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The value of d�� �  is derived in [18]. Under resonance 
operation, a zero-pole cancellation occurs in G�dr(s) (A1) and 
thus a first-order transfer function is obtained in (55). This 
zero-pole cancellation also occurs in G�� r(s) (A1), which 
means that under resonance operation � behaves as a first-
order response. Although the time constant is Le/R in (55) and 
2L/R in [29], under resonance operation Le=2L (38). Thus 
SVADP model provides identical results as [29]. 

III.  HBSRI MODEL REDUCTION WITH SVADP METHOD 

A.  DHBSRI SVADP model order reduction 
Although, the SVADP order reduction technique has been 

shown for a simple HBSRI, it can also be applied to 
multivariable plants with a greater order. In this section, the 
reduction technique will be applied to a DHBSRI sharing 
resonant capacitor. Phase Shift Square Wave Modulation with 
D = 0.5 is considered to control the output power of both 
loads (Fig. 5). This system has three state variables, and the 
EDF modeling method will get transfer functions of sixth 
order [16]. Thus, in this section, it will be derived a 4th and a 
2nd order approximation of the transfer functions by applying 
the SVADP reduced order technique.  

From the large signal model [16] and considering the 
amplitude derivative 1Cdv dt and phase ( )t�  of the shared 
resonant capacitor as slowly varying functions of time 
( 2 2 0�Ccd v dt , 2 2 0�Csd v dt ), similar expressions to     
(32, 33) are obtained as: 

 

Lc1

Ls1

s Lc2

Ls2

0 1 0 11
1 0 1 0

� �
� 	� �� � � � � 	� �� 	 � 	 � 	
 �
 � � 	� 	

 �

�
��
��
�

Cc

Cs

di dt
dv dt di dt
dv dt C di dt

di dt
�

 (56) 

s Lc1 Lc2 Lc1 Lc2 s

s Ls1 Ls2 Ls1 Ls2 s

Cc Lc1
2

Cs s Ls1

Lc2

Ls2

0 1 ( ) ( )
1 0 ( ) ( )

1
1 0 1 0
0 1 0 1

� �� � �� � � �� �
� �� �� 	� 	 � � � �
 � 
 �� �

� �� � � �� ��� 	 � 	� �� � �
 � � 	�� �� 	 � 	
 �� �� 	� 	� �
 �� �

� � �
� � �

� �
� �

�
�

i i I I
i i I I

v di dt
v C di dt

di dt
di dt

�
�

(57) 

These expressions allow to reduce the order of the system 
from a 6th order model to a 4th order one. The only difference 
of SVADP from SVAP or residualization would be a zero 
matrix in (56), and thus the last term of (57) disappears.  
 

 

(a) 

 
(b) 

Fig. 5. DHBSRI sharing resonant capacitor (a) schematic (b) main waveforms

When substituting (57) in the EDF small-signal model, 
some algebra manipulation is required to obtain the reduced 
4th order model because both �Ccv and �Csv in (57) depends on 
two different dynamic terms. This will make more difficult to 
obtain analytical expressions compared to the HBSRI, apart 
from the higher order. The 6th order EDF small-signal model 
[16] can be reduced as a 4th order one as: 

 r r r �r s r�� � �x A x B B
��� �d

dt
� �  (58) 

where 
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Where 

 
1 20 1 0 21 , 1� � � �L C L C  (63) 

 
1 1 2 2n s 0 n s 0,� � � � � � � �  (64) 
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It can be observed that after SVADP reduction technique 
applied to the shared resonant capacitor; there are important 
interactions between every state variable since there are no 
zero elements in the reduced state matrix Ar. A similar 
dynamic effect as in HBSRI can be observed in the equivalent 
inductances L1e, L2e, and reactances X1e, X2e, except for the 
interaction of the other individual resonant frequency. The 
small-signal equivalent circuit of the EDF and the SVADP 
reduced-models are depicted in Fig. 6. 

Although a 2nd order reduction from a 6th order model is 
quite helpful, the analytical expressions to be obtained require 
inverting a 4x4 Ar matrix being a bit cumbersome. When 
analyzing the reduced-order model (58) and the equivalent 
circuit in Fig. 6, there is a clear coupling between both current 
branches. If that coupling could be removed, a simple 2nd 
order transfer function would be obtained. In order to provide 
simpler analytical expressions, a further reduced-order model 
of 2nd order is proposed. Although SVADP approach has only 
been applied in previous sections to the series resonant 
capacitor voltage, the same technique can be perfectly applied 
to other state variables.  

