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1. RESUMEN 

La aplicación de un tratamiento de pulsos eléctricos de alto voltaje (PEAV) a la 

pasta de aceitunas podría facilitar la salida del aceite y por lo tanto mejorar el 

rendimiento de la extracción o incluso disminuir el tiempo y/o temperatura de batido. 

En estudios previos se ha aplicado esta tecnología con intensidades de campo eléctrico 

de hasta 2 kV/cm al proceso de extracción del aceite de oliva.  

El objetivo de este trabajo fue evaluar la repercusión de  la aplicación de un 

tratamiento de pulsos eléctricos de alto voltaje con intensidades de campo eléctrico de 3 

kV/cm a diferentes temperaturas de batido (15 y 26 ºC) en la extracción del aceite de 

oliva. Se evaluó el rendimiento de extracción y se determinaron en los aceites de oliva 

los parámetros físico-químicos regulados por la legislación (acidez, índice de peróxidos, 

coeficientes de extinción en el ultravioleta y ésteres etílicos de los ácidos grasos), 

nutricionales (fenoles totales, -tocoferol, pigmentos y estabilidad oxidativa) y 

sensoriales.  

El tratamiento de PEAV mejoró el rendimiento de extracción en torno a un 20 % 

cuando el batido se realizó a 26 ºC. Sin embargo, cuando el batido se realizó a 15 ºC esa 

mejora en el rendimiento fue inferior, pero algunos parámetros nutricionales 

aumentaron, como el contenido en fenoles totales. 

Tras los distintos tratamientos no se modificaron sustancialmente los parámetros 

físico-químicos y no se detectaron atributos sensoriales negativos en los aceites de 

oliva, por lo que todos los aceites conservaron la categoría comercial de aceite de oliva 

virgen extra.  

2. ABSTRACT 

 Pulsed electric fields application (PEF) to the olive paste may facilitate the olive 

oil output and therefore improve the extraction yield or decrease malaxation time or/and 

temperature. In previous studies this technology with electric field strengths of up to 2 

kV/ cm was applied to olive oil extraction process. 
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 The main objective of the present study was to evaluate the impact of pulsed 

electric fields application with 3 kV/ cm electric field strength at different malaxation 

temperatures (15 and 26 °C) in olive oil extraction. The extraction yield was evaluated 

and physico-chemical parameters regulated by legislation (acidity, peroxide index, 

ultraviolet extinction coefficients and fatty acids ethyl esters), nutritional (total phenols, 

α-tocopherol, pigments and oxidative stability) and sensory analysis parameters were 

determined in olive oil. 

  

 PEF treatment increased the extraction yield about 20% when the malaxation 

temperature was 26 °C. However, when the malaxation was 15 °C that improvement 

yield was lower, but some nutritional parameters increased as total phenols content. 

After different treatments physico-chemical parameters were not substantially 

modified and no negative sensory attributes were detected in olive oils, so all oils 

preserved the commercial category of extra virgin olive oil.  

3. INTRODUCCIÓN 

3.1. El olivo y la aceituna 

El olivo (Olea europaea) pertenece a la familia de las oleáceas. Las plantas de 

esta familia son en su mayoría árboles y arbustos, perteneciendo a ella 29 géneros y más 

de 600 especies. La especie Olea europaea es la única de esta familia con fruto 

comestible y su hábitat está determinado por el clima mediterráneo, que se caracteriza 

por inviernos suaves y veranos secos y calurosos. Tiene un tamaño mediano, de unos 4 

a 8 metros de altura, aunque depende de la variedad. El tronco es grueso y la corteza de 

color gris a verde grisáceo. La copa es redondeada, aunque más o menos lobulada, 

siendo bastante densa. El olivo puede permanecer vivo y productivo cientos de años. 

Existen tres grandes tipos de plantaciones de olivar que se pueden agrupar 

atendiendo a su diseño, grado de mecanización y recolección y factores agronómicos 

en: 

- Sistema tradicional de cultivo. Situados en terrenos de pendiente elevada y con 

amplios marcos de plantación, están constituidos por árboles de gran tamaño. 
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Presentan una productividad media–baja y unos costes de cultivo elevados y la 

recolección es manual o con ayuda de vibradores. 

- Sistemas intensivos. Constituidos por árboles de tamaño medio que se pueden 

plantar en todo tipo de terreno. Mediante diversos equipos (vibradores con 

paraguas) se ha conseguido mecanizar el derribo y la recolección del fruto. 

Presentan una productividad muy alta y rentable. 

- Sistemas de alta densidad o superintensivos. Constan de hileras de árboles de 

pequeño tamaño con mayor densidad que en los otros sistemas. Es un sistema 

totalmente mecanizado y además, presenta la mayor rentabilidad y productividad 

de los tres. 

El fruto del olivo, es la aceituna,  una drupa de forma elipsoidal o globosa, con una 

sola semilla en su interior. Está compuesta por tres tejidos principales: endocarpio, 

mesocarpio y epicarpio (Figura 1). El endocarpio es el hueso que contiene en su interior 

la almendra o semilla, el mesocarpio es la pulpa o la carne y el epicarpio es la piel o 

capa exterior.  

El aceite de oliva se encuentra en forma de diminutas gotitas contenidas en las 

vacuolas de las células del mesocarpio de los frutos. Para su extracción será preciso 

romper la estructura del mesocarpio y así facilitar la salida del aceite.  
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Figura 1. Esquema de los distintos tejidos de la aceituna 

Existen más de 200 variedades de aceitunas. Para las plantaciones tradicionales e 

intensivas se utilizan variedades como Picual, Arbequina, Manzanilla, Hojiblanca, 

Empeltre, etc. Para las plantaciones de alta densidad o superintensivas, se utilizan 

variedades como Arbosana, Koroneiki, etc, aunque la más extendida es la variedad 

Arbequina (Olea europaea L. Ilerdensis). El fruto de Arbequina es de pequeño formato, 

de color verde–amarillento, forma esférica y simétrico. 

3.2. Extracción del aceite de oliva 

El aceite de oliva virgen es el obtenido a partir de la aceituna exclusivamente por 

procedimientos mecánicos u otros medios físicos, en condiciones especialmente 

térmicas que no produzcan la alteración del aceite, que no haya tenido más tratamiento 

que el lavado, la decantación, la centrifugación y el filtrado (Aparicio y Harwood, 

2003).  

La extracción del aceite de oliva se realiza en varias etapas, tal y como se 

muestra en el siguiente esquema (Figura 2). 
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Figura 2. Diagrama de flujo de la extracción del aceite de oliva. 

Fuente: Elaboración propia. 

 

La molienda de los frutos se realiza mediante molinos de martillos que ayudan a 

efectuar mejor la separación del aceite, desgarrando los tejidos del fruto. Durante la 

molienda, las gotas microscópicas de aceite se unen para formar otras más grandes 

(coalescencia). El batido posterior a la molienda (realizado en termobatidora), favorece 

la aglutinación de estas gotas para formar una fase oleosa más grande, hasta que se 

produce la separación de las fases acuosas (alpechín) y de la fase de orujo (piel, pulpa y 

huesos rotos). 
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La temperatura de batido de la pasta debe ser inferior a los 30 ºC, ya que si se 

sobrepasa se provocan alteraciones en la calidad del aceite como pérdida de aromas, 

aumento del índice de peróxidos y pérdida de estabilidad. Habitualmente se utiliza talco 

como coadyuvante, ya que su uso está permitido en pastas difíciles (Beltrán y col., 

2010). 

 Para realizar la separación del aceite del resto de componentes de la aceituna, se 

utiliza un sistema en continuo con centrífugas horizontales o decánter mediante el cual 

se consigue la separación por diferencia de densidad, del orujo, el alpechín y el aceite. 

Dependiendo del número de fases existen dos tipos de decánter: de dos fases, en los que 

se separan, el aceite y el alpeorujo u orujo húmedo (mezcla de orujo y alpechín) y de 

tres fases, que dan lugar a aceite, orujo y alpechín (Mataix y Martínez, 2001). 

3.3. Factores que afectan a la calidad del aceite de oliva 

La calidad del aceite de oliva depende de la calidad de la aceituna, así como de 

la calidad de los procesos de cosecha, postcosecha, extracción, conservación y 

distribución del producto final hasta ser consumido. Se trata de una cadena de 

producción donde una pérdida de calidad en un punto intermedio es irrecuperable en 

etapas posteriores. Estos factores de calidad son: 

a) Factores genéticos. 

