000056700 001__ 56700
000056700 005__ 20210121114520.0
000056700 0247_ $$2doi$$a10.1016/j.ijhydene.2015.02.117
000056700 0248_ $$2sideral$$a90475
000056700 037__ $$aART-2015-90475
000056700 041__ $$aeng
000056700 100__ $$0(orcid)0000-0003-3315-5933$$aRemón, J.$$uUniversidad de Zaragoza
000056700 245__ $$aHydrogen production from pine and poplar bio-oils by catalytic steam reforming. Influence of the bio-oil composition on the process
000056700 260__ $$c2015
000056700 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056700 5203_ $$aThe catalytic steam reforming of four different aqueous fractions of bio-oil has been carried out in a fixed bed reactor at 650 °C and atmospheric pressure using a Ni–Co/Al–Mg catalyst, employing a spatial time of 4 g catalyst min/g organics. The chemical analysis of the aqueous fractions revealed that the source of biomass (pine or poplar sawdust) and the pyrolysis unit significantly influenced the chemical composition of these liquids. Depending on their chemical composition, the initial H2 yield varied from 0.101 to 0.182 g H2/g organics and the initial CO2 yield from 0.814 to 1.28 g CO2/g organics during their catalytic reforming. Regarding catalytic stability, higher catalyst deactivation took place during the reforming of the two pine bio-oil aqueous fractions. The reforming results of the four aqueous fractions have been correlated to their chemical compositions using statistical empirical additive models developed using the Bayesian Information Criterion (BIC). This strategy enabled the identification of the chemical compounds responsible for the most significant variations observed during the reforming of the liquids. The different proportions of acetic acid and furfural in the liquids had the greatest impact on the reforming results. Acetic acid was identified as a compound with low reactivity and low coke formation. In contrast, furfural was found to have high reactivity and a high tendency to produce coke in the reforming process. Additional reforming experiments conducted with acetic acid, phenol, furfural, levoglucosan and guaiacol helped to confirm and explain the results obtained during the catalytic steam reforming of the aqueous fractions.
000056700 536__ $$9info:eu-repo/grantAgreement/ES/DGA/CTPP02-09$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2010-18985$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2012-39114
000056700 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056700 590__ $$a3.205$$b2015
000056700 591__ $$aCHEMISTRY, PHYSICAL$$b47 / 144 = 0.326$$c2015$$dQ2$$eT1
000056700 591__ $$aENERGY & FUELS$$b28 / 88 = 0.318$$c2015$$dQ2$$eT1
000056700 591__ $$aELECTROCHEMISTRY$$b8 / 27 = 0.296$$c2015$$dQ2$$eT1
000056700 592__ $$a1.27$$b2015
000056700 593__ $$aCondensed Matter Physics$$c2015$$dQ1
000056700 593__ $$aRenewable Energy, Sustainability and the Environment$$c2015$$dQ1
000056700 593__ $$aFuel Technology$$c2015$$dQ1
000056700 593__ $$aEnergy Engineering and Power Technology$$c2015$$dQ1
000056700 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000056700 700__ $$aBroust, F.
000056700 700__ $$aVolle, G.
000056700 700__ $$0(orcid)0000-0001-7115-9025$$aGarcía, L.$$uUniversidad de Zaragoza
000056700 700__ $$0(orcid)0000-0002-5959-3168$$aArauzo, J.$$uUniversidad de Zaragoza
000056700 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000056700 773__ $$g40, 16 (2015), 5593-5608$$pInt. j. hydrogen energy$$tInternational Journal of Hydrogen Energy$$x0360-3199
000056700 8564_ $$s346960$$uhttps://zaguan.unizar.es/record/56700/files/texto_completo.pdf$$yPostprint
000056700 8564_ $$s71017$$uhttps://zaguan.unizar.es/record/56700/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000056700 909CO $$ooai:zaguan.unizar.es:56700$$particulos$$pdriver
000056700 951__ $$a2021-01-21-11:02:34
000056700 980__ $$aARTICLE