivos. Los criterios que se 

estudiaron son: 

 Concentración inicial de sustrato. A nivel de matraz se realizaron 

fermentaciones en cámara de cultivo a distintas concentraciones de 

glucosa inicial con el fin de observar su consumo en un tiempo 

determinado. 

 Concentración inicial de inóculo y utilización de preinóculo. Se ensayó 

en el biorreactor con distintas concentraciones iniciales de levadura 

seca activa (LSA) por inoculación directa. Los resultados se compararon 

con otros ensayos realizados en el biorreactor por inoculación indirecta 

a través del preinóculo. 

 Puesta a punto de los protocolos para el seguimiento del proceso. Se 

adecuaron los procedimientos corrigiendo posibles fuentes de error y se 

organizó el horario de utilización de los equipos. 

Se realizaron un total de 4 experimentos preliminares antes de proceder con 

los experimentos definitivos. Las conclusiones principales que se obtuvieron para el 

correcto seguimiento del crecimiento celular fueron: 

 Concentración inicial de glucosa de 10 g/L. 
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 Inoculación indirecta a través de preinóculo. Concentración de LSA 0,4 

g/L en matraz de preinóculo. 

 Duración de los ensayos de 3 días entre preparación del biorreactor y 

seguimiento de la reacción. Posibilidad de realizar un único experimento 

por semana. 

 Modificación de aspectos puntuales en los protocolos a seguir. 

Por otro lado estos ensayos preliminares sirvieron para afianzar la destreza 

necesaria para afrontar con garantía los siguientes experimentos definitivos. 

4.8.2 Experimentos definitivos 

Los experimentos definitivos se diseñaron siguiendo las condiciones de 

operación que se muestran en la Tabla 4.4 y la Tabla 4.5 para fermentación en 

ausencia de lindano y en presencia de lindano respectivamente. 

Tabla 4.4. Condiciones de operación de fermentación en ausencia de lindano 

Experimento 

(día_mes) 

Temperatura 

(°C) 
pH 

Agitación 

(rpm) 

Glucosa inicial 

(g·L
-1

) 

LSA matraz 

(g·L
-1

) 

5_04 25 4 100 10 0,4 

12_04 30 4 100 10 0,4 

19_04 20 4 100 10 0,4 

26_04 30 4 100 10 0,4 

24_05 35 4 100 10 0,4 

Tabla 4.5. Condiciones de operación de fermentación en presencia de lindano 

Experimento 

(día_mes) 

Temperatura 

(°C) 
pH 

Agitación 

(rpm) 

Glucosa 

inicial 

(g·L
-1

) 

LSA 

matraz 

(g·L
-1

) 

Lindano 
(ppb) 

10_05 30 4 100 10 0,4 100 

17_05 30 4 100 10 0,4 2000 

El valor de concentración de lindano elegido para el primer experimento 

(10_05) se escogió en base a que es la concentración por encima de la cual se activan 
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los avisos de contaminación en el muestreo del río Gállego de la provincia de Aragón 

(Iagua, 2016). 

Con la concentración de lindano del segundo experimento (17_05) se pretendía 

alcanzar un límite máximo con respecto a su solubilidad en el agua. 

Los horarios establecidos para el desarrollo del experimento consistieron en 

inocular el biorreactor a las nueve de la mañana recogiendo muestras cada hora hasta 

las ocho de la tarde de ese mismo día. A la mañana siguiente se comenzó el muestreo 

a las ocho y media de la mañana hasta las doce y media del medio día también con 

una frecuencia de muestreo de una hora. 
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5 RESULTADOS Y DISCUSIÓN 

5.1 Comparativa experimental global 

5.1.1 Fermentación en ausencia de lindano 

La comparativa experimental global de los experimentos de fermentación 

realizados en ausencia de lindano a distintas temperaturas es útil para constatar el 

marcado efecto que posee la temperatura en el crecimiento celular. Hay que tener en 

cuenta que el resto de condiciones operacionales se han mantenido constantes entre 

ensayos (ver Tabla 4.4). 

En la Figura 5.1 se puede observar de qué manera ha afectado a la 

concentración total de células. En las 11 primeras horas de cultivo la diferencia en la 

pendiente de las curvas es clara. Según lo comentado en el apartado 4.6.1, estamos 

examinando la típica curva de crecimiento microbiano en la que se distinguen las 

distintas fases del crecimiento. 

 

Figura 5.1. Concentración del número total de células frente al tiempo a distintas 

temperaturas. 

Como se puede ver a medida que aumenta la temperatura aumenta la 

pendiente de la fase de crecimiento exponencial disminuyendo la fase de latencia. 
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deceleración e inicio de la fase estacionaria alrededor de las 11 horas. La fase de 

deceleración y comienzo de la fase estacionaria se alcanzó para el experimento a 20 

°C entre las 11 y 23 horas. 

A pesar de las diferencias comentadas, todos los experimentos alcanzaron 

aproximadamente la misma concentración de células totales en la fase estacionaria, 

como indican los datos recogidos entre las 23 y 27 horas. Aunque el ensayo a 35 °C 

presenta valores ligeramente mayores en comparación con el resto. 

La Figura 5.2 muestra la evolución de la concentración de biomasa (peso seco 

celular) respecto al tiempo para las distintas temperaturas ensayadas. Las 

conclusiones son similares a las expuestas en los párrafos anteriores. 

 

Figura 5.2. Concentración de biomasa seca frente al tiempo a distintas temperaturas. 

La producción de biomasa se ralentiza conforme desciende la temperatura. Se 

comprueba claramente en la concentración conseguida para cada temperatura 

transcurridas 11 horas. A las 23 horas la concentración ya se ha estabilizado en los 

experimentos a 30 y 35 °C, mientras que en el resto aún se sigue produciendo 

biomasa. Este hecho implica que aún queda glucosa por consumir como se 

comprueba en la Figura 5.3 para el experimento a 20 y 25 °C, siendo más acusado en 

el primero. 
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Si se compara la Figura 5.1 con la Figura 5.2 se advierte que entre las 23 y 27 

horas la concentración del número total de células es aproximadamente la misma 

entre experimentos, mientras que la concentración de biomasa no lo es tan 

claramente, sobre todo en el ensayo a 20 °C. Esto se explica porque en la 

determinación del número total de células se hace un recuento de todas las levaduras 

sin distinciones. Pero en un cultivo celular existen células de distinto tamaño y por 

tanto con distinta masa ya que se mezclan células que acaban de nacer con células 

que ya han alcanzado su estado de madurez para unas condiciones ambientales 

determinadas. Por este motivo principalmente, aunque el recuento celular sea mayor 

no tiene por qué ir acompañado de un correspondiente aumento en el peso celular y 

viceversa (Ratledge et al., 2009). 

El consumo de sustrato de nuestros experimentos a distintas temperaturas se 

muestra en la Figura 5.3 a través de la evolución de la glucosa con el tiempo. 

 

Figura 5.3. Concentración de glucosa frente al tiempo a distintas temperaturas. 

Tal y como se ha comentado para el crecimiento celular los resultados en la 

evolución de la concentración de glucosa son lógicos y concuerdan con los resultados 

presentados en la Figura 5.1 y Figura 5.2 para cada experimento. El consumo de 

glucosa aumenta en la fase de crecimiento exponencial debido principalmente a que el 

crecimiento se incrementa con la temperatura. Por ello, la pendiente más acusada de 
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experimento a 20 °C se corresponde con el consumo más lento y por tanto con la 

pendiente menos pronunciada. 

