s Universidad
i0l Zaragoza

1542

Trabajo Fin de Grado

Defensa proactiva y reactiva ante ataques DDoS en
un entorno simulado de redes definidas por
software

Autor

Jorge Paracuellos Cortés

Director

Ricardo J. Rodriguez

Escuela de Ingenieria y Arquitectura / Universidad de Zaragoza
2016

Repositorio de la Universidad de Zaragoza — Zaguan http://zaguan.unizar.es

MASTER

w
Q
2
U
~
O
3
c
©
W
Q
2
N
W
Q
(%)
O
<
<
=

Ingenieria y Arquitectura

.ﬁl Escuela de DECLARACION DE
UniversidadZaragoza AUTORIA Y ORIGINALIDAD

(Este documento debe acompafiar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Master (TFM) cuando sea depositado para su evaluacion).

D./D2. Jorge Paracuellos Cortés

7

con n2 de DNI 76972569 X en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo
de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)

Defensa proactiva y reactiva ante ataques DDoS en un entorno simulado de

redes definidas por software.

)

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, 8 de Abril de 2016

Fdo: Jorge Paracuellos Cortés

Defensa proactiva y reactiva ante ataques DDoS en un entorno simulado de
redes definidas por software

RESUMEN

Las redes definidas por software (Software Defined Networking, SDN) presentan un cam-
bio de paradigma para las redes de comunicaciones debido a la separacion del plano de
control y de datos, que abstrae el elemento hardware del elemento software y dispone
de un elemento central (controlador) que gestiona la red de manera centralizada. Es
una arquitectura de red flexible, gestionable, adaptativa y econémica, siendo ideal para
soportar cualquier aplicaciéon que se desarrolle hoy en dia. Este controlador, de hecho,
proporciona al sistema una capa de abstraccién que facilita la creacién de nuevos servicios
de red y aplicaciones. En este trabajo se ha seleccionado el controlador OpenDayLight
por su popularidad y sus caracteristicas, tras analizar varios controladores de cédigo
abierto.

Paralelamente a este cambio de paradigma, los ataques orientados a Internet, y espe-
cialmente los ataques de denegacién de servicio (Distributed Denial of Service, DDoS),
siguen sucediéndose. Los ataques DDoS tratan de agotar los recursos del sistema con-
sumiendo el ancho de banda. En este Trabajo de Fin de Grado, se han estudiado los
diferentes tipos de ataques DDoS, centrandose posteriormente en uno de los méas comu-
nes, flooding sobre el protocolo HTTP.

Tomando en consideracién estos aspectos, en este TFG se ha desarrollado un mecanis-
mo de defensa proactiva, que rejuvenece las replicas periédicamente, independientemente
del estado en que se encuentren, y reactiva, que actia cuando se produce la deteccién
de una amenaza, ante ataques DDOS sobre un controlador de SDN en un entorno de
red simulado (concretamente, por Mininet). El escenario de trabajo propuesto supone
un servidor web que se encuentra distribuido en distintos nodos (gracias al uso de SDN),
de modo que ante un ataque DDoS tolera la indisponibilidad de ciertos nodos. De este
modo, se pretende mostrar una idea del funcionamiento de redes SDN en un entorno
real y su potencial para contrarrestar ataques DDoS asegurando la calidad de servicio.
Por 1ltimo, se han realizado pruebas experimentales para demostrar su funcionamiento
ante diferentes escenarios de ataque. Los resultados muestran que la defensa propuesta
proporciona una capa de seguridad adicional al sistema que es capaz de mitigar los ata-
ques DDoS. El cddigo desarrollado se ha liberado para su utilizaciéon y para garantizar
la reproducibilidad de los resultados obtenidos.

Proactive and reactive defense against DDoS attacks in a simulated SDN
environment

ABSTRACT

Software Defined Networks (SDN) have emerged as a new paradigm for communica-
tion networks. SDN decouple the control plane from data plane and separate hardware
layer from software layer. SDN provides a flexible, manageable, adaptative, and econo-
mic network architecture, becoming an excellent choice for supporting complex network
applications currently deployed by numerous telco companies. SDN features a central
device (named controller) that manages the network in a central form. The controller
provides an abstraction layer to facilitate the creation of new network services and ap-
plications. In this project, we selected OpenDayLight among other open-source SDN
controllers OpenDayLight controller because of its popularity and its capabilities.

SDN is gaining in popularity during recent years, being adopted by well-known web-
scale providers as Google, Amazon, Facebook and Microsoft or communication service
providers as AT&T, CenturyLink, NTT, among others. Similarly, Distributed Denial-
of-Service (DDoS) attacks show also an increase trend. DDoS attacks attempt to drain
the system’s resources to disrupt the normal operation of the system, thus leading to
unavailability of services. In this work, various types of DDoS attacks were studied and
HTTP flooding attacks were chosen as the most representative DDoS attack.

In this work, we propose a defense mechanism against a DDoS attack integrated in
a SDN controller. Our mechanism performs a proactive and reactive defense in different
time intervals. We consider a system that provides a web service using a SDN composed
of different nodes (servers) that are replicated to guarantee a quality of service. A server
can be up or down. Proactive defense rejuvenates nodes periodically, regardless of their
state. Reactive defense acts only when a threat is detected, leading the node under
attack to down state and its replica to up state. We have conducted experimentation
on different scenarios to prove how the proposed defense mechanism ensures the quality
of service while mitigating a DDoS attack. The source code of the defense mechanism,
developed within OpenDayLight framework, is released for general use and to allow
others to reproduce experiments.

Indice

|fndice de Figuras|

|2. Conocimientos previos|

[2.1.1. Arquitectura y elementos de SDN|
[2.2. Protocolo OpenFlow{
[2.3. Open vSwitch|.
2.4 Mininet]o

|4.1.2. Controladores de codigo abiertol.
[4.1.3. Arquitectura OpenDayLight|.
|4.2. Ataques de denegacion de servicio: Clasificacion| .

|4.2.1. Denegacion de servicio basada en inundaciéon|

|4.2.2. Denegacion de servicio basada en reflexion|

111

VI

VIII

13
13
13
14
14

INDICE INDICE
|4.2.3. Denegacion de servicio basada en amplificacion| 21

[4.3. Mecanismos de defensa ante DDoS| o000 21
4.3.1. Prevencionl 21

B32. Deteccionl 22

4.3.3. Identificacion del origen| 22

[4.3.4. Mitigacionl. 23

[6. Arquitectura del Sistemal 25
p.1. Despliegue|. 25
[5.2. Explicacion formal|o oo 26
0.3, Funcionamientol o 27
[9.4. Implementacion del mecanismo de defensa y limitaciones|. 32
b.4.1. Diagrama declases|. 32

[5.4.2. Diagramas de secuencial 34

[5.5. Disponibilidad| 38

6. Evaluacion y resultados| 39
(7. _Conclusiones| 45
[Acrénimos| 53
|A. Horas de trabajo| 55
IB. Configuracion del entorno de trabajo| 57
IB.1. Configuracion de Mininet| 57
IB.2. Configuracion controlador OpenDaylLight| 58
IB.3. Configuracion escenario de pruebas| 58

v

Indice de Figuras

2.1. Arquitectura de capas en SDN (extraido de |Cisl1]).| 6
2.2. Elementos de SDN (extraido de [Net12])| 7
2.3. Componentes de Open vSwitch (extraido de [CSDI14]).| 10
[4.1. Arquitectura OpenDayLight (extraido de [Opel6al).| 19
[5.1. Diagrama de despliegue.| o oL o 26
[5.2. Diagrama del sistema.| oo oo 27
[5.3. Relacion entre el intervalo temporal reactivo y proactivo.| 27
[5.4. Diagrama de maquina de estados del Controlador.| 28
[5.5. Diagrama de maquina de estados del Switch.| 29
[5.6. Diagrama de maquina de estados de los equipos.| 30
[5.7. Diagrama de secuencia del sistema.| 31
[5.8. Diagrama de secuencia del proceso de recuperacion.| 31
15.9. Diagrama de clases de la implementacion. 33
[5.10. Diagrama de secuencia del sistema implementado.| 35
[5.11. Diagrama de secuencia del mecanismo de defensa ezecuteDefense(),. . . . 36
|6.1. Topologia de la red de pruebas simulada.| 40
[6.2. Comparativa tiempos de servicio con el mecanismo de defensa desactivado. 40
|6.3. Comparativa tiempos de servicio con el mecanismo de defensa activado.| . 41
|6.4. Funcionamiento del sistema ante ataques DDoS.| 42
|A.1. Diagrama de Gantt.| 59

VI

Indice de Tablas

[4.1. Tabla comparativa controladores.| 17

VIII

Capitulo 1

Introduccion

En este primer capitulo se presentan los conceptos fundamentales que se trabajan a
lo largo de la memoria. En primer lugar, se ponen en contexto las redes definidas por
software (Software Defined Networking, SDN) asi como los ataques de denegacién de
servicio distribuidos (Distributed Denial of Service, DDoS). Una vez mostrada el drea
de aplicacién, se presentan las motivaciones de este proyecto y los objetivos a alcanzar.
Finalmente, se describe brevemente la organizacién y contenido de la memoria para
ayudar al lector a ubicar con claridad los capitulos.

1.1. Contexto

Este proyecto estd relacionado con la nueva arquitectura de red en desarrollo desde
hace tres anos denominada Software Defined Networks (SDN) [FRZ13|. Esta arquitectura
separa la capa de control y la capa de datos por medio de un elemento que actiia como
nucleo de la red, denominado controlador. La separacion entre las capas es necesaria ante
el gran crecimiento de las redes de comunicaciones, ya que se debe operar de una manera
dindmica ante los eventos que ocurran y esto no es posible con redes tradicionales donde
el comportamiento de los dispositivos depende de su configuracién previa.

En segundo lugar, se debe tener en cuenta el constante aumento de ataques
DDoS [ZJT13] que se estéan produciendo cada vez con mayor frecuencia. Por ejemplo,se
observé un aumento del 60 % entre 2009 y 2010 [Arb10]. La seguridad de todo sistema
garantiza cuatro requisitos: autenticacion, integridad, confidencialidad y disponibilidad
del sistema. Un ataque de denegaciéon de servicio distribuido es un intento de provocar la
saturacién o fallo de un servicio online enviando tréfico inservible desde multiples orige-
nes. Los ataques DDoS presentan una gran amenaza para la disponibilidad de servicios
criticos |[Gar00], que se ven totalmente degradados a causa de estos ataques y ademds
pueden ocasionar pérdidas de negocio u otras catastrofes [SSKS10].

Seccion 1.2 1. Introduccién

1.2. Motivacion

Se ha decidido utilizar SDN como arquitectura para este trabajo en primer lugar
por la gran apuesta que estd realizando la industria para adoptar esta tecnologia en sus
nuevas redes de comunicaciones [Cisll]. En segundo lugar, presenta beneficios tedricos
y técnicos ya que requiere poca inversioén inicial, proporcionando un ahorro de costes y
una mayor agilidad de red.

Por otro lado, el creciente aumento de ataques DDoS para intentar desestabilizar
e incluso minar la capacidad de respuesta de los servicios ofrecidos por las redes de
comunicaciones llevan a las grandes corporaciones del sector a buscar nuevas técnicas o
mecanismos para asegurar la demanda ante estos escenarios de ataque.

Estas necesidades presentan un contexto idéneo para pensar en la evolucion de las
redes de comunicaciones actuales aplicando un mecanismo de defensa sobre las mismas,
siendo SDN una de las soluciones con mayor relevancia a dia de hoy. SDN ya ha tenido
casos de éxito real que prometen las previsiones teéricas [Gool2] o casos més concretos
para grandes redes multimedia [Ver12).

1.3. Objetivos del proyecto

El objetivo de este proyecto es estudiar los ataques de denegacién de servicio y disenar
un mecanismo de defensa contra ellos en una arquitectura de red sobre SDN. El proceso
que se ha seguido es el siguiente:

s Estudiar qué es una SDN y cémo funciona.
= Estudiar los diferentes tipos de controladores para SDN.
s Estudiar los diferentes tipos de ataques DDoS y sus mecanismos de deteccion.

= Disenar con UML e implementar en Java un mecanismo de defensa proactivo y
reactivo que evite la amenaza.

= Experimentar la defensa en un entorno controlado.

s Evaluar el alcance de la solucion y su viabilidad.

Este proceso ha dado como resultado un modelo teérico para el mecanismo de de-
fensa proactivo y reactivo, implementado como prototipo sobre el controlador de SDN
OpenDayLight [Opel6a] y el simulador de redes Mininet [Minl5]. Un sistema reactivo
mantiene una continua interaccién con su entorno de tal forma que responde ante los
estimulos externos en funcién de su estado. Por el contrario, un sistema proactivo es
aquel que interacciona periédicamente independientemente de los eventos que sucedan.
Con este prototipo se ha podido evaluar la viabilidad de la defensa propuesta en diferen-
tes escenarios de ataque DDoS. Se han obtenido resultados satisfactorios de modo que
se ha demostrado que el prototipo de mecanismo de defensa funciona correctamente.

1. Introduccién Seccion 1.4

1.4. Estructura del documento

El presente documento esta dividido en dos partes: la memoria, donde se explica el
desarrollo del trabajo de fin de grado; y los apéndices, donde se amplia la informacién
de ciertos puntos relevantes.

