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Resumen  

El presente documento pretende contribuir a solucionar una carencia asociada a la gestión 

silvícola en España, en concreto, pretende desarrollar un proceso metodológico que permita loca-

lizar y cartografiar cortas a hecho en una superficie boscosa mediante teledetección. Para ello se 

empleará información geográfica de libre acceso. En particular, se utilizará una imagen Sentinel 

2A en conjunto con datos LiDAR del PNOA. En una fase posterior se realizará una segmentación 

del area de studio a partir de un software de clasificación orientada a objetos para, finalmente, 

clasificar empleando el algoritmo Random Forest.    

Palabras Clave: Cortas a hecho, Sentinel 2, LiDAR, segmentación, clasificación. 

Abstract  

The current document attempts to solve a need associated to forest management in Spain, in 

particular, it attempts to develop a methodologic process for locating and mapping clear-cuts in 

forest areas using open source remote sensing data. More specifically, it uses a Sentinel 2 image 

combined with PNOA LiDAR data. In a subsequent stage, object based image analyst software is 

used to carry out a segmentation. Finally, the algorithm Random Forest is used to develop a clas-

sification model. 

Key Words: Clear-cuts, Sentinel 2, LiDAR, segmentation, classification. 
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El presente Trabajo de Fin de Máster, en adelante TFM, constituye, en el marco académico de 

Bolonia, por sí mismo, una asignatura de carácter práctico, aplicado y transversal, en la que se utiliza-

rán las competencias adquiridas a lo largo del “Máster Universitario en Tecnologías de la Información 

Geográfica para la Ordenación del Territorio: SIG y Teledetección” para satisfacer el objetivo princi-

pal de este proyecto. Se incluye en la modalidad C, que agrupa “Trabajos específicos realizados como 

resultado de prácticas en empresas o instituciones”. La empresa en la que se desarrolló el proceso es 

föra forest technologies (http://fora.es/es/), consultoría forestal especializada en tecnologías de la in-

formación geográfica, ubicada en la capital soriana, spin-off de la Universidad de Valladolid, en fun-

cionamiento desde 2014. 

1. INTRODUCCIÓN 

 

La evolución tecnológica de la teledetección a lo largo de las últimas décadas ha permitido el 

desarrollo de una serie de sistemas de seguimiento de los elementos de la superficie terrestre tanto a 

escala global como regional con una periodicidad cada vez mayor. Todo ello, unido al aumento paula-

tino de la resolución espacial, espectral y radiométrica que ofrecen los distintos sensores, posibilita la 

generación de un enorme volumen de información espacial georreferenciada y ortorectificada -en ma-

yor o menor grado- aplicable tanto en el ámbito urbano-socioeconómico como en el ambiental (Martí-

nez Cañadas et al., 1998). La naturaleza de esta información depende del sensor que la registre. En 

este sentido encontramos desde ortofotos a imágenes multiespectrales, hiperespectrales, LiDAR o 

RADAR, que nos permiten recibir información de regiones del espectro electromagnético para las que 

el ojo humano no está preparado, tales como la región ultravioleta, la infrarroja o la propia de las mi-

cro-ondas empleada en la tecnología RADAR (Chuvieco, 2008). 

Las diferentes resoluciones -temporal, radiométrica, espacial y espectral-están condicionadas tan-

to por el sensor que registra la información, como por la plataforma que lo porta. A este respecto, en-

contramos plataformas terrestres, aerotransportadas y satelitales. Tradicionalmente se asumía que, 

cuanto más próxima estuviera una plataforma del suelo, mayor era su resolución espacial y, posible-

mente, también su resolución radiométrica y espectral, si bien es cierto que desde hace algún tiempo se 

dispone de sensores satelitales con resoluciones radiométrica y espectral considerables. Hasta el punto 

de que, hoy en día, los avances técnicos en cuanto a la resolución espacial han dado como resultado 

sensores satelitales con resoluciones espaciales anteriormente propias de plataformas aerotransporta-

das. En consecuencia, esta evolución en la técnica facilita una evolución metodológica en los distintos 

campos de aplicación de la teledetección. 

Uno de esos campos de aplicación es el forestal, en el que, tradicionalmente, se han venido em-

pleando imágenes de satélites multiespectrales de resolución espacial media, tales como Landsat y 

SPOT, debido a la aceptable relación que ofrece su disponibilidad, periodicidad, resolución espacial y 

espectral (Wulder y Franklin, 2003). La evolución tecnológica experimentada por algunos sensores 

abre un nuevo abanico de posibilidades al respecto. 

En este sentido, resulta especialmente interesante la irrupción en el panorama de la observación 

remota del satélite Sentinel 2A, puesto en órbita en junio de 2015 en el marco de la constelación Co-

pernicus, a la espera de que su hermano gemelo Sentinel 2B sea puesto en órbita a lo largo de 2017, y 

que alberga un sensor multiespectral denominado MSI que recoge y codifica información en 12 ban-

das del espectro visible e infrarrojo. Sin embargo, no es esta mejora en la resolución espectral en rela-

ción a Landsat y SPOT lo que lo hace tan interesante de cara a propiciar un avance metodológico. Su 

verdadera importancia radica en i) su gran resolución temporal, con un periodo de revisita que alcan-

zará los 5 días, gracias a la acción coordinada de los satélites gemelos, frente a los 16 de Landsat o los 

26 de SPOT; ii) la accesibilidad a las imágenes, disponibles a toda la población de manera gratuita con 

solo registrarse en el servidor de la Agencia Espacial Europea (ESA); y iii) en la gran resolución espa-

cial que ofrece en tres de sus bandas del visible y en una de las del infrarrojo próximo, que logra un 

pixel de 10x10 m, frente a los 30x30m de Landsat (USGS, 2015; ESA, 2015). 

http://fora.es/es/


 

2 

 Las dos últimas plataformas SPOT -SPOT 6 y SPOT 7- sin embargo, ofrecen una mayor resolu-

ción espacial -6x6 m en el visible y NIR y 1,5x1,5m en el PAN-pero,por el contrario,sus productos 

resultan menos accesibles, al no ofrecer sus imágenes de manera gratuita para el gran público.Esta es 

la gran desventaja de SPOT a la hora de considerarlo una alternativa viable para el monitoreo de su-

perficies boscosas, no tanto la resolución temporal, ya que es capaz de reducir su periodo de revisita 

inicial ajustando el ángulo de observación y combinando los satélites SPOT 6 y 7 (Astrium, 2012). Por 

su parte, la principal desventaja de Landsat radica en su resolución espacial, primero, y en su resolu-

ción temporal, segundo, ya que la resolución espectral y la distribución de las bandas de Landsat 8 son 

similares a las de Sentinel 2. Por el contrario, tanto Landsat como SPOT permiten la realización de 

estudios multitemporales, por ser misiones de largo recorrido -Landsat desde 1972 y SPOT desde 

1986- mientras que Sentinel, actualmente, no puede ofrecer esa posibilidad. Sin embargo, en vista de 

la relativa similitud entre las bandas Landsat y Sentinel, es posible emplear información Landsat a este 

efecto. Por todo esto, Sentinel 2 se posiciona como una alternativa de gran funcionalidad para tomar el 

relevo de sus competidores francés y americano como herramienta fundamental en la gestión forestal. 

El éxito de la aplicación de la teledetección en la gestión forestal se debe a la amplia cobertura del 

territorio que proporcionan las imágenes de satélite, lo que permite trabajar con extensas zonas de ma-

nera simultánea y no invasiva, permitiendo recabar información de zonas remotas o de acceso difícil 

(Álvarez-Bermúdez, 2015), por lo que se ajusta a la idiosincrasia de las masas boscosas. Además, gra-

cias a la información multiespectral es posible obtener índices para evaluar aspectos relativos al estado 

de los bosques tales como la superficie foliar, el vigor vegetal, la severidad de un incendio, etc. De 

acuerdo con Koch (2011) es posible estimar el volumen de madera y la biomasa superficial a partir de 

la reflectividad. Como afirman García-Martín et al. (2009), la estimación de variables biofísicas es una 

línea exitosa de investigación en teledetección forestal. Otra de las posibilidades que ofrece la telede-

tección forestal es la realización de estudios multitemporales de cambios en la cobertura boscosa, que 

permiten conocer la evolución de una masa forestal a lo largo del tiempo. 

Combinando la información multiespectral de los sensores ópticos con la información tridimen-

sional de una nube de puntos LiDAR es posible clasificar las masas forestales de acuerdo a las espe-

cies que la componen, estructura -vertical u horizontal-o grado de desarrollo. Puede servir para deter-

minar la altura de los árboles, la altura a la que comienza la copa, para discretizar los distintos estratos, 

para estimar el índice de área foliar o la fracción de cavidad cubierta (Riaño et al., 2004). La tecnolo-

gía RADAR también es útil en este tipo de estudios, si bien se centra en la rugosidad de la superficie 

(Chuvieco, 2008), aportando además la capacidad de atravesar coberturas nubosas, algo de gran utili-

dad ante bosques tropicales frecuentemente cubiertos por nubes (Koch, 2011).En definitiva, se trata de 

una herramienta eficaz que permite trabajar con grandes superficies de manera rápida y reduciendo 

considerablemente los costes económicos.  

En cualquier caso, la teledetección no debe sustituir por completo el registro de datos fiables so-

bre el terreno (Koch, 2011), sino complementarse mutuamente a fin de combinar la rapidez, el abara-

tamiento de costes y la capacidad para trabajar a escalas considerables de la teledetección con la preci-

sión y calidad de los datos verdad-terreno. Actualmente, se están realizando mediante teledetección 

trabajos de inventario forestal y de pastizales (Chuvieco, 2008), análisis de la severidad de incendios y 

estudios la regeneración posterior del ecosistema; desarrollo de cartografía de biomasa enfocados tanto 

a su extracción y aprovechamiento energético (García-Martín et al., 2011) como hacia la predicción 

del nivel de severidad del fuego en incendios forestales (García-Martín et al., 2009), entre otras apli-

caciones.  

Con este TFM se pretende contribuir a solucionar una carencia asociada a la gestión silvícola en 

España; en concreto, se pretende desarrollar un proceso metodológico que permita localizar y carto-

grafiar cortas a hecho en una superficie boscosa, dado que en determinadas comunidades con bosques 

fragmentados de titularidad privada en los que se realiza explotación forestal, no se ha llevado históri-

camente un registro de este tipo de actuaciones y, por tanto, carecen de la trazabilidad deseable de cara 

a su correcto manejo y gestión, tanto por parte del titular del monte, como por parte de la Administra-

ción pública en determinados casos. 
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De acuerdo con la definición facilitada por el Diccionario Forestal de la Sociedad Española de 

Ciencias Forestales, una corta a hecho es un tipo de corta de regeneración que consiste en la extracción 

total y en una vez de todos los pies que forman el rodal. (SECF, 2005) 

Son, por tanto, cortas continuas que dan lugar a masas regulares y que suponen un cambio brusco 

en las condiciones ambientales de la zona. Las alternativas de regeneración posteriores son varias, 

según especie y estación, y sirven para establecer tipos de corta a hecho. De este modo se puede hablar 

de cortas a hecho en un tiempo, cuando se extraen todos los pies de un rodal en la misma actuación, o 

en dos tiempos, cuando se deja una reserva de árboles padres sin talar para facilitar la regeneración, 

que se cortarán en una actuación posterior. Este tipo de corta contradice la definición que ofrece el 

Diccionario Forestal y, sin embargo, es un concepto asentado en el sector.  

En la actualidad, el modelo de corta a hecho más usual es la corta a hecho en fajas, que supone 

una suerte de modelo mixto ya que consiste en la extracción de una vez de todos los pies de un tranzón 

-faja-, enmarcado en una actuación que comprende varias fajas alternándose con rodales que se dejan 

en pie para favorecer el regenerado posterior y que se talarán en un turno posterior. Estas fajas han de 

tener una anchura inferior al doble de la altura 

media de los pies a talar y han de realizarse en 

perpendicular al viento dominante para favorecer 

la regeneración gracias a la acción del viento al 

esparcir las semillas. 

En la provincia de Soria, desde hace déca-

das, la corta a hecho por fajas es la técnica que se 

realiza en la mayoría de los casos. Este factor 

puede condicionar tanto el proceso como el resul-

tado de este proyecto, puesto que la anchura de 

estas fajas llevará al límite la resolución espacial 

del satélite Sentinel 2. 

 

 

2. MARCO CONTEXTUAL 

2.1. Objetivos  

 El objetivo general de este trabajo es proponer una metodología precisa y eficaz para detectar y 

cartografiar áreas cuya explotación responda al modelo silvícola de la corta a hecho en pinares de sil-

vestre (Pinus sylvestrys L.), resinero (Pinus pinaster Ait.) y mixtos mediante teledetección, en concre-

to una imagen óptica de Sentinel 2 e información adicional aportada por un conjunto de datos LiDAR-

PNOA. Esta metodología debe ser extensible a otras masas forestales con otras especies arbóreas. 

Como objetivos específicos, en relación con su naturaleza de TFM realizado en conexión con una 

estancia de prácticas en empresa, se plantean los siguientes: i) abordar un recorrido integrado por las 

distintas fases a realizar en un proyecto técnico de teledetección (adquisición, corrección, composi-

ción, transformación, interpretación, clasificación…); ii) poner en práctica diversas habilidades adqui-

ridas a lo largo del Máster, tales como la edición cartográfica, que habrá de servir de soporte gráfico a 

lo largo del desarrollo del proyecto, el empleo del lenguaje de programación R, el manejo de datos 

LiDAR, la segmentación de capas ráster empleando software de clasificación orientada a objetos o la 

generación de neocanales; iii)acercarse a la realidad operativa en un entorno profesional, mediante la 

gestión de volúmenes considerables de datos, lo que conlleva un esfuerzo importante en su procesado, 

y, en definitiva, familiarizarse con el entorno forestal y los conceptos y métodos que lo relacionan con 

el mundo de la teledetección y los sistemas de información geográfica. 

 

Figura 1. Secuencia de cortas por fajas sobre Eucaliptus globulus. A la 

derecha con P95 LiDAR PNOA. 
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2.2. Antecedentes 

 

El mundo forestal lleva ya algunas décadas sirviéndose de la teledetección para optimizar su ges-

tión. Primero a partir de la fotointerpretación y el análisis visual de las ortofotos, después, con el sur-

gimiento de las imágenes de satélite, mediante su análisis visual primero y mediante su tratamiento 

digital posteriormente. Dentro del tratamiento digital encontramos técnicas como la generación de 

neocanales para sintetizar la información, el empleo de índices específicos para aislar una determinada 

variable biofísica, como puede ser el vigor vegetal o la severidad de un incendio, o la clasificación de 

imágenes mediante procesos no supervisados o supervisados; siendo estos últimos aquellos procesos 

en los que el usuario determine las unidades de referencia de cara al entrenamiento. Estas unidades 

reciben generalmente el nombre de área de interés -AOI, por sus siglas en inglés- o región de interés 

-ROI- en función del software a partir del cual sean procesadas. 