La producción de etanol en nuestros experimentos a distintas temperaturas se 

determina en función de la evolución de la concentración de etanol con el tiempo, 

como se muestra en la Figura 5.4. 

 

Figura 5.4. Concentración de etanol frente al tiempo a distintas temperaturas. 

En condiciones anaerobias, el consumo de glucosa va ligado a la producción 

de etanol tal y como se vio en el apartado 4.6.4. Por ese motivo el aumento en el 

consumo de sustrato con la temperatura conlleva un aumento en la velocidad de 

producción de etanol como se puede ver en las 11 primeras horas.  

Por otro lado, exceptuando el experimento a 20 °C, que aún no ha finalizado la 

fermentación transcurridas 27 horas (aún queda sustrato por consumir), la 

concentración de etanol final no es exactamente igual para el resto de experimentos, 

siendo más acusado en el experimento a 35 °C. Según la bibliografía la concentración 

final de etanol puede disminuir con la temperatura debido a rendimientos menores de 

producto a partir de sustrato o a sustrato no consumido (Casey & Ingledew, 1986). En 

el presente caso, en el experimento a 35 °C no queda sustrato por consumir como se 

puede ver en la Figura 5.3., por ello una posible explicación es que el rendimiento a 

etanol es más bajo debido a la producción de otros metabolitos (glicerol, ácido 

acético…) por el efecto del incremento en la temperatura (Torija, 2002). 
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Otra posible explicación es que una mayor parte de la glucosa se haya 

desviado a producir biomasa. 

Por último, otro motivo puede ser que se hayan producido pérdidas de etanol 

por evaporación (Torija, 2002). 

Mediante las ecuaciones (15) y (16) se han calculado los rendimientos de 

etanol a partir de glucosa y biomasa a partir de glucosa para cada temperatura 

ensayada, mostrándose en la Tabla 5.1. 

Tabla 5.1. Rendimientos de etanol a partir de glucosa a distintas temperaturas. 

 20 °C 25 °C 30 °C 35 °C 

YPS (g·g-1) 0,469 0,491 0,483 0,409 

YXS (g·g-1) 0,125 0,087 0,085 0,085 

Se confirma la disminución del rendimiento a etanol con la temperatura como 

indica la bibliografía (Torija, 2002) excepto en el rendimiento a 20 °C. Pero hay que 

hacer notar que este experimento aún no ha finalizado la fermentación con lo que su 

valor no es comparable con los demás, que son rendimientos globales de una 

fermentación ya finalizada. 

No se confirma que el rendimiento a biomasa sea mayor en el experimento a 

35 °C como podría pensarse según las posibilidades comentadas. De hecho el valor 

mayor lo presenta el experimento a 20 °C que por las mismas razones expuestas en el 

párrafo anterior no se considera comparable. 

5.1.2 Fermentación en presencia de lindano 

Los experimentos con lindano se diseñaron según la Tabla 4.5. Se eligió la 

temperatura de 30 °C ya que como se ha visto en el apartado 5.1.1 ofrece la mayor 

velocidad de producción de biomasa, consumo de sustrato y formación de producto, 

excluyendo el experimento a 35 °C por su bajo rendimiento a etanol con respecto a los 

demás. 

Se han comparado los dos experimentos a distinta concentración de lindano de 

la Tabla 4.5, con los dos experimentos a 30 °C realizados según la Tabla 4.4. En las 

siguientes figuras se puede comprobar que la contaminación de lindano en el medio 

de cultivo no afecta a ningún parámetro de crecimiento observado. 
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En la Figura 5.5 y Figura 5.6 se constata que el lindano no afecta 

significativamente a la velocidad de producción de biomasa medida a través de la 

concentración del número total de células y de la concentración de biomasa (peso 

seco). Además se alcanza en los cuatro experimentos comparados la misma 

concentración celular final. 

El consumo de sustrato tampoco presenta cambios significativos que indiquen 

una modificación de la tendencia de los experimentos sin lindano. Aunque en la Figura 

5.7 se observen algunas pequeñas diferencias entre los puntos observados, estas 

tienen que ver con la cantidad exacta inicial de glucosa de la que se parte. La 

concentración final de glucosa en los cuatro experimentos es la misma como se puede 

apreciar. 

Por último, la formación de producto tampoco presenta cambios significativos. 

En la Figura 5.8 se observa que la evolución de la concentración de etanol es igual en 

los cuatro experimentos comparados, aunque presente pequeñas variaciones en los 

puntos observados entre las 23 y 27 horas, debido posiblemente a las diferencias en la 

concentración inicial de glucosa. 

 

Figura 5.5. Comparación de la concentración del número total de células frente al 

tiempo en experimentos en ausencia de lindano y en presencia de lindano a 30 °C. 
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Figura 5.6. Comparación de la concentración de biomasa seca frente al tiempo en 

experimentos en ausencia de lindano y en presencia de lindano a 30 °C. 

 

Figura 5.7. Comparación de la concentración de glucosa frente al tiempo en 

experimentos en ausencia de lindano y en presencia de lindano a 30 °C. 
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Figura 5.8. Comparación de la concentración de etanol frente al tiempo en 

experimentos en ausencia de lindano y en presencia de lindano a 30 °C. 

Ya que no se han evidenciado modificaciones en los parámetros observados 

para el crecimiento microbiano se podría pensar que la levadura ha utilizado el lindano 

como fuente de carbono y energía. Por ello se analizó para cada experimento en 

presencia de lindano la concentración inicial y la final al cabo de 55 horas de 

experimento. Los resultados se muestran en la Tabla 5.2. 

Tabla 5.2. Análisis del lindano antes y después de la fermentación. 

Experimento 
Concentración 

teórica (ppb) 

Concentración 

inicial (ppb) 

Concentración 

final (ppb) 
Reducción (%) 

100 ppb 124,80 100,20 ± 0,27 65,65 ± 3,55 34,18 

2000 ppb 2280,00 2658,84 ± 55,13 2009,18 ± 40,34 24,43 

Aunque parece existir una reducción del lindano tras la fermentación, se cree 

que se debe al propio proceso de extracción líquido-líquido empleado para su análisis. 

En las extracciones de las muestras para la determinación de la concentración final se 

formaba una interfase entre la fase orgánica y la fase inorgánica que dificultaba la 

extracción. 

0,00

1,00

2,00

3,00

4,00

5,00

6,00

0 5 10 15 20 25 30

E
ta

n
o

l 
(g

·L
-1

) 

Tiempo (h) 

30 °C (12_04)

30 °C (26_04)

30 °C (10_05) - 100 ppb

30 °C (17_05) - 2000 ppb



  Resultados y discusión 

55 
 

Además en el cromatograma obtenido para las muestras finales, no se 

detectan otros picos distintos al del lindano, lo que nos lleva a pensar que no se han 

formado otros compuestos organoclorados tras una posible metabolización del mismo 

por parte de Saccharomyces cerevisiae. 

De todas formas se deberían realizar más pruebas y análisis en este sentido 

para aceptar totalmente estas suposiciones. Por ejemplo, analizando también la fase 

sólida, es decir las células tras la centrifugación previa al análisis del sobrenadante en 

las muestras de caldo de cultivo recogidas tras la fermentación. 

Por último, es importante hacer notar la buena reproducibilidad conseguida en 

los experimentos comparados a 30 °C. 

5.2 Comparación de los modelos cinéticos 

Se ha procedido al ajuste de los datos experimentales de las tres variables 

respuesta (X, S y P) obtenidos en cada experimento, a los distintos modelos cinéticos 

presentados en el apartado 4.6.3. 