El Capitulo [2| define los conocimientos previos necesarios para comprender este tra-
bajo en su totalidad. El Capitulo [3| muestra los trabajos relacionados con este TFG.
El Capitulo {] explica las diferentes posibilidades sobre las que centrar dicho proyecto
respecto a los tipos de ataques DDoS y sus mecanismos de defensa, asi como de los
controladores de SDN. El Capitulo [5| explica el mecanismo de defensa tanto a nivel
conceptual como su implementacién. El Capitulo [6] muestra y analiza los resultados ob-
tenidos y finalmente, en el Capitulo [7] se exponen las conclusiones obtenidos con este
TFG.

Respecto a los anexos, el Apéndice [A] es donde se hace balance del esfuerzo invertido
en este TFG. Por ultimo, el Anexo [B] detalla la configuracién necesaria del sistema para
poner en marcha los escenarios y poder realizar las pruebas. El cédigo correspondiente
a la implementacion puede encontrarse en Bitbucket.

https://bitbucket.org/Nessaji/sdnproreactdefense

https://bitbucket.org/Nessaji/sdnproreactdefense

Seccion 1.4 1. Introduccién

Capitulo 2

Conocimientos previos

En este capitulo se describe con mayor detalle el entorno sobre el que se desarrolla
el TFG. En concreto: qué es una SDN; el protocolo OpenFlow; asi como el software
Open vSwitch y Mininet; qué es un ataque DDoS; el lenguaje de modelado de sistemas
de software (Unified Modeling Language, UML);y finalmente el método de Montecarlo
utilizado para realizar las pruebas.

2.1. Software Defined Network

Las redes definidas por software son un concepto que actualmente se encuentra en
desarrollo y expansion. Sin embargo, el concepto en si lleva anos evolucionando hasta
alcanzar el punto en el que se encuentra hoy en dia [FRZ13, KREV™15].

Este tipo de redes trata de separar de una manera independiente el plano de control
(software) del plano de datos (hardware que se encarga de la conmutacién de los paque-
tes) tal y como se observa en la Figura consiguiendo con esto redes programables,
automatizadas y adaptables a las necesidades y problemas futuros. Se debe diferenciar
que las redes tradicionales deterministas en las que el comportamiento de los dispositivos
depende de su configuracion previa van a evolucionar a una arquitectura de red dinamica
con una interfaz de programacién en la que un software gobierna su comportamiento.

Una de sus principales caracteristicas es su gestién centralizada gracias al uso de
un controlador que mantiene una visiéon global tanto de la red como del contenido de
la misma, de modo que tiene la capacidad de modificar, eliminar o anadir flujos de
datos segtin necesidades. Una de las ventajas es que se implementa bajo estdndares
abiertos de modo que no depende de protocolos propietarios o dispositivos de proveedores
especificos. Ademads, dentro de la arquitectura SDN se puede programar directamente
sobre la arquitectura de red utilizando mdédulos software instalados en el controlador, lo
que permite agilizar los procesos de administraciéon y configuracién.

Seccion 2.1

2. Conocimientos previos

2.1.1.

Application
Plane Cloud
Orchestration
Business I
Applications

SDN II

A
APl

Y

Control
Plane Traffic
Engineering
S

SDN Control Software

y

OpenFlow

4

Data
Plane

~ N Vel

%) ‘LA\’ "4 ‘A\’

Router Other Network LAN Switch Packet Switch
Device

Network Devices

Arquitectura y elementos de SDN

Figura 2.1: Arquitectura de capas en SDN (extraido de [CislI]).

Toda arquitectura de SDN [SNK12] se basa en un elemento central, el controlador,
que se encarga de comunicar las capas de control y aplicacién mediante el uso de dos
APIs: la NorthBound API y la SouthBound API. NorthBound API es la encargada de
interpretar las aplicaciones y establecer la comunicacién con el controlador, mientras que
la SouthBound API se encarga de comunicar el hardware con el controlador de manera
transparente e independiente del elemento hardware que se encuentra debajo. Se puede
observar en la Figura [2.2] cémo funcionan dichas API entre el plano de control y de
aplicacién, teniendo al controlador en un punto intermedio.

Asi pues, los elementos més importantes son:

» Controlador: Como ya se ha descrito, el controlador [sdx13] es el elemento cen-
tral y méds importante de la arquitectura. Ademads de que se permite replicar el
controlador, se pueden utilizar varios controladores para diferentes dominios de
modo que hacen las redes SDN mucho més escalables y seguras [KRV13]. Uno de
los puntos fuertes de la arquitectura SDN es que se pueden incluir nuevos médulos
en el nicleo del controlador segtin las necesidades del sistema.

s SouthBound API: Se encarga de la comunicacion entre el controlador y los
elementos de la red. Permite hacer cambios dindmicos en todos los elementos de
la red para adaptarse a las necesidades en tiempo real por parte de los usuarios.
Existen varios tipos de soluciones a esta problematica pero el que esta tomando
mayor relevancia en la actualidad es OpenFlow [Opel5b].

2. Conocimientos previos Seccion 2.2

SDN Applications

v

SDN Applications @
&
SDN Appllcatlnl:x@
——/ ~%

Figura 2.2: Elementos de SDN (extraido de).

s NorthBound API: Se encarga de facilitar la comunicacién entre el core del con-
trolador con nuevas APIs o aplicaciones. Gracias a la presente arquitectura de SDN
las aplicaciones pueden incluir nuevas funcionalidades de red més potentes como
es el caso del mecanismo de defensa propuesto en este trabajo.

2.2. Protocolo OpenFlow

Segun la definicién dada por ONF [Opel5b], OpenFlow es la primera interfaz de co-
municacion definida entre la capa de transporte y la capa de control en una arquitectura
SDN. Es decir, OpenFlow permite la manipulacién y monitorizacién de los elementos
del plano de control, como switches o routers.

La solucién de OpenFlow [Opel5c| consiste en separar distintos tipos de trafico dentro
de switches y routers teniendo en cuenta solo el transporte de datos. Una de sus carac-
teristicas principales es la utilizacién de tablas de flujo como las que ya implementan
los switches convencionales. Todos los tipos de switches, ain dependiendo del fabricante,
suelen contar con tablas Network Address Translation (NAT), tablas del firewall o tablas
QoS. OpenFlow pretende explotar las caracteristicas comunes entre todas ellas.

El controlador y el switch se comunican entre si a través del protocolo OpenFlow
mediante un conjunto de mensajes predefinidos de modo que sea capaz de monitori-
zar y gestionar los paquetes recibidos, los paquetes enviados, modificar las tablas de

Seccién 2.2 2. Conocimientos previos

encaminamiento y la identificacién de estados.

La ruta de datos de un switch OpenFlow esta definida segtiin una tabla de flujos
que contiene algunos campos de la cabecera de los paquetes y una accién a realizar con
dicho paquete (parecido a las reglas de un firewall). Si un switch recibe un paquete
desconocido, para el cual no tiene entradas en su tabla de flujo coincidentes, reenvia el
paquete al controlador para que éste tome la decision sobre como gestionar el paquete.
Esta funcionalidad es vital en este proyecto porque es una de las caracteristicas méds
importantes para el desarrollo del mecanismo de defensa propuesto: el controlador es
capaz de interrumpir los flujos de datos tras detectar un ataque de manera reactiva y
reiniciar dichos flujos cada cierto tiempo de una manera proactiva.

Por lo tanto, OpenFlow permite desplegar una estrategia de reenvio de paquetes
diferente a todo lo conocido e implementar protocolos de comunicacién de red de forma
centralizada y global. Por ejemplo, OpenFlow se estd utilizando para aplicaciones tales
como redes de nueva generacién y redes de alta seguridad [Benl3].

Componentes de OpenFlow

OpenFlow utiliza principalmente dos componentes:

1. Switch: Es el encargado de procesar los paquetes de acuerdo a las reglas definidas
previamente por el controlador. Estas reglas son instaladas en la propia tabla de
flujo del switch.

2. Controlador: Elemento principal y méas importante de una red SDN y OpenFlow,
es capaz de evaluar el estado de toda la red y anadir o eliminar flujos de los swit-
ches OpenFlow, segtin las aplicaciones instaladas en el controlador. Esta conectado
directamente con todos los switches que dependen de él mediante una comunica-
cién segura TCP bajo TLS. Un controlador puede ser una aplicacion simple que
tan s6lo anade flujos de forma sistematica o bien una aplicacién compleja que
tiene instalados varios moédulos que reaccionan de forma dinamica ante distintas
situaciones de estado de la red, siendo un elemento transparente para el usuario
final. Se pueden tener més de un controlador en una red SDN, y aunque esto crea
una situacion mucho mas compleja para gestionar, es menos vulnerable ante un
fallo en el controlador al eliminar el problema de punto unico de fallo. Ademds, el
controlador puede encontrarse en un dispositivo remoto diferente si es necesario.

Tablas de flujo

Una tabla de flujo estd compuesta por un conjunto de entradas |[Opel5a], siendo
relevantes para este proyecto:

s Match Fields: comprueba que el paquete coincide con esta entrada de flujo,
comprobando el puerto de entrada del paquete asi como las cabeceras del mismo.

s Prioridad: prelacién de coincidencia con una entrada anterior.

2. Conocimientos previos Seccion 2.3

s Contador: Existe un gran nimero de contadores posibles, los méas relevantes son
aquellos relacionados con el nimero de entradas y con los puertos.

= Instrucciones: modificacién del conjunto de acciones a realizar con dicho paquete
cuando el proceso de coincidencia es satisfactorio. Las instrucciones mas impor-
tantes son aquellas que escriben o borran acciones para cada entrada de flujo.

s Timeouts: existen dos tipos de timeouts definidos para cada entrada de flujo:

1. IdleTimeQOut: tras la ausencia de paquetes coincidentes con dicho flujo en
un intervalo de tiempo definido, el flujo es eliminado.

2. HardTimeOut: siempre que transcurra un intervalo de tiempo, el flujo sera
eliminado de la tabla a menos que el controlador envie una actualizacion del
intervalo temporal o modifique su comportamiento.

s Cookie: dato seleccionado por el controlador que sirve para filtrar las estadisticas
de flujos, eliminarlos o modificarlos.

2.3. Open vSwitch

Open vSwitch [Opeld] es un software con licencia de cédigo abierto Apache 2.0.
Este software fue desarrollado para ser utilizado como un switch virtual en entornos de
servidores virtualizados, de modo que se encarga de reenviar el trafico entre diferentes
maquinas virtuales en el mismo equipo fisico y a su vez entre las propias maquinas
virtuales y la red fisica. Open vSwitch soporta multiples tecnologias de virtualizacién
basadas en Linux como VirtualBox o VMWare, y también se ha integrado en sistemas
de gestién virtual como OpenStack [Opel6b].

Open vSwitch tiene principalmente dos componentes que se pueden diferenciar en la

Figura

» Ovs-vswitchd: Demonio' que implementa todas las funcionalidades del switch.
Esta formado por un mdédulo del kernel de Linux para la conmutacion basada en
flujos.

s Ovsdb-server: Base de datos ligera donde se almacenan los parametros de confi-
guracion del switch y que éste consulta para obtener su configuracion.

Los principales motivos por los se ha optado por utilizar el software Open vSwitch
durante la realizacién de este proyecto son: i) su licencia de cédigo abierto; ii) su com-
patibilidad completa con el protocolo OpenFlow en su versién 1.0 y posteriores; y iii) su
perfecta integracién con el software Mininet.

'Nomenclatura utilizada en GNU /Unix que hace referencia a un tipo especial de proceso informatico
no interactivo, es decir, que se ejecuta en segundo plano en vez de ser controlado directamente por el
usuario.

Seccion 2.4 2. Conocimientos previos

Control Cluster

Off-box

ovsdb-server ; ovs-vswitchd

R R R ORR W OER R ONR R OER N ORR R N R RR ONE N MR ST W MR MR AR MR R W A W e W -

Management Protocol (6632/TCP)
@ OpenFlow (6633/TCP)
@ Netlink

OVS Kernel Module

Figura 2.3: Componentes de Open vSwitch (extraido de [CSD14]).

2.4. Mininet

Mininet es un emulador de redes de cédigo abierto capaz de crear una red de comu-
nicaciones virtual compuesta por equipos, switches, controladores y enlaces. Los equipos
de Mininet ejecutan el kernel de redes basico de Linux y los switches son capaces de
ejecutar el protocolo OpenFlow consiguiendo un enrutamiento personalizado altamente
flexible y escalable. Mininet asi permite realizar una topologia de red personalizada sin
la necesidad de un potente hardware.

Su pagina web [Minl5] facilita la familiarizacién con el programa ya que cuenta con
extensos tutoriales y una gran cantidad de informacién de cémo funciona este software.

2.5. Ataques de denegacion de servicio

Los ataques de denegacién de servicio tienen como objetivo impedir la disponibilidad
de un servicio (o activo) mediante el agotamiento de los recursos del sistema. Cuando
son originados desde distintos origenes reciben el nombre de ataques de denegacion de
servicio distribuidos (en inglés Distributed Denial of Service attacks, DDoS). Debido a su
mayor capacidad de provocar dano, estos iltimos son los més populares en la actualidad
y a menudo usados por redes ajenas controladas por ciber-criminales [LJPT08]. Normal-
mente, los ataques DDoS logran sus objetivos mediante el envio masivo de informacién,
intentando ocupar la mayor parte del ancho de banda de la red en la que se encuentra
el objetivo del ataque. Esto limita sustancialmente el acceso a sus recursos provocando
graves problemas de disponibilidad.