La clasificación de imágenes pretende transformar la información cuantitativa procedente de las 

imágenes captadas por los sensores, compuestas por píxeles con un valor asignado en niveles digitales 

en relación a la resolución radiométrica del sensor; en imágenes temáticas compuestas por clases cate-

góricas (González-Ferreiro et al., 2013). 

Dentro de la clasificación de imágenes, encontramos procesos que se fundamentan exclusivamen-

te en las propiedades espectrales de los píxeles y otros que, además, también consideran sus propieda-

des geométricas y textuales, así como las de su entorno. Estos últimos son los denominados clasifica-

dores orientados a objetos -OBIAs, Object Based Image Analysis- que segmentan la imagen en regio-

nes separadas, denominadas objetos, de acuerdo con su heterogeneidad espacial y espectral, para pos-

teriormente asignarlos a una serie de clases previamente definidas. Este tipo de clasificación ofrece 

mejores resultados que la clasificación convencional orientada a las propiedades espectrales de los 

pixeles cuando se dispone de imágenes de alta resolución espacial pero menor resolución espectral 

(Huang y Ni, 2008). 

Desde hace algún tiempo, varios autores han tratado de detectar y cartografiar cortas a hecho a 

partir de técnicas de observación remota procesadas en sistemas de información geográfica -SIG o 

GIS-, si bien han empleado una metodología diferente a la que aquí se propone. También ha habido 

otros autores que han trabajado en temas similares cuyos resultados pueden ser de utilidad para la rea-

lización de este trabajo. 

Malila (1980) realizó un estudio enfocado en detectar cambios en los bosques mediante imágenes 

Landsat a través de un análisis de vectores de cambio; esta técnica, en palabras de Ruiz et al. (2007), 

“consiste en el cálculo del módulo y la dirección del vector que une los valores de los píxeles en el 

espacio definido por dos bandas espectrales, en dos fechas diferentes”. Empleando este método, Malila 

(1980) logró detectar y cartografiar cortas a hecho con resultados razonablemente positivos.  

Skole y Tucker (1993) desarrollaron una técnica para cartografiar el avance de la deforestación en 

la Amazonia brasileña empleando el infrarrojo próximo de imágenes Landsat -MSS y TM-. Gracias a 

esta técnica lograron cuantificar el número de hectáreas afectadas en su área de estudio, así como iden-

tificar los patrones de explotación y, finalmente, demostrar que las anteriores estimaciones realizadas a 

través de imágenes obtenidas por satélites meteorológicos de baja resolución espacial sobreestimaban 

la deforestación en torno a un 50%. 

Cohen et al. (1998) realizaron un estudio comparativo entre dos formas de cartografiar cortas a 

hecho empleando imágenes Landsat. Por un lado, realizaron una clasificación no supervisada a cada 

una de las cinco imágenes correspondientes a una misma zona de estudio en una secuencia temporal 

para después unificarlas en un mapa de cambios. El otro método que compararon seguía un proceso 

inverso, realizando primero la cartografía de evolución temporal en la masa boscosa para posterior-

mente realizar una única clasificación no supervisada. En ambos casos habían realizado un proceso 

previo de síntesis de la información mediante la generación de los ejes de Tasseled Cap. De este modo 

concentraron la información espectral de la que disponían en tres nuevas dimensiones con sentido físi-

co explícito: brillo, verdor y humedad; si bien, en el caso de las imágenes captadas mediante el sensor 



 

5 

MSS, generaron solamente el brillo y el verdor, por carecer de información espectral propia del infra-

rrojo medio de onda corta. Tras la realización del estudio concluyeron que el segundo de los métodos 

resultaba más eficiente para cartografiar cortas a hecho.  

Chuvieco et al. (2001) compararon la capacidad de Landsat, NOAA y SPOT Vegetation para es-

timar el contenido hídrico de la vegetación; para ello emplearon índices de vegetación (NDVI y NDII) 

e información de la región térmica del espectro con la que realizar el cociente entre el NDVI y la tem-

peratura en superficie. 

Álvarez (2005) inventarió la superficie ocupada por Pinus radiata D. Don en el Bierzo a partir de 

imágenesLandsat,a las que aplicó una clasificación orientada a objetos obteniendo resultados que pre-

sentaban cierto grado de confusión entre formaciones vegetales. 

Gonçalves et al. (2008) demostraron la mayor eficacia de la clasificación orientada a objetos fren-

te a la más convencional orientada a píxeles mediante los resultados obtenidos a partir de métodos 

diversos.  

Gozález-Ferreiro et al. (2013) realizaron un estudio similar al que aquí se propone titulado “Clasi-

ficación digital de zonas forestales usando datos LiDAR, ortofoto y análisis orientado a objetos”, si 

bien no pretendían clasificar cortas a hecho ni tampoco explorar-como sí se plantea en el presente tra-

bajo- las posibilidades que ofrece Sentinel 2 a tal efecto. El resultado de su estudio fue altamente satis-

factorio logrando una fiabilidad global del 95%. 

Lambert et al. (2015) desarrollaron un proyecto destinado a detectar cortas a hecho, pero, a dife-

rencia de nuestro trabajo, lo hicieron mediante un estudio multitemporal con datos de un sensor de 

resolución media-baja -Modis- empleando el NDVI para detectar cambios en la vegetación sobre el 

terreno. 

 

2.3. Área de estudio 

 

El presente estudio se enmarca en el ámbito forestal de la provincia de Soria, la cual es sin duda 

una de las referencias en la materia a nivel nacional. Buena prueba de ello es que cuenta en su territo-

rio con bosques con Certificación de Gestión Forestal Sostenible de acuerdo a los estándares del PEFC 

(Pan-European Forest Certification), que garantizan que el producto que llega hasta el consumidor lo 

hace desde bosques cuyos recursos son explotados de manera responsable y sostenible de acuerdo a las 

directrices contempladas en el correspondiente Plan de Ordenación (Pinillos y Moro, 2004). 

La ordenación forestal en la provincia de Soria viene de lejos. En la Edad Media existían diver-

sas figuras jurídicas relativas a la titularidad de los bosques en el territorio actual de Soria. Montes 

propios, comunales o realengos, obedecían cada uno a un sistema de gestión y propiedad específico. 

Durante siglos, los bosques sorianos fueron aprovechados por los vecinos de forma irregular, dando 

pie a prácticas como el huroneo, que debilitaba la estructura de la masa forestal; o a quemas por parte 

de pastores que buscaban ampliar la superficie de pasto aprovechable por los rebaños. (Santolaya, s.f) 

 

Este tipo de actuaciones ocasionaron que entre finales del S.XIX y principios del XX la salud y 

estado de conservación de los bosques sorianos estuviera lejos de lo deseable. La elaboración en 1859 

del primer inventario de patrimonio forestal de titularidad pública, la aprobación de la Ley de Montes 

de 1863 y la creación de una Administración Forestal de concepción moderna supusieron un punto de 

inflexión en la gestión de estos montes. 

 

En el monte Pinar Grande, una masa boscosa compuesta de Pinus sylvestris y Pinus pinaster a 

caballo entre las provincias de Soria y Burgos, la Ordenación data de 1907. Esta figura compatibilizó 

los usos del monte y reguló la extracción de madera organizándola en el tiempo, considerando la capa-

cidad de regeneración del bosque a la hora de establecer las secciones, cuarteles y tramos de corta. En 

un primer momento la extracción se realizaba mediante entresacas por bosquetes, si bien a partir de la 
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Figura 2. Mapa con la ubicación de las principales masas de coníferas en la provincia de Soria. 

4º revisión del Plan, en 1954, comienza a implantarse la corta a hecho como tratamiento silvícola prin-

cipal fomentando la regeneración con siembras y plantaciones en caso de ser necesario. Este método 

se propone de forma explícita en la 5ª revisión, diez años después. (Santolaya, s.f) 

 

Como en el Pinar Grande, en otros pinares de la provincia el proceso ha sido paralelo. Los benefi-

cios que reporta tanto al medio ambiente como al medio socioeconómico son considerables: Por un 

lado, ha integrado los aprovechamientos pascícolas, cinegéticos, micológicos, apícolas, turísticos y 

madereros; ha generalizado los tratamientos silvícolas arraigando entre la población local la concien-

ciación para con el bosque como patrimonio natural, ambiental y material; ha supuesto una mejora 

radical en el estado de salud de las masas forestales disminuyendo hasta niveles inapreciables la inci-

dencia de plagas e incendios forestales y ha creado una red de caminos y vías de saca que estructuran 

el bosque proporcionando un alto grado de accesibilidad para la prevención de incendios y plagas. 

(Santolaya, s.f).  

 

No menos importante resulta su repercusión sobre el medio humano. Los puestos de trabajos que 

genera el sector resultan vitales para mantener la población en los núcleos rurales de Soria, en los que 

la despoblación causó estragos a lo largo de la segunda mitad de siglo XX. Dentro del sector destaca la 

explotación maderera, la industria transformadora y la extracción de productos no maderables, entre 

los que cobra especial relevancia la biomasa. 
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Figura 3. Mapa del área de estudio con núcleos de población cercanos.  

 

Para delimitar el área de estudio sobre la que se focaliza este TFM se buscó definir zonas forestales de 

las especies de coníferas significativas en Soria y del suficiente tamaño para trabajar con ellas a escala 

provincial. Para ello, se partió de las teselas de Pinus sylvestris, Pinus pinaster y formaciones mixtas 

de ambas especies, circunscritas a la provincia de Soria y clasificadas por el Mapa Forestal de España 

(MFE, MAGRAMA, 2016). Naturalmente, muchas de estas teselas presentaban una distribución sobre 

el territorio desagregada, por lo que, a través de una serie de geoprocesos desde el software ArcGIS 

10.3 se fueron desechando aquellas teselas aisladas o que conformaban conglomerados sin la suficien-

te entidad espacial; mientras que aquellas que, junto con sus vecinas representaban agregados compac-

tos con superficie suficiente, se unieron formando el área de estudio. Al perímetro resultante se le sus-

trajo la superficie correspondiente a láminas de agua y suelo urbano. 

 

Como se aprecia en la Figura 2, la zona norte de la provincia, alberga bosques de Pinus sylvestris, 

la zona noroeste, alberga formaciones mixtas y en la zona centro, es donde se ubican los bosques de 

Pinus pinaster. Tras geoprocesar las teselas del MFE y agregarlas definiendo el área de estudio (Figu-

ra 3), esta quedó constituida por tres sub-áreas, que se tratarán en adelante y en todo momento como 

una sola entidad. La mayor de estas áreas es la más septentrional, limítrofe con La Rioja y la provincia 

de Burgos, que incluye en su territorio elementos destacados de la geografía soriana tales como la La-

guna Negra y los Picos de Urbión o el mentado Pinar Grande. Supone una superficie total de 94.438 

ha. La segunda de estas áreas por extensión se ubica inmediatamente al noroeste de Almazán y al sur 

de la capital, y se extiende a lo largo de 20.847 ha. Finalmente, el área de menor extensión, próximo a 

la localidad de Gormaz, alcanza las 13.445 ha. En total, la superficie del área de estudio suma 128.730 

ha., lo que representa el 12,5% de las 1.029.765 ha. de la provincia. 
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3. PROCESO METODOLÓGICO 

Para la consecución del objetivo general de este TFM se seguirá un proceso metodológico estruc-

turado en fases: 

 La primera de estas fases será la de selección, adquisición y procesado de los datos que se em-

plearán durante el proceso. En adelante -y para sintetizar- esta fase se nombrará como “Proce-

sado de datos”. Dentro de esta, se detallará el proceso empleado para transformar los datos bru-

tos en información específica de las tres principales fuentes de información a emplear: LiDAR, 

ortofotos y Sentinel 2A. 

 La segunda fase a realizar será la de “Segmentación” en la que, empleando el software eCogni-

tion, se dividirá el área de estudio en polígonos homogéneos, a partir de la información aporta-

da por las capas previamente generadas que participarán del proceso de la segmentación. Estos 

polígonos servirán de soporte para estructurar las fases posteriores y recibirán información te-

mática heredada de los estadísticos LiDAR y los productos Sentinel previamente generados, 

además de información sobre sus propiedades geométricas aportada desde el entorno del soft-

ware eCognition.  

 Sobre estos polígonos se realizará una toma de puntos verdad-terreno, una selección de puntos 

de entrenamiento cuya cobertura es conocida gracias a las fuentes de información de las que se 

dispone. 

 La última fase del proceso metodológico será la clasificación de los segmentos creados a partir 

de la verdad-terreno, con el objeto de aislar estadísticamente aquellos que se correspondan con 

cortas a hecho. Para esto se empleará el paquete Random Forest del lenguaje de programación 

estadístico R. Previamente habrá sido necesario un proceso de depuración y complementación 

de la información temática asociada a la capa vectorial resultante de la segmentación.  

 

 

Figura 4. Diagrama de flujos del proceso metodológico 
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3.1. Procesado de datos 

El procesado de los datos es una de las fases más extensas del proceso metodológico por tres mo-

tivos. El primero, que ya se adelantó en el punto anterior, responde a que, además del procesado estric-

to de los datos, previamente requiere de su selección y adquisición y, por tanto, del conocimiento de su 

naturaleza. El segundo, obedece a que se habrán de procesar datos obtenidos de tres fuentes diferentes: 

Datos LiDAR del PNOA de 2010, ortofotos de máxima actualidad también del PNOA y datos proce-

dentes del satélite Sentinel 2ª, puestos a disposición del público por la Agencia Espacial Europea 

(ESA). Finalmente, el tercer motivo que explica la extensión en la duración de esta primera fase es la 

gran cantidad de tiempo de procesado que requieren algunas de las operaciones, especialmente cuando 

se han de procesar volúmenes de información de la magnitud necesaria para abarcar el área de estudio 

antes propuesta. 

A continuación, se detallarán las operaciones realizadas para preparar los datos obtenidos de cada 

una de estas fuentes para su utilización en las fases sucesivas del proyecto. 

 

3.1.1. Procesado de datos LiDAR 

 

LiDAR (Laser Imaging Detection and Ranging) es una tecnología que permite conocer la distan-

cia entre el sensor y un punto de la superficie terrestre midiendo el desfase temporal entre la emisión y 

la recepción del pulso electromagnético. Se trata, por tanto, de una tecnología de las consideras activas 

dentro del mundo de los sensores de teledetección. Gracias a la acción combinada del sensor laser con 

sistemas de posicionamiento global (GPS) es posible localizar estos puntos sobre el terreno y, cono-

ciendo la altura del sensor en el momento de la captación de la información, es posible determinar la 

altitud de cada uno de estos puntos con precisiones que van desde centímetros hasta milímetros, en 

función de la naturaleza del sensor que, como en el caso de la teledetección óptica, pueden ser terres-

tres, aéreos o satelitales. 

 

El producto resultante es una nube de puntos georreferenciada a partir de la cual se pueden reali-

zar una serie de productos derivados. Concretamente, de cara al desarrollo de este proyecto, se genera-

rá un modelo digital de elevaciones -DTM, por sus siglas en inglés-, un modelo digital de altura de la 

vegetación -MDAV-, un ráster de la fracción de cavidad cubierta -LFCC-, un Canopy y un percentil 

95 de la altura de la vegetación. Más adelante se profundizará en la naturaleza de cada uno de estos 

elementos. 