Antes del ajuste de los datos experimentales se procedió a estimar los puntos 

pertenecientes al intervalo de 11 a 23 horas (datos correspondientes a la noche) a 

través de un modelo sigmoidal empírico para el crecimiento celular, completado con el 

balance de materia realizado al biorreactor. 

Aunque se ha realizado un ajuste de este tipo para cada uno de los 

experimentos de la Tabla 4.4 solo se muestran los resultados para uno de los dos 

experimentos a 30 °C, para no alargar la extensión de este trabajo. Concretamente el 

experimento que se presenta a continuación es el 26_04. 

En la Tabla 5.3 se muestran los parámetros cinéticos ajustados para los 

modelos comentados con inhibición Aiba, así como el valor resultado de maximizar la 

función objetivo y sus coeficientes de ajuste al cuadrado. Se puede observar que sus 

coeficientes de ajuste son cercanos a la unidad en prácticamente todos los modelos 

testeados, indicando que todos ajustan convenientemente los datos experimentales. 

Además, los parámetros cinéticos estimados concuerdan en orden de magnitud con 

los aportados por la bibliografía (Najafpour, 2007). 

En la Figura 5.9, Figura 5.10 y Figura 5.11 se plasman los ajustes de la 

producción de biomasa, consumo de sustrato y formación de producto 

respectivamente a través de los principales modelos testeados, indicando la buena 

correlación existente entre los datos observados y los datos calculados para todos los 

modelos. 
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Figura 5.9. Ajuste de la concentración de biomasa a través de los principales modelos 

testeados (con inhibición Aiba), a 30 °C. 

 

Figura 5.10. Ajuste de la concentración de sustrato a través de los principales modelos 

testeados (con inhibición Aiba), a 30 °C. 
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Figura 5.11. Ajuste de la concentración de producto a través de los principales 

modelos testeados (con inhibición Aiba), a 30 °C. 

A continuación se muestra un ejemplo de los ajustes individuales para el 

modelo de Tessier con inhibición Aiba. 

 

Figura 5.12. Ajuste de la velocidad volumétrica frente al tiempo a través del modelo de 
Tessier, a 30 °C. 
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Figura 5.13. Ajuste de la concentración de biomasa, sustrato, producto y balance de 

materia a través del modelo de Tessier con inhibición Aiba, a 30 °C. 

En la Figura 5.12 se observa como la velocidad volumétrica de biomasa (rX) es 

pequeña al principio porque la concentración de biomasa (X) también lo es, conforme 

pasa el tiempo aumenta hasta alcanzar un valor máximo y, finalmente, cuando se va 

agotando el sustrato (S), disminuye hasta anularse. Este comportamiento observado 

para la cinética microbiana catalizada por la biomasa (X) es característico de la 

denominada autocatálisis, en comparación con otras reacciones en las que la 

velocidad se mantiene o va decreciendo continuamente. 

En la Figura 5.13 se puede apreciar el buen cumplimiento del balance de 

materia a lo largo del tiempo de experimentación. 

Una vez obtenidos, para los diferentes modelos utilizados, los valores de los 

parámetros cinéticos, se puede estimar el efecto de la temperatura y calcular las 

correspondientes energías de activación y factores pre-exponenciales involucrados en 

cada parámetro. 
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Tabla 5.3. Parámetros cinéticos resultantes de los ajustes para 30 °C 

 

Monod + 
Aiba 

Tessier 1 + 
Aiba 

Tessier 2 + 
Aiba 

Tessier 3 + 
Aiba 

Konak + 
Aiba 

Moser 1 + 
Aiba 

Moser 2 + 
Aiba 

Contois 1 + 
Aiba 

Contois 2 + 
Aiba 

Webb 1 + 
Aiba 

Webb 2 + 
Aiba 

µm (h
-1

) 
0,9519 ± 

0,123 
1,1285 ± 

0,220 
2,9207 ± 

0,204 
2,3057 ± 

0,378 
0,9492 ± 

0,185 
2,5670 ± 

0,083 
1,4961 ± 

0,288 
0,9086 ± 

0,145 
0,8940 ± 

0,175 
1,6283 ± 

0,008 
1,8074 ± 

0,223 

KS  
(g·L

-1
) 

0,0271 ± 
0,005 

5,7623 ± 
0,053 

17,1503 ± 
1,176 

24,2857 ± 
0,186 

0,0015 ± 
0,0002 

18,2370 ± 
1,871 

5,6424 ± 
0,151 

5,0986 ± 
0,676 

4,2969 ± 
0,380 

9,3507 ± 
0,176 

10,6985 ± 
1,631 

n 
  

0,8295 ± 
0,135 

0,8167 ± 
0,113  

0,9005 ± 
0,171 

1,0467 ± 
0,115     

b 
    

2,1958 ± 
0,074       

KiS 

 (g·L
-1

)           
93,1592 ± 

15,587 

β 
          

1,2281 ± 
0,076 

YSX 
(g.g

-1
) 

4,9129 ± 
0,927 

4,9083 ± 
0,667 

4,8574 ± 
0,467 

4,8545 ± 
0,148 

4,5286 ± 
0,347 

4,8648 ± 
0,858 

4,8556 ± 
0,807 

4,6728 ± 
0,039 

4,8822 ± 
0,421 

4,9004 ± 
0,420 

4,8984 ± 
0,505 

YPX 

 (g.g
-1

) 
2,4102 ± 

0,079 
2,8283 ± 

0,360 
2,8115 ± 

0,147 
2,8092 ± 

0,121 
2,2660 ± 

0,191 
2,8114 ± 

0,265 
2,8060 ± 

0,505 
2,7633 ± 

0,546 
2,8095 ± 

0,079 
2,8312 ± 

0,535 
2,8333 ± 

0,262 

mS (h
-1

) 
0,5304 ± 

0,034 
0,4580 ± 

0,004 
0,4610 ± 

0,040 
0,4605 ± 

0,071 
0,5021 ± 

0,047 
0,4602 ± 

0,059 
0,4604 ± 

0,024 
0,4887 ± 

0,074 
0,4579 ± 

0,077 
0,4572 ± 

0,062 
0,4574 ± 

0,061 

p 
1,2648 ± 

0,239 
1,0461 ± 

0,015 
1,0300 ± 

0,044 
1,0270± 

0,111 
1,0000 ± 

0,115 
1,0311 ± 

0,182 
1,0266 ± 

0,093 
1,0155 ± 

0,004 
1,0286 ± 

0,079 
1,0401 ± 

0,108 
1,0400 ± 

0,045 

mP (h
-1

) 
0,2146 ± 

0,030 
0,1653 ± 

0,016 
0,1668 ± 

0,020 
0,1667 ± 

0,029 
0,2077 ± 

0,028 
0,1666 ± 

0,015 
0,1674 ± 

0,009 
0,1691 ± 

0,023 
0,1668 ± 

0,019 
0,1652 ± 

0,025 
0,1654 ± 

0,018 

q 
1,2036 ± 

0,182 
1,0551 ± 

0,060 
1,0564 ± 

0,132 
1,0520 ± 

0,192 
1,0000 ± 

0,068 
1,0533 ± 

0,049 
1,0582 ± 

0,150 
1,0342 ± 

0,074 
1,0534 ± 

0,013 
1,0568 ± 

0,026 
1,0621 ± 

0,102 

KP  

(g·L
-1

) 
0,8329 ± 

0,120 
1,0990 ± 

0,013 
1,1586 ± 

0,006 
1,1550 ± 

0,083 
0,8292 ± 

0,022 
1,1310 ± 

0,197 
1,0728 ± 

0,097 
1,1720 ± 

0,180 
1,2693 ± 

0,036 
1,1342 ± 

0,037 
1,1444 ± 

0,065 

F.O. 
(CSM) 

16,55227 16,49952 16,50899 16,51050 15,82936 16,49571 16,46224 16,40020 16,43014 16,50251 16,46049 

R
2
 X 0,99899 0,99897 0,99902 0,99902 0,99914 0,99900 0,99896 0,99889 0,99891 0,99897 0,99897 

R
2
 S 0,99347 0,99351 0,99346 0,99345 0,99314 0,99347 0,99349 0,99347 0,99352 0,99351 0,99350 

R
2
 P 0,99209 0,99160 0,99147 0,99147 0,98180 0,99151 0,99154 0,99143 0,99164 0,99160 0,99160 
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De esta manera se realizaron los ajustes monovariable y multivariable 

comentados en el apartado 4.7.2. 