Let’s consider every time derivative of (59) as slowly 
varying functions of time. Thus, considering null every second 
derivative of (59), the following expressions from (58) are 
obtained:  
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Where subscript k makes reference to the considered k 
output and its parameters meanwhile subscript l makes 
reference to the other coupled l current branch and its 
parameters. The only difference of SVADP from SVAP or 
residualization would be a zero matrix in (70), and thus the 
last term of (71) disappears. After substituting (71) in the 
reduced 4th order model (58) and after some algebra 
manipulation the following 2nd reduced-order model is 
obtained as follows: 
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The small-signal equivalent circuit of the SVADP reduced-
models of 2nd order is depicted in Fig. 7. 

B.  Small signal, low frequency current and power models 
The considered output variables are the angle currents, �1, 

�2, the currents iL1, iL2 and the output powers P1, P2, as in 
previous section. The control variables are now the switching 
frequency �S and the phase delay � given by: 

2 ST T�� ��  (76) 

where T� is the delay between the two excitation voltages 
shown in Fig.5.  

As in previous section, the linearized output equations near 
xe for k output are obtained as: 

 
k k kk � k i k p

ˆ , ,� � �C x C x C x
�� � � �i p�  (77) 
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kp k Lck Lsk( )�C R I I  (80) 

The second order transfer functions are reflected in 
Appendix A. 
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(a) (b) 
Fig. 6. Equivalent small signal circuit for a DHBSRI for Spice Simulation. (a) EDF and (b) SVADP models. 

Fig.7. Small-signal equivalent circuit for 2nd reduced-order model of 
DHBSRI from SVADP. 

IV.  SIMULATION AND EXPERIMENTAL RESULTS  
Some simulation and experimental results are shown in this 

section to validate the reduction order technique. Most of the 
results have been obtained by using a normalized induction 
heating load with the following values: resistance R = 2.9 �; 
inductance L = 19 μH; resonant capacitor C = 1.44 μF. The 
resulting resonant frequency and quality factor are 
f0 = 30.4 kHz and Q = 1.25. The input bus voltage is 
Vg = 230 V. In the case of the dual half-bridge topology, the 
second load was a conventional induction cooking pot 
characterized by R = 5.9 � and L = 39 μH. 

Fig. 8 shows the Bode plots of the small signal transfer 
functions developed in Section II with �s = 1.1�0 and D = 0.4. 
The last subscript in the legends represents: without subscript, 
the reference 4th order system; r, the SVADP reduced 2nd 
order system; r0, the SVAP reduced 2nd order system. A 
normalized angular frequency �n is used in the frequency 
axis: 
 s 0�n� � �  (81) 

The frequency range is extended from 0.01 �0 to 0.5�0. A 
good agreement up to frequencies about one tenth of the 
resonant frequency is obtained, especially with the SVADP 
reduction technique, which matches the reference system 
better than the SVAP approximation. 

In order to measure the distance between the reduced-order 
systems and the 4th order one, the H! relative norm and the 
maximum phase error of the transfer functions can be 
computed in the frequency range of interest. Fig.9 shows these 
metrics for the duty-to-output power, Gpd(s), and angular 
frequency-to-output power, Gp�(s), transfer functions. The 
magnitudes shown are defined as follow: 
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 (83) 

The frequency range extends up to �0/5 in Fig. 9. In these 
figures, a parameter range of 1.1 � �n � 3.3, 0.1 � D � 0.4, 
and 1.0 � Q � 5.0 is considered. One of the parameters is 
modified in its range while the others are kept constant to the 
default values of �n = 1.5, D = 0.4, and Q = 1.5. From this 
figure it can be stated that the magnitude worst-case error is 
below 7 % for both power transfer functions. When D 
approaches 0.5, the duty-to-output power transfer function 
error increases. This is explained because Gpd(s) has a 
singularity in D = 0.5, where the phase has a sharp change of 
180º as explained in section II. The maximum phase error is 
below 4º except for the angular power transfer function, 
whose phase error rises up to 18º close to resonance. 