10

2. Conocimientos previos Seccion 2.6

Estos ataques requieren pocos conocimientos para su ejecuciéon y su éxito depende
de los recursos del sistema atacado y de la cantidad de nodos desde donde se origina el
ataque. Existen también otros tipos de ataques de denegacién de servicio que no necesitan
el envio masivo de informacién, sino que intentan inyectar paquetes de datos capaces
de comprometer alguna vulnerabilidad de la victima, como por ejemplo el popularmente
conocido como “ping de la muerte”. En [PLR07] se muestra en detalle estos casos y otros
ejemplos.

2.6. El Lenguaje Unificado de Moledado (UML)

El Lenguaje Unificado de Modelado UML [RJB04] es un lenguaje estdndar gréfico
destinado al modelado de sistemas tanto de hardware como de software. UML actual-
mente es promovido por Object Management Group y es un estandar ISO. El lenguaje
UML permite abstraerse del lenguaje para el que se desarrolla, proporcionando sopor-
te para cada etapa de desarrollo a través del modelado completo de vida del sistema.
El modelo es esencial en la definiciéon y diseno del software que se quiere desarrollar,
por ello se debe hacer hincapié en lograr un modelo congruente que facilite el posterior
desarrollo.

UML define trece tipos distintos de diagramas que sirven para describir diferentes
vistas de un modelo que necesita ser caracterizado, enfocado desde el paradigma Orien-
tado a Objetos (OO). Para enumerarlos de una manera ordenada es mejor organizarlos
por categorias:

1. Diagramas de estructura: clases, componentes, objetos, estructura compuesta,
despliegue y paquetes.

2. Diagramas de comportamiento: actividades, casos de uso y estados.

3. Diagramas de interaccién: secuencia, comunicacién, tiempos y vista de inter-
accién.

Aquellos que se han empleado en este proyecto y han sido més relevantes son el
Diagrama de secuencia y el Diagrama de estados.

Diagrama de secuencia

Un diagrama de secuencia muestra las clases o componentes que forman parte del
sistema asi como las llamadas que se realizan en cada uno de ellos para llevar a cabo
distintas tareas. Los diagramas de secuencia definen las acciones que se pueden realizar
en la aplicacién. Un diagrama de secuencia contiene lineas de vida, mensajes y objetos.
Los mensajes se representan con lineas continuas con una punta de flecha en el extremo,
los objetos se representan como rectangulos y el tiempo se representa con una progre-
sién vertical; es decir, aquello que se encuentra més arriba en el diagrama sucede con
anterioridad. Los mensajes pueden ser simples, sincronos o asincronos. Un mensaje sim-
ple es aquel que produce una transferencia de control de un objeto a otro. Un mensaje

11

Seccion 2.7 2. Conocimientos previos

sincrono es cuando el objeto receptor se encuentra esperando el mensaje para continuar
sus acciones. Finalmente, un mensaje asincrono es aquel donde el objeto no espera la
respuesta para continuar.

Diagrama de estados

Un diagrama de estados modela la vida de un objeto mediante una méaquina de
estados. Cada objeto cuenta con su propio diagrama de estados de modo que se puede
referenciar desde un objeto a otro distinto. Este tipo de diagramas muestra el flujo de
control entre estados; es decir, en qué estados posibles puede estar el objeto y cémo se
producen los cambios entre dichos estados. Un diagrama de estados contiene estados,
eventos y transiciones. Un estado es una situacion en la vida de un objeto durante la
cual satisface una condicién, realiza alguna actividad o espera algin evento. Un evento
es la representacion de un acontecimiento significativo que ocurre en el tiempo. Una
transicién es una relacién entre dos estados e indica que un objeto que esté en el primer
estado realizard ciertas acciones y entrard en el segundo estado cuando ocurra un evento
especificado y se satisfagan unas condiciones impuestas en la transicién.

2.7. Método de Montecarlo

El método de Montecarlo [SST7] es un método no determinista que permite resolver
problemas mediante la simulacién de variables aleatorias. En este proyecto se ha utilizado
para realizar evaluaciones de los distintos escenarios configurados.

12

Capitulo 3

Trabajo relacionado

En este capitulo se presentan los trabajos relacionados con el TFG en categorias segtin
su temdatica principal.

3.1. Vulnerabilidades SDIN

En [EAJT] y [KRV13] se presentan las vulnerabilidades que puede sufrir una arqui-
tectura SDN asi como algunos de los mecanismos que se pueden implementar a nivel de
software para resolverlos. En [AL14] también se realiza un estudio de las vulnerabilidades
de SDN y se propone un mecanismo de mitigacion mediante técnicas de machine lear-
ning. En [LHK 14| se presenta una aplicacién sobre un controlador SDN que permite la
deteccién de ataques DDoS cuando se realizan desde redes de equipos infectados y cémo
la arquitectura SDN facilita su mitigacién. Por dltimo, [RHI15| presenta un rootkit que es
capaz de instalarse en el sistema operativo de la arquitectura SDN sin ser detectado de tal
forma que es capaz de espiar todas la comunicaciones que se realizan en la red. Ademaés,
estd implementado para el controlador utilizado en este proyecto,OpenDayLight (véase

Seccion [4.1.2]).

3.2. Mecanismos proactivos

En [PDBAA15] se presenta una aplicacién para SDN que es capaz de establecer co-
municaciones criticas fiables. Utiliza un mecanismo proactivo que sirve para resolver la
problemaética de un trafico multicast robusto de modo que es capaz de soportar multi-
ple cantidad de fallos del sistema. Otro ejemplo de mecanismos proactivos es [HBPG15]
donde se presenta un mecanismo proactivo aplicado a la gestion masiva de datos centra-
lizada.

13

Seccién 3.3 3. Trabajo relacionado

3.3. Mecanismos reactivos

Una parte importante de los trabajos previos relacionados con este TFG estan es-
trechamente relacionados con la implementacién de mecanismos de defensa reactivos
utilizando distintas técnicas, como es el caso de [KKSG] donde se presenta un mecanis-
mo de defensa para SDN en el que se desarrolla un firewall a nivel de aplicacién. Este
es capaz de actuar desde la capa fisica hasta la capa de aplicacién ampliando las carac-
teristicas de un firewall comin. En [LWLP15] se presenta un mecanismo de defensa para
evitar ataques DDoS (Distributed Denial of Service) similar a este proyecto. Sin embar-
go, tan sélo hacen uso de politicas reactivas para mitigar los ataques DDoS —aunque
a cambio también se desarrolla un sistema de deteccién mds sofisticado. En [MDC™14]
se presenta un mecanismo de defensa reactivo para multiples tipos de ataques DDoS.
Otro caso de uso es [BMP10], donde se presenta un mecanismo de defensa reactivo capaz
de detectar ataques lightweight DDoS utilizando redes neuronales con una gran tasa de
éxito. En el articulo [SPY™13| se presenta un proyecto mucho més complejo que consiste
en un framework modular utilizado para implementar componentes software de seguri-
dad, anadiendo una nueva capa de abstraccién sobre la capa de aplicacién. Finalmente
en [WZLHI5H]| se presenta un mecanismo de defensa ante ataques DDoS en arquitecturas
de Cloud Computing y SDN que realiza una implementacién de deteccion de diferentes
tipos de ataques y medidas de mitigacién de modo que se puede configurar qué se desea
utilizar.

3.4. Mecanismos proactivos y reactivos

Apenas se encuentran desarrollados proyectos con mecanismos proactivos y reactivos a
la vez, aunque es posible encontrar algunos muy completos como la tesis doctoral [Chul5]
donde se muestra cémo la arquitectura SDN facilita la defensa ante vulnerabilidades que
sufre Cloud Computing aplicando un mecanismo de defensa proactivo y reactivo ante
multitud de amenazas. También se debe destacar [LBZ™14], el cual desarrolla una solu-
cion llamada DrawBridge que consiste en capacitar a los equipos finales con capacidad
para mejorar la ingenieria de trafico cuando sufren ataques DDoS, de modo que funciona
de manera reactiva y proactiva. Finalmente en el articulo [SBCT10] se presenta un sis-
tema proactivo y reactivo basado en un modelo distribuido hibrido para desarrollar un
sistema replicado tolerante a intrusiones aunque no aplicado a SDN. En este caso se pre-
senta un mecanismo capaz de garantizar un minimo de réplicas disponibles asegurando
asi el correcto funcionamiento del sistema.

El sistema de defensa propuesto en este proyecto aporta un mecanismo proactivo y
reactivo para mitigar ataques DDoS siendo capaz de gestionar y modificar la arquitectura
de red gracias a SDN en funcién de las necesidades del servicio.

14

Capitulo 4

Caracterizacion del escenario

En este capitulo se muestran los diferentes tipos de controladores de SDN asi como
el motivo de por qué se ha escogido OpenDayLight, los tipos de ataques DDoS y sus
mecanismos de mitigacion.

4.1. Controladores SDN

Uno de los elementos principales de la arquitectura SDN es el controlador, nicleo de
la arquitectura del cual depende cémo se comporta la red. Actualmente existen varias
alternativas diferentes de controladores segun si son controladores comerciales, o bien
controladores de cédigo abierto. Los mas interesantes y relevantes son los controladores
de cédigo abierto, ya que sobre ellos se puede desarrollar libremente y cuentan con un
gran apoyo de la comunidad. Algunos controladores comerciales también estan basados
en codigo abierto, con lo que elegir cudl es el controlador méas adecuado para este trabajo
ha sido una tarea muy importante y determinante en el resultado final.

Para este proyecto se necesita un controlador de cédigo abierto que permita el desa-
rrollo de aplicaciones sin coste alguno, se encuentre en fases estables de desarrollo y
ademds cuenten con una comunidad que de apoyo en la resolucién de problemas. Sin
embargo, es necesario realizar un anadlisis de los diferentes controladores comerciales y
de cédigo abierto mas importantes para evaluar sus capacidades, fortalezas y debilidades.

4.1.1. Controladores comerciales

Aunque este tipo de controladores se encuentran en desarrollo en la actualidad, al
igual que los controladores de cédigo abierto, ya se pueden encontrar algunas soluciones
finales ofertadas. Surgen como necesidad de un desarrollo privado frente a los controlado-
res abiertos. Empresas del sector tecnoldgico como Cisco, NEC o IBM, por ejemplo, son
miembros importantes de algunos controladores de cédigo abierto, que también desarro-
llan sus propias soluciones comerciales. A continuacion se describen brevemente algunas
de estas distribuciones comerciales.

15

Seccion 4.1 4. Caracterizacion del escenario

» Application Policy Infrastructure Controller [Cis15|. Disenado por Cisco, es

el controlador para la alternativa de OpenFlow llamada OpFlex. Proporciona una
API central, un repositorio de politicas y un repositorio central de datos globales. A
diferencia de los controladores SDN OpenFlow, APIC funciona de manera diferente
porque no se encarga de encaminar cada flujo de datos, sino que segin el estado
de la red, aplica distintas politicas en los elementos de red y son estos los que se
encargan de tomar las decisiones en funcién de las politicas establecidas.

Virtual Application Networks (VAN) [HP15]. Controlador desarrollado por
HP sobre OpenFlow, su funcionamiento interno estd orientado a incluir seguri-
dad en las comunicaciones del controlador con el resto de elementos de la red.
Ademads, realiza una administracién centralizada, tiene capacidad de automatiza-
cién de actividades y otras capacidades inherentes de redes SDN. El esquema que
presenta VAN no es muy diferente al de otros controladores de cédigo abierto como
OpenDayLight.

IBM Software Defined Network for Virtual Environments. Disenado por
IBM a principios del ano 2014. Ofertado como la solucién de virtualizacién de red
anadiendo flexibilidad y adaptabilidad a la demanda del cliente actual, esta orien-
tado a proporcionar seguridad a los datos y servicios ofrecidos dentro de la red.
Cuenta con una versién adaptada para OpenFlow pero también funciona indepen-
dientemente utilizando una tecnologia propia denominada Virtual Environment.

4.1.2. Controladores de cédigo abierto

Entre los controladores de c6digo abierto existen multitud de alternativas (véase la Ta-
blaf.1)), algunas todavia en fase de desarrollo y otras ya son una referencia en el mercado.
En esta seccién se describen algunas de ellas segin los datos aportados en [KZMB14].

» POX [NOXI5]. POX es una evolucién del controlador NOX, pero desarrollado

sobre Pyhton. POX surgié como una introducciéon a las SDN de modo que aque-
llos usuarios que quieran comenzar con SDN encuentren un entorno de desarrollo
sencillo y manejable. Cuenta con dos métodos de desarrollo, en un primer lugar
una API basada en Python y en segundo lugar una API en web que utiliza JSON-
RPC. Como muchos otros controladores, cuenta ademds con una interfaz gréfica
en web desde la cual se puede monitorizar la red y controlar otras operaciones. Sin
embargo, tiene algunos aspectos negativos como que no cuenta con demasiada in-
formacion para comenzar desde cero, ni manuales disponibles siendo algo bastante
negativo a la hora desarrollar sobre este controlador.