Se refieren a la variedad de aceituna. Existen al menos tantas variedades de aceites 

de oliva como variedades de olivos y frutos dedicados a la extracción de aceite. Cada 

variedad de olivo produce frutos característicos con una composición química y 

características sensoriales distintas. Por ejemplo, la variedad Arbequina está 

caracterizada por presentar una baja estabilidad frente a la oxidación debido a su 

composición química, ya que tiene un bajo contenido en fenoles y es rica en ácidos 

grasos poliinsaturados. El aceite obtenido a partir de estos frutos conservará éstas 

características, siempre que se haya extraído mediante procedimientos mecánicos o 

físicos que no alteren el producto.  

b) Factores agronómicos. 
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● Condiciones climáticas. El olivo proviene de un clima mediterráneo, 

que se caracteriza por presentar dos estaciones: una fría y húmeda y otra 

calurosa y seca. Las heladas, tanto primaverales como tardías afectan 

negativamente al fruto, provocando la rotura de las células interiores, dando 

lugar a defectos sensoriales en el aceite. Los frutos de árboles cultivados en 

climas secos y calurosos dan aceites con mejor flavor pero con menor contenido 

en ácidos grasos insaturados (Kiritsakis y Markakis, 1987). 

● Tipo de suelo y localización del cultivo. Además del clima, la altitud 

donde se encuentra el cultivo es el principal factor responsable de que existan 

diferencias en la composición química del aceite dentro de una misma variedad 

(Mousa y col., 1996). 

● Grado de maduración. Durante el proceso de maduración de la 

aceituna, va sufriendo cambios fisiológicos y como consecuencia se modifica la 

textura, el peso, el color y su composición. Las características del aceite varían 

en función del grado de madurez en el que se recolectan las aceitunas. El 

porcentaje graso sobre materia seca aumenta durante la maduración generando 

un incremento en el rendimiento de la extracción (Salvador y col., 2001; 

Baccouri y col., 2008).  

 ●    Sistemas de cultivo y sistemas de recolección. (Ver apartado 3.1) 

● Riego. Es un elemento indispensable en las plantaciones 

superintensivas. Puede modificar tanto la composición química como las 

características organolépticas del aceite producido. Los aceites producidos en 

riego presentan diferencias en la composición química respecto a los de secano. 

El contenido en fenoles siempre es superior en los aceites procedentes de secano 

(Salas y col., 1997). Por otra parte el contenido en ácido oleico es inferior en los 

aceites de secano (Salas y col., 1997; Pastor y col., 2005) 

●   Poda. No tiene efecto directo sobre la calidad del fruto, pero evita la 

instauración de determinadas enfermedades (aceituna jabonosa, repilo) que 

afectan al fruto y en consecuencia a la calidad del aceite. 
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●  Fertilización. Una fertilización adecuada del olivar permite obtener 

una buena respuesta productiva. Un aporte extra de algún mineral, aunque 

suponga un mayor coste puede repercutir en una mejora en la producción y 

calidad del aceite. Por ejemplo, la utilización de abonados nitrogenados en 

olivos de la variedad Picual da lugar a aceites con mayor contenido en α-

tocoferol (Férnandez-Escobar y col., 2006). 

c) Factores de procesado. 

Son los propios del proceso de elaboración e influyen en la calidad y tipo 

de aceite, especialmente en sus características sensoriales. Entre estos factores 

destacan el tipo de molino utilizado, la temperatura y tiempo de batido, el 

decánter utilizado (dos o tres fases), etc. Además, la clave para obtener aceite de 

calidad es procesar lo más rápidamente posible tras la recolección para evitar 

fermentaciones y defectos sensoriales en el aceite. 

●   La molienda, cuyo objetivo es la rotura de los tejidos vegetales, puede 

hacerse con diferentes tipos de molinos lo que influye en la composición y en los 

caracteres sensoriales del aceite obtenido. Estudios realizados por Di 

Giovacchino (1991; 2003) demostraron que los aceites obtenidos de frutos 

molturados en molinos metálicos, tienen un color verde más intenso que los 

obtenidos de molinos de piedra. Esto es debido a que los molinos metálicos 

rompen las células de la pulpa de la aceituna liberando más pigmentos 

clorofílicos.  

●   Si se incrementa la temperatura de batido, generalmente aumentan los 

compuestos fenólicos (Di Giovacchino, 1991; Taticchi y col., 2013) con el 

consiguiente aumento de la estabilidad (Jiménez y col., 1995). Sin embargo, el 

tiempo de batido tiene una influencia menor que la temperatura sobre los 

compuestos fenólicos. Se ha demostrado que aumentos del tiempo de batido, 

reducen el contenido de polifenoles (Clovodeo, 2012; Fregapane y Salvador, 

2013). 

●   La separación de fases se realiza por el sistema de centrifugación, 

tanto de dos como de tres fases. En el proceso de centrifugación es importante 
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no sólo la cantidad de agua adicionada, sino también la temperatura a la que se 

incorpora. A mayor cantidad de ambos parámetros se producen aceites con un 

menor contenido en polifenoles y en compuestos aromáticos (Barranco y col., 

2008). Debido a que con los decánter de tres fases se requiere adición de agua, 

los aceites obtenidos tienen menor concentración de compuestos fenólicos que 

los de dos fases (Di Giovacchino y col., 2001). 

Durante los últimos años se han realizado innovaciones en el procesado del 

aceite de oliva para conseguir un objetivo claro: mejorar el rendimiento de la extracción 

y reducir el tiempo y/o temperatura de batido sin comprometer la calidad de los aceites. 

Algunas de ellas son las siguientes: 

● Uso de coadyuvantes. Como la adición de carbonato cálcico (CaCO3) a la 

pasta de aceituna durante el batido y el empleo de enzimas pécticas (De Faveri y col., 

2008; Najafian y col., 2009), aunque la normativa europea no contempla el uso en 

aceites de oliva vírgenes (CE, 2001). 

●  Batido en atmósfera modificada mediante el uso de diversos gases (Clovodeo, 

2012). Se ha diseñado un nuevo modelo de batidora cerrada herméticamente que 

permite la incorporación de algún gas durante el proceso de batido, bien inerte como el 

nitrógeno o el argón, o el oxígeno pero de forma controlada ya que de lo contrario 

favorecería el proceso de oxidación. 

●  Uso de tecnologías emergentes en el proceso de extracción del aceite de oliva, 

como son: 

- Ultrasonidos. Son una forma de energía generada por ondas con frecuencias 

por encima de los 16 kHz. Tiene un doble efecto, mecánico y térmico, que 

pueden resultar útiles en el proceso de extracción. Trabajos como el de Clodoveo 

(2013) mostraron que con la aplicación de tratamientos de ultrasonidos (35 kHz–

150 W) tras la molienda, se consiguen reducciones del tiempo de 

precalentamiento de la pasta del 60% respecto al calentamiento convencional. 

- Ondas microondas. Son ondas electromagnéticas no ionizantes comprendidas 

entre 300 MHz y 300 GHz. Al igual que con los ultrasonidos, las ventajas que 
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presenta esta tecnología son debidas a los efectos térmicos y mecánicos que 

genera. Los tratamientos con ondas microondas, (800 W, 2450 MHz) previos al 

batido de la pasta mejoran en un 2,4 % el rendimiento de extracción del aceite 

sin comprometer su calidad (Clodoveo y Hachicha-Hbaieb, 2013). 

- Pulsos eléctricos de alto voltaje (PEAV o PEF, Pulsed Electric Fields) (Ver 

apartado 3.5). 

d) Factores de conservación.  

Se recomienda que el consumo del aceite de oliva sea alrededor de los 12-18 

meses tras su producción (Mancebo-Campos y col., 2008). Por este motivo, es de gran 

interés mejorar la conservación para poder preservar la calidad del aceite de oliva 

durante el mayor tiempo posible. Existen diversos factores que intervienen en la vida 

útil del aceite durante el almacenamiento. Entre estos factores destacan la exposición a 

la luz, la temperatura y el contacto con el oxígeno y metales (Kiritsakis y Dugan, 1984). 

Estos factores pueden provocar la aceleración de la oxidación y decoloración del aceite, 

incrementar el índice de peróxidos y disminuir la estabilidad.  