 

La fuente de la que se han obtenido los datos LiDAR ha sido el Plan Nacional de Ortofotografía 

Aérea -PNOA- a través del portal de descargas del Centro Nacional de Información Geográfica -

CNIG- haciendo uso del visor de descargas que ofrece la posibilidad de descargar las hojas de LiDAR 

por superposición de una capa vectorial, para lo que se empleó el shape del área de estudio (Figura 3). 

Los archivos que se descargan del visor vienen en formato LAZ (formato de compresión de ficheros 

LAS) y contienen información altimétrica de la nube de puntos LiDAR, distribuidos en ficheros de 

2x2 km de extensión. Las nubes de puntos han sido capturadas mediante vuelos con sensor LiDAR 

con una densidad de 0,5 puntos/m2 -o superior-, y posteriormente clasificadas de manera automática y 

coloreadas mediante RGB obtenido a partir de ortofotos del PNOA con tamaño de pixel de 25 o 50cm. 

(CNIG, 2016). La fecha de captura de la información varía en función a la comunidad autónoma, en el 

caso de Castilla y León, data de 2010 (PNOA, 2016). 
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 Generación de rásters a partir de datos LiDAR en bruto. 

 

 DTM 

 

Un modelo digital del terreno -DTM o MDT- es un conjunto de datos numéricos que describe la 

distribución espacial de una característica del territorio (Doyle, 1978), en este caso, concretamente, 

la cota sobre el nivel del mar, por lo que se puede denominar específicamente modelo digital de eleva-

ciones (MDE), al margen de la denominación genérica para este tipo de archivos en el entorno del 

software de código libre Fusion. Se trata de un archivo de naturaleza ráster empleado para normalizar 

los valores de los demás productos derivados de la nube de puntos LiDAR. También se empleará pos-

teriormente para generar los ráster de pendientes y orientación. 

 

El proceso para obtenerlo se realizó mediante uno de los algoritmos implementados en Fusion, 

ejecutados desde la ventana se Símbolo del Sistema. En concreto, se empleó el algoritmo GridSurfa-

ceCreate, articulado mediante la siguiente sentencia1: 

 
C:\FUSION\GridSurfaceCreate.exe /class:2 D:\alberto_2016\Datos_Lidar\dtm\490-4632.dtm 5 m m 1 0 0 0 

D:\alberto_2016\Datos_Lidar\PNOA_2010_Lote5_CYL-RIO_490-4632_ORT-CLA-COL.LAZ 

 
Donde: 

C:\FUSION\GridSurfaceCreate.exe es el algoritmo; /class:2 es un parámetro (swich) que indica que solo los 

puntos de clase 2 (ground) se emplearán para generar el ráster;  

D:\alberto_2016\Datos_Lidar\dtm\490-4632.dtm es el archivo de salida;  

5 m m 1 0 0 0 son una serie de parámetros cuya razón (en orden) es: indica el tamaño de celda; unidades de 

medida latitud/longitud; unidades de medida en altura; sistema de coordenadas UTM; zona del sistema de 

cordenadas desconocida, datum desconocido, y datum vertical desconocido;  

D:\alberto_2016\Datos_Lidar\PNOA_2010_Lote5_CYL-RIO_490-4632_ORT-CLA-COL.LAZ es el archivo 

de salida. 

 

 Gridmetrics 

 

El siguiente paso a realizar tras la generación de los DTM consistió en obtener una serie de esta-

dísticas descriptivas sobre la composición y estructura de la nube de puntos sobre las que se sustenta-

rán procesos posteriores de creación de rásters. El algoritmo empleado se denomina gridmerics y re-

quiere de los DTM para normalizar los valores altitudinales de la nube de puntos, es decir, para trans-

formar la altitud elipsoidal en la que vienen los datos en origen a altura de los puntos sobre el terreno. 

Para realizar este paso, se utilizó la siguiente sentencia: 

 
C:\FUSION\gridmetrics /minht:2 D:\alberto_2016\dtm\490-4632.dtm 2 10 D:\alberto_2016\gridmetrics\490-

4632.csv D:\alberto_2016\datos_Lidar\PNOA_2010_Lote5_CYL-RIO_490-4632_ORT-CLA-COL.LAZ 

 
Donde: 

C:\FUSION\gridmetrics es el algoritmo; /minht:2 es el parámetro (swich) que define el umbral de puntos por 

unidad de superficie por debajo del cual no genera resultados. 

D:\alberto_2016\dtm\490-4632.dtm es el archivo dtm empleado para normalizar valores altitudinales. 

2 10, son, por este orden, indicador de la altura de corte por debajo de la cual no considera registros y tama-

ño de celda. 

D:\alberto_2016\gridmetrics\490-4632.csv es el archivo de salida. 

D:\alberto_2016\datos_Lidar\PNOA_2010_Lote5_CYL-RIO_490-4632_ORT-CLA-COL.LAZ es el archivo 

de entrada. 

 

 

                                                 

 
1 Aquí, así como en casos similares, se debe generar una sentencia por cada archivo de entrada o bien realizar un proyecto 

batch. 
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 LFCC (Fracción de cabida cubierta) 

 

La fracción de cabida cubierta es un índice que expresa el grado de recubrimiento del suelo por la 

proyección vertical de las copas de arbolado. Por tanto, se trata de un indicador que aporta informa-

ción sobre la espesura del dosel vegetal. Se expresa en tanto por ciento. Para obtenerla es preciso haber 

generado previamente las estadísticas de la nube de puntos mediante el comando gridmerics y aplicar 

el comando del entorno Fusion csv2grid. La sentencia que articula la orden es la siguiente: 

 
C:\FUSION\csv2grid ndzero:0 D:\alberto_2016\gridmetrics\490-4632_all_returns_elevation_stats.csv 49 

D:\alberto_2016\raster\LFCC\490-4632.asc 

 
Donde: 

C:\FUSION\csv2grid es el algoritmo; ndzero:0 asigna valores 0 a los NoData; 

D:\alberto_2016\gridmetrics\490-4632_all_returns_elevation_stats.csv es el archive de entrada 

49 es el parámetro que determina que el archivo de salida será la fracción de cabida cubierta. 

D:\alberto_2016\raster\LFCC\490-4632.asc es el archivo de salida. 
 

 Percentil 95 de la altura del dosel vegetal (P95) 

 

Se trata de un estadístico que representa el valor bajo el cual se encuentran el 95% de los valores 

medidos. Su objetivo es filtrar valores extremos -ruido- que pueden haber sido causados por diversos 

motivos. En el caso de datos LiDAR, un pájaro o un avión pueden interferir en el pulso electromagné-

tico devolviendo al sensor un valor anómalo. Gracias al P95, este valor no se consideraría y no altera-

ría la estadística de la superficie a parametrizar. 

 

Al igual que en el caso de la fracción de cabida cubierta, requiere para su elaboración de las esta-

dísticas obtenidas mediante el comando gridmetrics. La sentencia del entorno Fusión que articula la 

orden es la siguente: 

 
C:\FUSION\csv2grid D:\alberto_2016\Datos_Lidar\gridmetrics\490-4632_all_returns_elevation_stats.csv 37 

D:\alberto_2016\Datos_Lidar\raster\P95\490-4632_P95.asc 

 

Donde: 

C:\FUSION\csv2grid es el algoritmo 

D:\alberto_2016\Datos_Lidar\gridmetrics\490-4632_all_returns_elevation_stats.csv es el archivo de entrada 

37 es el parámetro que determina que el archivo de salida será el percentil 95. 

D:\alberto_2016\Datos_Lidar\raster\P95\490-4632_P95.asc es el archivo de salida. 

 

 

 Canopy 

 

Se trata de otro estadístico comúnmente usado en gestión forestal que hace referencia a la mayor 

altura en el dosel a la que la densidad del combustible es mayor de 0.011 kg / m3 (Andersen et al., 

2005). Como en los casos anteriores requiere de las estadísticas del gridmetrics y se genera en el en-

torno Fusión a través de la siguiente sentencia: 

 
C:\FUSION\csv2grid.exe D:\alberto_2016\Datos_Lidar\gridmetrics\490-4632_all_returns_elevation_stats.csv 

68 D:\alberto_2016\Datos_Lidar\raster\CANOPY\490-4632_canopy.asc 

 

Donde: 
C:\FUSION\csv2grid es el algoritmo 

D:\alberto_2016\Datos_Lidar\gridmetrics\490-4632_all_returns_elevation_stats.csv es el archive de entrada 

69 es el parámetro que determina que el archivo de salida será el canopy. 

D:\alberto_2016\Datos_Lidar\raster\CANOPY\490-4632_canopy.asc es el archivo de salida. 
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 MDAV 

El modelo digital de altura de la vegetación -MDAV- puede expresarse como la diferencia entre el 

modelo digital de la superficie en un terreno con presencia de elementos vegetales, y el modelo digital 

del terreno (MDS-MDE). Se trata, por tanto, de una parametrización del dosel vegetal sin incluir el 

suelo desnudo. Para generarlo se ha de introducir la siguiente sentencia al entorno Fusion: 

C:\FUSION\Canopymodel.exe /smooth:3 /outlier:0,40 /ground:D:\alberto_2016\Datos_Lidar\dtm\490-

4632.dtm D:\alberto_2016\Datos_Lidar\mdav\490-4632_mdav.dtm 2 m m 1 0 0 0 

D:\alberto_2016\datos_Lidar\PNOA_2010_Lote5_CYL-RIO_490-4632_ORT-CLA-COL.LAZ 

Donde: 

C:\FUSION\Canopymodel.exe es el algoritmo; /smooth:3 (swich) que aplica un filtro estadístico a partir de la 

media de los 3 valores vecinos; /outlier:0,40 es el parámetro (swich) que define el umbral por debajo del 

cual no se considerará ningún punto; /ground:D:\alberto_2016\Datos_Lidar\dtm\490-4632.dtm es el pará-

metro (swich) que define el archivo empleado para extraer los valores del suelo desnudo. 

D:\alberto_2016\Datos_Lidar\mdav\490-4632_mdav.dtm es el archivo de salida 

2 m m 1 0 0 0, indican en orden: el tamaño de celda; unidades de medida latitud/longitud; unidades de medida 

en altura; sistema de coordenadas UTM; zona del sistema de coordenadas desconocida, datum desconoci-

do, y datum vertical desconocido. 

D:\alberto_2016\datos_Lidar\PNOA_2010_Lote5_CYL-RIO_490-4632_ORT-CLA-COL.LAZ es el archivo de 

entrada. 

 

 Mosaicado y recorte de los rásters generados 

 

Una vez se han creado los rásters, el siguiente paso consiste en realizar un mosaico con ellos para 

fusionarlos en un único archivo. Para ello se recurrió al comando Merge del entorno Fusion. Este 

comando ofrece dos variantes en función del tipo de archivos a unificar; por ello, en la librería de 

Fusion se encuentran los algoritmos MergeDTM, que permite unificar los archivos con extensión 

(.dtm) que, a efectos de este proyecto, son los DTM y los MDAV, y MergeRASTER, a partir del cual 

se mosaicaron los archivos de LFCC, P95 y Canopy, con extensión (.asc). 

 

La sentencia que ordena el mosaicado de archivos (.dtm) en el entorno Fusion, que funciona del 

mismo modo tanto para los DTM como para los MDAV, es la siguiente: 

 

C:\FUSION\MergeDTM.exe D:\alberto_2016\Datos_Lidar\dtm\dtm5x5.dtm  

D:\alberto_2016\Datos_Lidar\dtm\*.dtm 

 
Donde: 

C:\FUSION\MergeDTM.exe es el algoritmo; 

D:\alberto_2016\Datos_Lidar\dtm\dtm5x5.dtm es el archivo de salida; 

D:\alberto_2016\Datos_Lidar\dtm\*.dtm es el archivo de entrada. 

 

Por su parte, la sentencia que ordena el mosaicado de archivos (.asc) en el entorno Fusion es la 

siguiente, e igualmente funciona de la misma manera para unificar los archivos de LFCC, P95 y 

Canopy: 

 
C:\FUSION\MergeRASTER D:\alberto_2016\raster\Merges\LFCC.tif 

D:\alberto_2016\Datos_Lidar\raster\LFCC\*.asc 

 
Donde: 

C:\FUSION\MergeRASTER es el algoritmo; 

D:\alberto_2016\raster\Merges\LFCC.tif es el archivo de salida; 

D:\alberto_2016\Datos_Lidar\raster\LFCC\*.asc es el archivo de entrada. 
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Una vez quedaron realizados los mosaicos, se procedió a recortarlos empleando como perimetro 

el shape del área de estudio. El proceso se realizó en el entorno del software ArcGIS 10.3. a través de 

la herramienta del paquete Spatial Analyst Tools, Extract by Mask ubicada en el módulo Extraction. A 

continuación, a partir del ráster del DTM ya recortado, se generaron los rásters de orientación y 

pendientes mediante las herramientas Aspect y Slope, respectivamente, ubicadas en el módulo Surface 

del mismo paquete de herramientas. 

   

3.1.2. Procesado de las Ortofotos 

 

La segunda fuente que se ha empleado ha sido la ortofoto de máxima actualidad del PNOA, obte-

nida, de igual manera que los datos LiDAR, a través del portal de descargas del CNIG, mediante la 

búsqueda en visor por superposición con el shapefile del área de estudio. Las ortofotos se descargan en 

formato ECW, con sistema geodésico de referencia ETRS89 y proyección UTM en su huso corres-

pondiente, a efectos de este proyecto, el 30. La unidad de distribución y descarga es la hoja del 

MTN50. Las ortofotos correspondientes al área de estudio datan de julio y agosto de 2014. Se trata de 

archivos multibanda -RGB- con una resolución espacial de 0,25 m (CNIG, 2016). 

 

Su procesado es sencillo en comparación con los datos LiDAR puesto que tan solo es necesario 

realizar un mosaico con ellas y, posteriormente, recortar el mosaico resultante tal y como se hizo ante-

riormente. Para realizar el mosaico se recurrió al software ERDAS IMAGINE 2013, concretamente a 

la herramienta Mosaic Pro, de la sección Geometry del menú Ráster. Para recortar el mosaico se utili-

zó, de nuevo, la herramienta Extract by Mask del Spatial Analyst de ArcGIS 10.3. 

 

3.1.3. Procesado de datos Sentinel 2A 

 

Como se anticipaba en la Introducción, Sentinel 2A es el primero de una constelación de satélites 

ópticos de la ESA al que pronto se sumará su hermano gemelo, Sentinel 2B, y, a partir de 2021, los 

Sentinel 2C y 2D (Airbus, 2016).  

 

Ofrece de manera gratuita y con una periodicidad de 10 días -a la espera de reducirla a la mitad 

con el lanzamiento de Sentinel 2B- imágenes con información de 13 bandas entre el ultravioleta y el 

infrarrojo de onda corta (SWIR), con resoluciones espaciales comprendidas entre los 10 m de 3 de las 

bandas del visible y uno de los NIR, es decir, las bandas 2, 3, 4 y 8, y los 60 m de la banda 1, en la 

región ultravioleta -diseñada para observar aerosoles-, de la banda 9 -diseñada para monitorear el va-

por de agua atmosférico- y la banda 10 -denominada cirrus por ser su función la observación de las 

nubosidades de la atmósfera-. 