Floodlight [Prol5]. Floodlight fue la evolucién del controlador Beacon. Esté desa-
rrollado sobre Java y también posee una interfaz web. Soporta el uso de API REST
y tiene una comunidad de usuarios bastante grande. La comunidad actida de ma-
nera muy activa en las listas de correo, aspecto muy importante a tener en cuenta.

16

4. Caracterizacion del escenario Seccion 4.1

Interfaces

Virtualizacion

GUI
REST API
Productividad
Codigo Abierto
Documentacién
Lenguaje
Programacion

Modularidad
S.0. Soportado

Edad
Soporte
OpenFlow
OpenStack
Networking

Pox FloodLight OpenDayLight
SB SB(OpenFlow) NB e Qiellions ¢
(OpenFlow) (Java & REST) Others SB Protocolos)
NB,(Java & REST)
Mininet & Mininet & Mininet &
Openv Switch Openv Switch Openv Switch
Si Web UI Si
No Si Si
Medio Medio Alto
Si Si Si
Escasa Media Media
Java + cualquier lenguaje
Python que utilice REST L
Media Alta Alta
Linux, Mac Os Linux, Mac Os -
and Windows and Windows
3 anos 4 anos 2 anos
OF v1.0 OF v1.3 OF v1.3
No Medio Medio

Tabla 4.1: Tabla comparativa controladores.

17

Seccion 4.1 4. Caracterizacion del escenario

Pese a todo esto, presenta algunos inconvenientes como la dependencia de desa-
rrollo de API REST. A lo largo de su tiempo ha ido perdiendo importancia y
actualmente apenas es relevante frente a OpenDayLight. En un primer momen-
to se decidi6 utilizar este controlador para este trabajo, pero surgieron bastantes
problemas respecto a la configuraciéon y puesta en marcha porque junto con Mi-
ninet hace uso de maquinas virtuales para simular la arquitectura SDN, lo que
conllevaba una gran cantidad de carga para el sistema y numerosos conflictos de
interconexion entre diferentes maquinas debido a las interfaces virtuales de red.

Para elegir el controlador que se ha utilizado durante la realizacion de este proyecto
se tuvieron en cuenta varios aspectos, desde la comunidad que se encontraba detras
de cada uno, el lenguaje y APIs que utilizaba cada uno, asi como su eficiencia y
relevancia en el mundo empresarial. Finalmente tras intentar utilizar Floodlight se
ha optado por OpenDayLight el cual se explica a continuacién.

OpenDayLight.OpenDayLight [Opel6a] es el controlador elegido para este pro-
yecto. A modo de resumen se enumeran a continuacién sus principales fortalezas:

e Apoyo de la industria con méds de 50 miembros implicados, algunos de ellos
de gran importancia como Cisco, Intel o NEC.

Proyecto de cddigo abierto y bajo el amparo de Linux Foundation.

Desarrollo completo en Java, con posibilidades de desarrollo de aplicaciones a
través de varias tecnologias como son API REST o Document Object Model
(DOM).

Documentacion extensa y detallada con una comunidad amplia y muy activa.

Proyecto en continuo desarrollo.

4.1.3. Arquitectura OpenDayLight

En la Figura se encuentra la arquitectura del controlador en su segunda version
denominada Helium utilizada en este proyecto. Se pueden distinguir tres capas en esta
arquitectura:

s Aplicaciones de red e instrumentacion: En la capa superior se encuentran las

aplicaciones que se encargan del control y monitorizaciéon de la red. Ademds en
esta capa se pueden encontrar soluciones que hagan uso de diferentes tecnologias
como es el caso de computacién en la nube o servicios de virtualizacién de red.
En esta capa se encuentran aquellas aplicaciones que computan la ingenieria de
traficos de la red, asi como las aplicaciones de seguridad.

Controlador: Se encuentra en la capa central y es donde se manifiestan las abs-
tracciones que proporciona SDN. El controlador cuenta con una serie de médulos
implementados que permiten a las aplicaciones de la capa superior obtener datos
e informacion sobre el estado de la red, tal y como se hace en el mecanismo de

18

4. Caracterizacion del escenario Seccion 4.1

LEGEND
AAA: icati izztion & ing OVSDE: Open vSwitch DataBase Protocol
AuthN: Authentication PCEP: Path Computation Element Communication Protocol

BGP: Border Gateway Protocol PCMM: Packet Cable MuitxMedu

COPS: CummvnO en Polic Serv:ce PIuﬁmZOC Plugin To OpenContra
Bibic e TS It (s Corole Federationd
DDoS: Dittributad Darial OF Servica SFC: Service Function Chalning
DOCSIS; Data Over Cable Service Interface Specification SNBI: Secure Network Bootstrs pping Infrastructure

‘ ” FRM: Fomardmg Rules Manager SNMP: Simple Network Management Protocol
H E LI U M GBP: Group Based Poli TTP. Table Type Patterns
LISP: Locator/ dantifer Eepmm Protocol VTH: Virtusl Tenant Network
DLUX y OpenStack DDoS Network Applications
Coordinator Neutron Protection Orchestrations & Services
ARA - AuthN Filter
OpenDaylight APIs (REST)
Base Network Service Functions
OpenStack Service S?:L A‘fgfﬂ:m
Tupn!ogy Switch
Manager Mlnagar Manager Tmu:ku
Aggregator

ervice Abstraction Layer (SAL)

Controller
Platform

(Plugin Manager, Capability Abstractions, Flow Programming, Inventory, etc.)

(51 Rendemls

Openfl Soulhhuund Interfaces
- = o w “ ﬂ ﬂ ﬂ m M
B Data Plane Elements
CIpeuFIov_t Enabled DPen Addmc_mnl Vlrl_ual & (Virtual Switches, Physical
Devices vSwitches Physical Devices =
Device Interfaces)

Figura 4.1: Arquitectura OpenDayLight (extraido de [Opel6a]).

defensa propuesto. Ademds cuenta con una serie de APIs que permiten el desa-
rrollo de las aplicaciones superiores (DOM API, REST API o JAVA), mientras se
implementan varios protocolos que permiten la comunicacion con los elementos de
red inferiores (OpenFlow, Path Computation Element Protocol, Simple Network
Management Protocol).

» Elementos de red: La capa inferior estd compuesta por aquellos elementos de
red que son programables mediante los protocolos implementados por el controla-
dor. Gracias a la capa de abstraccién del controlador, se pretende que todos los
elementos sean compatibles con el controlador OpenDayLight independientemente
del fabricante o de si son elementos virtuales o fisicos.

El controlador de OpenDayLight esta implementado por software, haciendo uso de su
propia maquina virtual de Java. El desarrollo de aplicaciones para OpenDayLight puede
realizarse por diferentes vias gracias a la NorthBound API. Por un lado el controlador
soporta el desarrollo mediante el uso del framework Open Services Gateway Initiative
(OSGi) 14, pero también soporta la comunicacién bidireccional usando la REST API.
El uso de la API via web permite ejecutar aplicaciones que no se encuentran en el
mismo dominio de direcciones que el controlador, mientras que OSGi se usa para aquellas
aplicaciones que si estan en el dominio del controlador como es el caso del mecanismo de
defensa propuesto en este trabajo. El controlador es completamente independiente de los

19

Seccion 4.2 4. Caracterizacion del escenario

elementos de red y protocolos inferiores gracias al uso de la capa de Service Abstraction
Layer (SAL), que se encarga de exponer y trasladar las peticiones de las aplicaciones
de capas superiores hacia abajo, transformando estas peticiones segin el protocolo de
comunicacién hacia los dispositivos de red.

4.2. Ataques de denegacién de servicio: Clasificacién

A continuacién se muestra una clasificacién de los ataques de denegacién de servicio.
Unicamente han sido considerados los ataques que, por similitud o por impacto, pueden
llegar a ser relevantes en una arquitectura SDN. El resto quedan fuera del alcance de
este proyecto. En base a estos criterios se han establecido tres conjuntos de ataque:
inundacién (que finalmente serén los que se prueben con mayor detenimiento en la fase
de evaluacién), reflexién y ampliacién. El éxito de un ataque puede depender tanto de
su capacidad de amplificacién, como de inundacién. A continuacion se describe cada uno
de ellos y se motiva por qué se ha elegido estudiar con mayor profundidad el ataque por
inundacion.

4.2.1. Denegacién de servicio basada en inundacion

La denegacion de servicio basada en inundacién trata de alcanzar sus objetivos por
inyeccién de grandes volimenes de trafico. Ha sido uno de los mayores temas de in-
terés en la actualidad debido a su sencillez de ejecucion y la magnitud de su impacto.
En [WCXJ13] se pueden ver las diferentes estrategias para conseguir una inundacién
eficaz, como inundaciones de tasa alta y baja. Las primeras consisten en la emisién
de grandes cantidades de trafico de manera constante y uniforme, o bien de manera
evolutiva que son aquellas en las que se centra este proyecto.

Cuando los ataques de inundacién actian en la capa de red, explotan funcionali-
dades propias de sus protocolos, siendo TCP, UDP, ICMP y DNS los més explotados.
En [DMO04] son descritas algunas de sus variantes, siendo la mas popular de ellas la inun-
dacién SYN, tomada como objeto de estudio para el mecanismo de defensa desarrollado
en este proyecto. Este ataque explota el protocolo TCP y su negociacion del inicio de
sesion en tres pasos. Para lograrlo el atacante envia paquetes SYN con direcciones IP
inexistentes o en desuso y cuando el servidor ubica la peticién en la memoria, espera a
la confirmacién del cliente. Mientras espera, dicha peticién sigue almacenada en la pila
de la memoria. Como estas direcciones IP no son vélidas, el servidor nunca recibe la
confirmacion. De esta manera, el ataque explota el hecho de que cada una de las cone-
xiones abiertas o iniciadas ocupa un espacio de memoria y que se mantiene en ella hasta
un cierto intervalo temporal. Con la pila llena, el servidor legitimo no puede tramitar
nuevas peticiones, denegando el acceso a nuevos usuarios e interrumpiendo el servicio.
Por otro lado, la capa de aplicacion ofrece nuevas posibilidades a los atacantes.

En [ZJT13] se trata este tema en mayor profundidad y se distinguen tres conjuntos de
amenazas: las que se basan en inicios de sesién, envios de peticiones y en respuesta lenta
del servidor. Muy similar a la inundacién SYN, el primer grupo trata de colapsar las colas

20

4. Caracterizacion del escenario Seccion 4.3

que permiten el acceso de usuarios a los servicios web. En segundo lugar, la inundacién
por peticiones consiste en el envio masivo de solicitudes web HTTP (GET/POST) que
el servidor tiene que atender. En ultimo lugar, los ataques de respuesta lenta se basan
en intentar mantener las conexiones HTTP el mayor tiempo posible enviando datos
lentamente, o bien procesando las respuestas con lentitud.

4.2.2. Denegacién de servicio basada en reflexion

La inundacién basada en reflexién surge de la necesidad de los atacantes de ocultar su
origen de la intrusién. Este tipo de ataques, llamados ataques de denegacién de servicio
distribuida y reflejada (del inglés Distributed Reflection Denial of Service, DRDoS),
tratan de aprovechar vulnerabilidades en terceras partes para forzarlas a emitir el trafico
malicioso.

Un ejemplo de ataque de reflexién se encuentra en los conocidos ataques de smur-
fing [KumO7]. Los ataques smurf son una variante de la inundacién SYN que aprovecha
elementos intermedios de la red para enmascarar su origen. En su ejecucién, el origen
de los paquetes es reemplazado por la direcciéon de la victima. De esta forma consiguen
que todas las maquinas intermedias respondan a la victima tras recibir su solicitud.

4.2.3. Denegacién de servicio basada en amplificacién

La inundacién basada en amplificacién consiste en realizar peticiones a terceras partes
con el objetivo de que las respuestas sean de mayor tamano que el de las propias peti-
ciones. Estas direcciones falsifican su direccién de retorno de manera que las respuestas,
en lugar de llegar al atacante, llegan a la victima.

Uno de los elementos de red méas aprovechados para lograr la amplificacién son los ser-
vidores DNS. Esta vulnerabilidad, denominada amplificacién DNS, se discute en detalle
en [AKK™13| donde se identifica como principal causante al hecho de que las consultas
realizadas al servidor se realizan con datagramas con menor cantidad de informacién
que las respuestas. Se puede amplificar con otros tipos de servidores como es el caso
de [Nol13].

4.3. Mecanismos de defensa ante DDoS

Las distintas técnicas de defensa frente a intentos de denegacién de servicio son clasi-
ficadas segun el momento del proceso de intrusién en que actian. Por lo tanto se pueden
agrupar en cuatro tipos de mecanismos: prevencién, deteccién, identificacién del origen
y mitigacién. A continuacién se resumen brevemente.

4.3.1. Prevencién

Los mecanismos de prevencién son aquellos que actian antes de que el ataque su-
ceda e independientemente de su detecciéon. Su objetivo es minimizar el dafo causado

21

Seccion 4.3 4. Caracterizacion del escenario

por los atacantes. En este proyecto la parte proactiva actiia como prevencion porque
periédicamente se reinician los nodos de la red aunque no hayan sufrido un ataque.