3.4. Calidad reglamentada 

 La calidad reglamentada de los aceites de oliva viene definida por el Reglamento 

(CEE) 2568/1991 (y posteriores modificaciones) y el Reglamento (UE) 1348/2013, 

relativo a las características de los aceites de oliva y de los aceites de orujo de oliva 

(Tabla 1). Estos reglamentos establecen la clasificación comercial de los aceites de oliva 

en función de parámetros físico-químicos y sensoriales. 
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Parámetros 
Aceite de oliva 

virgen extra 

Aceite de oliva 

virgen 

Aceite de oliva 

lampante 

Acidez (%) ≤ 0,8 ≤ 2,0 > 2,0 

Índice de peróxidos (mEq 

O2/kg) 
≤ 20 ≤ 20 — 

K270 ≤ 0,22 ≤ 0,25 — 

K232 ≤ 2,50 ≤ 2,60 — 

Mediana del frutado > 0 > 0 0 

Mediana de defectos 0 ≤ 3,5 > 3,5 

Esteres etílicos de los ácidos 

grasos (mg/ kg) 
≤ 30 — — 

Tabla 1. Parámetros físico-químicos y sensoriales de los aceites de oliva para la clasificación comercial. 

Fuente: CEE (1991) y UE (2013). 

Según estos parámetros los aceites de oliva se clasifican en: 

Aceite de oliva virgen extra: Este tipo de aceite es de máxima calidad, se obtiene 

directamente de aceitunas en buen estado únicamente por procedimientos mecánicos, 

con un sabor y olor característicos y libre de defectos sensoriales. 

Aceite de oliva virgen: aceite de oliva que puede presentar ligeras alteraciones, 

bien sea en sus índices analíticos o en sus características sensoriales, pero siempre en 

pequeña escala. Estas alteraciones, sobre todo sensoriales, pueden ser prácticamente 

imperceptibles, pero deprecian la calidad respecto al virgen extra. 

Aceite de oliva lampante: Presenta serias alteraciones en sus índices físico-

químicos y/o sensoriales. Este aceite no puede consumirse tal y como se produce y 

necesariamente ha de someterse a un proceso de refinado para rectificar sus defectos y 

hacerlo comestible. 

3.5. El uso de PEAV en la extracción de aceite de oliva 

 Este tratamiento consiste en la aplicación de campos eléctricos de alta intensidad 

(1–50 kV) y de corta duración (microsegundos), a un material colocado entre dos 

electrodos, sin apenas aumentar la temperatura del producto tratado, en este caso pasta 

de aceitunas, y por tanto, sin alterar sustancialmente sus propiedades sensoriales y 

nutricionales (Wouters y col., 2001). Este tratamiento provoca cambios estructurales en 
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las membranas celulares, formando poros, lo que se traduce en un aumento de su 

permeabilidad al paso de moléculas e iones, denominándose el proceso electroporación.  

 Uno de los modelos más aceptados para explicar la electroporación de la 

membrana plasmática es la ―Teoría de la inestabilidad electromagnética‖ (Zimmermann 

y col., 1974; Zimmermann, 1986). Según esa teoría, al someter una célula a la acción de 

un campo eléctrico externo se produce un acúmulo de iones con cargas eléctricas de 

signo contrario a ambos lados de la membrana. Las fuerzas de atracción electrostáticas 

que se establecen entre las cargas provocan la compresión de la membrana y la 

formación de poros cuando éstas superan el límite de elasticidad de la membrana. 

 Los principales parámetros de procesado que caracterizan la tecnología de los 

PEAV son la intensidad del campo eléctrico, la forma y anchura del pulso, el tiempo de 

tratamiento, la energía específica y la frecuencia. 

- La intensidad de campo eléctrico es la diferencia de potencial aplicada entre 

los dos electrodos donde se coloca el alimento, dividido por la distancia que 

los separa. 

- Forma y anchura del pulso: En los tratamientos de pulsos eléctricos se 

emplean esencialmente dos tipos de pulsos los de caída exponencial y los de 

onda cuadrada. Es preferible trabajar con estos últimos ya que se determina 

con más precisión la intensidad del campo eléctrico y el tiempo de 

tratamiento aplicado. 

- El tiempo de tratamiento se define como el tiempo total efectivo durante el 

cual se aplica el campo eléctrico.  

- La energía aplicada por un pulso. Cuando se aplica una diferencia de 

potencial entre los electrodos de la cámara de tratamiento, se genera una 

corriente eléctrica que circula a través del producto.  

- La frecuencia se corresponde con el número de pulsos aplicados por unidad 

de tiempo. Una vez seleccionado el tiempo efectivo del tratamiento, la 

frecuencia determina el tiempo de permanencia del producto en la cámara de 

tratamiento donde se encuentra el producto, es decir, el tiempo de procesado. 
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 Existen estudios muy favorables sobre la aplicación de PEAV en la mejora de 

extracción de aceite de oliva, entre los que destaca la aplicación de intensidades de 

campo eléctrico de 0,7 kV/cm y 30 pulsos y 1,3 kV/cm y 100 pulsos, obteniéndose un 

incremento en el porcentaje de extracción de aceite, comparado con la referencia sin 

pulsos. Dependiendo de la intensidad de los pulsos se consiguió un aumento en el rango 

de 6,5–7,4 % (expresado en gramos de aceite por 100 g de aceituna) (Guderjan y col., 

2005). 

En otro estudio (Abenoza y col., 2013), se aplicaron diferentes intensidades de 

campo eléctrico, en pasta de aceituna de la variedad Arbequina, en el rango de 0 a 2 

kV/cm y a diferentes temperaturas de batido (15 y 26 ºC). Se demostró que con una 

intensidad de campo eléctrico de 2 kV/cm y una temperatura  de batido de 15 ºC,  

mejoró la extracción en 1,7 kg de aceite por cada 100 kg de aceitunas. Sin embargo una 

temperatura de batido de 26 ºC y una intensidad de campo eléctrico de 2 kV/cm no 

produjo mejoras en la extracción en comparación con la muestra control sin pulsar. La 

aplicación de PEAV no afectó negativamente al análisis sensorial del aceite. 

A escala industrial, se trató pasta de aceitunas de la variedad Arbequina con una 

intensidad de campo eléctrico de 2 kV/cm y 13 pulsos. Tras 150 minutos de batido se 

consiguió el mismo rendimiento en la muestra control que tras 80 minutos de batido en 

la muestra pulsada (rendimiento de 10,86%), sin afectar negativamente al análisis 

sensorial (Abenoza, y col., 2012).  

En otros estudios realizados a escala industrial, se ha mostrado un aumento 

significativo del contenido de polifenoles, fitoesteroles y tocoferoles (en un rango de 9,9 

a 15%) al aplicar una intensidad de campo eléctrico de 2 kV/cm, respecto a la muestra 

control sin tratar. La muestra tratada por PEAV consiguió un aumento en el rendimiento 

de extracción de un 13,3% respecto a la muestra control, sin afectar negativamente al 

análisis sensorial (Puértolas y Martínez de Marañón, 2015).  

4. JUSTIFICACIÓN Y OBJETIVOS DEL ESTUDIO. 

El objetivo de la industria oleícola es la obtención de aceites con el mayor 

rendimiento y con el menor coste posible. Con el fin de optimizar estos aspectos 

comienzan a explorarse diversas innovaciones en el procesado del aceite de oliva. Estas 
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innovaciones persiguen aumentar el rendimiento del proceso de extracción del aceite, 

reducir el tiempo y/o temperatura de procesado y los costes energéticos y preservar o 

mejorar la calidad del producto.  

Entre estas innovaciones destaca el uso de pulsos eléctricos de alto voltaje (PEAV), que 

permite conseguir un aumento en la extracción de compuestos intracelulares, mediante 

la permeabilización de las células de la pulpa de la aceituna, facilitando la salida del 

aceite, y por tanto, mejorando el rendimiento de la extracción. Ésta tecnología aún es 

poco conocida en la industria oleícola, sin embargo, existen estudios en los que se 

aplican los PEAV en la extracción de aceite de oliva a bajas intensidades de campo 

eléctrico (no superiores a 2 kV/cm). El objetivo general de esta investigación fue 

comprobar si la aplicación de PEAV durante el proceso de extracción de aceite de oliva 

a una intensidad de campo eléctrico superior (de 3 kV/cm) mejoraba el rendimiento de 

extracción y caracterizar los parámetros de calidad de los aceites de oliva obtenidos. 

Para alcanzar este objetivo, fue necesario plantear los siguientes objetivos 

parciales: 

1. Extracción de aceite de oliva con la aplicación de PEAV a 3 kV/cm, a 

escala de laboratorio, y determinación del rendimiento de extracción. 