 

El procesado de las imágenes Sentinel incluye varias fases. En primer lugar, es necesario selec-

cionar y descargar las imágenes pertinentes. A continuación, es preciso componer una imagen multi-

banda con ellas, ya que se descargan las bandas individualmente. Después se deben unir las escenas de 

la imagen descargadas y corregirlas radiométricamente. Posteriormente se deben recortar al perímetro 

del área de estudio. Además, de cara a posteriores procesos, se generaron una serie de neocanales con 

la esperanza de que aportaran información relevante a la hora de cartografiar las cortas a hecho. Con-

cretamente se realizó un análisis de componentes principales (ACP), un índice de vegetación de dife-

rencia normalizada (NDVI) y una ratio normalizado de quema (NBR). 
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 Selección y descarga de las imágenes 

 

La descarga de imágenes Sentinel es gratuita con solo registrarse a través del portal de descargas 

del programa Copernicus de la ESA “Sentinels Scientific Data Hub”. El primer paso para descargarlas 

es realizar una selección del área del que se pretenden las imágenes. A continuación, se debe especifi-

car la fecha o rango temporal de captura o de procesado de las imágenes, el satélite del que se desean 

las imágenes -actualmente Sentinel 1, 2 ó 3- y algunos parámetros específicos de cada satélite; en el 

caso de Sentinel 2, la cobertura nubosa tolerada. 

 

Las imágenes vienen divididas en escenas y éstas, a su vez, en cada una de las bandas espectrales, 

por lo que es preciso componerlas a posteriori. Para el desarrollo de este estudio se seleccionaron las 

escenas del centro y este de la imagen 

S2A_OPER_PRD_MSIL1C_PDMC_20160703T183124_R094_V20160703T1106, registrada el 3 de 

julio de 2016 y que cubre el área de estudio. 

 

 

 Composición y mosaicado de las imágenes 

 

De las 13 bandas Sentinel 2, se seleccionaron para el desarrollo de este proyecto las bandas 2, 3 

y 4, que registran en las longitudes de onda del visible con una resolución espacial de 10 m, y la banda 

8, correspondiente con el infrarrojo próximo -NIR-, con idéntica resolución espacial cuyo centro de 

banda se ubica en torno a los 840 nm. Junto con ellas se seleccionaron también las bandas 11 y 12, en 

adelante denominadas SWIR1 y SWIR2 a efectos de este proyecto, que registran en la región del 

infrarrojo de onda corta, en torno a los 1600 nm la primera, y a los 2200 nm la segunda. 

 
Tabla 1. Bandas originales de Sentinel 2A seleccionadas para el multibanda. 

Nº banda Sentinel 2A Denominación Centro de banda (nm) Resolución espacial (m) 

2 BLUE 490 10 

3 GREEN 560 10 

4 RED 665 10 

8 NIR 842 10 

11 SWIR1 1610 20 

12 SWIR2 2190 20 

 

La razón de que se seleccionaron estas 6 bandas y no otras de entre las trece de las que dispone 

Sentinel 2 radica en dos cuestiones. Por una parte, son las que mayor resolución espacial ofrecen, con-

siderando los 10 m de pixel de las tres bandas del visible y el infrarrojo próximo y los 20 m de los dos 

SWIR. Y por la otra, se consideró que estas seis bandas registraban las regiones del espectro óptico de 

mayor interés y provecho para la ejecución del proyecto. Así, las bandas 1 -aerosoles-, 9 -vapor de 

agua- y 10 -cirrus- quedaban descartadas tanto por resolución espacial como por su rango de registro. 

De entre los otros cinco infrarrojos -B5, B6, B7, B8, B8a- se seleccionó la 8 -en adelante y para efec-

tos de este proyecto denominada NIR o B4- por ser la que mayor resolución espacial ofrecía. 

 

Para unificar las bandas en una sola imagen se recurrió al software ERDAS IMAGINE 2013. Este 

programa dispone de una herramienta denominada Model Maker que permite diseñar funciones a par-

tir de una serie de algoritmos que implementa en su biblioteca. Concretamente se empleó el algoritmo 

Stack Layer que dio como resultado dos imágenes multibanda, una por escena. A la hora de unir las 

dos imágenes resultantes en una sola, la herramienta utilizada fue Mosaic Pro, como en el caso de las 

ortofotos. 
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 Corrección radiométrica de las imágenes 

 

Las imágenes Sentinel se descargan del servidor de la ESA con nivel de procesado 1C, o lo que 

es lo mismo, vienen corregidas al techo de la atmósfera (TOA). De cara a garantizar que se trabaja con 

valores no alterados por el efecto dispersor de la atmósfera, es decir, para corregirlas al suelo de la 

atmósfera (BOA), se aplicó el método de substracción de objeto oscuro (DOS), propuesto por Chaves 

(1988) y utilizado en numerosas aplicaciones por su aplicación simple. Postula que la bruma atmosfé-

rica incrementa los ND en toda la imagen, siendo detectable su magnitud en áreas de agua limpia, pro-

funda y calma donde, por las características físicas, deben presentar reflectancia nula. El valor repre-

sentativo de esa diferencia se sustrae, en cada banda, a todos los píxeles de la escena. 

 

 La aplicación de este método se realizó en el entorno de ERDAS IMAGINE 2013. El primer 

paso consiste en localizar aquellos píxeles que representen el valor mínimo en el histograma de cada 

una de las bandas al margen de valores correspondientes a ruido presentes en las imágenes. Para ello 

se abrió la imagen en pseudocolor y se seleccionó la primera de las bandas. En el menú Table, se acti-

vó el comando Show Atributes que ofrece la posibilidad de detectar en la imagen un determinado valor 

del histograma. Se ordenaron los valores de los niveles digitales de menor a mayor y se localiza el 

primer ND con representación en el histograma -frecuencia-. Esta operación ha de realizarse en cada 

una de las bandas. 

 

Existe una relación de proporcionalidad entre el valor mínimo de cada una de las bandas que 

responde a la máxima que establece que, a menor longitud de onda, mayor dispersión atmosférica. Por 

lo tanto, la banda del azul debe presentar un valor superior a la del verde y esta a su vez superior a la 

del rojo, y así sucesivamente. Los valores sustraídos al mosaico recién generado figuran en la tabla 10. 

 

 Para realizar la corrección se recurrió de nuevo a la herramienta Model Maker que permite sus-

traer valores a una imagen de entrada, banda por banda, de una sola vez, mediante una tabla que recoja 

los valores de cada banda. 

 
Tabla 2. Bandas Sentinel 2 integrantes de la imagen multibanda 

con nivel digital mínimo e índice de ND mínimo. 

BANDA ND MIN Bn/B1 

B1 BLUE 588 1 

B2 GREEN 381 0.65 

B3 RED 193 0.33 

B4 NIR 132 0.22 

B5 SWIR1 35 0.06 

B6 SWIR2 11 0.02 

 

 

 

 Recorte de la imagen Sentinel 

 

Una vez se dispuso de la imagen Sentinel 2 compuesta, mosaicada y corregida se recortó empleando el 

perímetro del área de estudio, tal y como se hizo con los ráster obtenidos de la nube de puntos LiDAR. 

Para ello, desde el entorno ArcGIS 10.3, se utilizó de nuevo la herramienta Extract by Mask del paque-

te Spatial Analyst. A partir de la imagen multibanda resultante se calcularon los neocanales menciona-

dos con anterioridad: ACP, NDVI y NBR. 
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 Análisis de Componentes Principales (ACP) 

 

Se trata de una técnica estadística entroncada en las técnicas multivariantes de síntesis de la in-

formación, cuyo objetivo es resumir un amplio abanico de variables en un nuevo conjunto de menor 

tamaño sin perder una parte significativa de la información original. La creación de los Componentes 

Principales se consigue a partir de la definición de unos nuevos ejes (y, por tanto, de unas nuevas 

coordenadas) en un espacio n-dimensional mediante la rotación y traslación de los ejes originales de 

las bandas (Chuvieco, 1996). 

 

Las 3 primeras bandas resultantes de este proceso suelen asociarse a tres parámetros físicos: Bri-

llo, verdor y humedad, si bien el resultado para cada imagen de satélite es independiente, pudiendo 

expresar la propiedad inversa, es decir, marchitez en lugar de verdor y sequedad en lugar de humedad. 

Del mismo modo, la interpretación de los componentes 2 y 3 puede invertirse en ocasiones, recogien-

do el CP2 características espectrales relacionadas con la humedad/sequedad mientras que el CP3 reco-

ja las relacionadas con el verdor/marchitez. 

 

El número de componentes principales que se puede generar es, como máximo, igual al número 

de bandas de la imagen original. No obstante, de cara a la ejecución de este proyecto, se generaron 

solamente los tres primeros, que recogen la mayor parte de la información y se pueden relacionar de 

forma empírica con los factores biofísicos mencionados. 

 

El proceso se realizó mediante ERDAS IMAGINE 2013, a través de la herramienta homónima del 

paquete Spectral en el menú Raster. Esta herramienta nos ofrece la posibilidad de generar una matriz 

con los eigenvectores, que expresan la relación direccional entre los viejos y los nuevos valores, y un 

archivo con los eigenvalores, que recogen la proporción de información original contenida en el nuevo 

canal generado. 

 

El objetivo de la aplicación de este análisis en este proyecto era obtener una capa del área de estu-

dio que sintetizara en tres neocanales el contenido de las 6 originales de la imagen Sentinel. Además, 

este nuevo multibanda tenía, en una resolución espacial de 10 m, la información de los SWIR, cuyo 

pixel era de 20 m de lado. Esto se debe a un proceso interno de remuestreo automático que, si bien es 

cierto que en superficies mayores puede generar ruido, no resulta así para un área de estudio como la 

de este proyecto. 

 

 

 NDVI 

 

Normalized Difference Vegetation Index (NDVI), es un índice de vegetación y, como tal, propor-

ciona información sobre el estado de la vegetación relacionando las distintas bandas de las imágenes 

multiespectrales. Se calcula a partir de las bandas del rojo y del NIR ya que es en las longitudes de 

onda que ambas comprenden donde se recoge la mayor parte de la información sobre la vegetación. La 

banda del rojo aporta información sobre la absorción clorofiliana mientras que la del infrarrojo próxi-

mo, sensible a las variaciones en la estructura interna de la hoja, informa sobre el vigor vegetal. El 

gran contraste que presenta la vegetación sana en estas dos bandas las hace especialmente interesantes 

para estudiar el estado de la vegetación. Responde a la siguiente fórmula: 

 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

 

Se trata de la diferencia normalizada de las bandas del NIR y del rojo que genera un ráster cuyos 

valores oscilan entre -1 y +1. El objetivo de incluirlo en el proyecto es el de dotar al modelo que se 

elaborará con posterioridad de un índice con capacidad para identificar la vegetación y discriminarla 

de otras coberturas. 
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Para generarlo se recurrió de nuevo al Model Maker de ERDAS que permite operar como una cal-

culadora ráster con las bandas de una imagen multibanda. 

 

 NBR 

 

Normalized Burn Ratio (NBR) o ratio normalizado de quema, es un índice diseñado para medir la 

severidad de los incendios. El objetivo de incluirlo entre las capas que posteriormente engrosarán la 

segmentación y la clasificación, radica en la similitud espectral entre un incendio y una corta a hecho, 

ya que ambos suponen un afloramiento del suelo desnudo subyacente al dosel vegetal cuando este des-

aparece. La ecuación que lo define es similar a la del NDVI, pero emplea el SWIR2 en lugar del rojo. 

Esta variación le permite recabar información sobre el suelo desnudo, cuya signatura espectral mantie-

ne un signo ascendente a lo largo del espectro óptico por lo que, es en la banda del SWIR2 en la que 

más variabilidad ofrece de entre las disponibles. El rango de sus valores va desde -1 a +1. 

 

𝑁𝐵𝑅 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
 

 

La manera de generarlo es la misma que en el caso del NDVI, a través de la calculadora ráster del 

Model Maker, aplicando la ecuación de la fórmula. 

 

 

3.2. Segmentación del área de estudio 

 

Una vez estuvieron preparadas las capas resultantes del procesado de la información bruta extraí-

da de las fuentes, el siguiente paso consistía en segmentar el área de estudio a partir de la información 

contenida en las capas. El objeto de la segmentación es dividir el área de estudio en zonas homogéneas 

interiormente y heterogéneas con respecto a sus vecinas. Cada una de estas zonas, denominadas obje-

tos o segmentos, dentro del entorno del software empleado para su desarrollo -eCognition de Trimble-, 

debía ir acompañada de una tabla de atributos con información temática que permitiría posteriormente 

su clasificación en el entorno de R, empleando el paquete Random Forest, tratando de diferenciar las 

cortas a hecho del resto de superficies. Esta información temática se conformó a partir de la media del 

valor de los pixeles de las diferentes capas preparadas con anterioridad comprendidos dentro de cada 

segmento. Del mismo modo otros estadísticos relativos a estas capas, como la desviación estándar, 

participaron de los segmentos resultantes. Finalmente, eCognition aportará información respecto a las 

propiedades geométricas de los segmentos generados. 

 

El proceso comienza con la selección de las capas que se emplearon durante la segmentación. En 

este caso, se seleccionaron por una parte todos los estadísticos LiDAR generados en formato ráster, 

incluyendo los rásters de orientación y pendiente; la imagen multibanda Sentinel 2, el NDVI, el NBR 

y los tres componentes principales generados. 

 

Como se ha venido repitiendo con anterioridad, el objetivo del proyecto es detectar y cartografiar 

cortas a hecho, es decir, polígonos con formas regulares –principalmente fajas-, relativamente estre-

chos, que forman patrones reconocibles, emplazados dentro de masas boscosas, representando una 

discontinuidad abrupta en altura respecto a sus inmediaciones y con un comportamiento espectral se-

mejante  al del suelo desnudo o al del matorral, en función del estado de la regeneración.  

Bajo estas premisas parece lógico pensar que los datos LiDAR son los idóneos para soportar el 

peso de la segmentación y definir con la máxima precisión y eficacia las cortas a hecho. Por un lado, 

presentan una mayor resolución espacial que los productos derivados de Sentinel 2, lo que les permite 

ajustarse mejor a las dimensiones de las fajas, ocasionando en menor medida pixeles con mezcla de 

varias superficies. Por otro lado, en vista de la idéntica respuesta espectral entre las cortas y los cami-
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nos u otras superficies de suelo desnudo, la modelización tridimensional de la realidad que posibilita 

LiDAR supone una alternativa a este problema.    

 

Aparentemente la tecnología LiDAR es la más apropiada para dirigir la segmentación; sin embar-

go, los datos obtenidos del PNOA datan del año 2010, lo que supone que no es posible detectar con 

ellos cortas a hecho posteriores a esta fecha.  

 

Por otro lado, tal y como se adelantó en la introducción, resulta de gran interés explorar las posi-

bles aplicaciones de una tecnología de acceso gratuito y libre para toda la población, y cuyas mejoras 

técnicas frente a sus competidores no son en absoluto desdeñables, como es Sentinel 2. 