4.3.2. Deteccién

La deteccion de los ataques es vital para que actien el resto de los componentes
defensivos. Su eficacia se basa en la proporciéon de ataques reales que son capaces de
detectar sin equivocarse. Sin embargo, el hecho de que se presente un alto indice de
acierto no implica que sean de buena calidad. También deben afrontar otros problemas,
como los falsos positivos, la capacidad para procesar en tiempo real y la distincion de
ciertos fenémenos en la red, tales como el conocido “Efecto Menéame”. Este tltimo son
acumulaciones inesperadas de accesos al sistema de forma legitima por usuarios correctos
que habitualmente acarrean errores de deteccién [ZJW™14].

En la identificacion de DDoS son considerados dos paradigmas de los sistemas
de deteccién de intrusiones: reconocimiento de firmas y anomalias. El reconocimien-
to de firmas se basa en la identificacién de patrones de ataques previamente conoci-
dos [TYZM14, [SY13, [YMO05]. Este proyecto no se centra en la deteccién de patrones, sin
embargo, se ha implementado un sistema simple de deteccién de patrones para realizar
las pruebas sobre el mecanismo de defensa, dejando abierto una posible mejora en el
moédulo de detecciéon. La mayor parte de la comunidad investigadora ha optado por el
desarrollo de sistemas basados en el estudio de anomalias porque el sistema de deteccién
de patrones dificulta la detecciéon de nuevas amenazas. El reconocimiento de anomalias
implican el modelado del comportamiento habitual y legitimo de un sistema, con el fin de
identificar eventos que difieran de las acciones legitimas. De este tipo de detecciones han
sido propuestas diferentes técnicas, tales como modelos probabilistas basados en Mar-
kov [SNK12], teoria del caos [CMW13], 16gica difusa [KS13] o estudio de las variaciones
de la entropfa [OB15).

4.3.3. Identificaciéon del origen

En la etapa de identificacién del origen, la victima trata de desenmascarar la ruta
del vector de ataque con el fin de sefialar a su autor. Este proceso a menudo es muy
complicado, ya que el atacante dispone de diferentes métodos para ocultar su rastro. Es-
tos varian desde sencillos procesos de suplantacién de identidad, hasta atravesar tramos
de redes anénimas. Por lo tanto, llegar hasta el extremo final es una situacién idilica
que apenas se consigue. Para realizar las pruebas de este proyecto se ha optado por no
ocultar el origen de los equipos que atacan, ya que el mecanismo propuesto actiia sobre
los flujos de datos directamente. Se debe tener en cuenta que aproximar la ubicacién
permite la realizacién de un despliegue defensivo mucho mas eficaz ya que no se permite
el trafico posterior (incluso legitimo) de un atacante [KBP14].

22

4. Caracterizacion del escenario Seccion 4.3

4.3.4. Mitigacién

Una vez detectada una amenaza debe procederse a su mitigacion. En el caso de la
denegacién de servicio, la mitigaciéon consiste en el despliegue de una serie de medidas
que reduzcan el dano causado y, a ser posible, restauren los servicios del sistema compro-
metido. Habitualmente consisten en el incremento de la reserva de recursos disponibles
para la supresién de cuellos de botella [KVFT12] y la actualizacién de las listas de acceso
y politicas de cifrado.

El mecanismo propuesto en este proyecto es capaz de incrementar la reserva de re-
cursos disponibles en funcién de las necesidades de la red. La arquitectura SDN permite
desactivar aquellos nodos que se encuentran comprometidos y conectar un nuevo nodo
(backup) en la posicién que se encontraba el nodo comprometido. Junto a esto se cuenta
con un mecanismo reactivo que es capaz de eliminar los flujos de datos dafiinos en tiempo
real, asi como bloquear la comunicacién con los nodos en los que se detecta un proceso
de ataque hacia el sistema.

23

Seccion 4.3 4. Caracterizacion del escenario

24

Capitulo 5

Arquitectura del Sistema

En primer lugar, en este capitulo se explica cudl es el despliegue de la arquitectura
propuesta donde se implementa el mecanismo de defensa. A continuacién, se justifica
el modelo implementado en el mecanismo de defensa y se explica como funciona tan-
to conceptualmente (a nivel de diagramas de secuencia y méquinas de estados de los
componentes), como a nivel de implementacion.

5.1. Despliegue

El despliegue del sistema se muestra en la Figura En un equipo se ha instalado
el sistema operativo Ubuntu 14.04 en su versién mas estable y sobre éste se ha insta-
lado Mininet (véase Seccién [2.4)), y el software del controlador OpenDayLight (véase
Seccién en una versién estable para el desarrollo (versién base 0.2.2). El controla-
dor de OpenDayLight se conecta con Mininet mediante el acceso remoto por la interfaz
localhost a través de un tunel SSH.

Los ataques DDoS se ejecutan desde los propios equipos emulados por Mininet de
modo que en la topologia de Mininet cuenta con un cierto nimero de nodos que actian
como servidores y un nimero concreto de equipos que actiian como clientes y atacantes
segun las pruebas que se realizan. Asi los equipos clientes actiian como Traffic generator
y los atacantes como Attack DDoS.

25

Seccién 5.2 5. Arquitectura del Sistema

<<device>>
:Machine {OS=Ubuntu 14.04}

:Emulator Mininet

<<component> @
:Controller OpenDayLight
<<component> @
E Controller
55H
<<executable>>

<<component>>
Detect

<<components @
Switch
<<component>>]

<<executable>>
Recovery

<<components > @
<<executable>>
attack_DDoS

<<component>> E
< <executable>>
Traffic_generator

Figura 5.1: Diagrama de despliegue.

5.2. Explicacion formal

El modelo del sistema que se puede observar en la Figura funciona como un
cluster, es decir, se cuenta con un numero n de nodos, el cual se puede definir segtin las
necesidades y capacidad del sistema. A su vez, cada nodo se encuentra replicado m veces
de modo que estas réplicas actiian como posibles backups de cada nodo. Si se produce
un ataque sobre uno de los nodos, se colocara su réplica posterior, eliminando la réplica
afectada y creando una nueva réplica backup.

Dado que el niimero de nodos lo puede definir el administrador del sistema y éste viene
condicionado segun los recursos hardware del equipo, también se deben definir el niimero
de réplicas asociadas a cada nodo. De este modo, si el numero de nodos es muy pequeno el
numero de réplicas para cada nodo deberia ser mayor para lograr una mayor estabilidad
del sistema ante una gran cantidad de ataques. Si por el contrario se cuenta con muchos
nodos, se puede permitir que el niimero de réplicas sea mas limitado e inferior. El objetivo
de este sistema es garantizar que en todo momento existen el suficiente niimero de nodos
disponibles capaces de asegurar la calidad del servicio ofrecido por el sistema.

De este modo se debe asegurar que la relaciéon entre m y n sea m -n = ¢, siendo ¢ el
numero total de equipos que actian como servidor y que el sistema es capaz de simular
simultaneamente en ejecucioén.

Cuando uno de los nodos se ve afectado por un ataque y por lo tanto se debe colo-
car una nueva réplica en su posicion se debe tener en cuenta el tiempo que transcurre
realizando dicha recuperacion del sistema. De este modo se definen dos intervalos tem-
porales (véase Figura de modo que en el intervalo reactivo Tz se divide en z slots
temporales en el que en cada uno se realiza la deteccién y se pueden recuperar k réplicas

26

5. Arquitectura del Sistema Seccion 5.3

mréplicas (v N

n nodos

Figura 5.2: Diagrama del sistema.

Intervalo Reactivo Intervalo Proactivo

S|0t 1 S|0t 2 = = = S’Otz = TR/ T,;m T,;.,tz Tm k

\ J | |
V Y |

Tr Te

Figura 5.3: Relaciéon entre el intervalo temporal reactivo y proactivo.

simultdneamente. La duracién de dichos slots viene definida segtin T¢yste ¥ con la relacion
Tslot 2 Teoste - k.

El intervalo reactivo Tr se define en la configuracién del sistema y se puede modificar
en tiempo real. El niimero de slots en los que se divide el intervalo reactivo depende de
su duracién definida en su configuracién y el tiempo de slot Ty, de modo se cumple la
relacion z = Tr/Tsot-

El tiempo de duracién del intervalo proactivo Tp viene definido segin Ty;,;. Durante
el intervalo proactivo se deben realizar rejuvenecimientos sobre las réplicas de un niimero
concreto de nodos k. Aquellos nodos que van a recibir un rejuvenecimiento no dependen
de los hechos acontecidos en el intervalo reactivo y se ejecutara de manera secuencial
entre la lista de nodos n cada vez que se acceda al intervalo proactivo, garantizando asi
un rejuvenecimiento periédico de todos nodos al cabo de cierto niimero de intervalos
completos.

5.3. Funcionamiento

En este mecanismo de defensa se destacan tres elementos en su arquitectura: el con-
trolador, los switch y los equipos. Para cada uno de ellos se ha modelado una maquina

27

Seccién 5.3 5. Arquitectura del Sistema

~ Detection {(l=m)&{t! =tx)&Detect() || (t=tx) Recavery Backuj

do / Detect 1 Switch, ACL ban IP-MAC & {i<k} ACK Switch 1/ »
Host/Backup.ban data Host/Backup.new

. new controller L

{i==k} ACK Switch 1/
ACK Switch 4 / Switch.new link and attach
Host/Backup.shutdown backup & Host/Backup.net
ifcanfig

/ Switch.new link and attach backup &|

Dettached Attacked 1 Host/Backup.net ifconfig

)

ACK Switch 3 / Switch link dettach host

ACK Switch 2 & ACK Host 2
1/ Switch. forward backup

Forward

Figura 5.4: Diagrama de maquina de estados del Controlador.

de estados, para observar su comportamiento y todas las etapas de su funcionamiento.

Como se puede observar en la Figura [5.4] en primer lugar el controlador se inicia
al comienzo de la ejecucién de OpenDayLight, desde el primer momento el controlador
se encuentra en el estado Detection en el cual se encuentra ejecutando constantemente
la funcién Detect. Para realizar la transicién al estado Recovery debe suceder una de
las situaciones indicadas en el arco de la transicién, que pase del estado reactivo al
estado proactivo (¢t = tx), o bien si se encuentra en el intervalo temporal donde actia de
manera reactiva, se produce una deteccién de ataque y si dispone de suficientes nodos
para continuar con el servicio (i < m)&(t! = tx)& Detect()), pasa al estado Recovery.

En el estado Recovery lo primero que se hace es bloquear el flujo de datos del equipo
atacante, asi como borrar todos los flujos relacionados con dicho equipo en todos los
nodos. A continuacién si no se dispone de un nimero suficiente de réplicas (i < k) se
emula un nuevo equipo que se anadird a la reserva de réplicas pasando al estado Backup;
sino se pasa al estado Attacked donde se realiza una nueva conexién y se configura la
réplica que ahora actuard como nodo. Posteriormente se balancea el trafico que estaba
sirviendo el nodo atacado en el estado Forward, de modo que se reparte equitativamente
entre el resto de nodos servidores para evitar pérdidas de trafico y que el usuario legitimo
no se vea afectado por una interrupcién del servicio. A continuacién se desconecta el nodo
afectado por el ataque DDoS pasando al estado Dettached para finalmente desconectarlo
y volver al estado de Detection.

En el caso de los equipos su funcionamiento se puede observar en la Figura [5.6] En
primer lugar se produce el evento de creacion de un nuevo equipo el cual puede ser invo-
cado por el controlador cuando necesita un mayor nimero de réplicas o bien por el propio
sistema al iniciarse. Para pasar al estado de Connected es necesario que se produzca el
evento net ifconfig backup, que se produce cada vez que se quiere conectar una nueva
réplica como nodo de trabajo. En el estado Connected el equipo realiza constantemente

28

5. Arquitectura del Sistema Seccion 5.3

ACL restricted

% ted
onnecte ACL ban IP-MAC /

ControllerACK Switch 1

new link and attach link backup /

new Switch / Controller ACK Switch 2

. Controller. ACK Switch

Attached

Dettached link dettach host / Forwarded
Controller ACK Switch 4

forward backup /

Controller. ACK Switch 3

Figura 5.5: Diagrama de maquina de estados del Switch.

la tarea Work en la que procesa los flujos de paquetes entrantes. El equipo se mantiene
trabajando hasta que el controlador avise de un supuesto ataque DDoS que es entonces
cuando el equipo pasa al estado Standby y se produce la eliminacién de sus flujos de
datos(ban data). Finalmente el equipo se apaga cuando el controlador lo indica.

En la Figura [5.5] se observa la maquina de estados correspondiente al switch. Los
switch se encienden todos al comienzo de la ejecucion de Mininet pasando al estado de
Connected. En dicho estado se mantendra hasta que reciba un mensaje de prohibir una
direccién IP y MAC concreta(ACL ban IP-MAC), en ese instante pasa al estado ACL
restricted. A continuacién realiza la creacién de un nuevo enlace y su unién con la répli-
ca(new link and attach link backup) pasando al estado Attached. Posteriormente pasa al
estado Forwarded cuando el controlador le notifica que debe comenzar a redirigir trafico
a la nueva réplica(forward backup). Finalmente pasa por el estado Dettached cuando
el controlador le indica que debe eliminar el enlace asociado con el nodo atacado(link
dettach host) y vuelve al estado inicial Connected.

Gracias a los diagramas de secuencia se puede explicar el funcionamiento del sistema
desde un punto mas abstracto, de modo que se puede observar cémo funciona el sistema
y el mecanismo de recuperacion ademds, de cémo se realizan los pasos de mensajes entre
los diferentes componentes del sistema, de modo que se relaciona directamente con los
diagramas de maquina de estados de cada componente.