De entre todos los modelos testados, se han utilizado únicamente los de 

Monod, Tessier y Konak, por ser los que mejores resultados presentaban (ver Tabla 

5.3). Se muestran únicamente los resultados para el modelo de Tessier por ajuste 

monovariable, por no alargar en exceso la extensión de este trabajo. En la Tabla 5.4 

se muestran los parámetros cinéticos ajustados para el modelo de Tessier con 

inhibición Aiba, así como el valor resultado de maximizar la función objetivo global y 

sus coeficientes de ajuste al cuadrado. Se puede observar que sus coeficientes de 

ajuste son cercanos a la unidad para todas las temperaturas testeadas. 

Tabla 5.4. Parámetros cinéticos resultantes del ajuste monovariable a través del 

modelo de Tessier-Aiba para varias temperaturas. 

 
Temperatura (°C) 

Parámetro cinético 20 25 30 35 

µm (h
-1

) 0,2820 ± 0,025 0,4719 ± 0,042 1,1279 ± 0,102 1,7339 ± 0,156 

KS (g·L
-1

) 0,0509 ± 0,005 0,9570 ± 0,086 5,7558 ± 0,518 29,4124 ± 2,647 

YXS (g.g
-1

) 0,3157 ± 0,028 0,2972 ± 0,027 0,2037 ± 0,018 0,0882 ± 0,008 

YXP (g.g
-1

) 0,6174 ± 0,056 0,7220 ± 0,065 0,3536 ± 0,032 0,2386 ± 0,021 

mS (h
-1

) 0,4913 ± 0,044 0,4422 ± 0,040 0,4580 ± 0,041 0,4398 ± 0,035 

p 1,2833 ± 0,115 0,6585 ± 0,059 1,0461 ± 0,094 0,0606 ± 0,005 

mP (h
-1

) 0,2100 ± 0,019 0,2330 ± 0,021 0,1653 ± 0,015 0,0109 ±  0,001 

q 1,2495 ± 0,112 0,6874 ± 0,062 1,0551 ± 0,095 1,2118 ± 0,109 

KP (g·L
-1

) 0,9771 ± 0,088 1,0054 ± 0,090 1,0990 ± 0,099 4,2827 ± 0,385 

F.O. (CSM) 17,52372 19,32211 16,49950 16,91797 

R
2
 X 0,99593 0,99847 0,99897 0,91034 

R
2
 S 0,98969 0,99659 0,99351 0,99966 

R
2
 P 0,99952 0,99936 0,99161 0,99877 

F.O.G (CSMglobal) 70,26331 

Se puede observar como la velocidad específica máxima de crecimiento (µm) 

aumenta conforme lo hace la temperatura. Aunque en este trabajo no se ha observado 
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el efecto, la velocidad específica máxima de crecimiento (µm) crece con la temperatura 

hasta un cierto punto en el que se inicia la desnaturalización de las proteínas, y un 

rápido descenso más allá de esta temperatura (Ratledge et al., 2009). Para observar 

dicho fenómeno se tendría que haber experimentado con temperaturas superiores a 

los 35 °C. 

Como es lógico, si la velocidad específica de crecimiento máxima (µm) 

aumenta, por su propia definición, la constante de sustrato (KS) también lo hará, como 

se puede comprobar según nuestros ajustes. 

El rendimiento de biomasa a partir de sustrato (YXS) ajustado parece disminuir 

con el aumento de la temperatura. Esto indicaría que el sustrato consumido se desvía 

de la producción de biomasa conforme aumenta la temperatura. Por otro lado el 

rendimiento de biomasa a partir de producto (YXP) también parece disminuir con la 

temperatura, sobre todo a 35 °C. 

La constante de inhibición por producto (KP) permanece prácticamente 

constante para las tres primeras temperaturas, aumentando a 35 °C. Este resultado es 

sorprendente, ya que según la bibliografía, el efecto de la inhibición del crecimiento de 

la biomasa por efecto del etanol, es más acusado, al aumentar la temperatura de 

operación (Torija, 2002). Sin embargo, todos los resultados obtenidos en este trabajo 

indican que el valor de KP se mantiene constante a temperatura por debajo de 30 ºC. A 

35 ºC, incluso se observa un aumento de KP, lo que implica una disminución del efecto 

de inhibición, pero este valor puede estar afectado por la competencia de otras 

reacciones metabólicas, que dan lugar a la síntesis de otros productos distintos del 

etanol (Casey & Ingledew, 1986). No obstante, este aspecto debe ser clarificado en 

estudios posteriores. 

En la Tabla 5.5 se presentan los valores de la energía de activación de cada 

parámetro cinético, obtenidas mediante ajuste monovariable y multivariable, mediante 

el denominado modelo de Tessier-Aiba a través de la ecuación de Arrhenius. 
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Tabla 5.5. Energías de activación de cada parámetro cinético a través del ajuste 

monovariable y multivariable para Tessier-Aiba. 

 
µm KS KP YXS YXP 

Ea monovariable 
(kJ·mol-1) 

94,9 ± 4,7 313,8 ± 15,7 67,2 ± 3,4 62,7 ± 3,1 
53,2 ± 

2,7 

Ea multivariable 
(kJ·mol-1) 

70,4 ± 3,5 241,9 ± 12,1 4,0 ± 0,2 32,7 ± 1,6 
33,4 ± 

1,7 

Los ajustes exponenciales realizados para calcular las energías de activación 

en el ajuste monovariable para cada parámetro a través de la ecuación (32) se 

muestran en las siguientes gráficas de Arrhenius: 

 

Figura 5.14. Representación de Arrhenius para la velocidad específica máxima de 

crecimiento. 
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Figura 5.15. Representación de Arrhenius para la constante de sustrato. 

 

Figura 5.16. Representación de Arrhenius para la constante de producto. 
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Figura 5.17. Representación de Arrhenius para el rendimiento de biomasa a partir de 

sustrato. 

 

Figura 5.18. Representación de Arrhenius para el rendimiento de biomasa a partir de 

producto. 

 

y = 0,248e62,704x 
R² = 0,8427 

0,01

0,1

1

-0,015 -0,01 -0,005 0 0,005 0,01

Y
X

S
 (

g
·g

-1
) 

VT (mol ·kJ-1) 

y = 0,5226e53,231x 
R² = 0,8042 

0,1

1

-0,015 -0,01 -0,005 0 0,005 0,01

Y
X

P
 (

g
·g

-1
) 

VT (mol ·kJ-1) 



  Conclusiones 

65 
 

6 CONCLUSIONES 

Los resultados obtenidos en los experimentos realizados, así como los 

posteriores ajustes experimentales de los datos observados, permiten obtener las 

siguientes conclusiones: 

1. Los protocolos elaborados para el seguimiento del bioproceso así como 

las condiciones de trabajo empleadas, han conseguido una 

reproducibilidad en los experimentos muy significativa. 