The maximum frequency considered is of vital importance. 
In the worst case, a maximum H! relative norm of 7 % is 
obtained for �0/5 and 3 % for �0/10. The same applies to the 
phase error. In the domestic induction appliances field, where 
Q is approximately constant with values about 1.5, the worst 
case phase error is 3º for �0/5 and 1º for �0/10. 

Fig. 10 shows the Bode plots of the small signal output 
power transfer functions of the DHBSRI developed in Section 
III. The legends represent: without subscript, the complete 6th 
order system; 4, the reduced 4th order system; 2 the reduced 
2nd order system. The simulation parameters are fsw = 38 kHz 
(corresponding to 1.25�01, D = 0.5, and � = 90º. In these 
conditions, the steady-state output power is 3600 W for the 
first load and 165 W for the second one. A close agreement 
between the reference and the 4th order reduced system can be 
observed in all the frequency range, up to half �01. The 2nd 
order approximation shows more error as expected, especially 
when frequency increases. 
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Fig. 8. Comparative of transfer functions for the 2nd order system with �s = 1.1�0 and D = 0.4. The last subscript in the legends represents: without subscript, 
the complete 4th order system; r, the SVADP reduced 2nd order system; r0, the SVAP 2nd order approximation. 
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(b) D, and (c) Q. The default parameters are �n = 1.5, D = 0.4, Q = 1.5. The maximum angular frequency is �0/5 

Some experimental results have been conducted in order to 
measure the real transfer function and compare it with the 
obtained reduced order models. The experimental tests have 
been conducted in the worst scenario in order to verify 
adequately the validity range. Fig. 11 shows the Bode plot of 
the duty-to output power Gpd(s) and frequency-to output 
power Gpf(s) obtained for a half-bridge series resonant 
inverter for the operating point (fsw, D) = (42 kHz, 0.45). Fig. 
12 shows the test bed for conducting the experimental results.  

Despite a commercial vessel has been considered and the 
operating point is far from resonance and near the singularity 
point of D = 0.5, a very good agreement up to frequencies 
about one tenth of the switching frequency is obtained. It can 
be observed that Gpd(s) magnitude increases with the 
frequency due to the location of the transfer function zero 
nearer to the origin than the complex-conjugate poles with this 
load and operation point. 
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Fig. 10. Comparative of the output power Bode plots for the DHBSRI with �s=1.1�0, D=0.5, and �=90º, (a) and (b) first load, (c) and (d) second load. The last 
subscript in the legends represents: without subscript, the complete 6th order system; 4, the reduced 4th order system; 2 the 2nd order system. 
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Fig. 11. Comparative of experimental results and proposed reduced-order models for fsw=42 kHz, D=0.45 (a) Gpd(s) and (b) Gpf(s). Frequency in Hz is shown 
in the horizontal axis. 

 
 

Fig. 12. Experimental induction heating prototype. 
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APPENDIX A 

The second order transfer functions from SVADP reduced order technique for the HBSRI are the following: 
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For the DHBSRI, the second order transfer functions from SVADP reduced order technique are the following: 

� 
 � 
k

' ' ' ' ' ' ' '
Lsk Lsk Lck Lck ke ke Lsk Lck Lck Lsk ke ke

��r2 2 2' 2 2 ' ' ' '
Lck Lsk ke ke ke ke

( )( / ) ( ) /

( )( / / )

� � � �
� �

� � �ke

I I I I s R L I I I I X L
G

L I I s R L X L
     (A4) 

� 
 � 
k

' ' ' '
g Lsk 1k Lck 2 k ke ke Lsk 2k Lck 1k ke ke

� r2 ' 2 22 2 ' ' ' 'ke Lck Lsk ke ke ke ke

2 ( )( / ) ( ) /

( )( / / )

� � � �
�

� � � � �
� �

� � �

V I K I K s R L I K I K X L
G

L I I s R L X L�
 (A5) 

� 
 � 
k

' ' ' ' ' ' ' '
Lck Lsk Lsk Lck ke ke Lck Lck Lsk Lsk ke ke

i�r2 2 2' 2 2 ' ' ' '
Lck Lsk ke ke ke ke

( )( / ) ( ) /

( / / )