En el diagrama del sistema (véase la Figura , se puede observar como se inicia
la ejecucién del sistema con la creacién de los distintos componentes (switch, nodos y
controlador). Justo en la parte inferior se puede ver la diferencia entre la parte del sistema
que actua de manera reactiva, que seria la primera parte con el loop de modo que se
encuentra en una perspectiva reactiva durante un intervalo de tiempo. Alternativamente,
debajo se tiene la seccién alt que se produce cuando el contador de tiempo llega a la
marca temporal, en este momento el sistema actiia de manera proactiva aplicando el
mecanismo de Recovery para los nodos seleccionados.

En el diagrama de la funcién Recovery de la Figura [5.8] se puede observar como se

29

Seccién 5.3 5. Arquitectura del Sistema

Connected

Idle
net ifconfig backup / Controller. ACK Host 2 | do/ Work
. new host / Controller. ACK Hogt ifconfig backup / rofer ey

Standby ban data/ Controller.ACK Host 1
shutdown host

Figura 5.6: Diagrama de maquina de estados de los equipos.

produce el paso de mensajes entre las instancias de los componentes del sistema. Las
transiciones se encuentran numeradas en orden del 1 al 9 y la seccion alt es una excepcioén
que tan solo se produce cuando no se encuentran disponibles suficientes réplicas activas.

30

5. Arquitectura del Sistema Seccion 5.3

Controller

1: new Switch 1

Switch
.................................. 2: new Host Host / Backup|
3: ACK Switch

[loop/ |

[(i<m)&(t!=tx)&(Detec!

&l

: Recovery

(8]

H

7
N D

ecovery

-ttt

Figura 5.7: Diagrama de secuencia del sistema.

Controller Host / Backup

| 1: ACL ban IP-MAC | 2: ban data !

>,
I]? 1.1: ACK Switch 1 2.1: ACK Host 1 H

6{ net ifconfig backup
».

16.1: ACK Host 2 tﬂ

9: shutdown host

T |

1 X

T
| .

7: forward backuy
| < P I I :
7.1: ACK Switch 3 | |
————————————————————— > | |
| |
1 e | 1
I I | |
I I | |
I I | |
I 8: link dettach host I | |
. o | |
| |
| |
| |
»l |
|
|
|
|
1

n
8.1: ACK Switch 4
|-|_ _____________________ >
i
I
I
I
1

Figura 5.8: Diagrama de secuencia del proceso de recuperacion.

31

Seccion 5.4 5. Arquitectura del Sistema

5.4. Implementacion del mecanismo de defensa y limita-
ciones

El mecanismo de defensa proactivo y reactivo propuesto se ha implementado en Java
como médulo de OpenDayLight, de este modo el controlador es capaz de analizar los
paquetes entrantes en el sistema, anadir los flujos necesarios en el switch para que éste
conmute y encamine los paquetes de un mismo flujo y ademas realizar una monitorizacién
y control sobre la cantidad de paquetes que entran en el sistema siendo capaz de detectar
patrones de ataques DDoS. Dado que no se contaba con una arquitectura SDN real y
se ha tenido que utilizar el emulador Mininet, el sistema implementado tiene ciertas
limitaciones que el software impone.

En primer lugar no se puede actuar sobre la arquitectura de la red modificando el
estado de los nodos o la topologia de la red en tiempo real. Para poder evaluar las
prestaciones del sistema propuesto, se ha decidido no utilizar ninguna réplica m como
backup del sistema, de modo que todos los nodos de la topologia acttian como nodos n
porque Mininet no nos permite realizar una modificacién en los enlaces de la red ni en
la distribucion de los nodos directamente desde el codigo de Java, sino que es necesario
ejecutar scripts de Python a través de su consola.

Para solucionar este problema se ha decidido evaluar los rejuvenecimientos del sistema
como periodos temporales en los que los nodos se encuentran ocupados y no sirven
ningun tipo de servicio, al transcurrir el tiempo de recuperacién tedrico, el nodo vuelve
a funcionar y dar servicio correctamente. Como T¢yste se ha seleccionado un intervalo
temporal comprendido entre 10 y 14 segundos que es lo que le cuesta en promedio a
Amazon EC2 realizar un despliegue de un equipo pequeno [OIY™09).

5.4.1. Diagrama de clases

Para describir el funcionamiento de la implementaciéon en primer lugar se debe hacer
referencia al Diagrama de clases (véase la Figura [5.9) que muestra una perspectiva a
grandes rasgos de como se relacionan las diferentes clases del cédigo y como se organiza.

= Activator: Es la clase encargada de conectar el médulo desarrollado con el soft-
ware de OpenDaylight y activar los médulos que necesitamos.

s Flow_management: es la estructura de datos para almacenar toda la informacion
relacionada con cada flujo.

s Server: es la estructura de datos que almacena toda la informacion de cada ser-
vidor.

= Client: es la estructura de datos que almacena la informacién relacionada con
cada cliente.

s PacketHandler: es la clase que implementa el scheduler de paquetes y flujos en el
sistema. Se encarga de anadir los nuevos flujos, modificarlos, eliminarlos y obtener
la informacion de dichos flujos cuando el sistema de defensa necesita obtener datos.

32

Seccion 5.4

5. Arquitectura del Sistema

Jur : dwesaunise”-

‘uoRjUaWIdWI B 9P SOSR[D op RWRISRI(] :6°C RINSI]

< “MOI>ISITARLY * SMOY -

duwiegsauwn sy -

ur : Wodisp™|

u1 = podyuays -

1 = Buo| : sexoed |

J0IDRULOIAPON : J0IIRUL0ISSAIBUI -
SPON : 2pouT-

T

S53.PPYIBUI 1 IPPYILBID -

s

1BMIBS © JanIRs -
JuBYD JuB -

mold

pron : (Bupas : suieNBURII0> 35(q0 ¢ dui * >

9+

P

<auawabeuRW MOl4>ISIIARLY § SO -
asje; = UeaEOq : JaAEdIYUO ™
LOYPIBULOIBPON : IOPBUUODSSBIEE -
[11Aq : IppyoRpIBAIES

SSUPPWIBUT : JPPYIaAIDS -

Janies

=T

PIOA ; (J2AJIS © JAAJIS "I : IN0TI)IOPIAIISURD[D-
pion : (Janpeayioaaps

U1 (3UE:AN0TY QUL E | UL H)BAIDRO SO UL EGPRO]E
U1 ¢ (U1 130073 Ul [U] £ 3))BAROEaYROURIEGPRO)E
PIoA : (Jesuajagieindala+

PIoA : (UB2|00g © RAOYESUASap)asUaa0aNIR Jas+
SI0UJdRWSS | 910Udeiagian0al-

Ml = J3lpueriaoed - JaIpueHianed-
55[e) = Ueaj00q ¢ 9sUBjAgPRNIE -|
iU = B5UBjPQIEaY6Id | BOUBISU- |

35U3;2qPPEU0Id

“++([] 2Aq 1 DVWBOURISULIAAIAS ‘SSBIPPYIRU | IPPYEDUBISULIBAIS ‘BPON : BPOU “IOIBLLODBPON : JOIIBULGTING UL | LGAISP “SSBIPPYIBUI | IPPYISP AUl & LOdIBI *
' ([] 93AQ : DVWIIUBISULIAAIAS 'SSIPPYIAU © JPPYRDUEISULIIAIIS ‘IPON : 2POU “JOIIAULODIPON © JOIIIULODING ‘Ul

PIoA (juawebew Mol © 3533 MOY)333Rp+
pioa : (juswebew mol4 © 3587 MOl)5 EISMO| Jarepdn+|

0A ¢ (JUBLIBBRUEW MOIJ * dEMS MO|} JBAIBS | 1DAIDSMBU JOAIBS ! JBAIBSPIO) AIPOLL 4

© APPWIS); Bo.d

110d3SP ‘$52UPPYAAUI | JPPYASP AU © UOAILRIPD 'SSAPPYIRLI | JPPYIUIRIMOLLRIB0Id-

Pio 1 (pAdD : PidpAd] "12UIRUIT § PWRIIR IDPRIMRY 1 PIJUl JANIRS ; JPAIRS)IRIRPURS-|

JBNIBS ¢ (<IBAIBS>ISIARLY | SIBAIBS)IBAIBSIIA(PS-|

PIOA ¢ (J01IBULODBPON : JOPPBULGDSSAIBU] IBAIDS { IBAIBSAL "JUB[D | JUBIIDAL *SSRIPPYIBUL : IPPYASP IUI © LOAISP U © LOIAI)SMOLpPE-

WAIID (bAJT : VidpAdiJIUAIPPE-

PIOA © (SPON ¢ IPONBUILI0IUI)SIAAIISAIRID-|
UNseYIBAORY 1 (1IDHPEGMEY PlUI)IBNIEJEIEQPABIR +|
552.pPYIaU] : (U] ¢ 1}SSBIPPYIBUIOLII+

Jo3enPY

T = 510UdeWss | BI0(AEWESMOL-
0€ = HOUs : IN03WILPILY-

T = Moys : INQAWIAPI-
[)ssa1ppyIaU] © SSaIpPYIaAIIS-
SS3UpPYIBU] ¢ SSAIPPYIRUIIIANG-
13BRURSINSIIRIS] © JaBRURYSINSHIS-
18BRUBKYIUMST © 1DBRUBLIUIUMS -

4] © PIAIDSIBULIRIBOI MO
soInIBSIBPRIRIEQ] 1 BIINIBSINIREIED-

[TBUIS * OVIW ®3Ad35-|
[TBUIRS T dT ¥3ng35-|

08 =3ul - 190d_3DIN¥35|

I9IpuEHIaNIEd

33

Seccion 5.4 5. Arquitectura del Sistema

= ProReactDefense: es la clase que implementa el sistema de defensa, ademas es
la que realiza los rejuvenecimientos del sistema y gestiona los intervalos temporales
reactivo y proactivo.

5.4.2. Diagramas de secuencia

Para explicar el funcionamiento del sistema y el mecanismo de defensa proactivo y
reactivo en mayor detalle se han realizado dos diagramas de secuencia que explican en
profundidad cémo funciona el sistema (véase la Figura y otro de céomo funciona
la funcién encargada del mecanismo de defensa (véase la Figura [5.11]). Ademds se ha
anadido un pseudocddigo que explica en detalle como funciona el scheduler (véase el
Algoritmo .

El sistema comienza cuando se recibe el primer paquete de datos en nuestro scheduler,
el sistema comienza a funcionar ejecutando en paralelo por una parte el mecanismo de
defensa mediante ezecuteDefense() en el thread ProReactDefense y en el thread Packet-
Handler se ejecuta la funcién receivePacket() que es el scheduler de paquetes, de modo
que si es trafico TCP se procesa y gestiona el servicio mediante la funcién receivePacket()
y sino se ignoran dichos paquetes.

El mecanismo de defensa que se observa en la Figura [5.11| estd funcionando constan-
temente en un bucle infinito de modo que siempre se ejecuta la deteccién de ataques de
manera reactiva (detectReactive()) y el balanceo de carga reactivo (loadBalancerReac-
tive()) tantas veces como slots z contenga el intervalo reactivo Tg, posteriormente se
ejecuta el periodo proactivo Tp mediante la funcién loadBalancerProactive(). Esta eje-
cucion sucesiva implementa el mecanismo proactivo y reactivo comentado en la seccién
anterior, de modo que cuenta con un intervalo reactivo y un intervalo proactivo que se
repiten ciclicamente.

El método detectReactive() realiza una deteccién de patrones en funcién del nimero
de paquetes servidos en un mismo flujo durante un intervalo de tiempo, de modo que
si detecta un ataque de flooding, se marca dicho flujo y aplica los mecanismos de miti-
gacién correspondientes, que consisten en eliminar dicha flujo y todos flujos asociados
con dicho cliente, anadir dicho cliente a la blacklist de modo que no pueda volver a
solicitar el servicio (sus paquetes directamente pasan al estado DROP en la tabla de
OpenFlow del switch) y realizar el rejuvenecimiento sobre el servidor afectado. En el
intervalo reactivo la funcién loadBalanceReact(k, j, t,ut) se encarga de repartir los flujos
de los servidores afectados por ataque DDoS entre los nodos disponibles. En el intervalo
proactivo la funcién loadBalanceProact(k, [, t,ut) se encarga de seleccionar cuales son
aquellos servidores que deben entrar en rejuvenecimiento y repartir los flujos de estos
entre los demds nodos disponibles.

En este caso el scheduler estd configurado para tan solo procesar paquetes TCP, pero
sin embargo se podria implementar para cualquier protocolo. Ademds, se pueden procesar
los datos del paquete directamente de modo que se podrian implementar mecanismos de
deteccién mas complejos.

En el Algoritmo [I] se explica como funciona el scheduler de paquetes con mayor
detenimiento. De todos aquellos paquetes que se reciben se toman los puertos origen y

34

5. Arquitectura del Sistema Seccion 5.4

PacketHandler

1; set_activeDefense (true) ProReactDefense

| I
' :

|
| :
| |
| ref] I

|
| |
| |
| |

: executeDeien%e{]
| |
| |
| |
| |
| |
| |
| |
_______________ e
alt : :
[is_TCP] I I
ref]
receivePacket
[I
............ o e e] e

|
2! Packet.lgnore |
,4_—/ |
|
|
|
|
I
|
1
|
|
|
|
|

Figura 5.10: Diagrama de secuencia del sistema implementado.

