000057065 001__ 57065
000057065 005__ 20190709135420.0
000057065 0247_ $$2doi$$a10.1109/TPEL.2016.2559160
000057065 0248_ $$2sideral$$a95671
000057065 037__ $$aART-2017-95671
000057065 041__ $$aeng
000057065 100__ $$0(orcid)0000-0001-5832-1163$$aDomínguez, A.$$uUniversidad de Zaragoza
000057065 245__ $$aReduced-order models of series resonant inverters in induction heating applications
000057065 260__ $$c2017
000057065 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057065 5203_ $$aFrom the controller design framework, a simple analytical model that captures the dominant behavior in the range of interest is the optimal. When modeling resonant circuits, complex mathematical models are obtained. These high-order models are not the most suitable for controller design. Although some assumptions can be made for simplifying these models, variable frequency operation or load uncertainty can make these premises no longer valid. In this work, a systematic modeling order reduction technique, Slowly Varying Amplitude and Phase (SVAP), is considered for obtaining simpler analytical models of resonant inverters. SVAP gives identical results as the classical model-order residualization technique from automatic control theory. A slight modification of SVAP, Slowly Varying Amplitude Derivative and Phase (SVADP) is applied in this paper to obtain a better validity range. SVADP is validated for a half-bridge series resonant inverter (HBSRI) and for a high- order plant, a dual-half bridge series resonant inverter (DHBSRI) giving analytical second-order transfer functions for both topologies. Simulation and experimental results are provided to show the validity range of the reduced-order models.
000057065 536__ $$9info:eu-repo/grantAgreement/ES/UZ/JIUZ-2015-TEC-12$$9info:eu-repo/grantAgreement/ES/MINECO/TEC2013-42937-R$$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2014-1847-6$$9info:eu-repo/grantAgreement/ES/MINECO/FPU13-05982$$9info:eu-repo/grantAgreement/ES/MINECO/CSD2009-00046
000057065 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000057065 590__ $$a6.812$$b2017
000057065 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b14 / 260 = 0.054$$c2017$$dQ1$$eT1
000057065 592__ $$a2.215$$b2017
000057065 593__ $$aElectrical and Electronic Engineering$$c2017$$dQ1
000057065 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000057065 700__ $$0(orcid)0000-0003-4633-4551$$aBarragán, L.A.$$uUniversidad de Zaragoza
000057065 700__ $$0(orcid)0000-0002-8007-5613$$aArtigas, J.I.$$uUniversidad de Zaragoza
000057065 700__ $$0(orcid)0000-0003-1403-1505$$aOtín Acín, Aránzazu$$uUniversidad de Zaragoza
000057065 700__ $$0(orcid)0000-0002-6881-4209$$aUrriza, I.$$uUniversidad de Zaragoza
000057065 700__ $$0(orcid)0000-0002-0795-8743$$aNavarro, D.$$uUniversidad de Zaragoza
000057065 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000057065 773__ $$g32, 3 (2017), 2300-2311$$pIEEE trans. power electron.$$tIEEE Transactions on Power Electronics$$x0885-8993
000057065 8564_ $$s1352147$$uhttps://zaguan.unizar.es/record/57065/files/texto_completo.pdf$$yPostprint
000057065 8564_ $$s146904$$uhttps://zaguan.unizar.es/record/57065/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000057065 909CO $$ooai:zaguan.unizar.es:57065$$particulos$$pdriver
000057065 951__ $$a2019-07-09-11:25:41
000057065 980__ $$aARTICLE