� � � �
� �

� � �ke

I I I I s R L I I I I X L
G

L I I s R L X L
     (A6) 

� 
 � 
k

' ' ' '
g Lck 1k Lsk 2 k ke ke Lck 2 k Lsk 1k ke ke

i r2 ' 2 22 2 ' ' ' 'ke Lck Lsk ke ke ke ke

2 ( )( / ) ( ) /

( / / )

� � � �
�

� � � � �
� �

� � �

V I K I K s R L I K I K X L
G

L I I s R L X L�
 (A7)  

� 
 � 
k

' ' ' ' ' ' ' '
Lck Lsk Lsk Lck ke ke Lck Lck Lsk Lsk ke ke

p�r2 k 2 2' ' ' ' '
ke ke ke ke

( )( / ) ( ) /

( / / )

� � � �
� �

� �ke

I I I I s R L I I I I X L
G R

L s R L X L
    (A8) 

� 
 � 
k

' ' ' '
g k Lck 1k Lsk 2 k ke ke Lck 2 k Lsk 1k ke ke

p r2 ' 2 2' ' ' 'ke ke ke ke ke

2 ( )( / ) ( ) /

/ /

� � � �
�

� � � � �
� �

� �

V R I K I K s R L I K I K X L
G

L s R L X L�
 (A9) 

Where 
' lc l kc le kc lc l kc le kc
ke k 2 2

l le

( ) ( )� � �
� �

�

R R R X X X R X X R
R R

R X
 (A10) 

' lc l kc le kc lc l kc le kc
ke ke 2 2

l le

( ) ( )� � �
� �

�

R R X X R X R R X X
X X

R X
(A11) 

' l lc le lc lc l lc lc
ke ke le 1k 2k2 2 2 2

l le l le
( )

� �
� � �

� �

R R X X X R R X
L L L

R X R X
# # (A12) 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TPEL.2016.2559160

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



 12

' le Lsl lc l lc le le Lcl lc le lc l
Lsk ke Lsk 2 2

l le

( ) ( )� � �
� �

�

L I R R X X L I R X X R
I L I

R X
 (A13) 

' le Lsl lc le lc l le Lcl lc l lc le
Lck ke Lck 2 2

l le

( ) ( )� � � �
� �

�

L I R X X R L I R R X X
I L I

R X
 (A14) 

ke le lc l lc le lc l lc le
1k 2 2

ke le l le

cos( ) ( ) cos( ) ( )sin( )
( 1) ( )�

� �

 �  � �  
� � �

�
l L L R R X X X R R X

K
L L R X

 (A15) 

ke le lc le lc l lc l lc le
2k 2 2

ke le l le

sin( ) ( ) cos( ) ( )sin( )
( 1) ( )�

� �

 �  � �  
� � �

�
l L L R X X R R R X X

K
L L R X

 (A16) 

l kc le kc lc ke lc k lc ke lc k lc k lc ke
1k 2 2 2 2

l le lc ke lc k lc l l kc le kc

( )( ) ( )( )
( )( ) ( )( )
� � � � �

�
� � � � �c

R R X X R X X R R X X R R R X X
R X R X X R R X R X X R

#   (A17) 

V.  CONCLUSIONS 
A systematic reduced-order modeling approach for 

resonant inverters has been validated. It has been proved that 
SVAP and residualization technique from control systems 
theory for a series resonant capacitor provides identical 
results. A slight modification of SVAP, SVAPD approach has 
been proposed providing better dynamic results than 
residualization. This technique has been applied to a HBSRI 
and to a high-order plant a DHBSRI sharing resonant 
capacitor. For the first time, analytical transfer functions have 
been provided considering several control inputs and different 
outputs for a HBSRI and for a DHBSRI. After SVADP 
application, even the 6th order small-signal model of a 
DHBSRI obtained by EDF is reduced up to a simple 2nd order 
one. The validity range of the proposed models has been 
tested considering typical values of an induction heating 
application. The validity range extends up to a fifth of the 
resonance frequency showing its beneficial application for 
improving the controller robust performance in an application 
with such load uncertainty and variable operating condition. 
SVADP model order reduction technique has been applied 
considering several scenarios showing its easy extension to 
other resonant topologies, and more significantly to high-order 
plants.  
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