000057066 001__ 57066
000057066 005__ 20231116120807.0
000057066 0247_ $$2doi$$a10.3390/en9080577
000057066 0248_ $$2sideral$$a96434
000057066 037__ $$aART-2016-96434
000057066 041__ $$aeng
000057066 100__ $$0(orcid)0000-0001-6899-1005$$aMarín-Sáez, Julia
000057066 245__ $$aEnergy simulation of a holographic PVT concentrating system for building integration applications
000057066 260__ $$c2016
000057066 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057066 5203_ $$aA building integrated holographic concentrating photovoltaic-thermal system has been optically and energetically simulated. The system has been designed to be superimposed into a solar shading louvre; in this way the concentrating unit takes profit of the solar altitude tracking, which the shading blinds already have, to increase system performance. A dynamic energy simulation has been conducted in two different locations—Sde Boker (Israel) and Avignon (France)—both with adequate annual irradiances for solar applications, but with different weather and energy demand characteristics. The simulation engine utilized has been TRNSYS, coupled with MATLAB (where the ray-tracing algorithm to simulate the holographic optical performance has been implemented). The concentrator achieves annual mean optical efficiencies of 30.3% for Sde Boker and 43.0% for the case of Avignon. Regarding the energy production, in both locations the thermal energy produced meets almost 100% of the domestic hot water demand as this has been considered a priority in the system control. On the other hand, the space heating demands are covered by a percentage ranging from 15% (Avignon) to 20% (Sde Boker). Finally, the electricity produced in both places covers 7.4% of the electrical demand profile for Sde Boker and 9.1% for Avignon.
000057066 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T76$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-48325-R$$9info:eu-repo/grantAgreement/ES/MINECO/BES-2014-069596
000057066 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000057066 590__ $$a2.262$$b2016
000057066 591__ $$aENERGY & FUELS$$b45 / 89 = 0.506$$c2016$$dQ3$$eT2
000057066 592__ $$a0.662$$b2016
000057066 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000057066 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ2
000057066 593__ $$aControl and Optimization$$c2016$$dQ2
000057066 593__ $$aEnergy (miscellaneous)$$c2016$$dQ2
000057066 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ2
000057066 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000057066 700__ $$aChemisana, Daniel
000057066 700__ $$aMoreno, Álex
000057066 700__ $$aRiverola, Alberto
000057066 700__ $$0(orcid)0000-0001-9804-990X$$aAtencia Carrizo, Jesús$$uUniversidad de Zaragoza
000057066 700__ $$0(orcid)0000-0002-3299-253X$$aCollados Collados, María Victoria$$uUniversidad de Zaragoza
000057066 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000057066 7102_ $$12002$$2647$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Óptica
000057066 773__ $$g9, 8 (2016), 577 [19 pp.]$$pENERGIES$$tEnergies$$x1996-1073
000057066 8564_ $$s5513974$$uhttps://zaguan.unizar.es/record/57066/files/texto_completo.pdf$$yVersión publicada
000057066 8564_ $$s104901$$uhttps://zaguan.unizar.es/record/57066/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000057066 909CO $$ooai:zaguan.unizar.es:57066$$particulos$$pdriver
000057066 951__ $$a2023-11-16-11:59:55
000057066 980__ $$aARTICLE