2. El ajuste experimental de los datos observados a través de los 

diferentes modelos cinéticos utilizados ha permitido obtener con 

suficiente precisión los parámetros cinéticos necesarios para la correcta 

modelización del bioproceso, lo que permitiría el diseño de un posible 

biorreactor a escala industrial. 

3. Se ha analizado el efecto de la temperatura mediante diversos modelos 

cinéticos, ver Tabla 5.3, de crecimiento de biomasa (SC) en condiciones 

anaerobias, de consumo de sustrato (glucosa) y de obtención de 

producto (etanol). Estos modelos incluyen los procesos de 

mantenimiento metabólico y el efecto de inhibición del producto. De 

todos los modelos ensayados, el denominado modelo de Tessier-Aiba 

es el que mejor ajusta los resultados experimentales. 

4. Mediante el modelo de Tessier-Aiba se ha obtenido que la energía de 

activación aparente de proceso (correspondiente al parámetro 𝜇𝑚) es 

de unos 70 kJ/mol. Así mismo, la  energía de activación aparente 

asociada al parámetro 𝐾𝑆 (análogo a la constante de Monod) es de unos 

240 kJ/mol. Los rendimientos de sustrato a biomasa y producto 

disminuyen con la temperatura de operación. 

5. La constante de inhibición por el producto (𝐾𝑃) permanece constante 

para las temperaturas por debajo de 30 °C. A temperaturas superiores, 

se observa una disminución del efecto de inhibición (i.e. un aumento de 

𝐾𝑃), lo cual puede ser debido a la competencia de otras reacciones 

metabólicas que dan lugar a la síntesis de otros productos distintos del 

etanol (Casey & Ingledew, 1986). 

6. Las cinéticas de crecimiento, consumo de sustrato (glucosa) y 

formación de producto (etanol) de la cepa estudiada de Saccharomyces 
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cerevisiae, en condiciones anaerobias, no se ven alteradas frente a 

concentraciones de lindano en el medio de cultivo por debajo de 2000 

ppb. 

7. No existen evidencias claras de una posible metabolización del lindano 

por parte de la cepa estudiada de Saccharomyces cerevisiae para su 

uso como fuente de carbono y energía, bajo las condiciones empleadas. 

Para la realización de trabajos futuros dentro de este ámbito se proponen los 

siguientes puntos: 

1. Utilización de otra especie microbiana de la que exista constancia de su 

degradación del lindano, para el posible diseño de un biorreactor de 

eliminación de lindano en aguas contaminadas. 

2. Independientemente de la utilización de otra especie microbiana, 

plantear un diseño experimental que permita estudiar otras variables del 

proceso como puede ser el pH, la concentración de sustrato, 

condiciones aerobias (oxígeno disuelto), la agitación etc., además de la 

temperatura. 

Fuera del ámbito de estudio de este trabajo, ya que con la consecución del 

mismo se ha puesto en marcha una línea experimental para el estudio de un 

bioproceso, se deberían contemplar las siguientes posibilidades de estudio: 

1. La utilización de distintos subproductos para su uso como medio de 

cultivo en un determinado bioproceso de interés industrial. 

2. La producción de diversos metabolitos de interés comercial como 

enzimas, antibióticos, insecticidas, proteínas terapéuticas, ácidos 

orgánicos, pigmentos, vacunas, vitaminas etc., a través de cepas 

microbianas especializadas, o incluso de cepas modificadas 

genéticamente para su experimentación confinada. 

3. La cinética enzimática de una determinada enzima en particular. 
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ANEXOS 

Anexo 1. Protocolo de preparación del preinóculo 

Reactivos 

 Levaduras secas activas (LSA). 

 Agua destilada estéril. 

 Medio de cultivo líquido preparado según apartado 4.1.2. 

 Disoluciones ácido y base preparadas según apartado 4.3.2. 

Material 

 Matraz Erlenmeyer de 250 mL. 

 Imán de agitación magnética. 

 Tubos Eppendorf de 1,5 mL. 

 Papel de aluminio. 

Equipos 

 Baño de agua. 

 pH-metro. 

 Cámara de cultivo. 

 Autoclave. 

 Balanza granataria. 

 Agitador magnético y vórtex. 

 Micropipetas. 

Procedimiento 

Preparación del matraz de cultivo 

1. Añadir 250 mL de medio de cultivo líquido a un matraz Erlenmeyer (matraz de 

cultivo). Introducir el imán de agitación magnética. 

2. Ajustar al pH elegido (apartado 4.3.1) con el pH-metro y las disoluciones ácido 

y base en agitación magnética. 

3. Cubrir el cuello del Erlenmeyer con papel de aluminio y autoclavar a 121 °C 

durante 15 min. 
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Rehidratación de LSA e inoculación del matraz de cultivo 

1. Pesar 0,1 g de levadura seca activa (LSA) en la balanza granataria e 

introducirlos en un tubo Eppendorf de 1,5 mL. De esta manera la concentración 

de LSA en el matraz de cultivo será 0,4 g/L que es lo que recomienda el 

fabricante. 

2. Calentar al baño maría un frasco con agua destilada estéril a 35 °C. Cuando 

alcance la temperatura, pipetear 1 mL al tubo Eppendorf con las levaduras. 

Agitar en el vórtex hasta su disolución y colocar en el baño maría a 35 °C 

durante 20 minutos. De esta forma, las levaduras se rehidratan en 10 veces su 

peso en agua destilada estéril como recomienda el fabricante. 

3. Para la inoculación del matraz de cultivo, retirar con cuidado el papel de 

aluminio que lo cubre y pipetear todo el contenido del tubo Eppendorf. Volver a 

cubrir. Colocar en la cámara de cultivo para su incubación con agitación media 

en las condiciones que se indican en el apartado 4.3.1.  
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Anexo 2. Protocolo de toma de muestras 

Reactivos 

 Formaldehído al 37-38 % estabilizado con metanol (formol) 

Material 

 Viales de recogida de muestras de 20 mL. 

 Viales de cromatografía de 1,5 mL. 

 Tubos Eppendorf de 1,5 mL. 

 Tubos Falcon de 15 mL. 

 Pipeta Pasteur. 

Equipos 

 Centrífuga de tubos Eppendorf de 1,5 mL. 

 Centrífuga de tubos Falcon de 15 mL. 

 Micropipeta de 1000 µL. 

 Vórtex. 

Procedimiento 

A través del sistema de toma de muestras directo del biorreactor se extraen en 

un vial de recogida de muestras 10 mL aproximadamente del caldo de cultivo, para 

repartir como describen los siguientes pasos: 

1. Pipetear 450 µL de muestra a un tubo Eppendorf junto con 50 µL de 

formaldehído al 37 %. Agitar en el vortex. Este tubo Eppendorf, rotulado 

adecuadamente, se reserva para la determinación total de microorganismos. 

De esta manera se fijan las células al 3,7 % en formol. 

2. Pipetear a dos tubos Eppendorf, 1500 µL de muestra en cada uno y centrifugar 

a 12000 rpm durante 6 minutos para separar las células. Posteriormente 

pipetear 1000 µL del sobrenadante de cada uno y transferir a un tubo 

Eppendorf y a un vial de 1,5 mL de cromatografía, que se reservan para el 

análisis de la glucosa y del etanol respectivamente. 