2. Caracterización físico-química de los aceites de oliva. 

3. Caracterización nutricional de los aceites de oliva. 

4. Caracterización sensorial de los aceites de oliva. 

Este trabajo de investigación se enmarca dentro del proyecto "FieldFOOD-

Integration of PEF in food processing for improving food quality, safety and 

competitiveness" financiado por el Programa Marco de Investigación e Innovación de la 

Unión Europea Horizonte 2020 (Grant Agreement Nº 635632). 

5. MATERIALES Y MÉTODOS  

5.1. Materia prima 

Los estudios se realizaron con aceitunas de la variedad Arbequina de la campaña 

2015-2016, recolectadas el 16 de Noviembre, procedentes de cultivos intensivos de la 
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provincia de Zaragoza. Las aceitunas fueron suministradas por Agrinarsa, almazara 

situada en Fuentes de Ebro (Zaragoza). 

5.2. Determinaciones en el fruto 

5.2.1. Índice de madurez 

 Para su determinación se tomaron 100 frutos según la metodología descrita por 

la estación de Olivicultura y Elaiotecnia de Jaén (Hermoso y col., 1991). Se evaluó la 

pigmentación del epicarpio y mesocarpio de las aceitunas mediante una escala basada 

en 7 niveles de pigmentación (Tabla 2 y Figura 3).  

Nivel de pigmentación Color del epicarpio y mesocarpio 

0 Epicarpio verde intenso 

1 Epicarpio verde – amarillento 

2 Epicarpio con manchas rojizas en menos de la mitad del fruto 

3 Epicarpio con manchas rojizas por todo el fruto 

4 Epicarpio negro sin color en el mesocarpio 

5 Epicarpio negro con color en el mesocarpio sin llegar a la mitad 

6 Epicarpio negro con color en el mesocarpio sin llegar al hueso 

7 Epicarpio negro y mesocarpio morado hasta el hueso 

Tabla 2. Determinación del índice de madurez en función del nivel de pigmentación. 

 

Figura 3. Distintos niveles de pigmentación de las aceitunas.  

Fuente: www.miguelybarrablog.files.wordpress.com 

 

 El índice de madurez se calculó a partir de la siguiente fórmula: 

                    
                                

                
 

Siendo: 

A: número de frutos de nivel de pigmentación 0; B: número de frutos de nivel de pigmentación 1; C: número 

de frutos de nivel de pigmentación 2; D: número de frutos de nivel de pigmentación 3; E: número de frutos de 
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nivel de pigmentación 4; F: número de frutos de nivel de pigmentación 5; G: número de frutos de nivel de 

pigmentación 6; H: número de frutos de nivel de pigmentación 7. 

 

5.3. Diseño experimental 

El estudio se realizó siguiendo el diseño experimental descrito en la Figura 4. La 

tecnología PEAV se aplicó tras la molienda de las aceitunas y antes del batido de la 

pasta (ver apartado 5.4). Posteriormente, las pastas de aceituna se sometieron a 

diferentes condiciones de batido (dos temperaturas, 15 y 26 ºC) durante el mismo 

tiempo (15 minutos).  

Para cada una de las condiciones de batido se obtuvo un aceite de aceitunas sin 

tratar mediante PEAV (muestra control). Tras el batido de la pasta en las diferentes 

condiciones, se procedió a la centrifugación para la obtención del aceite (ver apartado 

5.5). 

 
  

Muestra 
  

 
  

 

  

 
Batido: 15ºC/15´ 

 
Batido: 26ºC/15´ 

 

  

 

 

 

 

Control PEAV 
 

Control PEAV 

Figura 4. Diseño experimental. 

Se realizó la caracterización físico-química, nutricional y sensorial de los aceites 

obtenidos para comprobar si el tratamiento de PEAV afectaba a su calidad.  

5.4. Aplicación de Pulsos Eléctricos de Alto Voltaje (PEAV) a la pasta de aceitunas 

 Para el tratamiento de PEAV se siguió el esquema de la Figura 5. 
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Las aceitunas se molieron mediante un molino de martillos (accionado por un 

motor de 2 CV a 3000 rpm). En la pasta obtenida se aplicó un tratamiento total de      

100 µs (2 pulsos de 50 µs) de duración, a una intensidad de campo eléctrico de              

3 kV/cm. El equipo de PEAV utilizado en esta investigación (EPULSUS, Portugal) 

genera pulsos de onda cuadrada de una anchura variable y una frecuencia de hasta 200 

Hz. Se utilizó una cámara de tratamiento colineal de 2 cm de espacio entre electrodos y 

2 cm de diámetro interno.    

Figura 5. Esquema del procesado del aceite con el tratamiento de PEAV.  

Fuente: Propia. 

Tras el tratamiento de la pasta se procedió a la extracción del aceite como se indica en el 

siguiente apartado (5.5). 

5.5. Extracción de aceite de oliva y cálculo del rendimiento industrial 

 La extracción del aceite de cada una de las muestras fue realizado mediante un 

equipo Abencor (MC2 Ingenierías  y Sistemas, Sevilla, España) siguiendo el proceso 

descrito por Martinez-Suarez y col., (1975). Este método reproduce, a escala de 

laboratorio, el proceso industrial de obtención de aceite de oliva. El equipo cuenta con 

un molino de martillos, una termobatidora y una centrífuga. 

Para la muestra control las aceitunas se trituraron mediante un molino de 

martillos. La pasta resultante se distribuyó en pocillos (600 g de pasta/pocillo) y se 

sometió a batido en la termobatidora en las diferentes condiciones del estudio, 15 y     
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26 ºC durante 15 minutos. Posteriormente, se vertió la pasta dentro de una centrifuga 

vertical tipo cesta que gira a 3500 rpm y se accionó durante 1 minuto. Se recogió el 

mosto oleoso por el orificio inferior en una probeta graduada. 

 Para la muestra tratada por PEAV (ver apartado 5.4) la pasta tras el tratamiento, 

se batió y centrifugó siguiendo el mismo proceso descrito para la muestra control. 

 Tanto en los aceites control como en los obtenidos por tratamiento con PEAV, 

tras dejar decantar se efectuó la lectura del volumen de aceite y se calculó el 

rendimiento industrial con la siguiente fórmula: 

                                        
    d

 
   100   

Siendo: 

R: rendimiento de aceite en peso fresco (%) 

V: volumen de aceite obtenido (ml) 

d: densidad del aceite considerando una temperatura de 20ºC (0,915 g/ml) 

p: peso de la pasta (g)  

 

5.6. Determinaciones en la pasta de aceitunas y en los alpeorujos 

5.6.1. Humedad 

 Para determinar el contenido en humedad de las aceitunas, se molieron mediante 

un molino de martillos y una alícuota de la pasta resultante, se llevó a sequedad en 

estufa a 60 ºC hasta llegar a pesada constante. 

5.6.2. Cálculo del contenido graso sobre materia seca 

Se tomaron alícuotas de pasta de aceituna (recogidas tras la molienda) y se 

secaron en estufa a 105 ºC durante 24 horas para eliminar la humedad. Posteriormente 

se trituraron, y se tomó una muestra de 1 gramo. Se realizó la extracción de grasa en un 

equipo Soxtec
TM

 2055 (FOSS, Dinamarca) (Figura 6) utilizando como disolvente 70 ml 

de éter de petróleo para  cada muestra a 115 ºC. Se utilizaron cartuchos de celulosa de 

80 mm de longitud y 33 mm de diámetro interno (CHMLAB Group, Barcelona, 

España). 
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En el caso de los alpeorujos recogidos tras 

la centrifugación, se determinó el contenido graso 

sobre materia seca siguiendo el mismo 

procedimiento que en la pasta de aceituna, pero en 

este caso el peso de la muestra fue de 2 gramos.  

 

Se calculó el contenido graso sobre materia 

seca como el cociente entre los gramos de grasa 

obtenidos y los gramos de pasta seca de aceituna 

utilizada o alpeorujo.  

5.7 Determinaciones en los aceites de oliva obtenidos 

5.7.1. Caracterización físico-química 

5.7.1.1. Grado de acidez 

Para la determinación de la acidez libre se utilizó el método oficial del Anexo II 

del Reglamento de la CEE nº 2568/91 relativo a las características de los aceites de 

oliva y de los aceites de orujo de oliva y sobre sus métodos de análisis (CEE, 1991). 

Se pesaron 5 ±0,01 g de aceite en un matraz Erlenmeyer. Se disolvió la muestra 

en 50 ml de la mezcla de éter etílico y etanol (relación a partes iguales 

volumen/volumen) previamente neutralizada. Se valoró agitando con la solución de 

hidróxido potásico 0,1 M hasta viraje del indicador.  

