000057095 001__ 57095
000057095 005__ 20200221144311.0
000057095 0247_ $$2doi$$a10.1103/PhysRevB.94.094439
000057095 0248_ $$2sideral$$a96707
000057095 037__ $$aART-2016-96707
000057095 041__ $$aeng
000057095 100__ $$0(orcid)0000-0002-8173-1846$$aLaliena, V.
000057095 245__ $$aUnderstanding the H-T phase diagram of the monoaxial helimagnet
000057095 260__ $$c2016
000057095 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057095 5203_ $$aSome unexpected features of the phase diagram of the monoaxial helimagnet in presence of an applied magnetic field perpendicular to the chiral axis are theoretically predicted. A rather general Hamiltonian with long-range Heisenberg exchange and Dzyaloshinskii-Moriya interactions is considered. The continuum limit simplifies the free energy, which contains only a few parameters which in principle are determined by the many parameters of the Hamiltonian, although in practice they may be tuned to fit the experiments. The phase diagram contains a chiral soliton lattice phase and a forced ferromagnetic phase separated by a line of phase transitions, which are of second order at low T and of first order in the vicinity of the zero-field ordering temperature, and are separated by a tricritical point. A highly nonlinear chiral soliton lattice, in which many harmonics contribute appreciably to the spatial modulation of the local magnetic moment, develops only below the tricritical temperature, and in this case, the scaling shows a logarithmic behavior similar to that at T=0, which is a universal feature of the chiral soliton lattice. Below the tricritical temperature, the normalized soliton density curves are found to be independent of T, in agreement with the experimental results of magnetorresistance curves, while above the tricritical temperature they show a noticeable temperature dependence. The implications in the interpretation of experimental results of CrNb3S6 are discussed.
000057095 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68200-C2-2-P
000057095 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000057095 590__ $$a3.836$$b2016
000057095 591__ $$aPHYSICS, CONDENSED MATTER$$b18 / 67 = 0.269$$c2016$$dQ2$$eT1
000057095 592__ $$a2.339$$b2016
000057095 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ1
000057095 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000057095 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000057095 700__ $$0(orcid)0000-0002-3600-1721$$aCampo, J.$$uUniversidad de Zaragoza
000057095 700__ $$aKousaka, Y.
000057095 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000057095 773__ $$g94, 9 (2016), 094439 [9 pp]$$pPhys. Rev. B, Condens. matter mater. phys.$$tPhysical Review B. Condensed Matter and Materials Physics$$x1098-0121
000057095 8564_ $$s802097$$uhttps://zaguan.unizar.es/record/57095/files/texto_completo.pdf$$yVersión publicada
000057095 8564_ $$s132385$$uhttps://zaguan.unizar.es/record/57095/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000057095 909CO $$ooai:zaguan.unizar.es:57095$$particulos$$pdriver
000057095 951__ $$a2020-02-21-13:36:57
000057095 980__ $$aARTICLE