 

Para resolver el problema de la similitud espectral entre fajas, caminos y otras superficies que pu-

dieran confundirse, al mismo tiempo que se aprovechaba de la mejor manera posible la información 

procedente de Sentinel, el proceso de segmentación se estructuró en dos fases o niveles: Una primera 

fase en la que el peso de la segmentación recayó exclusivamente en el MDAV, cuya resolución espa-

cial es de 2 m, y una segunda en la que la imagen multibanda Sentinel y sus productos derivados fue-

ron los encargados de aportar la información que delimitó los segmentos. 

 

El sentido de la primera segmentación a partir del MDAV consistía en diferenciar con gran preci-

sión las zonas que en 2010 eran bosque y las que no. Esto permitió diferenciar las cortas a hecho de 

todas aquellas superficies presentes antes de 2010 sin vegetación, como caminos, roquedos, superficies 

agrícolas en torno a los núcleos rurales, etc. Sin embargo, esta opción, que funciona a modo de cribado 

masivo, también deja fuera todas aquellas cortas a hecho anteriores a la captación de los datos LiDAR, 

mientras que no cribará todas aquellas pistas forestales posteriores a 2010. Ambos casos se asumen 

como males necesarios. En el caso de las cortas con más de 6 años, se entiende que deben de encon-

trarse en una fase de regeneración avanzada. Por otro lado, se considera que ninguna masa boscosa ha 

podido desarrollarse lo suficiente en 6 años como para ser susceptible de soportar esta práctica silvíco-

la a día de hoy. 

 
Tabla 3. Capas integradas en el proceso de segmentación de eCognition con indicación de su 

resolución espacial. 

CAPA RESOLUCIÓN ESPACIAL (m) 

Componente principal 1 (CP1) 10 

Componente principal 2 (CP2) 10 

Componente principal 3 (CP3) 10 

Aspect 5 

CANOPY 5 

LFCC 10 

MDAV 2 

NBR 10 

NDVI 10 

Percentil 95 (P95) 10 

SLOPE 5 

Sentinel B1 (BLUE) 10 

Sentinel B2 (GREEN) 10 

Sentinel B3 (RED) 10 

Sentinel B4 (NIR) 10 

Sentinel B5 (SWIR1) 20 

Sentinel B6 (SWIR2) 20 
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Figura 5. Segmentación generada por el algoritmo “Multiresolution segmentation” de eCognition; a la derecha, ampliación sobre el   

sector inferior izquierdo. 

 Segmentación inicial sobre primer nivel: Multiresolution segmentation 

 

Para la ejecución de esta primera fase, se implementaron las capas recogidas en la tabla 11 y se 

definió un subconjunto espacial, a fin de comprobar los resultados y poder realizar las pruebas necesa-

rias sin que el tiempo de procesado se alargara. 

 

A continuación, se abrió un árbol de procesos al que se añadió un nuevo apéndice -en el entorno 

eCognition, cada apéndice envuelve un algoritmo destinado a realizar una acción en base a umbrales y 

parámetros definidos por el criterio experto del usuario-. El algoritmo seleccionado para este primer 

apéndice fue multiresolution segmentation, diseñado para segmentar superficies a partir de informa-

ción de entrada con diversas resoluciones espaciales. Se trata de un algoritmo que opera sobre píxeles 

para generar objetos. Sus principales parámetros a ajustar son, por un lado, el peso que tiene cada capa 

en la segmentación, para lo que se le atribuyó al MDAV un valor de 5 mientras que las demás capas 

no intervinieron, y, por otro lado, el factor escala, que regula el tamaño de los segmentos a generar. 

Este último es un parámetro empírico, dependiente de la resolución espacial de las capas implicadas, 

que ocasionará resultados distintos en función del entorno del proyecto. En este caso se le dio un valor 

de 40. El siguiente parámetro para ajustar es el de forma que, de manera dicotómica, define si la seg-

mentación se ajustará a las propiedades de forma o de color de las capas, es decir, a las propiedades 

geométrico-contextuales o espectrales; el rango de ajuste va de 0 a 1, siendo 0 la máxima influencia de 

las propiedades espectrales y 1 la de las contextuales. El valor que se empleó fue de 0,2. El último 

parámetro a regular es la compacidad, que determina si los segmentos que se formarán tendrán formas 

compactas o no. Se le atribuyó un valor neutro, de 0,5, sobre su rango comprendido entre 0 y 1. 

 
Tabla 4. Parámetros del algoritmo “Multiresolution segmentation” de eCognition. 

Parámetro Multiresolution segmentation 

Domain Pixel level 

Level name New level 

Image Layer weights MDAV (5), resto (0) 

Scale parameter 60 

Shape 0,2 

Compactness 0,5 
 

Como se aprecia en la figura 4, a partir del MDAV y el algoritmo multiresolution segmentation 

con la paremetrización adecuada, es posible realizar una segmentación que define con gran precisión 

las cortas a hecho, así como otros elementos del entorno, tales como masas boscosas y caminos. A 
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partir de esta segmentación se constituyó el primer nivel del proceso, sobre ella se establecerán dos 

clases: bosque y no bosque. El segundo nivel del proceso de segmentación consistió, como se dijo con 

anterioridad, en realizar una segunda segmentación, exclusivamente sobre los objetos clasificados co-

mo bosque, empleando la fuente de información más actual de la que se disponía, Sentinel 2. De esta 

manera se excluyó toda superficie que pudiera confundirse con las cortas a hecho, principalmente ca-

minos, claros de los bosques o superficies agrícolas. 

 

 

 Definición de clases: Assign Class 

 

Para separar los objetos segmentados se empleó el algoritmo assign class, que trabaja a nivel de 

objetos y no de pixeles como anteriormente. Este algoritmo ofrece la posibilidad de definir un umbral 

que clasifique en una nueva categoría generada a tal efecto a todos los objetos que cumplan la condi-

ción. En este caso, la clase creada fue “Bosque” y el umbral clasificaba como tal todos los objetos cu-

ya media del MDAV fuera mayor o igual a 8 m y que, además, tuvieran una fracción de cabida cubier-

ta de por lo menos el 60%. Acto seguido se generó la clase complementaria “No Bosque” mediante el 

mismo algoritmo agrupando todo segmento no clasificado como bosque. El umbral establecido sobre 

el MDAV garantizaba que en la clase “Bosque” solo hubiera segmentos correspondientes a masas que 

en 2010 alcanzaban los 8 m de altura y, por ende, susceptibles de haber sido objeto de corta desde en-

tonces hasta la actualidad. El umbral definido para la fracción de cabida cubierta, por su parte, garanti-

zaba que las masas clasificadas como bosque tuvieran una densidad de pies superior al 60%, evitando 

así la posterior clasificación como cortas de masas abiertas con relativa presencia de suelo desnudo. 

 
Tabla 5. Parámetros del algoritmo “Assign Class” de eCognition. 

Parámetro Assign Class 

Domain Image object level 

Threshold condition Mean MDAV >= 8; Mean LFCC >= 60 

Use class Bosque 

Parámetro Assign Class 

Domain Image object level 

Threshold condition - 

Class Filter Unclassified 

Use class No Bosque 
 

 

 Fusión de los segmentos de una misma clase: Merge region 

 

Tras definir ambas clases, se procedió a agregar los segmentos generados en cada una de ellas. De 

nuevo, se empleó uno de los algoritmos disponibles, en este caso, merge region. Este algoritmo unifica 

los polígonos de la misma clase siempre y cuando exista continuidad espacial entre ellos. Como en el 

caso anterior, es necesario aplicarlo una vez a cada clase.  

 
Tabla 6. Parámetros del algoritmo “Merge region” de eCognition. 

Parámetro Merge region 

Domain Image object level 

Class filter Bosque 

Fusión super objects Yes 

Parámetro Merge region 

Domain Image object level 

Class filter No Bosque 

Fusión super objects Yes 
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Figura 6. Efecto del algoritmo “Merge region” de eCognition: a la izquierda, fusión de la clase “Bosque”; a la derecha, fusión de la 

clase “No Bosque” 

 

Este algoritmo, además de simplificar la trama de ambas clases, posibilita que, al establecer un 

segundo nivel de segmentación, los polígonos generados en el primero no condicionen la formación de 

los nuevos.  

 

 

 Segmentación sobre segundo nivel: Multiresolution segmentation 

 

A continuación, se procedió a generar un segundo nivel de segmentación mediante el algoritmo 

multiresolution segmentation pero, en esta ocasión, ponderando positivamente las capas de Sentinel en 

detrimento del MDAV. El reparto de los pesos sobre cada capa se estableció empíricamente, en base a 

la observación y análisis de la información disponible, buscando cual reflejaba en mayor medida 

aquellas caracteristicas que se pretendían destacar, mediante numerosas pruebas ensayo-error. Puede 

resultar sorprendente el no haber incluido ninguno de los dos SWIR, cuyo rango de registro del 

espectro electromagnético detecta especialmente bien el suelo desnudo, entre las capas que 

participarán de esta segunda segmentación. La toma de esta decisión surgió del análisis empírico, en el 

que se comprobó que, tanto las capas del visible como el CP1 definían mejor las cortas a hecho, a 

través de un mayor contraste con los píxeles vecinos. Esto se debía a la mayor resolución espacial de 

las capas del visible y el CP1 -10m-, frente a los 20m de los SWIR. Por otro lado, si que se incluyó el 

NBR, que aporta información del SWIR2. Los parámetros de escala, forma y compacidad también 

sufrieron algún ligero cambio respecto a la primera segmentación en base a las mismas pruebas 

empíricas. 

 
Tabla 7. Parámetros del algoritmo “Multiresolution segmentation” de eCognition. 

Parámetro Multiresolution segmentation 

Domain Pixel level 

Level name Second level 

Image Layer weights BLUE (5), CP1 (3), RED (5), NBR (5), resto (0) 

Scale parameter 120 

Shape 0,1 

Compactness 0,5 
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Figura 7.Segmentación generada por el algoritmo “Multiresolution segmentation” de eCognition sobre el primer nivel la derecha, 

ampliación sobre un sector. 

 

Como se aprecia en la figura 6, esta segunda segmentación sí que logra representar las cortas a 

hecho posteriores al vuelo LiDAR, a través de múltiples objetos de pequeño tamaño que responden 

principalmente a la similitud espectral entre píxeles, tal y como se estableció en el parámetro forma. 

 

Una vez se consideró positivo el resultado de la segmentación, se procedió a extender el arbol de 

reglas que recoje los algoritmos empleados en la segmentación al total del área de estudio, antes de 

exportarlo a formato shapefile (.shp) de ESRI para poder trasladar la segmentación al entorno de 

ArcGIS, desde donde se seleccionarían los puntos verdad-terreno.  

 

 

 Exportar la segmentación a formato shape: export vector layer 

 

Para exportar la segmentación, es preciso introducir un nuevo algoritmo al arbol de reglas de 

eCognition. En esta ocasión, el algoritmo empleado fue export vector layer, el cual permite exportar 

una segmentación vectorial, dotándola de una tabla de atributos configurable a partir de las capas de 

entrada, de las cuales el programa puede extraer una amplia gama de estadísticos, así como una serie 

de propiedades geométricas y contextuales propias del entorno eCognition. Este algoritmo también 

permite establecer umbrales que excluyan del proceso de la exportación aquellos objetos que no los 

cumplan. En este caso se estableció un umbral que excluía todo polígono con un valor medio de rojo 

inferior a 0, para así evitar la aparición de polígonos creados fuera del área de estudio con valores 

anómalos. 

 
Tabla 8. Parámetros del algoritmo “Export vector layer” de eCognition. 

Parámetro Export vector layer 

Domain Image object level 

Level Second level 

Threshold condition Mean Red >= 0 

Shape Type Polygons 

Atributes Media y desviación estándar de las capas de entra-

da 

Propiedades de forma y medidas 

Diferencia con los vecinos (media y absoluta) 
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Figura 8. Vista de la capa vectorial extraída de eCognition. A la derecha, detalle de los polígonos 

residuales. 

 

 Depurado de los datos 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La capa vectorial generada en eCognition incluye una enorme cantidad de información, tanto es-

pacial -segmentos- como temática, gracias a la tabla de atributos generada en con el algoritmo export 

vector layer. Esta información, tanto la espacial como la vectorial, es susceptible de presentar errores 

producto del complejo proceso de segmentación-exportación, por lo que es preciso analizarla en pro-

fundidad antes de proceder a la toma de datos verdad-terreno.  

 

En primer lugar, se comprobaron los polígonos generados. Como se aprecia en la figura 7, se ge-

neró alrededor de todos los segmentos, a modo de perfil, una serie de polígonos de muy pequeño ta-

maño que no corresponden a ninguno de los segmentos creados sino, más bien, se trata de un residuo 

de la exportación. Igualmente aparece a la derecha de la imagen una línea conformada por otra serie de 

polígonos con no más de unos pocos píxeles de ancho. Se trata igualmente de un producto residual que 

se hubo de suprimir.  

 

Para eliminar los polígonos que forman la línea a la derecha de la imagen, se seleccionaron ma-

nualmente y se suprimieron. Para corregir los polígonos residuales que perfilaban el área de estudio, se 

realizó una selección por atributos sobre el campo Area_pxl en el que se seleccionaron todos aquellos 

polígonos con un área inferior a 40 píxeles, tras haber realizado las comprobaciones empíricas necesa-

rias para establecer ese umbral. En la figura 8, se puede apreciar la ubicación de los polígonos selec-

cionados, siempre coincidiendo con bordes, tanto interiores como exteriores, del área de estudio seg-

mentada.  
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Figura 8. Selección de los polígonos residuales de 

eCognition. 
Figura 9. Capa vectorial de la segmentación después 

de eliminar los segmentos residuales. 

  

En la figura 9, se puede ver como esos polígonos que perfilaban el área de estudio, así como la lí-

nea que aparecía al este, han desaparecido. 

  

El siguiente paso consiste en comprobar los datos de la tabla de atributos ya que, en ocasiones, 

eCognition exporta datos que no se corresponden con lo esperable, debido a las transformaciones que 

sufren desde que parten a nivel de pixel hasta que se agregan en segmentos. Tras examinar los distin-

tos campos de la tabla de atributos, se detectaron como corruptos los campos Canopy, NDVI, P95, 

Slope, Aspect, así como sus respectivas desviaciones estándar, por presentar valores anómalos de for-

ma sistemática.  

Para reparar estos datos se siguió el siguiente proceso. En primer lugar, se eliminaron los campos afec-

tados de la tabla de atributos. A continuación, se implementaron al entorno ArcGIS 10.3 los respecti-

vos rásters de los que surge la información. Después, mediante la herramienta Zonal Statistics as Ta-

ble, del Spatial Analyst, empleando como feature zone data el shape de la segmentación, se fueron 

generando tablas que recogían la media y la desviación estándar de cada uno de los rásters. Finalmente 

se fue agregando esta información a la tabla de la segmentación mediante sucesivos joins.  