La acidez se expresó en porcentaje de ácido oleico y se calculó a partir de la 

siguiente formula. 

  ácido oleico 
         m

 
 

Siendo: 

V: Volumen en ml de la solución de hidróxido potásico utilizada en la valoración. 

N: Normalidad del hidróxido potásico utilizada. 

Pm: Peso molecular del ácido oleico (282). 

P: Peso en g de la muestra. 

 

Figura 6. Soxtec
TM

 2055 
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5.7.1.2. Índice de peróxidos 

 Se siguió el procedimiento descrito por el Anexo III del Reglamento de la CEE 

2586/91 para la determinación del índice de peróxidos (CEE, 1991). 

Se pesaron 1,5 ±0,01g de aceite en un matraz de 250 ml de cierre esmerilado. Se 

agregaron 10 ml de cloroformo y 15 ml de ácido acético glacial. Tras ésto, se adicionó 1 

ml de la solución saturada de yoduro potásico. Se cerró el matraz y se mantuvo en 

oscuridad durante 5 minutos. Posteriormente, se añadieron 75 ml de agua destilada y se 

homogeneizó agitando vigorosamente. Se valoró el yodo liberado con tiosulfato sódico 

0,01 N agitando en presencia de almidón. El viraje se produjo al pasar del color violeta 

al blanco sucio. De la misma forma, se realizó un blanco (sin la muestra de aceite). 

Los resultados fueron expresados en miliequivalentes de oxigeno activo por kg 

de muestra mediante la siguiente fórmula. 

 ndice de peró idos 
       1000

 
 

Siendo: 

V: ml de solución valorada de tiosulfato sódico empleados en el ensayo. 

N: Normalidad exacta de la solución de tiosulfato sódico empleada. 

P: Peso en gramos de la muestra analizada. 

5.7.1.3. Coeficientes de extinción en el ultravioleta (K232, K270) 

 Para la determinación de los coeficientes de extinción en el ultravioleta se 

empleó el método oficial del Anexo IX del Reglamento de la CEE nº 2568/91 (CEE, 

1991). 

Se pesaron 0,25 ±0,01 g de aceite en un matraz aforado de 25 ml y se enrasó con 

ciclohexano. Se homogeneizó la muestra agitando vigorosamente. La muestra fue 

filtrada mediante una jeringa de cristal con un filtro de poliamida de 0,45 µm y 

finalmente, se llenaron las cubetas. Se midieron las extinciones a las longitudes de onda 

comprendidas entre 232 y 270 nm, utilizando ciclohexano como referencia. 
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Las extinciones específicas o coeficientes de extinción de ambas longitudes de 

onda se calcularon de la siguiente fórmula. 

   
E 

e   c
 

Siendo: 

k : extinción específica a la longitud de onda lambda. 

E : extinción medida a la longitud de onda lambda. 

e: espesor de la cubeta en cm. 

c: concentración de la disolución en gramos por 100 ml. 

5.7.1.4. Ésteres etílicos de los ácidos grasos 

El 1 de marzo de 2014 entró en vigor el Reglamento (UE) Nº 1348/2013 de la 

Comisión, de 16 de diciembre de 2013, que modifica el Reglamento (CEE) Nº 2568/91 

relativo a las características de los aceites de oliva y de los aceites de orujo de oliva y 

sobre sus métodos de análisis que obliga a la determinación de los ésteres etílicos de los 

ácidos grasos en los aceites de oliva virgen extra. 

La metodología para la determinación queda recogida en el anexo XX de dicho 

reglamento (UE, 2013).  

5.7.2. Caracterización nutricional 

5.7.2.1. Determinación del contenido en α-tocoferol 

 Se disolvió 1± 0,01 g de aceite en un matraz aforado de 10 ml enrasando con 

hexano. La solución resultante se pasó a través de una jeringa de cristal con un filtro de 

poliamida de 0,45 µm. Se rellenó un vial ámbar de 2 ml de capacidad provisto de un 

tapón con septum. 

 La muestra se inyectó en un equipo de cromatografía líquida de alta resolución 

(HPLC) Hewlett Packard (Agilent–Serie 1100) equipado con los siguientes módulos: un 

desgasificador (G1313A, Serie 1100), una bomba cuaternaria (G1311A, Serie 1100), un 

inyector automático (G1313A, Serie 1100) y un detector de matriz de fotodiodos (DAD) 

(G1315 B, Serie 1100). Se utilizó el software HP ChemStation 3365. Se empleó una 
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columna Zorbax SB–C18 de fase reversa (dimensiones, 150 x 4,6 mm y tamaño de 

partícula 3,5 µm) (Agilent Technologies). 

 El volumen de inyección fue de 20 µl. La fase móvil utilizada fue 

acetonitrilo/agua Mili-Q en proporción 99/1 (relación volumen/volumen) en 

condiciones isocráticas y con un flujo de la fase móvil de 1 ml/min. El tiempo de 

análisis fue de 30 minutos. Los cromatogramas se registraron a 295 nm. 

Previamente, se inyectaron concentraciones crecientes (de 0,01 a 0,08 mg/ml) de 

una solución estándar de α-tocoferol para construir la recta de calibrado, donde 

interpolar posteriormente, para poder cuantificar los valores obtenidos en las muestras. 

 Los resultados se expresaron en mg de α-tocoferol por kg de aceite. 

5.7.2.2. Determinación del contenido en fenoles totales 

 Para la preparación de la muestra se siguió el método descrito por Favati y col., 

(1994) adaptado. En primer lugar se pesó 1 gramo de aceite de oliva en un matraz 

aforado de 10 ml y se enrasó con hexano. Se homogeneizó bien la muestra. 

 Los fenoles fueron extraídos mediante extracción en fase sólida (SPE) en una 

estación de vacío Supelco. Para éllo, se utilizaron cartuchos Isolute C18 de 6 ml y 1 g de 

fase sólida (Biotage, Suecia). El acondicionamiento de la columna se realizó con 10 ml 

de metanol y 10 ml de hexano. Después, se cargó la muestra y se lavó la columna con 

15 ml de hexano y se eluyó con 10 ml de metanol. El eluato recogido se llevó a 

sequedad total a 40 ºC y 90 rpm en rotavapor, y el residuo seco se redisolvió en 5 ml de 

metanol. 

 El extracto obtenido mediante la extracción en fase sólida se utilizó para la 

determinación colorimétrica de los fenoles totales mediante el reactivo de Folin- 

Ciocalteau.  

 Para éllo, previamente se realizó una curva patrón de ácido gálico en metanol en 

un rango de concentraciones de 0,02 mg/ml a 0,16 mg/ml. 
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 Tanto para las disoluciones estándar como para las muestras se siguió el 

siguiente protocolo: en matraces aforados de 25 ml se depositaron 2,5 ml de la solución 

estándar o del extracto, 1,25 ml del reactivo de Folin–Ciocalteau, 2,5 ml de carbonato 

sódico al 7,5 % alcanzando el volumen final con agua Mili–Q. Las disoluciones se 

dejaron reposar en la oscuridad durante 1 hora. Transcurrido ese tiempo, se realizó el 

análisis espectrofotométrico a 725 nm. 

 El contenido en fenoles totales se expresó en mg de ácido gálico por kg de 

aceite. 

5.7.2.3. Estabilidad oxidativa 

 La medida de la estabilidad de los aceites frente a la oxidación o enranciamiento 

se determinó mediante el equipo Rancimat 743 (Metrohm, Suiza). Las muestras se 

analizaron por duplicado, pesando 3± 0,01 g de aceite para cada una de ellas, 

sometiéndolas a una oxidación acelerada mediante un flujo de aire de 20 l/h y a una 

temperatura de 120 ºC. 

 Desde que comienza el proceso de oxidación, se desprenden componentes de 

degradación volátiles que son retenidos en los vasos de medida en los que se encuentra 

un electrodo. A través de él, se registra de forma continua la conductividad, 

consiguiendo unas curvas de oxidación (conductividad frente a tiempo) cuyo punto de 

inflexión es el tiempo de inducción expresado en horas (Laübli y Bruttel, 1986). 

5.7.2.4. Contenido en pigmentos 

 La valoración global del contenido en pigmentos clorofílicos y carotenoides se 

realizó siguiendo el método propuesto por Mínguez–Mosquera y col., (1991). 