3. El resto del volumen del vial de recogida de muestras se utiliza para la 

medición de la absorbancia con el espectrofotómetro VIS según se detalla en el 

apartado. Se recomienda realizar la medición mientras se centrifugan los tubos 

Eppendorf del paso  anterior. 
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Anexo 3. Protocolo de determinación del número total de 

microorganismos 

Reactivos 

No se describen reactivos en este protocolo. 

Materiales 

No se describen materiales en este protocolo. 

Equipos 

 Microscopio Optika modelo B-350. 

 Cámara de conteo celular tipo Bürker. 

 Software: Optika 7.1 e ImageJ 1.50b. 

 Micropipeta de 10 µL. 

 Vórtex. 

Procedimiento 

Captura de imágenes al microscopio 

1. Cargar la cámara de conteo Bürker con una muestra recogida para la 

determinación total de microorganismos (ver apartado 4.3.5). Para ello pipetear 

10 µL de muestra y e ir introduciéndolos lentamente entre el cubreobjetos y el 

portaobjetos de la cámara Bürker. Observar que el líquido se desplaza 

rellenando el espacio que existe entre el cubreobjetos y el portaobjetos. 

Cuando dicho espacio se ha llenado completamente es el momento de dejar de 

pipetear. 

2. Una vez cargada la cámara Bürker se coloca en el microscopio. Enfocar con el 

objetivo de 10x hasta obtener una imagen nítida. Conectar la cámara digital del 

microscopio al ordenador y ejecutar el software OptikaView 7.1. El software 

detecta automáticamente la cámara. Seleccionar cámara a color. Se abre una 

nueva ventana con la imagen en directo que recoge del microscopio. 

Enfocamos de nuevo si es necesario y pulsamos “Snap” para hacer una 

captura. 

3. Capturar 5 fotos aleatorias fuera de la cuadrícula de conteo, y guardarlas en 

una carpeta para cada muestra. Esto último es importante para la correcta 

actuación de la macro de conteo automático del siguiente apartado. En la barra 

de título de la ventana de captura aparece el directorio donde se guardan las 

fotos Se recomienda tomar las cuatro primeras fotos en cada esquina de la 
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cuadrícula y la quinta donde se desee. De esta manera conseguimos que la 

captura de imágenes sea lo más representativa posible. 

4. Repetir los pasos 1, 2 y 3 con cada muestra que recojamos del biorreactor. 

Procesamiento de las imágenes y conteo 

1. Para el conteo celular de las fotos capturadas para cada muestra y que hemos 

organizado en carpetas utilizamos la macro de conteo 

“CellCounting_modificada” que previamente hemos instalado. Ver siguiente 

apartado. Ejecutar el software ImageJ. Pulsar “Plugins” y en el desplegable 

seleccionar la macro de conteo “CellCounting_modificada”. Se abre una 

ventana para que seleccionemos la carpeta donde están guardadas las 5 fotos 

capturadas para cada muestra. Pulsar “Select” y automáticamente el programa 

realiza el conteo y genera un documento de texto que guarda en la misma 

carpeta donde se encuentran las fotos. En dicho documento aparece el número 

de células que ha contado en cada foto, la media, la desviación estándar y el 

valor máximo y mínimo. 

2. Para hallar el área real que se observa en las fotografías realizadas debemos 

capturar una imagen de la cuadrícula de la cámara de conteo. El objetivo es 

obtener una captura en la que aparezca una dimensión conocida para que el 

software ImageJ calcule el área real. Ejecutar ImageJ y abrir dicha imagen. 

Con la herramienta de trazado de líneas, trazar un segmento sobre la arista de 

un cuadrado de 0,2 mm. (ver Figura A 1) Pulsar “Analyze/Set scale…” y en 

“Know distance” introducir 0.2 (utilizar el punto decimal) y en “Unit of lenght” 

escribir mm. Pulsar “Ok”. Automáticamente en la barra de estado de la imagen 

aparecen las dimensiones del área que vemos en la imagen en mm. El paso 2 

no hay que realizarlo con cada foto, ya que si no modificamos las condiciones 

de la captura, el área real se mantiene constante entre fotografías. 

3. Finalmente en una hoja Excel implementamos la siguiente relación para 

calcular el número de células por unidad de volumen de una muestra. En 

ocasiones el número de células será muy elevado y será necesario realizar una 

dilución para un conteo adecuado: 

Células por unidad de vol. = 
Media del número de células

Área foto ∙ Altura cámara
 ∙ Factor dilución 
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Figura A 1. Esquema cámara Bürker y dimensiones de cuadrícula de un cuadrado 

grande (fuente: elaboración propia a partir de catálogo comercial Celeromics) 

0,1 mm 
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Macro de conteo automática 

La macro de conteo modificada a partir de la macro creada por por Ivan V. 

Grishagin de la Universidad de California (Grishagin, 2015) se muestra a continuación. 

Para su instalación únicamente hay que copiar el código en un procesador de 

texto plano (Bloc de notas en Windows) y salvarlo con la extensión “.ijm”. 

Posteriormente este archivo se copiará en la carpeta “Plugins” del software ImageJ. 

Macro CellCounting_modificada 

macro "cell_count--Maxima" { 

 

//show prompt for selection of source directory 

dir = getDirectory("Choose source directory"); 

list = getFileList(dir); //get the file list 

resultsFileName = "Cell counting results (ccm1).txt" 

 

setBatchMode(true); //hide all the details from user 

//process every file... 

for (i=0; i<list.length; i++) { 

   

 //...that has .bmp extension 

 if (endsWith(list[i], ".bmp")) { 

  open(dir+list[i]); 

    

  //find intensity maxima 

  run("Find Maxima...", "noise=10 output=[Count] exclude light"); 

  selectWindow(list[i]); 

  close(); 

 } 

} 

//summarize all data and copy the results 

run("Summarize"); 

String.copyResults(); 

setBatchMode(false); 

 

//create a text file with counting results 

saveAs("Results",dir+resultsFileName); 

} 
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Anexo 4. Protocolo de determinación del peso seco celular 

Reactivos 

 Agua destilada 

Materiales 

 Viales de recogida de muestras de 20 mL. 

 Viales de vidrio de 20 mL con tapa. 

 Tubos Falcon de 15 mL. 

 Pipeta Pasteur. 

Equipos 

 Centrífuga para tubos tipo Falcon de 15 mL refrigerada. 

 Estufa. 

 Micropipeta de 1000 µL. 

 Balanza analítica. 

 Vórtex. 

Procedimiento 

Tarado de viales 

1. Pesar en la balanza analítica 6 viales de vidrio de 20 mL sin tapa y anotar sus 

pesos exactos. Los viales deben estar perfectamente limpios y sin restos de 

ningún tipo. Se recomienda trabajar con guantes para no dejar huellas en los 

viales que modifiquen el peso. 

2. Rotular las tapas de los viales con el fin de identificar cada vial con su peso 

exacto. 

Secado de la muestra  

1. A partir de la toma de muestras directa del biorreactor recoger 15 mL 

aproximadamente de caldo de cultivo en los viales de recogida de muestras de 

20 mL. 

2. Transvasar 14 mL a un tubo Falcon de 15 mL y centrifugar la muestra en la 

centrifuga para tubos tipo Falcon a 5000 rpm durante 12 minutos a 4°C. 

3. Pasado ese tiempo, con ayuda de una pipeta Pasteur eliminar el sobrenadante 

con cuidado de no arrastrar parte del pellet. 
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4. Añadir aproximadamente 10 mL de agua destilada y agitar en el vórtex hasta 

que el pellet se haya resuspendido completamente. 

