000056789 001__ 56789
000056789 005__ 20210121082858.0
000056789 0247_ $$2doi$$a10.1088/0967-3334/36/11/2317
000056789 0248_ $$2sideral$$a91915
000056789 037__ $$aART-2015-91915
000056789 041__ $$aeng
000056789 100__ $$0(orcid)0000-0001-8742-0072$$aLázaro Plaza, Jesús$$uUniversidad de Zaragoza
000056789 245__ $$aRespiratory rate derived from smartphone-camera-acquired pulse photoplethysmographic signals
000056789 260__ $$c2015
000056789 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056789 5203_ $$aA method for deriving respiratory rate from smartphone-camera-acquired pulse photoplethysmographic (SCPPG) signal is presented. Our method exploits respiratory information by examining the pulse wave velocity and dispersion from the SCPPG waveform and we term these indices as the pulse width variability (PWV). A method to combine information from several derived respiration signals is also presented and it is used to combine PWV information with other methods such as pulse amplitude variability (PAV), pulse rate variability (PRV), and respiration-induced amplitude and frequency modulations (AM and FM) in SCPPG signals
Evaluation is performed on a database containing SCPPG signals recorded from 30 subjects during controlled respiration experiments at rates from 0.2 to 0.6 Hz with an increment of 0.1 Hz, using three different devices: iPhone 4S, iPod 5, and HTC One M8. Results suggest that spontaneous respiratory rates (0.2–0.4 Hz) can be estimated from SCPPG signals by the PWV- and PRVbased methods with low relative error (median of order 0.5% and interquartile range of order 2.5%). The accuracy can be improved by combining PWV and PRV with other methods such as PAV, AM and/or FM methods. Combination of these methods yielded low relative error for normal respiratory rates, and Institute of Physics and Engineering in Medicine maintained good performance at higher rates (0.5–0.6 Hz) when using the iPhone 4S or iPod 5 devices.
000056789 536__ $$9info:eu-repo/grantAgreement/ES/FIS/PI12-00514$$9info:eu-repo/grantAgreement/ES/MINECO/TIN2013-42140-R$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2013-42140-R$$9info:eu-repo/grantAgreement/ES/UZ/PIFUZ2011-TEC-A-003$$9info:eu-repo/grantAgreement/ES/MINECO/TIN2014-5356-R
000056789 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000056789 590__ $$a1.576$$b2015
000056789 591__ $$aENGINEERING, BIOMEDICAL$$b46 / 76 = 0.605$$c2015$$dQ3$$eT2
000056789 591__ $$aPHYSIOLOGY$$b64 / 83 = 0.771$$c2015$$dQ4$$eT3
000056789 591__ $$aBIOPHYSICS$$b54 / 72 = 0.75$$c2015$$dQ3$$eT3
000056789 592__ $$a0.828$$b2015
000056789 593__ $$aBiomedical Engineering$$c2015$$dQ2
000056789 593__ $$aPhysiology (medical)$$c2015$$dQ2
000056789 593__ $$aBiophysics$$c2015$$dQ2
000056789 593__ $$aPhysiology$$c2015$$dQ3
000056789 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000056789 700__ $$aNam, Yunyoung
000056789 700__ $$aGil Herrando, Eduardo
000056789 700__ $$aLaguna Lasaosa, Pablo
000056789 700__ $$aChon, Ki
000056789 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000056789 773__ $$g36, 11 (2015), 2317–2333$$pPhysiol. meas.$$tPHYSIOLOGICAL MEASUREMENT$$x0967-3334
000056789 8564_ $$s451357$$uhttps://zaguan.unizar.es/record/56789/files/texto_completo.pdf$$yPostprint
000056789 8564_ $$s67030$$uhttps://zaguan.unizar.es/record/56789/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000056789 909CO $$ooai:zaguan.unizar.es:56789$$particulos$$pdriver
000056789 951__ $$a2021-01-21-08:14:29
000056789 980__ $$aARTICLE