 Se disolvieron 3 ±0,01 g de aceite en un matraz de 10 ml enrasando con 

ciclohexano. Se homogeneizó la muestra. Para la fracción de carotenos y clorofilas se 

midió la absorbancia máxima a 470 y 670 nm respectivamente en cubetas de vidrio de 1 

cm en un espectrofotómetro Avantes AvaSpec–1024. Se aplicaron los correspondientes 

coeficientes de absorción molar para cada uno. En el caso de los carotenos es de 2.000 

(coeficiente de absorción molar de la luteína, que es el principal caroteno) y en las 
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clorofilas 630 (coeficiente de absorción molar de la feofitina, pigmento clorofílico 

mayoritario del aceite de oliva). Posteriormente se calculó el contenido de carotenos y 

clorofilas mediante las siguientes fórmulas: 

Carotenos  
 470   10

6

2000   100   densidad
 

Clorofilas  
 670   10

6

613   100   densidad
 

 Los resultados se expresaron en mg de luteína/ kg de aceite en el caso de los 

carotenos y en mg de feofitina/ kg de aceite para las clorofilas. 

5.8. Análisis sensorial 

 El análisis sensorial de las muestras de aceite se llevó a cabo siguiendo las 

normas del Consejo Oleícola Internacional (COI, 1996) y sus posteriores 

modificaciones y el Reglamento (CEE) 2568/91 (CEE, 1991) y sus posteriores 

modificaciones (Reglamento (CE) 640/2008) (CE, 2008). 

 Las muestras fueron enviadas al Panel de Catadores de Aceite de Oliva Virgen 

del Bajo Aragón, con sede en Alcañiz (Teruel). 

 Se valoraron atributos positivos (frutado, amargo y picante) y negativos 

(atrojado, rancio, metálico, avinado/avinagrado, moho, etc.) en una escala no 

estructurada de 10 cm. El perfil de los aceites se obtuvo calculando la mediana de las 

intensidades de los distintos atributos otorgados por todos los catadores. 

5.9. Tratamiento estadístico de los datos 

 Todos los análisis de los diferentes parámetros estudiados se llevaron a cabo por 

triplicado. Los resultados de las distintas determinaciones fueron procesados mediante 

el programa GraphPad Prism versión 5.0 (GraphPad Software, Inc., EE.UU.) y fueron 

expresados como valores medios ± desviación estándar. Las diferencias significativas 

entre las muestras tratadas por PEAV y control con las mismas condiciones de batido 



- 25 - 

 

fueron estudiadas mediante análisis de varianza (ANOVA) utilizando un t-test con un 

nivel de confianza del 95%.  

6. RESULTADOS Y DISCUSIÓN 

6.1. Determinaciones en el fruto y en la pasta de aceitunas 

 La Tabla 3 muestra el índice de madurez, humedad y contenido graso sobre 

materia seca. 

 

 

 

Tabla 3. Determinaciones en el fruto y en la pasta de aceitunas. 

El proceso de maduración está vinculado con la valoración de la calidad en 

frutos. La maduración de las aceitunas tiene lugar al comienzo del verano y dura hasta 

el inicio del invierno. Durante este periodo, se produce un cambio de pigmentación del 

epicarpio y mesocarpio, que va desde el verde (debido a las clorofilas), hasta 

tonalidades moradas (debidas a la formación de antocianinas) al final del proceso de 

maduración. En la variedad Arbequina, dado que tiene la síntesis de antocianos muy 

lenta (Tovar de Dios, 2001; Roca y Mínguez-Mosquera, 2003), el epicarpio solo se 

colorea parcialmente y no se llegan a ver los estados de maduración más altos, por lo 

que el índice de maduración no superó el valor de 3,5 (epicarpio negro sin color en el 

mesocarpio). 

Tras la molienda de aceitunas se realizaron las determinaciones de grasa y 

humedad en la pasta. La humedad fue del 56 %. El porcentaje graso sobre materia seca 

aumenta en la aceituna durante el periodo de maduración generando un incremento del 

rendimiento de extracción (Baccouri y col., (2008). En la pasta de aceitunas obtenida 

tras la molienda, se obtuvo un 47,9% de contenido graso sobre materia seca. Estos 

valores fueron similares a los obtenidos en estudios de maduración de ésta misma 

variedad (Abenoza y col., 2015). 

I. Madurez 3,5 ± 0,03 

Humedad (%) 56,17 ± 0,52 

Grasa sobre materia seca (pasta aceitunas) (%) 47,91 ± 0,35 
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6.2. Determinación del rendimiento industrial y del contenido graso sobre materia 

seca en los alpeorujos 

La Tabla 4 muestra los resultados de grasa sobre materia seca en los alpeorujos y 

el rendimiento industrial del aceite de oliva, tanto de los aceites tratados por PEAV 

como de los controles.  

 
Batido a 15ºC/15´ Batido a 26ºC/15´ 

 
Control PEAV Control PEAV 

Rendimiento industrial 

(%) 
7,99 ± 0,78

a
 8,54 ± 0,58

a
 9,10 ± 0,26

a
 10,90 ± 0,28

b
 

Grasa sobre materia seca 

(alpeorujos) (%) 
28,15 ± 0,52

a
 26,76 ± 0,30

a
 27,75 ± 1,52

a
 25,61 ± 2,54

a
 

Tabla 4 Rendimiento industrial y contenido graso sobre materia seca de los alpeorujos. Distintas letras en 

las mismas condiciones de batido indican diferencias estadísticamente significativas (p<0,05). 

 El rendimiento de extracción es considerado el principal parámetro para 

determinar la eficiencia económica de la extracción del aceite de oliva. Se observó un 

aumento del rendimiento industrial de extracción del aceite de oliva con el tratamiento 

PEAV en ambas condiciones de batido respecto a la muestra control. Esta diferencia fue 

estadísticamente significativa cuando el batido se realizó a 26 ºC. En el caso del aceite 

de oliva tratado por PEAV batido a 15 ºC durante 15 minutos, mejoró el rendimiento 

industrial en un 7% (0,55 Kg de aceite por cada 100 Kg de aceitunas procesadas) 

respecto a la muestra control. En la muestra obtenida con el tratamiento PEAV con unas 

condiciones de batido de 26 ºC durante 15 minutos, el rendimiento de extracción mejoró 

en un 19% (1,8 Kg de aceite por cada 100 Kg de aceitunas procesadas) respecto a la 

muestra control. La mejora en el rendimiento de extracción al aumentar la temperatura 

corresponde con los resultados obtenidos por Aguilera y col., (2010) e Inarejos-García y 

col., (2009).  

  Los valores de mejora del rendimiento a bajas temperaturas de batido (15 ºC)  en 

los aceites tratados por PEAV son similares a los obtenidos por Guderjan y col., (2005), 

que obtuvieron aumentos de la extracción en el rango de 6,5–7,4 % al aplicar PEAV con 

unas intensidades de campo eléctrico de 0,7 kV/cm y 1,3 kV/cm. Abenoza y col., (2013) 
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al aplicar PEAV con una intensidad de campo de 2 kV/cm, y una temperatura de batido 

de 15 ºC durante 15 minutos, obtuvieron un incremento estadísticamente significativo 

respecto a la muestra control mejorando casi un 8 %. Sin embargo, estos autores no 

obtuvieron una mejora estadísticamente significativa en la extracción al aumentar la 

temperatura de batido en el aceite tratado por PEAV, en este caso el rendimiento sólo se 

incrementó en un 4,8 %. A la vista de los resultados, se obtiene mayor incremento en el 

rendimiento cuando el tratamiento por PEAV se realiza con campos eléctricos de 3 

kV/cm y la temperatura de batido es de 26 ºC. 

 En lo que respecta al contenido graso sobre materia seca en los alpeorujos, en 

ambas condiciones de batido se redujo el contenido en la muestra tratada por PEAV, 

aunque las diferencias no fueron estadísticamente significativas. Esto se corresponde a 

una mayor extracción de aceite de oliva en las muestras tratadas. 

6.3. Caracterización físico-química de los aceites de oliva 

La Tabla 5 muestra los parámetros físico-químicos de los aceites obtenidos tras 

el tratamiento con PEAV y control. 