5. Centrifugar a 5000 rpm durante 12 minutos a 4 °C. 

6. Pasado ese tiempo, eliminar el sobrenadante con cuidado de no arrastrar parte 

del pellet. 

7. Añadir una pequeña cantidad de agua destilada (aproximadamente 1000 µL) 

suficiente para resuspender el pellet de nuevo con ayuda de la micropipeta de 

1000 µL. 

8. Pipetear todo el contenido del tubo Falcon a uno de los viales tarados 

previamente e introducirlo en la estufa a 105 °C durante 24 horas sin la tapa 

(Rice et al., 1980). 

Cálculo del peso seco celular 

1. Transcurrido el tiempo de secado sacar los viales de la estufa y taparlos con 

sus correspondientes tapas. 

2. Quitar la tapa y pesarlos en la balanza analítica hasta que la medida del peso 

se estabilice. Se recomienda trabajar con guantes. 

3. El cálculo del peso seco celular se calcula con la siguiente ecuación donde el 

volumen de caldo de cultivo serán los 14 mL centrifugados inicialmente: 

Peso seco celular = 
Peso vial tras secado −  Peso tara vial

Volumen de caldo de cultivo
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Anexo 5. Protocolo de análisis de glucosa 

Reactivos 

 Ácido sulfúrico 95-98 % puro. 

 Disolución de fenol en agua destilada al 80 % p/p. 

 Disolución madre de D(+)-glucosa de 100 mg/L. 

 Agua destilada. 

Materiales 

 Tubos de ensayo de 25 mL (20 uds.) y gradilla metálica. 

 Vasos de precipitado de 500 mL y 100 mL. 

Equipos 

 Espectrofotómetro para el espectro visible. 

 Micropipetas de 100, 1000 y 5000 µL. 

 Vórtex. 

 Baño de agua. 

 Dispensador de 10 mL para ácidos. 

Procedimiento 

Recta de calibrado 

Se recomienda preparar 5 patrones de glucosa a partir de una disolución 

madre de glucosa de 100 mg/L en tubos de ensayo a un volumen final de 2 mL con 

agua destilada a la concentración que se muestra en la Tabla A 1. Preparar un blanco. 

Tabla A 1. Concentración de los patrones y volúmenes para su preparación 

Concentración glucosa (µg/mL) Disolución madre (mL) Agua destilada (mL) 

0 0,0 2,0 

10 0,2 1,8 

20 0,4 1,6 

30 0,6 1,4 

40 0,8 1,2 

50 1,0 1,0 
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Una vez preparadas las disoluciones patrón en cada tubo de ensayo se 

procede siguiendo los pasos que se detallan a continuación: 

1. Añadir 50 µL de disolución de fenol en agua al 80 % p/p a cada uno de los 

tubos de ensayo que contienen un volumen total de 2 mL. Agitar con vórtex. 

2. Añadir 5 mL de ácido sulfúrico 95-98 % puro a cada uno de los tubos con el 

dispensador. Se ha de añadir rápidamente al tubo de ensayo dirigiendo el 

chorro contra la superficie del líquido a efecto de conseguir un buen mezclado 

(El calor generado impulsa la reacción por ello se debe normalizar la velocidad 

de adicción del ácido). Agitar con vórtex. 

3. Dejar reposar los tubos durante 10 minutos. Colocarlos seguidamente en un 

baño de agua a 25 °C de 10 a 20 minutos (esto es para enfriarlos). 

4. Agitar con vórtex antes de la lectura de la absorbancia. Para la lectura de la 

absorbancia a 490 nm en el espectrofotómetro primero establecer el cero 

instrumental con la disolución blanco. Seguidamente medir los patrones del 

más diluido al más concentrado. 

Análisis de muestras 

1. Descongelar las muestras recogidas para la determinación de sustrato (ver 

apartado 4.3.5). Agitar en el vórtex. 

2. En tubos de ensayo preparar en un volumen total de 4 mL en cada uno, las 

diluciones adecuadas con agua destilada para medir las muestras dentro del 

intervalo de la recta de calibrado calculada en el apartado anterior. Preparar un 

blanco (4 mL de agua destilada). 

3. Añadir 100 µL de disolución de fenol en agua al 80 % p/p a cada uno de los 

tubos de ensayo que contienen un volumen total de 4 mL. Agitar con vórtex. 

4. Añadir 10 mL de ácido sulfúrico 95-98 % puro a cada uno de los tubos con el 

dispensador. Se ha de añadir rápidamente al tubo de ensayo dirigiendo el 

chorro contra la superficie del líquido a efecto de conseguir un buen mezclado 

(El calor generado impulsa la reacción por ello se debe normalizar la velocidad 

de adicción del ácido). Agitar con vórtex. 

5. Dejar reposar los tubos durante 10 minutos. Colocarlos seguidamente en un 

baño de agua a 25 °C de 10 a 20 minutos (esto es para enfriarlos). 
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6. Agitar con vórtex antes de la lectura de la absorbancia. Para la lectura de la 

absorbancia a 490 nm en el espectrofotómetro primero establecer el cero 

instrumental con la disolución blanco. Seguidamente medir las muestras de la 

más diluida a la más concentrada (esto es, empezando por la última muestra 

que se recogió en el biorreactor). 

En el paso 2 se recomienda hacer las diluciones suponiendo en todas 10 g/L 

de glucosa para una concentración en la recta de calibrado de 50 µg/mL (extremo 

superior), hasta que en las últimas muestras recogidas (glucosa prácticamente 

consumida) la señal obtenida se salga del intervalo de medición de la recta de 

calibrado, por lo que habrá que hacer diluciones suponiendo una concentración menor 

de glucosa. 
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Anexo 6. Protocolo de análisis de etanol 

Reactivos 

 Etanol al 96 % v/v. 

 Agua destilada. 

Materiales 

 Viales de cromatografía de 1,5 mL. 

 Dos matraces aforados de 100 mL. 

Equipos 

 Cromatógrafo de gases inyección automática (detector FID). 

 Micropipetas de 100 y 1000 µL.. 

Procedimiento 

Recta de calibrado 

Se recomienda preparar 6 patrones de etanol a partir de dos disoluciones al 

0,192 % y al 0,960 % de etanol en volumen con agua destilada. Para la preparación de 

las disoluciones se añaden 200 y 1000 µL de etanol al 96 % v/v respectivamente en 

matraz aforado de 100 mL con agua destilada. 

Los volúmenes a añadir para la elaboración de los patrones a un volumen final 

de 1,5 mL en viales cromatográficos, así como la concentración resultante de los 

mismos a partir de las disoluciones comentadas se muestran en la Tabla A 2. 

Tabla A 2. Concentración de patrones y volúmenes para su preparación 

Concentración 

disolución (%) 

Disolución 

(µL) 

Agua destilada 

(µL) 

Concentración final 

etanol patrón (%) v/v 

0,192 75 1425 0,0096 

0,960 75 1425 0,0480 

0,960 155 1345 0,0992 

0,960 470 1030 0,3008 

0,960 780 720 0,4992 

0,960 1250 250 0,8000 
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Medición de patrones y muestras 

Una vez preparados los patrones en los viales y recogidas las muestras para la 

determinación del etanol (ver apartado 4.3.5) se procede a su medición en el 

cromatógrafo. Para ello se siguen los siguientes pasos generales: 

1. Colocar las muestras y los patrones en el carro automuestreador, además de 

los 2 viales de lavado de la jeringa (con agua destilada) y el vial de residuos. 