 

 

 Errores en la clasificación de segmentos ocasionados por los datos LiDAR 

 

Examinando detenidamente la segmentación obtenida, se identificaron una serie de segmentos que 

se correspondían sobre el terreno con roquedos y que aparecían dentro de la categoría de bosque. Se 

trataba, en concreto, de las zonas más escarpadas de los Picos de Urbión, en las que el relieve forma 

crestas y cortados muy agrestes. Esto ocasiona que, debido a los fuertes cambios de pendiente, el algo-

ritmo empleado para generar el MDAV -gridmetrics-, confundiera estas zonas con árboles y las clasi-

ficara como tal.  

Consecuentemente, cuando se estableció la clase de bosque en eCognition para aquellos segmen-

tos con un MDAV superior a 8 m, estos segmentos pasaron el filtro. Dado que se trataba de pocos 

segmentos, el proceso para eliminarlos fue manual. En caso de tratarse de un número elevado de casos, 

se hubieran debido de identificar aplicando umbrales para tratar de aislar la respuesta espectral del 

roquedo. 



 

25 

Figura 9. Vista de puntos incorrectamente clasificados por efecto de los datos LiDAR sobre el terreno abrupto. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Toma de datos verdad-terreno 

 

Solucionado el problema de la depuración de datos, la siguiente fase consistía en seleccionar una 

serie de segmentos de naturaleza conocida -de ahí su denominación como verdad-terreno- para que 

sirvieran de subconjunto base sobre el que desarrollar el modelo clasificador con Random Forest. Es-

tos datos debían estar acompañados de las mismas variables presentes en la tabla de atributos de la 

segmentación añadiendo un campo categórico que recogiera la categoría a la que pertenece ese seg-

mento. 

 

Como categorías a recoger, se definieron dos: “Cortas a hecho” y “Bosque”. Todos los puntos to-

mados se ubicaron sobre segmentos clasificados como “Bosque” en eCognition, descartando así cami-

nos, superficies agrícolas, pastos, roquedos u otras superficies no susceptibles de albergar una corta a 

hecho. A pesar de esto, las zonas limítrofes -especialmente las que perfilaban la red de pistas foresta-

les-, habiendo sido clasificadas como bosque, presentaban rasgos espectrales propios de las dos super-

ficies, debido a la superficie del pixel Sentinel, pudiendo dar lugar a errores en la posterior clasifica-

ción. Para contrarrestar este efecto, cuando se tomaron los puntos verdad-terreno de la categoría “Bos-

que”, que agrupaba bosques de coníferas y frondosas, se incluyeron puntos de esto segmentos de bos-

ques anexos a las pistas. 

 

En total se seleccionaron 200 puntos verdad terreno, 100 de cada una de las categorías. De los 100 

pertenecientes a la categoría “Bosque”, 20 correspondían a segmentos limítrofes a las pistas y los de-

más se repartían entre bosques de coníferas -Pinus sylvestris y P. pinaster- y de frondosas -Quercus 

pyrenaica, fundamentalmente-. En la categoría “Cortas a hecho” se seleccionaron puntos correspon-

dientes a cortas a hecho de menos de dos años y de entre dos y seis años de antigüedad, valorando la 

posibilidad de operar con ellas por separado o de manera conjunta, como finalmente se hizo. 

 
Tabla 9. Número de registros verdad-terreno por cobertura, clase (siendo 1, Cortas a hecho, y 2, Bosque) y sub-clase (siendo 1, cortas a 

hecho posteriores a 2014; 2, cortas a hecho de entre 2010 y 2014; 3, bosques de coníferas; 4, bosques de frondosas; y 5, segmen-

tos contiguos a pistas forestales. 

Cobertura Clase Sub-clase Nº registros 

Cortas a hecho posteriores a 2014  

1 

1 50 

Cortas a hecho entre 2010 y 2014 2 50 

Bosque de coníferas  

2 

 

3 40 

Bosque de frondosas 4 40 

Segmentos anexos a las pistas forestales 5 20 
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La muestra de puntos verdad-terreno se materializó sobre una capa vectorial de tipo poligonal en 

la que se incluyeron los registros en dos campos creados a tal efecto denominados “Clase”, que reco-

gía la pertenencia a la categoría de “Cortas a hecho”, con el valor 1, y “Bosque” con el valor 2; y 

“Sub-clase” que distinguía entre cortas a hecho posteriores a 2014 -valor 1-, cortas a hecho de entre 

2010 y 2014 -valor 2-, bosques de coníferas -valor 3-, bosques de frondosas -valor 4- y segmentos 

contiguos a las pistas forestales -con valor 5-. Debían seleccionarse segmentos cuya pertenencia a una 

u otra categoría no ofreciera dudas, tanto por la fiabilidad de la fuente, como por lo homogéneo del 

segmento. Para la posterior introducción en el entorno Random Forest, esta capa debía de contener, 

por un lado, un campo identificador compartido con la capa de la segmentación, para posteriormente 

poder aplicar el modelo sobre esta. Por otro lado, los campos “Clase” y “Sub-clase” con sus 

respectivas categorías contempladas. Por último, todos aquellos campos correspondientes a los 

estadísticos LiDAR, productos Sentinel y derivados y propiedades de forma y contexto extraídas del 

entorno eCognition. Preparada la capa, se hubo de exportar a (.txt), para su inclusión en randomForest. 

 

Para seleccionar los segmentos se emplearon dos fuentes: el mosaico de las ortofotos y la imagen 

multibanda Sentinel 2. De manera que, si se observaba una corta a hecho en la ortofoto y no en 

Sentinel, se clasificaba en el campo “Sub-clase” como 2, ya que la ortofoto data de 2014, mientras que 

la imagen Sentinel es del 3 de julio de 2016. Lo mismo ocurría, a la inversa, con aquellas que solo 

aparecían en Sentinel, que eran clasificadas como sub-clase 1. Para clasificar los bosque se empleaban 

ambas fuentes de manera complementaria, valorando la mayor resolución de las ortofotos y la mayor 

actualidad de la multibanda Sentinel junto con sus propiedades espectrales, que permitieron 

discriminar entre coníferas y frondosas utilizando una composición de color 4-5-3 (NIR, SWIR1, 

RED). 

   

Una vez se dispuso de los 200 puntos verdad terreno, se procedió a preparar dos subconjuntos des-

tinados, el primero de ellos, con el 70% de los registros, a la generación del modelo, y el segundo de 

ellos, con el 30% restante, a la posterior validación de los resultados obtenidos. Para ello se utilizó la 

herramienta Subset Features del módulo Geostatistical Analyst de ArcGIS 10.3. Por lo tanto, para la 

generación del modelo se emplearon 140 puntos verdad terreno -70 de cada categoría-, y para la vali-

dación se reservaron 60. 
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3.4. Clasificación mediante Random Forest 

 

Como señala Bourel (2012) el algoritmo Random Forest propuesto por Breiman, combina las téc-

nicas de CART y Bagging con el propósito de incorporar la aleatoriedad en las distintas etapas de la 

construcción de un árbol obtenido por CART. 

 

A efectos de este proyecto, se empleó Random Forest, dentro del entorno de R_Studio, para clasi-

ficar de manera automática los polígonos resultantes de la segmentación a partir de un modelo estadís-

tico que el algoritmo desarrolla en base a un subconjunto, en este caso, la tabla de atributos verdad-

terreno exportada a formato de texto (.txt). Para determinar a qué clase pertenece cada segmento, el 

algoritmo genera múltiples árboles de decisión definiendo umbrales de manera aleatoria sobre cada 

uno de los campos de la tabla y seleccionando los resultados más repetidos. 

 

En el entorno de R_Studio, Random Forest se articula mediante un script de R. Para ello el primer 

paso es instalar e invocar las bibliotecas necesarias: 

 

 

A continuación, debe de establecerse el directorio de trabajo y seleccionarse la información que 

servirá para generar el modelo, la tabla verdad-terreno. 

 

En este caso, la tabla que contiene la información de la verdad terreno es “VT_bosque2_70.txt”, 

que se guarda en un objeto llamado “datafile” para, a continuación, guardarlo en otro de lectura llama-

do “datos”, con encabezado, que utiliza la coma como separador y el punto para delimitar los decima-

les. Con colnames se le ordenó que mostrase los nombres de las columnas: 

 

 

install.packages("randomForest", dep=TRUE) 
install.packages("party", dep=TRUE) 
install.packages("spdep", dep=TRUE) 
install.packages("ape", dep=TRUE) 
install.packages("caret", dep=TRUE) 
install.packages("dplyr", dep=TRUE) 
install.packages("sampling", dep=TRUE) 
install.packages("tree", dep=TRUE) 
install.packages("rfUtilities", dep=TRUE) 
install.packages("rgdal", dep=TRUE) 
install.packages("gmodels", dep=TRUE) 

library(party) 
library(randomForest) 
library(spdep) 
library(ape) 
library(caret) 
library(dplyr) 
library(sampling) 
library(tree) 
library(rfUtilities) 
library(rgdal) 
library(gmodels) 

setwd("D:/alberto_2016/Random Forest/mdav") 
 
datafile="VT_bosque2_70.txt" 
datos=read.table(datafile, header = TRUE, sep=",", dec=".") 
colnames(datos) 

[1] "TARGET_FID" "Area_Pxl"   "Asymmetry"  "Compactnes" "Length_Pxl" "Max_diff"   "BLUE"       "CP1"        "CP2"        

[10] "CP3"        "DNA_CP3"    "DNA_CP2"    "DN_BLUE"    "DN_CP1"     "DN_CP2"     "DNA_CP1"    "DNA_SWIR2_" "DN_NBR"     

[19] "DN_NDVI"    "DN_NIR"     "DN_RED"     "DN_SWIR1"   "DN_SWIR2"   "DNA_BLUE"   "DNA_SWIR1"  "DNA_RED"    "DNA_NIR"    

[28] "DNA_NDVI"   "DNA_NBR"    "DN_GREEN"   "DNA_GREEN"  "DN_CP3"     "GREEN"      "LFCC"       "MDAV"       "NBR"        

[37] "NIR"        "RED"        "SWIR1"      "SWIR2"      "SD_CP1"     "SD_CP2"     "SD_BLUE"    "SD_LFCC"    "SD_MDAV"    

[46] "SD_NBR"     "SD_NIR"     "SD_RED"     "SD_SWIR1"   "SD_SWIR2"   "SD_GREEN"   "SD_CP3"     "Width_Pxl"  "Aspect"     

[55] "SD_Aspect"  "Slope"      "SD_Slope"   "CANOPY"     "SD_CANOPY"  "P95"        "SD_P95"     "NDVI"       "SD_NDVI"    

[64] "CLASE"      “SUB-CLASE” 

 

Cuadro 1. Instalación e invocación de bibliotecas para Random Forest. 

Cuadro 2. Definición de directorio principal, creación de objeto con los datos y visualización de nombres de las columnas. 

Cuadro 3. Lista completa de las variables. 
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 En el cuadro 3, se muestran los nombres de las columnas de la tabla: el identificador “TAR-

GET_FID”; el campo “CLASE”, que ejercería de variable dependiente; los campos con propiedades 

geométricas tales como “Area_Pxl” o “Asymmetry”; los extraídos directamente de Sentinel, como 

“BLUE” o “CP1”; los estadísticos LiDAR, como “LFCC” o “MDAV”; las respectivas desviaciones 

estándar de unos y otros, precedidas por el prefijo “SD_”; y, finalmente, las propiedades contextuales 

aportadas por eCognition, precedidas por “DN_” cuando hacen referencia a la diferencia entre vecinos 

-difference neighbour-, y por “DNA_” cuando hacen referencia a la diferencia absoluta entre vecinos. 

 

Después de realizar varias pruebas, se llegó a la conclusión de que el modelo funcionaba mejor 

con los datos binarios del campo “Clase” que con las 5 sub-clases. Port tanto, la siguiente sentencia 

definía el campo “CLASE” de la tabla como un factor, esto es, le daba carácter categórico para poder 

emplearlo como variable dependiente en el modelo de clasificación. Con el comando summary se le 

indicaba que resumiera el campo recién creado: 

 

 El resultado que ofreció indica que contabilizó un total de 70 registros para cada una de las catego-

rías. Este dato es sumamente relevante para definir el tamaño de la muestra a emplear por el modelo. 

 

 

A continuación, se introdujo la fórmula del algoritmo Random Forest, de la que resultaría el mo-

delo clasificador, que se registró en el objeto “rf_Segmentacion”. El primer parámetro de la formula 

establecía como variable dependiente el campo “CLASE” de la tabla guardada en el objeto “datos”. El 

siguiente parámetro, recogido en el objeto “data” determinaba cuáles de las variables independientes o 

explicativas participaron del modelo clasificador. La selección de estas variables no es ni automática 

ni aleatoria, sino que depende de un proceso que se explicará más adelante. El siguiente parámetro, 

ntree, determina el número de árboles aleatorios que genera el algoritmo para definir el modelo. Teóri-

camente, a mayor número de árboles más contrastado estará el modelo, si bien llega un momento en el 

que el aumento resulta improductivo, conllevando además un aumento considerable del tiempo de 

procesado. Los siguientes parámetros, importance y replace, determinaban que el modelo registrara la 

importancia de las variables y que se pudiera sobrescribir muestras, respectivamente. El parámetro 

nodesize, por su parte, estableció el tamaño mínimo de los nodos terminales. El siguiente parámetro, 

strata, concretó el campo empleado para estratificar la muestra. Finalmente, sampsize, decretaba el 

número de registros de cada clase en la variable dependiente que se utilizarían para generar el modelo. 

Es recomendable que todas las categorías tengan similar número de registros a este fin. En este caso se 

establecieron 70 registros para cada clase gracias a que, previamente, se realizó un resumen de los 

datos del campo “CLASE” que informó del número de registros de cada categoría presente en el cam-

po. 

datos$CLASE<-as.factor(datos$CLASE) 
summary(datos$CLASE) 

> summary(datos$CLASE) 

 1  2  
70 70 
 

rf_Segmentacion<-randomForest(datos$CLASE~ ., data=datos[,c(7,10,33,36,38,39,40)], 
ntree=10000, importance=T, replace=TRUE, nodesize=4,strata=datos$CLASE,  
sampsize=c(70,70)) 

Cuadro 4. Definición del campo “CLASE” como factor y resumen de este. 

Cuadro 5. Resumen del campo “CLASE”. 

Cuadro 6. Fórmula de Random Forest. 
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Figura 10. Gráfico de importancia de las variables 

 

Acompañando a la fórmula del algoritmo, se dispusieron una serie de sentencias encaminadas a 

facilitar la selección de las variables sobre las que se generaría el modelo: 

La primera, creó un gráfico con la importancia de cada una de las variables incluidas en la fórmu-

la para generar el modelo (Figura 11). La segunda, creó a su vez un objeto que recogía la importancia 

de las variables y determinaba que método de clasificación se emplearía de los dos que ofrece el algo-

ritmo: "MeanDecreaseAccuracy" y "MeanDecreaseGini". La tercera, crea un objeto que estandariza 

esta importancia respecto al valor máximo, es decir, la transforma en un índice. A continuación, se 

indica que ordene de menor a mayor la importancia de las va-

riables introducidas. Este paso es determinante a la hora de 

seleccionar las variables puesto que, el proceso de selección-

descarte funciona de la siguiente manera: La primera vez que 

se ejecuta el algoritmo, se incluyen en el objeto “data” todas 

las variables de las que se disponen. El algoritmo desarrollará 

un modelo con un error determinado, producto de un proceso 

de validación cruzada que lleva implementado. Cuando se 

obtienen los datos de importancia ordenados, se han de ir su-

primiendo aquellas variables que queden en la cola de la lista, 

es decir, las que menos aporten, bien sea por irrelevantes o por 

redundantes. Este proceso de descarte continua, ejecutando el 

algoritmo sucesivas veces, mientras que el error dado dismi-

nuya o se mantenga igual, ya que se parte de la premisa de 

que, a igual error, cuantas menos variables influyan en el mo-

delo, más estable será este.  
 