 
Batido a 15ºC/15´ Batido a 26ºC/15´ 

 
Control PEAV Control PEAV 

Acidez (% ácido 

oléico) 
0,15 ± 0,01

a
 0,17 ± 0,00

a
 0,16 ± 0,01

a
 0,17 ± 0,00

a
 

I. peróxidos (meq de 

O2 activo/kg grasa 
2,87 ± 0,23

a
 3,06 ± 0,12

a
 2,64 ± 0,34

a
 3,63 ± 0,03

b
 

K232 1,23 ± 0,08
a
 1,24 ± 0,05

a
 1,32 ± 0,01

a
 1,30 ± 0,00

a
 

K270 0,07 ± 0,01
a
 0,06 ± 0,00

a
 0,07 ± 0,00

a
 0,09 ± 0,00

a
 

Ésteres etílicos de los 

ácidos grasos (mg/kg) 
< 30 < 30 < 30 < 30 

Tabla 5 Parámetros físico-químicos de los aceites control y los aceites tratados cor PEAV, en diferentes 

condiciones de procesado. Distintas letras en las mismas condiciones de batido indican diferencias 

estadísticamente significativas (p<0,05). 

Todos los aceites estudiados, tanto las muestras control como las muestras 

tratadas por PEAV, mostraron valores inferiores de acidez (≤ 0,8), índice de peróxidos 

(≤ 20 miliequivalentes O2 activo/Kg), K232 (≤ 2,5), K270 (≤ 0,22) y ésteres etílicos de los 

ácidos grasos (< 30) a los máximos establecidos por la legislación para la categoría de 
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aceite de oliva virgen extra (ver apartado 3.4). En general el tratamiento por PEAV no 

afectó de forma significativa a los parámetros físico-químicos. 

Los valores de acidez relativamente bajos se correlacionan con la elaboración 

del aceite de oliva a partir de frutos sanos y procesados inmediatamente después de la 

recolección. La aplicación de tratamientos de PEAV a la pasta de aceituna a campos 

eléctricos de 3 kV/cm no produjo diferencias estadísticamente significativas en el 

parámetro de acidez de los aceites de oliva obtenidos en las diferentes condiciones de 

tratamiento. Sin embargo, en otros estudios se ha observado un aumento de la acidez 

(Puértolas y Martínez de Marañón, 2015; Guderjan y col., 2007) al aplicar un 

tratamiento de PEAV de 2 kV/cm. 

El índice de peróxidos valora el estado de la oxidación inicial del aceite, por lo 

que generalmente el aceite recién extraído no presenta valores altos. Los coeficientes de 

extinción específica (K232 y K270) aumentan conforme la alteración oxidativa es mayor. 

Tampoco se observaron diferencias significativas en los resultados de índice de 

peróxidos y coeficientes de extinción, excepto en el aceite de oliva obtenido a 26 ºC 

durante 15 minutos en el cual se observó un aumento del índice de peróxidos 

estadísticamente significativo en la muestra tratada por PEAV respecto a la muestra 

control, aunque desde el punto de vista práctico es irrelevante puesto que está muy por 

debajo de los límites establecidos por la legislación. Abenoza y col., (2013) tampoco 

obtuvieron diferencias significativas en estos parámetros al comparar el aceite control 

con el obtenido tras el tratamiento PEAV (2 kV/cm).  

Los ésteres etílicos se producen por la reacción de los ácidos grasos libres y el 

etanol que, a su vez, proviene de la fermentación etílica de los hidratos de carbono de la 

aceituna. Es decir, su valor es mayor en los aceites cuanto mayor es el deterioro 

(fermentaciones indeseables) de la aceituna. En todos los aceites estudiados, los valores 

obtenidos fueron inferiores a los límites establecidos por la legislación para la categoría 

de aceite de oliva virgen extra. 
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6.4. Caracterización nutricional 

6.4.1. Contenido en α-tocoferol 

La Figura 7 muestra el contenido en α-tocoferol de los aceites de oliva 

obtenidos, tanto de las muestras tratadas por PEAV como de las muestras control. 

 

Figura 7 Contenido en α-tocoferol de los aceites control y los aceites tratados por PEAV, en diferentes 

condiciones de procesado. Distintas letras en las mismas condiciones de batido indican diferencias 

estadísticamente significativas (p<0,05). 

El contenido en tocoferoles junto con los compuestos fenólicos son los dos 

compuestos más relacionados con la estabilidad oxidativa del aceite de oliva, y por 

tanto, con su vida útil. 

Los resultados obtenidos mostraron que a condiciones de batido de 15 ºC 

durante 15 minutos, no se observó diferencias significativas en el contenido de α-

tocoferol entre la muestra control y las muestra tratada por PEAV. Sin embargo, al 

realizar el batido a 26 ºC durante 15 minutos, el aceite de oliva control presentó un 

contenido en α-tocoferol de 238 mg/Kg frente a los 221 mg/Kg en el aceite tratado con 

PEAV (redujo la concentración de α-tocoferol en un 7%), lo que supone una reducción 

estadísticamente significativa. Estas diferencias en la e tracción de α-tocoferol podrían 

deberse a las diferentes condiciones de batido como indica Ranalli y col., (2005) y 

además, podrían atribuirse a la variabilidad de la materia prima. Estos resultados 
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obtenidos a una intensidad de campo eléctrico de 3 kV/cm contrastan con los estudios 

obtenidos por Abenoza y col., (2013) y Puértolas y Martínez de Marañon (2015), que 

observaron un aumento del contenido de α-tocoferol de 1,67% y 25% respectivamente, 

al tratar aceite de oliva mediante PEAV con intensidades de campo eléctrico de 2 

kV/cm.  

6.4.2. Fenoles totales 

La Figura 8 muestra el contenido en fenoles totales de los aceites de oliva 

obtenidos, tanto de las muestras tratadas por PEAV como de las muestras control. 

 

Figura 8 Contenido en fenoles totales del aceite control y el aceite tratado por PEAV, en diferentes 

condiciones de procesado. Distintas letras en las mismas condiciones de batido indican diferencias 

estadísticamente significativas (p<0,05). 

El contenido de compuestos fenólicos es importante para la evaluación de la 

calidad de un aceite, dado que los fenoles naturales, presentes en la aceituna están 

relacionados con la estabilidad oxidativa del aceite durante el almacenamiento (Lozano-

Sánchez y col., 2010), y además son responsables del característico sabor amargo de los 

aceites. 

Se ha demostrado por diversos autores que el contenido de fenoles totales en el 

aceite de oliva normalmente oscila entre 50 y 1000 mg/Kg, dependiendo de varios 

factores, tales como la variedad de oliva, condiciones climáticas, o procedimiento de 
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extracción del aceite de oliva (Vierhuis y col., 2001; Gimeno y col., 2002; Pardo y col., 

2007; Cicerale y col., 2009). Numerosos estudios demuestran que incrementos de la 

temperatura de batido favorecen la extracción de los compuestos fenólicos (Di 

Giovacchino, 1991; Ranalli y col., 2001; Inarejos-García y col., 2009; Taticchi y col., 

2013). 

Los resultados obtenidos mostraron que en las muestras tratadas por PEAV a 

temperaturas más bajas de batido, se obtuvo un aumento estadísticamente significativo 

de la cantidad de fenoles totales extraídos en comparación con la muestra control. Sin 

embargo, a temperaturas más altas de batido, el tratamiento por PEAV reduce 

significativamente el contenido de fenoles totales. A temperaturas más bajas se consigue 

un aumento de 13% en la cantidad de fenoles totales, resultados que coincidirían con los 

obtenidos por Puértolas y Martínez de Marañón (2015), al aplicar un tratamiento de 

PEAV de 2 kV/cm, con el que obtuvieron un aumento en la extracción de fenoles 

totales de un 11,5%.  

 

Se ha demostrado que los tratamientos de PEAV mejoran la extracción de los 

compuestos fenólicos, sobre todo, de la piel de la uva en el proceso de 

fermentación/maceración en la elaboración del vino tinto (Puértolas y col., 2010). 

Probablemente es debido a que la extracción de compuestos fenólicos se produce 

durante varios días, mientras que en el aceite de oliva la extracción sólo se produce 

durante el tiempo (breve) que dura el procesado. En el caso de la extracción de los 

compuestos fenólicos de la aceituna parece ser más eficaz una mayor temperatura de 

batido que la aplicación de un tratamiento de PEAV. Los incrementos de temperatura en 

el batido facilitan su extracción, por lo que el efecto que producen tecnológicamente los 

PEAV es menor. 

6.4.3. Pigmentos 

La Figura 9 muestra el contenido en pigmentos carotenoides de los aceites de 

oliva obtenidos, tanto de las muestra tratadas por PEAV como de las muestras control. 
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Figura 9. Pigmentos (carotenoides) de los aceites control y los aceites tratados por PEAV, en diferentes 

condiciones de procesado. Distintas letras en las mismas condiciones de batido indican diferencias 

estadísticamente significativas (p<0,05). 