2. Abrir los gases. En concreto helio, nitrógeno, aire e hidrógeno. 

3. Encender el cromatógrafo y el ordenador asociado. 

4. Ejecutar el software de Agilent (online). 

5. Una vez dentro del programa, cargar el método (elaborado previamente) y 

crear una tabla de secuencia. En el método se especifican algunas de las 

condiciones cromatográficas indicadas en la Tabla 4.1 y Tabla 4.2. En la tabla 

de secuencia se relacionan las muestras colocadas en el carro 

automuestreador con su denominación y se indica el número de réplicas por 

cada vial. 

6. Para comenzar los pinchazos pulsar “Run Sequence”. 

7. Para ver los resultados una vez terminados los pinchazos ejecutar el software 

Agilent (Offline). El etanol aparece a un tiempo de retención de 1,8 minutos 

aproximadamente. 

Para más detalles del proceso seguido acudir a los manuales del software y del 

equipo. 
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Anexo 7. Protocolo de análisis de lindano 

Reactivos 

 Lindano (γ-HCH) 

 n-Hexano 95% para análisis de pesticidas. 

 Sulfato sódico anhidro. 

 Cloruro de sodio. 

 Acetona. 

Materiales 

 Dos embudos de decantación de 50 mL. 

 Soporte de laboratorio y dos pinzas. 

 Viales de cromatografía de 1,5 mL. 

 Dos tubos de ensayo herméticos de 20 mL. 

 Vial de vidrio con tapa de 20 mL. 

Equipos 

 Cromatógrafo de gases inyección manual (detector ECD). 

 Centrífuga para tubos tipo Falcon de 15 mL refrigerada. 

 Micropipetas de 100 y 1000 µL. 

 Balanza analítica. 

Procedimiento 

Recta de calibrado 

Se recomienda preparar 5 patrones de lindano en hexano a partir de una 

disolución madre intermedia de 1 ppm de lindano en hexano. A su vez, dicha 

disolución madre intermedia se preparará a partir de una disolución madre de 1000 

ppm de lindano en hexano. Se utiliza una disolución intermedia ya que hay que pesar 

muy poca cantidad de lindano para su preparación en un volumen final de 20 mL 

(capacidad máxima del tubo de ensayo hermético donde se conservarán las 

disoluciones madre). 

La concentración teórica aproximada de los patrones y los volúmenes a añadir 

para su elaboración a partir de la disolución de 1 ppm de lindano en hexano en viales 

cromatográficos de 1,5 mL, se muestra en la Tabla A 3. 

Tanto las disoluciones madre como los patrones se prepararán en peso, para 

conseguir más exactitud. Por ello se recalcularan las concentraciones reales de las 

disoluciones madre y de los patrones a partir del peso de los volúmenes añadidos. 
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Tabla A 3. Concentración de patrones y volúmenes para su preparación 

Patrón teórico aproximado (ppb) Disolución madre 1 ppm (µL) Hexano (µL) 

50 75 1425 

125 190 1310 

200 305 1195 

275 420 1080 

350 535 965 

Los pasos a seguir para la preparación de un patrón se muestran a 

continuación: 

1. Pesar un vial cromatográfico de 1,5 mL con su tapa en la balanza analítica y 

anotar su peso exacto. 

2. Añadir el volumen de disolución madre de 1 ppm correspondiente al patrón 

teórico que se desee preparar (ver Tabla A 3). Cerrar rápidamente y pesar en 

la balanza analítica anotando el peso exacto. 

3. Añadir el volumen de hexano correspondiente al patrón teórico que se desee 

preparar (ver Tabla A 3). Cerrar rápidamente y pesar en la balanza analítica 

anotando el peso exacto. Agitar con cuidado. 

4. Colocar el vial en el congelador a -18 °C hasta su uso. 

Debido a la gran volatilidad del hexano se recomienda trabajar rápidamente 

cerrando herméticamente las disoluciones lo antes posible y guardar en el congelador 

a -18 °C. 

Toma de muestras 

1. A partir de la toma de muestras directa del biorreactor recoger 15 mL 

aproximadamente de caldo de cultivo en los viales de recogida de muestras de 

20 mL. 

2. Transvasar 14 mL a un tubo Falcon de 15 mL y centrifugar la muestra en la 

centrifuga para tubos tipo Falcon a 5000 rpm durante 12 minutos a 4°C. 

3. Pasado ese tiempo, con ayuda de una pipeta Pasteur transvasar el 

sobrenadante con cuidado de no arrastrar parte del pellet a otro tubo Falcon de 

15 mL nuevo. 
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4. Conservar el tubo Falcon con el sobrenadante en el congelador a -18 °C hasta 

su análisis. 

Extracción líquido-líquido 

Se va a proceder a la extracción del lindano con hexano en dos fases en las 

muestras acuosas recogidas en el biorreactor (apartado anterior). Se siguen los 

siguientes pasos: 

1. Pipetear 10 mL de muestra con pipeta aforada en un embudo de decantación 

de 50 mL. 

2. Añadir una pequeña cantidad de cloruro de sodio con espátula. 

3. Pipetear 5 mL de hexano. Cerrar el embudo de decantación y agitar 

vigorosamente durante 5 minutos invirtiendo de vez en cuando el embudo y 

abriendo la llave muy lentamente para dejar salir los gases. 

4. Dejar reposar el embudo en el soporte durante 15 minutos aproximadamente 

hasta que las dos fases se separen claramente. 

5. Pesar un vial de vidrio con tapa de 20 mL. Anotar el peso exacto. 

6. Colocar en el soporte un segundo embudo de decantación debajo del primer 

embudo. Transvasar del primero al segundo la fase acuosa quitando el tapón y 

abriendo la llave lentamente. 

7. Pipetear la fase orgánica al vial de vidrio pesado en el paso 5 con micropipeta y 

cerrar herméticamente. 

8. Pipetear 5 mL de hexano de nuevo en el primer embudo. Cerrar el embudo de 

decantación y agitar ligeramente. Transvasar el hexano al segundo embudo de 

decantación. Cerrarlo y agitar vigorosamente durante 5 minutos invirtiendo de 

vez en cuando el embudo y abriendo la llave muy lentamente para dejar salir 

los gases. 

9. Dejar reposar el embudo en el soporte durante 15 minutos aproximadamente 

hasta que las dos fases se separen claramente. 

10. Desechar definitivamente la fase acuosa y recuperar con micropipeta la fase 

orgánica que se llevará al vial del paso 7. 

11. Pesar el vial con tapa anotando el peso exacto tras las dos extracciones. 
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12. Añadir una pequeña cantidad de sulfato sódico anhidro y agitar. Pipetear 1500 

µL con cuidado de no arrastrar partículas sólidas a un vial cromatográfico de 

1,5 mL que se reserva a -18 °C hasta su análisis. 

Se limpiaran los embudos de extracción con acetona para su uso con las 

siguientes muestras. 

Análisis de lindano 

Una vez preparados los patrones en los viales y realizadas las extracciones de 

las muestras de un experimento se procede a su medición en el cromatógrafo. Para 

ello se siguen los siguientes pasos generales: 

1. Abrir el nitrógeno. 

2. Encender el cromatógrafo y el ordenador asociado. Esperar a que se estabilice 

el cromatógrafo. 

3. Pinchar 1 µL por el método de sándwich de la muestra extraída en el apartado 

anterior y pulsar “Start” en el cromatógrafo y “Ok” en el software de registro de 

datos rápidamente tras el pinchazo. Limpiar la microjeringa con hexano entre 

pinchazos. 

4. Integrar el pico que se obtenga a un tiempo de retención de 7,5 minutos 

aproximadamente. 
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