En el cuadro 8, aparecen parte de las variables ordenadas de menor importancia a mayor. Se trata 

de una de las fases iniciales, en las que apenas se habían descartado variables todavía. En esta fase del 

proceso, las variables a descartar serían “DN_SWIR2” primero, “DNA_SWIR1” segundo, “SD_NIR” 

después, y así sucesivamente, en un proceso empírico de ensayo error hasta ajustar el modelo. Para 

quitar una variable de la fórmula, se debe de identificar su orden en la tabla “datos” y quitarlo del ob-

jeto “data” en la ecuación.  

 

Para facilitar este proceso, se introdujo, justo después de la sentencia que ordenaba las variables 

según su importancia, el comando colnames para la tabla “datos”, de manera que se pudiera ver la po-

sición de cada variable en la tabla. 

 

varImpPlot(rf_Segmentacion) imp<-importance(rf_Segmentacion)  
colnames(imp) I = importance(rf_Segmentacion)[,3]  
MIR = I/max(I) 
sort(MIR)  
colnames(datos) 

> sort(MIR) #ordena las variable segun su importancia, de menos a mas. 

  DN_SWIR2  DNA_SWIR1     SD_NIR     SD_CP1      Slope   SD_Slope       LFCC     SD_CP2    DNA_NBR   SD_GREEN  

0.08684735 0.08734635 0.09882167 0.10035002 0.10639195 0.11130403 0.11311790 0.11580558 0.12446858 0.13957208  

   DNA_CP1  DNA_GREEN     NDVI      DN_NBR    DN_NDVI   Area_Pxl  DNA_SWIR2      NIR     SD_BLUE    DNA_BLUE  

0.14098649 0.14762923 0.16143319 0.16708879 0.17422098 0.17425178 0.18667735 0.19419483 0.21164245 0.21649005  

  SD_SWIR1   Max_diff  Asymmetry  Width_Pxl   SD_SWIR2  DNA_RED     SD_RED     SD_CP3     SD_NBR        CP1  
0.22717012 0.22731994 0.22957893 0.24365128 0.27043339 0.27761531 0.29642811 0.33893397 0.34981650 0.44508968  

     CP2        CP3        NBR      SWIR1   GREEN       BLUE        RED      SWIR2  
0.47801992 0.65055606 0.76441407 0.76743022 0.83797116 0.89806451 0.90088948 1.00000000  
 

Cuadro 7. Sentencias para clasificar las variables explicativas según su importancia. 

Cuadro 8. Variables explicativas en fase inicial del proceso de ajuste-descarte. 
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Las siguientes sentencias suponen la creación de una nueva tabla, a partir de la tabla contenida en 

el objeto “datos”, con un campo llamado “pred_rf_Segmentacion”, de tipo factor, en el que figuraría la 

categoría en la que el modelo clasificaría cada segmento de la tabla original. De esta manera, expor-

tando esta tabla al entorno ArcGIS y vinculándola a la verdad-terreno, a través de una selección por 

atributos, es posible comparar en qué medida coinciden las predicciones del modelo con la verdad 

conocida y, así, obtener una visión más fiable del error logrado en el modelo. 

 

Para generar un diagrama cruzado (figura 12), similar a una matriz de confusión, en el que com-

probar que categorías tienden a confundirse con otras, se incluyó esta sentencia: 

 

Tras realizar todo el proceso explicado, ir descartando variables una a una hasta que el error del 

modelo subió, lo que supone que se eliminó una variable explicativa relevante que debía ser conside-

rada, se consiguió ajustar el modelo logrando un error OOB del 1,43%. 

 

En la tabla 19 se muestran las variables que integraron el modelo una vez quedó ajustado, junto 

con su índice MIR de importancia relativa. La mayor relevancia la obtuvo el CP3, seguido del CP2. 

Estas dos variables sintetizan buena parte de la información espectral de Sentinel, pudiendo relacio-

narse con la humedad -CP3- y el verdor -CP2-, y 

ofrecen la máxima resolución espacial de Senti-

nel. A continuación, aparece el índice NBR, am-

bos SWIR y la desviación estándar del NBR. Es-

tas cuatro variables poseen la capacidad de detec-

tar el suelo desnudo, que presenta sus mayores 

valores de reflectividad en la región del espectro 

electromagnético propia del infrarrojo de onda 

corta -SWIR-. La explicación al buen funciona-

miento del NBR responde a que es un índice dise-

ñado para detectar zonas afectadas por incendios 

forestales en gran medida similares a las cortas a 

hecho. Además, la fórmula que lo define incluye 

el SWIR. Finalmente, ya por debajo del umbral 

del 0.5 de importancia relativa, aparecen el NDVI, 

las desviaciones estándar de los SWIR, las bandas 

del visible, el NIR, el CP1 y las desviaciones es-

tándar de las bandas del visible y del CP3.  

 

Por el contrario, las variables que menos determinantes resultaron y que, por ende, fueron descar-

tadas primero por el modelo, fueron las propias de eCognition, relativas a las diferencias entre vecinos, 

normal (DN) y absoluta (DNA) y a la forma y tamaño -Asymmetry, Lenght, Area_pxl…-. Posterior-

mente el modelo también descartó las propias de los estadísticos LiDAR, comenzando por sus desvia-

ciones estándar y siguiendo con sus valores promedio por segmento. El motivo de la escasa relevancia 

rf_Segmentacion 
datos$pred_rf_Segmentacion<-
as.factor(predict(rf_Segmentacion,data="datos",type="response")) 
write.table(datos, file="tabla_VT_predicciones.txt", row.names=FALSE, col.names=TRUE, 
sep="\t", dec=".") 
 
 

Diagrama<-CrossTable(datos$CLASE,datos$pred_rf_Segmentacion) 
 

Total Observations in Table:  140  

                 | datos$pred_rf_Segmentacion  

datos$CLASE     |         1 |         2 | Row Total |  

----------------|-----------|-----------|-----------| 

              1 |        68 |         2 |        70 |  

                |    34.000 |    32.111 |           |  

                |     0.971 |     0.029 |     0.500 |  

                |     1.000 |     0.028 |           |  

                |     0.486 |     0.014 |           |  

----------------|-----------|-----------|-----------| 

              2 |         0 |        70 |        70 |  

                |    34.000 |    32.111 |           |  

                |     0.000 |     1.000 |     0.500 |  

                |     0.000 |     0.972 |           |  

                |     0.000 |     0.500 |           |  

----------------|-----------|-----------|-----------| 

   Column Total |        68 |        72 |       140 |  

                |     0.486 |     0.514 |           |  

----------------|-----------|-----------|-----------| 
 

Cuadro 9. Creación del campo "pred_rf_Segmentacion" y creación de la tabla con las predicciones. 

Cuadro 10. Generación del diagrama cruzado 

Tabla 10. Diagrama cruzado entre observaciones y predicciones. 
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de los productos LiDAR responde a su obsolescencia, patente al haber recabado la verdad-terreno so-

bre la información actualizada de Sentinel. 

 
Tabla 11. Variables explicativas del modelo con su índice MIR ordenadas de menor a mayor relevancia. 

SD_BLUE SD_RED SD_CP3 GREEN SD_P95 CP1 NIR SD_SWIR2 BLUE 

0.1888189 0.1921018 0.2223860 0.2539184 0.2557144 0.2590684 0.2990612 0.3146711 0.3309965 

RED 

 
SD_SWIR1 NDVI SD_NBR SWIR1 SWIR2 NBR CP2 CP3 

0.3412591 
 

0.3470795 0.4343869 0.6175872 0.6643653 0.6813230 0.7837518 0.8474385 

 
 

1.0000000 
 

 

Una vez generado el modelo, se había de extender al total de la muestra, es decir, a la segmenta-

ción completa. Igual que anteriormente, el primer paso consistía en crear un nuevo objeto con la tabla 

de la segmentación y asignarlo a su vez a un objeto de lectura “tabla_segmentacion”. 

Una vez que se dispuso de la tabla de la segmentación en un objeto de lectura, se procedió a eje-

cutar el modelo. Para ello, se creó un nuevo campo en el objeto “tabla_segmentacion” llamado 

“rf_Segmentacion”, que se rellenaría con la predicción categórica del modelo en base a las dos clases 

antes previstas: 

A continuación, se definió un objeto en el que se guardó una tabla con la predicción en forma de 

probabilidad de que cada registro pertenezca a una categoría, para crear en él dos nuevos campos con 

la probabilidad de que un registro pertenezca a la categoría 1 o la 2. Finalmente se unificaron las dos 

tablas mediante el comando cbing, y se generó un nuevo archivo de texto, a través del comando wri-

te.table, con el resultado final para poder vincularlo, desde ArcGIS, a la capa vectorial de la segmenta-

ción y así visualizar el resultado de la clasificación. 

 

 

 

 

 

 

datafile2="Seg_bosque2.txt"  
tabla_segmentacion=read.table(datafile2, header = TRUE, sep=",", dec=".")  
colnames(tabla_segmentacion) 

tabla_segmentacion$rf_Segmentacion<-
predict(rf_Segmentacion,tabla_segmentacion,type="response")  
summary(tabla_segmentacion$rf_Segmentacion) 

tabla_segmentacion_prob<-as.data.frame(predict(rf_Segmentacion,tabla_segmentacion,type="prob"))  
colnames(tabla_segmentacion_prob) <- c("pred_rf_Segmentacion_prob0","pred_rf_Segmentacion_prob1")  
tabla_segmentacion_def<-cbind(tabla_segmentacion,tabla_segmentacion_prob)  
write.table(tabla_segmentacion_def, file="clasificacion_pendiente2.txt", row.names=FALSE, 
col.names=TRUE, sep="\t", dec 

 

Cuadro 11. Creación de un objeto de lectura a partir de la tabla de la segmentación 

Cuadro 12. Creación del campo rf_Segmentacion y resumen. 

Cuadro 13. Generación del resultado final fusionando "tabla_segmentacion" con "tabla_segmentacion_prob" 
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Figura 11. Cartografía de cortas a hecho. 

 

4. RESULTADOS 

 

4.1. Análisis del resultado final 

 

 

Una vez se obtuvo la clasificación para toda la segmentación a partir del modelo de Random Fo-

rest, se vinculó mediante un join a la capa vectorial de la segmentación en ArcGIS para poder visuali-

zar el resultado. 

 

 

 

 

Como puede apreciarse en la figura 11, el modelo permite cartografiar las cortas a hecho con un 

resultado razonablemente satisfactorio, aunque aparecen una serie de polígonos representados como 

cortas a hecho que no lo son en la realidad, generando “ruido”. Este ruido se compone, por una parte, 

de una serie de polígonos residuales tanto por su tamaño como por su distribución, fácilmente elimi-

nables aplicando un filtro por superficie -que no se aplicará aquí para no retocar el resultado-; y por 

otra, de segmentos anexos a los caminos que, por encontrarse en la zona de transición entre el bosque 

y el camino, presenta una respuesta espectral con características similares a la de las cortas a hecho. 

Estos segmentos aparecen a pesar de haber sido incluidos entre los puntos de verdad-terreno corres-

pondientes a la clase “Bosque”, si bien se trata de casos puntuales.  
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 Validación del resultado 

 

Para validar cuantitativamente el resultado obtenido se generaron dos matrices de confusión a par-

tir del subconjunto de la verdad-terreno reservado a este fin. Una sobre píxeles, desde ArcGIS y la 

otra sobre segmentos, en R. 

 

La primera matriz se generó en el entorno de ArcGIS 10.3, empleando las capas de la verdad-

terreno y de la segmentación, una vez se vinculó al resultado de la clasificación del modelo. Ambas 

capas se pasaron a ráster mediante la herramienta Features to Ráster del módulo Conversion Tools. A 

continuación, se realizó un Combine desde el Spatial Analyst y el ráster resultante se exportó al en-

torno de Excel para calcular la exactitud del usuario y del productor y sus respectivos errores de comi-

sión y de omisión. 

 
Tabla 12. Matriz de confusión a nivel de pixel. 

 

El resultado obtenido es razonablemente positivo. La fiabilidad global del modelo, es decir, la re-

lación entre el número de valores bien clasificados y el total, asciende hasta el 94,66%. La exactitud 

del usuario para la clase “Cortas a hecho” alcanza el 85,5% por lo que su complementario error de 

comisión se sitúa en el 14,45%. Esto supone que un 14,45% de los píxeles pertenecientes a la clase 

“Cortas a hecho” han sido clasificados como bosque. Para la clase “Bosque”, por su parte, el error de 

comisión es del 3%, es decir, un reducido porcentaje de pixeles correspondientes a esta categoría han 

sido clasificados como cortas. La exactitud del productor, complementaria al error de omisión, alcanza 

para la categoría de “Cortas” el 87,9% de exactitud, lo que significa que el 12% de los píxeles de las 

referencias de la categoría “Cortas” no están clasificados como tales. Finalmente, para la clase “Bos-

que”, se sitúa en el 96,3%, por lo que el 3,6% de las referencias de “Bosque” aparecen clasificadas 

como cortas. 

 

Para obtener el estadístico Kappa, que estima la aleatoriedad y la corrige de la fiabilidad global 

del modelo, se recurrió al software estadístico IBM SPSS 22. Previamente hubo de convertir la infor-

mación de los segmentos a nivel de ráster y organizarla en una tabla con dos campos: referencias y 

clasificación. Para ello se generó una malla poligonal en la que cada celda tuviera la misma superficie 

que el pixel Sentinel. Después se calculó el centroide de cada polígono y finalmente se extrajo el valor 

de los rásters con los valores observados -referencias- y clasificados. IBM SPSS 22 devolvió el si-

guiente resultado: 

 
Tabla 13. Medidas simétricas obtenidas de IBM SPSS 22 

 

 Valor 
Error estándar 

asintóticoa 
Aprox. Sb Aprox. Sig. 

MEdida de acuerdo Kappa ,834 ,009 70,415 ,000 

N de casos válidos 7091    

C
la

si
fi

ca
ci

ó
n

 

MATRIZ DE CONFUSIÓN  

(PÍXEL) 

Referencias       

1: Corta 2: Bosque Total Exactitud del usuario Error de Comisión 

1: Corta 1326 224 1550 85,55 14,45 

2: Bosque 182 5882 6064 97,00 3,00 

Total 1508 6106 7614 

 

  

Exactitud del productor 87,93 96,33 

 
Fiabilidad Global: 94.66%   

Error de Omisión 12,07 3,67       

Donde el valor del estadístico Kappa es de 0,834  
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La segunda matriz se realizó a nivel de segmentos en el entorno de R, por lo que el número de re-

gistros que considera es el mismo que el del subconjunto de segmentos verdad-terreno destinados a la 

validación, es decir 60. 