La Figura 10 muestra el contenido en pigmentos clorofílicos de los aceites de 

oliva obtenidos, tanto de las muestras tratadas por PEAV como de las muestras control. 

Figura 10. Pigmentos (clorofilas) de los aceites control y los aceites tratados por PEAV, en diferentes 

condiciones de procesado. Distintas letras en las mismas condiciones de batido indican diferencias 

estadísticamente significativas (p<0,05). 

Las clorofilas y carotenoides son los principales pigmentos del aceite de oliva 

(Mínguez-Mosquera y col., 1991; Gandul-Rojas y Mínguez-Mosquera, 1996).  
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Los resultados obtenidos muestran que no se obtuvieron diferencias 

estadísticamente significativas en el contenido de pigmentos en los aceites de oliva al 

obtenerlos por tratamiento con PEAV. Las temperaturas más altas de batido facilitan la 

extracción de pigmentos (Luaces y col., 2005; Ranalli y col., 2005), razón por la cual a 

26 ºC se obtuvieron concentraciones más altas de pigmentos (Figuras 9 y 10) con 

valores de alrededor de 4 mg/kg de carotenos y de casi 8 mg/kg de clorofilas. 

6.4.4. Estabilidad oxidativa 

La Figura 11 muestra el tiempo de inducción (en horas) de los aceites de oliva 

obtenidos, tanto de las muestras tratadas por PEAV como de las muestras control. 

 

Figura 11. Estabilidad oxidativa de los aceites control y los aceites tratados por PEAV, en diferentes 

condiciones de procesado. Distintas letras en las mismas condiciones de batido indican diferencias 

estadísticamente significativas (p<0,05). 

La estabilidad oxidativa medida en Rancimat es una medida que proporciona 

una buena estimación de la susceptibilidad del aceite a la degeneración auto-oxidativa, 

que en los aceites de oliva conduce fundamentalmente a su enranciamiento, principal 

causa de alteración. 

El grado de deterioro o enranciamiento de un aceite depende mucho de las 

condiciones de almacenamiento, así como de la variedad de aceituna. La variedad 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

15ºC/15´ 26ºC/15´ 

T
ie

m
p

o
d

e 
in

d
u

cc
ió

n
 (

h
o
ra

s)
 

Condiciones de batido 

Control 

PEAV 

a 
a 

a a 



- 34 - 

 

Arbequina presenta una baja estabilidad, debido a su composición en ácidos grasos 

(contenido intermedio en ácido oleico y alto en ácido linoleico) (Tovar de Dios, 2001). 

El tiempo de inducción en este estudio, aumentó en las condiciones de batido de 

26 ºC durante 15 minutos respecto al batido realizado a 15 ºC durante 15 minutos, 

probablemente debido a la mayor cantidad de fenoles y de pigmentos extraídos a 

temperaturas más altas de batido. Sin embargo no se observaron diferencias 

significativas entre las muestras control y las tratadas por PEAV respecto a cada 

temperatura de batido. 

6.5. Caracterización sensorial de los aceites de oliva 

La Figura 12 muestra el perfil sensorial de los aceites de oliva obtenidos, tanto 

de las muestras tratadas por PEAV como de las muestras control. 

 

Figura 12. Perfil sensorial del aceite control y el aceite tratado por PEAV, batidos a 15 y 26 ºC 

respectivamente durante 15 minutos. 

 En ambas condiciones de batido (15 y 26 ºC, durante 15 minutos) en la muestra 

control y en la muestra tratada por PEAV no se detectaron defectos sensoriales, por lo 

que los aceites mostraron perfiles sensoriales correspondientes a la categoría de aceite 

de oliva virgen extra. El tratamiento PEAV prácticamente no afectó a los atributos 
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sensoriales (frutado, amargo y picante). Sólo se apreció en los aceites tratados un 

frutado, amargo y picante ligeramente inferior. Estudios realizados por Abenoza y col., 

(2013) y Puértolas y Martínez de Marañón, (2015), tampoco observaron defectos 

sensoriales derivados del tratamiento con PEAV. 

7. CONCLUSIONES 

 - El tratamiento de PEAV a 3 kV/cm  mejoró el rendimiento de extracción del 

aceite de oliva significativamente, cuando el batido se realizó a 26 ºC. Esta mejora fue 

superior a la obtenida por otros autores a intensidades de campo eléctrico menores. 

 - En general, en todos los aceites, los parámetros físico-químicos establecidos 

para la clasificación comercial de los aceites de oliva (acidez, índice de peróxidos, K232, 

K270 y ésteres étilicos de los ácidos grasos) permanecieron por debajo de los límites 

máximos establecidos por la legislación para los aceites de oliva virgen extra.   

- Los aceites de oliva obtenidos mediante PEAV y batidos a 15 ºC mostraron un 

incremento significativo de los fenoles totales (13 %) respecto al control, superior a lo 

descrito por otros autores, no mostrando prácticamente diferencias en los demás 

parámetros nutricionales (α-tocoferol, pigmentos y estabilidad oxidativa). Sin embargo, 

los aceites de oliva obtenidos con PEAV y  batidos a 26 ºC mostraron  una reducción 

significativa de los valores de α-tocoferol y fenoles totales (7 y 12 % respectivamente). 

En este caso el efecto de la temperatura de batido podría ser superior al que ejercen los 

PEAV. 

- La aplicación del tratamiento  de PEAV a intensidades de 3 kV/cm no produjo 

defectos sensoriales en los aceites de oliva y, por tanto, conservaron su categoría 

comercial.  

 - En las condiciones experimentales de este trabajo el tratamiento por PEAV 

seguido de un batido a 26 ºC en la pasta de aceitunas sería una alternativa para aumentar 

el rendimiento de extracción de aceite de oliva. Si se pretende mejorar el contenido de 

fenoles totales sería más idóneo realizar un batido a 15 ºC. 
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8. CONCLUSIONS 

 - 3 kV/ cm PEF treatment at 26ºC malaxation temperature increased 

significantly the olive oil extraction yield. This improvement was greater than that 

obtained by other authors at lower electric field intensities. 

 - In general, in all olive oils, physico-chemical parameters established for the 

commercial classification of olive oils (acidity, peroxide value, K232, K270 and ethyl 

esters of fatty acids) remained below the limits established by legislation for extra virgin 

olive oils. 

 - PEF obtained olive oils at 15 °C malaxation temperature showed a significant 

increase in total phenols (13%) compared to control higher than these described by 

other authors, showing practically no differences in other nutritional parameters (α-

tocopherol pigments and oxidative stability). However, olive oils obtained with PEF at 

26 ºC malaxation temperature showed a significant reduction of the values of α-

tocopherol and total phenols (7 and 12% respectively). In this case the effect of 

malaxation temperature could be higher than that exerted by PEF. 

 - PEF treatment at intensities of 3 kV/ cm didn´t produces sensory defects in 

olive oil and, therefore, keeped their commercial category. 

 - In the experimental conditions of this study PEF treatment followed of 26 ºC 

malaxation temperature in the olive paste would be an alternative to increase the olive 

oil extraction yield. If it is intended to increase the content of total phenols it would be 

more appropriate to make a 15° C malaxation temperature. 

9. APORTACIONES Y VALORACIÓN DE LA ASIGNATURA 

 Las aportaciones que me ha supuesto realizar en este trabajo en materia de 

aprendizaje son varias. En primer lugar, he aprendido a manejarme en el laboratorio ya 

que el trabajo lo realizaba yo solo, aunque con ayuda de profesores y becarios cuando lo 

necesitaba. El trabajo ha sido más autónomo e individual, cosa que he agradecido 

porque he aprendido a valerme más por mí (en la carrera todos los trabajos de 

laboratorio y prácticas son grupales). También he podido profundizar en la tecnología 
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de los Pulsos Eléctricos de Alto Voltaje, conocer aplicaciones y trabajos realizados con 

ellos.  

 En definitiva, este trabajo, opino que nos ayuda muchísimo a los estudiantes, a 

evaluar y razonar lo aprendido a lo largo de la carrera y poder aplicarlo, en parte, a tu 

trabajo de investigación. Trabajas más con los profesores y profesionales en la 

universidad lo que siempre aporta calidad a tu investigación ya que aprendes mucho de 

ellos: realizar análisis, obtener y analizar los datos, redactar informes, etc. 
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