 
Tabla 14. Matriz de confusión a nivel de segmentos. 

C
la

si
fi

ca
ci

ó
n

 

MATRIZ DE CONFUSIÓN 

(SEGMENTO) 

Referencias       

1: Corta 2: Bosque Total Exactitud del usuario Error de Comisión 

1: Corta 24 2 26 92,31 7,69 

2: Bosque 6 28 34 82,35 17,65 

Total 30 30 60 

 

  

Exactitud del productor 80 93,33 

 
Fiabilidad global: 86.66%   

Error de Omisión 20 6,66       

 

 Como puede apreciarse, la fiabilidad global del modelo ha descendido desde el 94,66% hasta el 

86,66%. Por su parte, los errores, tanto de comisión como de omisión, han variado respecto a la matriz 

orientada al pixel. Así, el error de comisión para las cortas ha disminuido desde el 14,4% hasta el 

7,6%, mientras que para la clase “Bosque” se ha incrementado del 3% al 17,64%. El error de omisión 

para la clase “Cortas” ha aumentado desde el 12% hasta el 20%, y el de la clase “Bosque” ha pasado 

del 3,6% al 6,6%. 

 

Igual que con la matriz con datos al pixel, se calculó el estadístico Kappa para comprobar la fiabi-

lidad del modelo atendiendo a la concordancia atribuible al azar.  

 
Tabla 15. Medidas simétricas obtenidas de IBM SPSS 22 

 

 Valor 

Error estándar 

asintóticoa Aprox. Sb Aprox. Sig. 

MEdida de acuerdo Kappa ,733 ,087 5,732 ,000 

N de casos válidos 60    

 

 

Donde el valor del estadístico Kappa es de 0,733 

 

4.2. Discusión de la utilidad del modelo 

 

En el punto anterior, se ha cuantificado la fiabilidad del modelo, así como también la dimensión 

de los errores de comisión y omisión o el estadístico Kappa. Los resultados obtenidos son relativamen-

te satisfactorios, especialmente al comprobar sobre el terreno, bien sea in situ, bien sea a través de un 

SIG, la capacidad del modelo para cartografiar cortas a hecho. Si la validación no arroja mejores resul-

tados se debe principalmente al ruido que genera el modelo, a todos esos segmentos clasificados como 

cortas que no lo son en realidad. Dentro de estos segmentos se puede distinguir entre dos tipologías: 

por un lado, segmentos aleatoriamente distribuidos por el área de estudio, cuya respuesta espectral se 

acerca a la de las cortas a hecho, de muy pequeño tamaño, por lo que son fácilmente descartables apli-

cando un filtro por superficie. Por el otro lado, están los segmentos anexos a los caminos -ya que los 

caminos se suprimieron al segmentar definiendo un umbral sobre el MDAV- cuya respuesta espectral 

aúna la de los bosques y la de los caminos. Estos segmentos aparecen clasificados como cortas aun 

después de haber sido incluidos en la verdad-terreno de la clase “Bosque”, si bien solo ocurre en casos 
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puntuales. En ambos casos, el motivo es el mismo, la similitud entre la respuesta espectral del suelo 

desnudo visible en las cortas a hecho y la del suelo desnudo de caminos u otras superficies sin cobertu-

ra arbórea.  

 

Ante esta situación surge una limitación técnica de Sentinel. Distinguir entre dos superficies cuyo 

comportamiento espectral es análogo, como son las cortas a hecho -claros artificiales en una masa 

boscosa con presencia de suelo desnudo y, en muchos casos, de vegetación incipiente-, y las zonas de 

transición entre caminos y bosques, que igualmente presentan estos dos elementos, es complicado, 

quizás con mayor resolución espectral fuera posible, y probablemente una mayor resolución espacial 

reduciría la superficie de los píxeles con mezcla espectral dentro de un objeto segmentado y, por lo 

tanto, su peso específico dentro de éste. De esta forma, Random Forest tendría menos dificultad a la 

hora de discernir entre dichas superficies. 

 

En este sentido, contar con datos LiDAR actualizados facilitaría en gran medida la detección de 

las cortas y la diferenciación entre superficies similares espectralmente pero no así en su caracteriza-

ción tridimensional sobre la nube de puntos. De la misma manera que contar con una secuencia de 

imágenes de distintas fechas con la suficiente diferencia temporal entre ellas permitiría realizar un 

estudio de cambios en la cobertura del suelo en base, como se ha hecho con anterioridad en múltiples 

estudios, al NDVI o, para el caso que nos ocupa, tal vez al NBR. Cualquiera de estas alternativas re-

sultaría eficaz y de fácil aplicación. Sin embargo, actualmente ambas son inviables mediante informa-

ción geográfica de libre disposición, ya que los datos del PNOA datan de 2010, y Sentinel 2A lleva 

registrando desde junio de 2015, por lo que no permite realizar estudios multitemporales. 

 

Ante esta coyuntura, la metodología aquí propuesta permite solucionar este problema de manera 

eficiente, aun con la limitación especificada, resultando además sencillo mejorar el resultado, como se 

explicó con anterioridad, mediante un sencillo filtrado por superficie.  

 

4.3. Vías descartadas 

 

Hasta el momento, se ha descrito el proceso seguido hasta llegar al resultado final, sin incluir to-

das aquellas vías que, por no ofrecer los resultados deseados o, por no conseguir solucionar el proble-

ma para el que se planteaban, quedaban descartadas. Sin embargo, son precisamente estas, las que a 

través de la praxis empírica del ensayo-error, particularmente a través del error, iban señalando el ca-

mino a seguir. Por esta razón, en este apartado se detallarán alguna de estas vías muertas que, indirec-

tamente, han contribuido a la resolución del objetivo principal. 

 

Hasta la conclusión de la fase de “Procesado de datos” no hubo necesidad de plantearse alternati-

vas puesto que no surgieron problemas que las requirieran. Sin embargo, una vez se realizó el primer 

modelo clasificador y se vinculó el resultado a la segmentación para su visualización cartográfica, se 

comprobó que, a pesar de la alta fiabilidad que ofrecía el modelo, confundía sistemáticamente las cor-

tas a hecho con otras superficies, desde superficies agrícolas, prados, roquedos y caminos hasta bos-

ques con baja densidad de pies y alta presencia de suelo desnudo en su respuesta espectral.  

 

Para solucionar esto, se optó, en un primer momento, por descartar la idea inicial de recoger 5 ca-

tegorías -sub-clases- en la verdad-terreno, agrupándolas en solo dos, “Cortas a hecho” y “Bosque”, 

considerando que, probablemente, un modelo dicotómico más simple mejoraría el resultado. Esta me-

dida resultó moderadamente efectiva, por lo que la idea inicial quedó desechada. 

 

Aunque el error del modelo mejoró, al extenderlo al total de la muestra seguía presentando errores 

de clasificación sistemáticos por lo que la siguiente opción pasó por realizar un filtrado en la fase de la 

“Segmentación” a partir del percentil 95. De manera que se estableció un umbral que dejara fuera de la 

capa vectorial resultante de la segmentación todos aquellos segmentos cuyo valor promedio del P95 
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para la fecha de los datos LiDAR -2010- fuera inferior a 10 metros, por considerarse que ninguna ma-

sa forestal con un P95 inferior sería susceptible de ser cortada en los siguiente 6 años. Con esta medida 

se pretendía descartar, además de masas jóvenes, superficies agrícolas, prados y, especialmente, cami-

nos.  

 

Este filtro, aunque bien planteado, no resolvió el problema, entre otras superficies, el modelo cla-

sificaba como cortas bosques con baja densidad de pies, por su elevado contenido de suelo desnudo, lo 

que provocó que se empleara como umbral el MDAV junto con el LFCC, para garantizar una densidad 

mínima de pies, además de una altura media. 

 

Otra fórmula que se barajó consistía en realizar una primera clasificación a partir de la capa vecto-

rial producto de la segmentación filtrada con el P95. Del resultado obtenido se extrajeron aquellos 

segmentos clasificados como cortas a hecho y, sobre ellos, se tomó una nueva muestra de puntos ver-

dad-terreno recogiendo dos categorías, aquellos puntos que realmente se correspondían con cortas a 

hecho sobre el terreno, por un lado, y por el otro todos los demás, que representaban el error en la cla-

sificación. Sobre esta verdad-terreno y sobre esta capa que incluía los segmentos bien y mal clasifica-

dos como cortas se corrió un nuevo Random Forest con la esperanza de que, en esa ocasión, posibilita-

ra la diferenciación adecuada entre categorías. Sin embargo, el resultado no fue el esperado ya que el 

error se disparó a valores por encima del 20%. 

 

Otra de las vías que se exploró fue la de realizar una regresión logística binomial en lugar de una 

clasificación con Random Forest, pero se prescindió de esta posibilidad ya que tendía a sobreestimar el 

resultado. 

 

Aunque ninguna de estas alternativas participó en el proceso metodológico final, todas han posibi-

litado mejorar la comprensión del problema a resolver, a la par que han supuesto una dedicación de 

tiempo y esfuerzo, por lo que se consideró conveniente reflejarlas en el documento final. 

 

 

5. CONCLUSIONES 

 

Como resultado del presente proceso metodológico, es posible concluir que la cartografía de cor-

tas a hecho a través de una sola imagen Sentinel 2, contando con datos LiDAR PNOA como informa-

ción auxiliar, es factible con un resultado moderadamente positivo.  

 

Al realizar una valoración cuantitativa a nivel de píxel, mediante una matriz de confusión, se ob-

tuvo una fiabilidad global del modelo del 94,66%, un error de comisión para la clase “Corta” del 

14,45% y para la clase “Bosque”, del 3%; y un error de omisión para las cortas del 12,07% y para los 

bosques, del 3,67%. Por su parte, el estadístico Kappa se situó en 0,834 sobre 1. 

 

La validación a nivel de segmentos arrojó unos resultados algo peores, en términos generales. La 

fiabilidad global del modelo alcanzó el 86,66%, el error de comisión para la clase “Corta” el 7,69% y 

para la clase “Bosque” el 17,65%. El error de omisión se situó, para la primera, en el 20%, y para la 

segunda en el 6,66%. El estadístico Kappa alcanzó el 0,733 sobre 1. 

 

Las mayores dificultades que encuentra el modelo a la hora de clasificar, responden a la similitud 

espectral entre segmentos de cortas a hecho y segmentos cuya respuesta espectral quede constituida 

por varias superficies, con un peso relativo considerable de suelo desnudo.  

 Para solucionar esta cuestión, se realizó, en un primer momento, una criba sobre las superficies que 

no cumplían con las características necesarias para soportar una corta a hecho. Para ello se clasificaron 

como “No Bosque”, en el entorno de eCognition, aquellos segmentos resultantes de la segmentación 

inicial, en base al MDAV obtenido de los datos LiDAR PNOA de 2010, cuya fracción de cabida cu-

bierta fuera inferior al 60%, para así descartar masas boscosas de baja densidad. Junto a esta primera 
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condición, se estableció otra que dejaba fuera del siguiente nivel de segmentación aquellos segmentos 

cuyo valor medio del MDAV fuera inferior a 8 en 2010. 

 

A pesar de acotar los segmentos susceptibles de albergar una corta a hecho, seguían apareciendo 

segmentos que, pese a cumplir con las condiciones establecidas, eran incorrectamente clasificados por 

el modelo. Principalmente se trataba de segmentos anexos a las pistas forestales cuya respuesta espec-

tral incluía suelo desnudo y vegetación. Para tratar de favorecer la correcta clasificación de los mis-

mos, se incluyeron segmentos con estas condiciones en la verdad-terreno de la clase “Bosque”, bus-

cando incluir su variabilidad espectral en esta. Resultó relativamente efectivo, ya que la mayoría de 

estos segmentos quedaron correctamente clasificados, si bien aún persistían una serie de segmentos de 

transición entre bosque y pista clasificados como cortas a hecho. 

  

Una alternativa metodológica, tal vez una vía futurible, hubiera sido, en la segmentación, favore-

cer las formas elongadas en detrimento de las compactas mediante el parámetro Compactness que 

quedó desactivado al darle un valor neutro (0,5). Si en vez de optar por esta parametrización, que fue 

la que dio mejores resultados tras múltiples pruebas realizadas, se hubieran potenciado formas alarga-

das tratando de ajustarse mejor a las fajas de las cortas a hecho, es posible que las propiedades de for-

ma-contexto que aportó eCognition a la tabla de atributos de la segmentación hubieran dado mejor 

resultado en el posterior proceso de ajuste y descarte en Random Forest.  

 

Respecto al cumplimiento de los objetivos del proyecto, puede afirmarse que el objetivo principal 

de proponer una metodología que permita cartografiar cortas a hecho en masas de coníferas, en base a 

una imagen Sentinel con el apoyo de datos LiDAR PNOA, ha sido cumplimentado con un grado de 

satisfacción considerable, a pesar de dejar alguna puerta abierta a explorar otras vías en futuras inves-

tigaciones.  

 

Los objetivos específicos, que giraban en torno a la integración y adaptación del proyecto y del 

alumno del entorno académico al profesional, se pueden dar por correctamente cumplimentados. En 

concreto, el amoldarse al ámbito forestal e integrar sus conceptos y técnicas con los propios de las 

tecnologías de la información geográfica. Otro objetivo específico satisfecho fue el recorrer las dife-

rentes fases propias de un proyecto técnico de teledetección, como son la adquisición, corrección y 

composición, de imágenes o datos brutos, su transformación para generar productos derivados, como 

los estadísticos LiDAR o los índices y neocanales de Sentinel 2, y su ulterior clasificación. Finalmen-

te, se hizo uso de competencias y conocimientos adquiridos a lo largo del Máster relativos a teledetec-

ción, cartografía, programación, clasificación orientada a objetos o el procesado de datos LiDAR. 
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ANEXO CARTOGRÁFICO 

 

 Principales masas de coníferas en la provincia de Soria 
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 Área de estudio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

 

 Cartografía de cortas a hecho según la metodología propuesta 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 1 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 2 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 3 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 4 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

9 

 

 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 6 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 7 
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 Cartografía de cortas a hecho según la metodología propuesta: Vista en detalle 8 
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 Capas integrantes de la segmentación y la clasificación: Análisis de Componentes Principales 
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 Capas integrantes de la segmentación y la clasificación: Canopy 
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 Capas integrantes de la segmentación y la clasificación: Modelo Digital del Terreno 
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 Capas integrantes de la segmentación y la clasificación: Fracción de Cabida Cubierta 
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 Capas integrantes de la segmentación y la clasificación: Modelo Digital de Altura de la Vegetación 
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 Capas integrantes de la segmentación y la clasificación: Normalized Burn Ratio 
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 Capas integrantes de la segmentación y la clasificación: Normalized Differenced Vegetation Index 
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 Capas integrantes de la segmentación y la clasificación: Orientaciones 
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 Capas integrantes de la segmentación y la clasificación: Percentil 95 
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 Capas integrantes de la segmentación y la clasificación: Pendientes 
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 Capas integrantes de la segmentación y la clasificación: Imagen multibanda Sentinel 2A 
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