35

Seccion 5.4 5. Arquitectura del Sistema

sd:executeDefense() |

ProReactDefense

loop |

1: detectReactive()

2: loadBalanceReactive(k,j,t_out)

3: loadBalanceProactive(k,|.t_out)

Figura 5.11: Diagrama de secuencia del mecanismo de defensa ezecuteDefense().

destino (lineas 1y 2), las direcciones IP fuente y destino (linea 3) y el enlace del switch
por el que se ha encaminado(linea 4). En primer lugar, si el cliente no se encuentra
registrado en el sistema se anade a la lista de clientes (lineas 6 y 7), posteriormente
se obtiene la lista de flujos de dicho cliente (linea 9). Si el flujo del paquete entrante
ya existe, simplemente se actualiza la informacién de dicho flujo anadiendo un nuevo
paquete al contador, se actualiza su marca temporal y se obtiene el servidor que se
encarga de servir dicho flujo (lineas 10, 11 y 12). Si por el contrario, no existe dicho flujo
se crea, se asigna un servidor a dicho flujo y se anade a la lista de flujos del sistema
(lineas 14, 15 y 16). Independientemente del camino hasta llegar al final, se envia el
paquete al servidor correspondiente (linea 18) y anteriormente decidido.

36

5. Arquitectura del Sistema

Seccion 5.4

Algoritmo 1: receivePacket

Input : Packet p

Output: Consume or ignore the packet (PacketResult.Ignore or
PacketResult.Consume)

Get client port client Port from p

Get destination port dstPort from p

Get IP address dstAddr & srcAddr from p

Get link ingressConnector from p

Get list of client C from ProReactDe fense

if B client c € C, srcAddr = c.srcIP then

‘ ¢ = createAndAddClient(p)
end
Get list of flows F from ¢

© 0 N O Ok WN =

10 if 3 f € F, clientPort = f.clientPort then

11 updateFlows(f)

12 Get Server s from f

13 else

14 Get list of Server § from ProReactDefense

15 s = SelectServers(S)

16 addFlows (clientPort, dstPort, dstAddr, ¢, s, ingressConnector)
17 end

18 sendPacket(s,p)

37

Seccién 5.5 5. Arquitectura del Sistema

5.5. Disponibilidad

Todo el codigo fuente de la implementacion del mecanismo de defensa se encuentra
disponible en el repositorio online BitBucket.La carpeta doc contiene todo el Javadoc
(documentacién en formato HTML del cédigo del proyecto).

https://bitbucket.org/Nessaji/sdnproreactdefense

con licencia GNU General Public License publicada por la Free Software Foundation
en su versién 3.

38

https://bitbucket.org/Nessaji/sdnproreactdefense

Capitulo 6

Evaluacién y resultados

Para evaluar las prestaciones del mecanismo de defensa proactivo y reactivo propues-
to se han considerado diferentes tipos de configuraciones del sistema limitadas por el
hardware del equipo donde se han realizado. El equipo donde se han realizado las prue-
bas cuenta con un Intel Core i7-2630QM CPU @ 2.00GHz x 8 y 6GBytes de memoria
RAM, con el sistema operativo Ubuntu 14.04 en su versién mas estable, Mininet version
2.2.1 y el software del controlador OpenDayLight versién base 0.2.2.

Para ello se han realizado tres escenarios distintos, la caracteristica comun de todos
ellos es que cuentan con 2 nodos servidor, 4 nodos que actian como clientes legitimos
y dentro de cada uno 3 configuraciones distintas segtin su probabilidad de ataque que
se ha variado entre 25 %, 50 % y 75 %. En cada configuracién se iniciado un script que
ejecuta cada atacante para realizar un ataque DDoS a la IP publica del servidor cada
60s.

1. Escenario 1: 1 atacante.
2. Escenario 2: 2 atacantes.

3. Escenario 3: 3 atacantes.

Para demostrar la viabilidad del mecanismo de defensa se ha medido el tiempo de
servicio de los clientes en los mismos escenarios bajo la misma configuracién en un
primer lugar (véase la Figura sin activar la defensa y posteriormente activando el
mecanismo, obteniendo un total de 7200 muestras que se resumen a continuacion en la
Figura 6.2 y en la Figura|6.3

Los clientes (rango 10.0.0.3 al 10.0.0.6) solicitan el fichero en paralelo al servidor (nodo
10.0.0.1 y 10.0.0.2) y es el servidor quien balancea la carga del sistema repartiendo los
diferentes flujos entre sus nodos de manera transparente para los clientes. Los atacantes
(rango 10.0.0.7 al 10.0.0.9, segun el nimero de atacantes) no conocen la arquitectura del
servidor y tan sélo pueden atacar a la direccién publica que en este caso es la 10.0.0.100,
de modo que el sistema internamente es capaz de gestionar y balancear los flujos segin
la situacién que se encuentre. El scheduler tiene implementando un balanceo de carga

39

6. Evaluacion y resultados

Figura 6.1: Topologia de la red de pruebas simulada.

=z = .

3 S —
2 2 —
: :

: : E—

s o g -

Q | Q | |

2 2

; — S —

Lo - ol .

= F

|
i

Probabilidad de ataque Probabilidad de ataque

(a)Escenario 1 (b) Escenario 2

Tiempo de servicio (s)

ProbabHid‘ad de ataque

(c) Escenario 3

Figura 6.2: Comparativa tiempos de servicio con el mecanismo de defensa desactivado.

40

6. Evaluacion y resultados

empo de servicio (s)
iempo de servicio (s)

T
T

---- : Sl ==
: :

Probabilidad de ataque Probabihdad de ataque

(a)Escenario 1 (b) Escenario 2

Tiempo de servicio (s)

Probabilidad de ataque

(c) Escenario 3

Figura 6.3: Comparativa tiempos de servicio con el mecanismo de defensa activado.

Round-Robin de modo que reparte los flujos teniendo mayor prioridad aquel servidor con
menor cantidad. Cuando se realizan los rejuvenecimientos de los nodos del servidor tanto
en la casuistica proactiva como reactiva los flujos se balancean hacia el nodo activo.

Sobre cada una de ellas se ha aplicado el método de Montecarlo (véase Seccién
de modo que se han realizado 10 pruebas sobre cada configuracion. En cada una de éstas
pruebas se ha descargado un fichero de 105 MB a una tasa limite de 1,46MB/s, de este
modo cuatro clientes legitimos en paralelo han solicitado la descarga del fichero durante
10 iteraciones en cada una de las pruebas de modo que se han obtenido 400 muestras
para cada configuracion.

Para un fichero de dicho tamano en caso de que el sistema se encontrase con la capa-
cidad de servir a su tasa limite, el fichero tardaria entre 66 y 68 segundos en descargarse.
Se puede observar cémo aumentar la frecuencia de los ataques y el nimero de los ataques
es directamente proporcional al aumento del tiempo de servicio llegando a provocar en la
configuracién mas critica que se tarde hasta 10 segundos més en completar la descarga.

En los casos en que la defensa se encuentra activa se puede observar que el sistema
es incluso capaz de en algunas ocasiones mitigar el ataque hasta el punto que el tiempo
de servicio es el mismo que el ideal. En un escenario mucho mas agresivo como es el
escenario 3 con una probabilidad de ataque del 75 % el mecanismo es capaz de mitigar
ataques pero cuando se producen mas ataques que nodos disponibles el mecanismo de
defensa no es capaz de soportarlo adecuadamente. Esto se solucionaria aumentando la
cantidad de nodos en funcién de la carga de los ataques tal y como se expone en el

41

6. Evaluacion y resultados

2.5

[—JRreactivo
[rroactivo

Tasa de paquetes

Tasa de paquetes prorrateado a 20k

| | | | | |
-2.
0 100 200 300 400 500 600

Tiempo (s)

Figura 6.4: Funcionamiento del sistema ante ataques DDoS.

Capitulo 5 y que en la evaluacién no se ha podido implementar por limitaciones de
hardware y del simulador respecto a la topologia.

En la Figura [6.4] se puede observar el funcionamiento del sistema a lo largo de una
configuracién, en este caso representa el escenario 2 en la que se cuenta con 2 nodos
atacantes con una probabilidad del 50 % cada 60s. En la figura se puede diferenciar el
cambio de estado de los dos nodos servidores, representado el servidor 1 en el intervalo
discreto [0,1] indicando el estado 0 que el servidor se encuentra en funcionamiento y el
estado 1 que se encuentra en rejuvenecimiento, de forma analoga se representa el servidor
2 en el intervalo discreto [-1,0] donde en esta ocasién se representa con el estado -1 su
rejuvenecimiento.

Se pueden diferenciar varios cambios de estado debido a los intervalos proactivos y
reactivos del sistema, la linea roja representa la tasa de paquetes que sirve el sistema
en cada segundo normalizada a 20.000 paquetes/segundo. Se pueden observar distintas
fluctuaciones bruscas que son producidas por los distintos ataques DDoS. En particular
se puede observar cémo cuando se produce una mitigaciéon de los ataques se produce
una tasa negativa dado que se eliminan todos los paquetes de dicho cliente del sistema.
Cabe destacar que el sistema de deteccién implementado tarda alrededor de unos 10
segundos en actuar pero en ocasiones segtn la posicién temporal y el intervalo en el que
se encuentre (proactivo o reactivo) puede tardar mayor cantidad de tiempo en actuar,
como es el caso del ataque en el instante 380 segundos que dura bastante tiempo hasta
que el sistema lo mitiga (concretamente, 25s).

En algunas situaciones coincide que el intervalo proactivo mitiga ataques DDoS por-
que justo toca el rejuvenecimiento de dicho servidor en practicamente el mismo instante

42

6. Evaluacion y resultados

proactivo que le toca rejuvenecerse (véase el instante temporal de 515s).

43

6. Evaluacion y resultados

44

Capitulo 7

Conclusiones

Este capitulo presenta algunas conclusiones obtenidas de la elaboracion de este tra-
bajo de fin de grado asi como posibles lineas de trabajo futuras con los que mejorarlo.

La arquitectura SDN vio la luz hace muy poco tiempo (2014) y por lo tanto todavia
queda mucho desarrollo por delante. El potencial de esta arquitectura de red es enorme
y se esta viendo reflejado entre la gran mayoria de empresas tecnolégicas. Paralelamente
se estan presentando un gran aumento de ataques DDoS a todo tipo de servicios en
Internet; de modo que aprovechar la nueva arquitectura de red para mitigar y solucionar
los problemas que estos estdn causando puede resultar muy beneficioso. En este proyecto
se pueden apreciar las mejoras conseguidas respecto a un sistema sin defensa y como es
necesario implementar algin tipo de sistema de mitigacién ante ataques DDoS.

Como resultado global del proyecto se ha implementado un mecanismo de defensa
viable y extrapolable a infraestructuras de mayor tamafno y carga. Ademds, se han
adquirido conocimientos sobre la arquitectura de red SDN y sobre los tipos de ataques
DDoS. Pese a los inconvenientes acontecidos debido a las limitaciones del hardware y
software se ha probado la viabilidad y funcionamiento del sistema propuesto. Mediante
simulaciones se ha podido demostrar como la defensa proporciona una capa de seguridad
adicional al sistema de modo que es capaz de mitigar ataques DDoS.

Otro concepto adquirido a raiz de este trabajo es que un buen diseno, y una buena
organizaciéon y planificacién son elementos esenciales a la hora de realizar cualquier
proyecto ya que facilitan enormemente su desarrollo y ahorran gran cantidad de tiempo
y esfuerzo.

Las lineas de trabajo futuros que se pueden realizar a partir de este proyecto con
el objetivo de ampliar o complementar este trabajo se pueden dividir en funcién de
los ambitos de este proyecto. En primer lugar, se pueden centrar en formalizar dicho
mecanismo de defensa mediante modelos matematicos basados en cadenas de Markov.
También se puede actualizar la versién del controlador OpenDayLight y desarrollar la de-
fensa para la nueva version, orientada en model-driven. Por ultimo, se puede profundizar
en los mecanismos de deteccién que se aplican en el mecanismo de defensa desarrollando
nuevos patrones o implementando los mas extendidos en la comunidad cientifica.

45

7. Conclusiones

46

Bibliografia

[AKK*13]

[AL14]

[Arb10]

[Ben13]

[BMP10]

[Chul5]

[Cis11]

[Cis15]

[CMW13]

[CSD14]

Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos,
Georgios Louloudakis, and Stefanos Gritzalis. DNS amplification attack
revisited. Computers € Security, 39:475-485, 2013.

Javed Ashraf and Saeed Latif. Handling intrusion and DDoS attacks in
Software Defined Networks using machine learning techniques. In Software
Engineering Conference (NSEC), 2014 National, pages 55—60. IEEE, 2014.

Arbortnetworks. The Internet Goes to War. [Online], Diciembre 2010.
https://asert.arbornetworks.com/the-internet-goes-to-war/.

Benny Har-Even. CTO, SK Telecom, South Korea: “SDN and network
virtualisation hold great promise for mobile carriers”. [Online], Abril
2013. http://telecoms.com/interview/cto-sk-telecom-south-korea-sdn-and-
network-virtualisation-hold-great-promise-for-mobile-carriers/ .

Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight DDoS
flooding attack detection using NOX/OpenFlow. In Local Computer Net-
works (LCN), 2010 IEEE 35th Conference on, pages 408-415. IEEE, 2010.

Chun-Jen Chung. SDN-based Proactive Defense Mechanism in a Cloud
System. PhD thesis, ARIZONA STATE UNIVERSITY, 2015.

Cisco. Open Networking Foundation Formed to Speed Network
Innovation. [Online], Marzo 2011. http://newsroom.cisco.com/
press-release-content?7articleld=5973381.

Cisco. Cisco controller APIC. [Online], 2015. http://
www.cisco.com/c/en/us/products/cloud-systems-management/
application-policy-infrastructure-controller-apic/index.html.

Yonghong Chen, Xinlei Ma, and Xinya Wu. DDoS detection algorithm
based on preprocessing network traffic predicted method and chaos theory.
Communications Letters, IEEE, 17(5):1052-1054, 2013.

CSDN. sqx2011. OVS. [Online], 2014. http://blog.csdn.net/sqx2011/
article/details/39344869.

47

https://asert.arbornetworks.com/the-internet-goes-to-war/
http://newsroom.cisco.com/press-release-content?articleId=5973381
http://newsroom.cisco.com/press-release-content?articleId=5973381
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-apic/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-apic/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-apic/index.html
http://blog.csdn.net/sqx2011/article/details/39344869
http://blog.csdn.net/sqx2011/article/details/39344869

BIBLIOGRAFIA BIBLIOGRAFIA

[DMO04]

[EAJT]

[FRZ13]

[Gar00]

[Gool2]

[HBPG15]

[HP15]

[KBP14]

[KKSG]

[KREV*15]

[KRV13]

[KS13]

[KumOQ7]

Christos Douligeris and Aikaterini Mitrokotsa. DDoS attacks and defen-
se mechanisms: classification and state-of-the-art. Computer Networks,
44(5):643-666, 2004.

Egbenimi Beredugo Eskca, Omar Abuzaghleh, Priya Joshi, Sandeep Bon-
dugula, Takamasa Nakayama, and Amreen Sultana. Software Defined Net-
works’ Security: An Analysis of Issues and Solutions.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN.
Queue, 11(12):20, 2013.

Lee Garber. Denial-of-service attacks rip the Internet. Computer, (4):12-17,
2000.

Google. OpenFlow @ Google. [Online|, Abril 2012. http://
opennetsummit.org/archives/apri2/hoelzle-tue-openflow.pdf.

Akram Hakiri, Pascal Berthou, Prithviraj Patil, and Aniruddha Gokhale.
Towards a Publish/Subscribe-based Open Policy Framework for Proactive
Overlay Software Defined Networking. ISIS, pages 15-115, 2015.

HP. Hp controller VAN. [Online], 2015. http://h17007.
wwwl.hp.com/us/en/networking/products/network-management/
HPVANSDNControllerSoftware/index.aspx#.VXA2pg3tmko.

Ankunda R Kiremire, Matthias R Brust, and Vir V Phoha. Using network
motifs to investigate the influence of network topology on PPM-based IP
traceback schemes. Computer Networks, 72:14-32, 2014.

Karamjeet Kaur, Krishan Kumar, Japinder Singh, and Navtej Singh Ghum-
man. Programmable Firewall Using Software Defined Networking.

Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Este-
ve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined
networking: A comprehensive survey. proceedings of the IEEE, 103(1):14—
76, 2015.

Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards secure and
dependable software-defined networks. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages
55-60. ACM, 2013.

P. Arun Raj Kumar and S. Selvakumar. Detection of distributed denial
of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy
systems. Computer Communications, 36(3):303-319, 2013.

Sanjeev Kumar. Smurf-based distributed denial of service (ddos) attack am-
plification in internet. In Internet Monitoring and Protection, 2007. ICIMP
2007. Second International Conference on, pages 25-25. IEEE, 2007.

48

http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://h17007.www1.hp.com/us/en/networking/products/network-management/HP VAN SDN Controller Software/index.aspx#.VXA2pq3tmko
http://h17007.www1.hp.com/us/en/networking/products/network-management/HP VAN SDN Controller Software/index.aspx#.VXA2pq3tmko
http://h17007.www1.hp.com/us/en/networking/products/network-management/HP VAN SDN Controller Software/index.aspx#.VXA2pq3tmko

BIBLIOGRAFIA

BIBLIOGRAFIA

[KVE+12]

[KZMB14]

[LBZ*14]

[LHK*14]

[LIP*08]

[LWLP15]

[MDC*14]

[Min15]

[Net12]

[Nol13]

[NOX15]

Sanjeev Khanna, Santosh S Venkatesh, Omid Fatemieh, Fariba Khan, Carl
Gunter, et al. Adaptive selective verification: An efficient adaptive counter-
measure to thwart dos attacks. Networking, IEEE/ACM Transactions on,
20(3):715-728, 2012.

Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, and Kpatcha Ba-
yarou. Feature-based comparison and selection of Software Defined Networ-

king (SDN) controllers. In Computer Applications and Information Systems
(WCCAIS), 2014 World Congress on, pages 1-7. IEEE, 2014.

Jun Li, Skyler Berg, Mingwei Zhang, Peter Reiher, and Tao Wei. Draw-
bridge: software-defined DDoS-resistant traffic engineering. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages 591-592. ACM, 2014.

Sharon Lim, Jung-Ik Ha, Heonhwan Kim, Youngjae Kim, and Songping
Yang. A SDN-oriented DDoS blocking scheme for botnet-based attacks. In
Ubiquitous and Future Networks (ICUFN), 2014 Sixth International Conf
on, pages 63-68. IEEE, 2014.

Jae-Seo Lee, HyunCheol Jeong, Jun-Hyung Park, Minsoo Kim, and Bong-
Nam Noh. The activity analysis of malicious http-based botnets using de-
gree of periodic repeatability. In Security Technology, 2008. SECTECH’08.
International Conference on, pages 83-86. IEEE, 2008.

Shibo Luo, Jun Wu, Jianhua Li, and Bei Pei. A Defense Mechanism for
Distributed Denial of Service Attack in Software-Defined Networks. In
Frontier of Computer Science and Technology (FCST), 2015 Ninth Inter-
national Conference on, pages 325-329. IEEE, 2015.

Nishat Mowla, Inshil Doh, Kijoon Chae, et al. Multi-defense Mechanism
against DDoS in SDN Based CDNi. In Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2014 FEighth International Con-
ference on, pages 447-451. IEEE, 2014.

Mininet. An Instant Virtual Network on your Laptop (or other PC). [On-
line|, 2015. http://mininet.org/.

NetworkComputing. SDN Is Business, OpenFlow Is Technology.
[Online], 2012. http://www.networkcomputing.com/networking/
sdn-business-openflow-technology/53316220.

Alejandro Nolla. Amplification DDoS attacks with games servers from the
perspective of both the attacker and the defender. GreHack, 2013.

NOXRepo.org. Pox controller. [Online], 2015. http://www.noxrepo.org/
pox/about-pox/.

49

http://mininet.org/
http://www.networkcomputing.com/networking/sdn-business-openflow-technology/53316220
http://www.networkcomputing.com/networking/sdn-business-openflow-technology/53316220
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/

BIBLIOGRAFIA BIBLIOGRAFIA

[OB15]

[OTY T09]

[Opel4]

[Opelb5a)

[Opel5b]
[Opel5c]
[Opel6a]

[Opel6b]

[PDBAA15]

[PLRO7]

[Prol5]

[RH15]

[RIBOA]

Ilker Ozgelik and Richard R Brooks. Deceiving entropy based DoS detec-
tion. Computers € Security, 48:234-245, 2015.

Simon Ostermann, Alexandria losup, Nezih Yigitbasi, Radu Prodan, Tho-
mas Fahringer, and Dick Epema. A performance analysis of EC2 cloud
computing services for scientific computing. In Cloud computing, pages
115-131. Springer, 2009.

Open vSwitch. What is Open vSwitch? [Online], 2014. http://
openvswitch.org/.

Open Networking Foundation. Openflow switch specification, version
1.3.5. [Online|, Marzo 2015. https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.3.5.pdf.

Open Networking Foundation. SDN-resources: OpenFlow. [Online], 2015.
https://www.opennetworking.org/sdn-resources/openflow.

OpenFlow. OpenFlow. [Online|, 2015. http://archive.openflow.org/
wp/learnmore/.

OpenDayLight. OpenDaylight Platform. [Online], 2016. https://www.
opendaylight.org/.

OpenStack. Scenario: Legacy with Open vSwitch. [Online],
Enero 2016. http://docs.openstack.org/liberty/networking-guide/
scenario_legacy_ovs.html.

Thomas Pfeiffenberger, Jia Lei Du, Pedro Bittencourt Arruda, and Ales-
sandro Anzaloni. Reliable and flexible communications for power systems:
Fault-tolerant multicast with SDN/OpenFlow. In New Technologies, Mo-
bility and Security (NTMS), 2015 7th International Conference on, pages
1-6. IEEE, 2015.

Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of
network-based defense mechanisms countering the DoS and DDoS pro-
blems. ACM Computing Surveys (CSUR), 39(1):3, 2007.

Project Floodlight. Floodlight controller. [Online|, 2015. http://www.
projectfloodlight.org/floodlight/\

Christian Ropke and Thorsten Holz. SDN Rootkits: Subverting Network
Operating Systems of Software-Defined Networks. In Research in Attacks,
Intrusions, and Defenses, pages 339-356. Springer, 2015.

James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Lan-
guage Reference Manual. Pearson Higher Education, 2004.

50

http://openvswitch.org/
http://openvswitch.org/
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/sdn-resources/openflow
http://archive.openflow.org/wp/learnmore/
http://archive.openflow.org/wp/learnmore/
https://www.opendaylight.org/
https://www.opendaylight.org/
http://docs.openstack.org/liberty/networking-guide/scenario_legacy_ovs.html
http://docs.openstack.org/liberty/networking-guide/scenario_legacy_ovs.html
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

BIBLIOGRAFIA BIBLIOGRAFIA

[SBCT10] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Ne-
ves, and Paulo Verissimo. Highly available intrusion-tolerant services
with proactive-reactive recovery. Parallel and Distributed Systems, IEEE
Transactions on, 21(4):452-465, 2010.

[sdx13] sdxCentral. ~What are sdn controllers? [Online], 2013. https://www.
sdxcentral.com/resources/sdn/sdn-controllers/\

[SNK12] Myung-Ki Shin, Ki-Hyuk Nam, and Hyoung-Jun Kim. Software-defined
networking (SDN): A reference architecture and open APIs. In ICT Con-
vergence (ICTC), 2012 International Conference on, pages 360-361. IEEE,
2012.

[SPYT13] Seungwon Shin, Phillip A Porras, Vinod Yegneswaran, Martin W Fong,
Guofei Gu, and Mabry Tyson. FRESCO: Modular Composable Security
Services for Software-Defined Networks. In NDSS, 2013.

[SS77] Robert Solovay and Volker Strassen. A fast Monte-Carlo test for primality.
SIAM journal on Computing, 6(1):84-85, 1977.

[SSKS10] Monika Sachdeva, Gurvinder Singh, Krishan Kumar, and Kuldip Singh.
Measuring impact of DDOS attacks on web services. 2010.

[SY13] Ahmad Sanmorino and Setiadi Yazid. Ddos attack detection method and
mitigation using pattern of the flow. In Information and Communica-
tion Technology (ICoICT), 2013 International Conference of, pages 12-16.
IEEE, 2013.

[TYZM14] Theerasak Thapngam, Shui Yu, Wanlei Zhou, and S Kami Makki. Dis-
tributed Denial of Service (DDoS) detection by traffic pattern analysis.
Peer-to-peer networking and applications, 7(4):346-358, 2014.

[Ver12] Verizon. Adoption of SDN: Progress Update. [Online], Abril 2012. http:
//opennetsummit.org/archives/apri2/elby-tue-sdn.pdf.

[WCXJ13] Wei Wei, Feng Chen, Yingjie Xia, and Guang Jin. A rank correlation
based detection against distributed reflection DoS attacks. Communications
Letters, IEEFE, 17(1):173-175, 2013.

[WZLH15] Bing Wang, Yao Zheng, Wenjing Lou, and Y Thomas Hou. DDoS attack
protection in the era of cloud computing and Software-Defined Networking.
Computer Networks, 81:308-319, 2015.

[YMO5] Jian Yuan and Kevin Mills. Monitoring the macroscopic effect of DDoS
flooding attacks. Dependable and Secure Computing, IEEE Transactions
on, 2(4):324-335, 2005.

51

https://www.sdxcentral.com/resources/sdn/sdn-controllers/
https://www.sdxcentral.com/resources/sdn/sdn-controllers/
http://opennetsummit.org/archives/apr12/elby-tue-sdn.pdf
http://opennetsummit.org/archives/apr12/elby-tue-sdn.pdf

BIBLIOGRAFIA BIBLIOGRAFIA

[ZJT13]

[ZJWT14]

Saman Taghavi Zargar, Jyoti Joshi, and David Tipper. A survey of defense
mechanisms against distributed denial of service (DDoS) flooding attacks.
Communications Surveys & Tutorials, IEEE, 15(4):2046-2069, 2013.

Wei Zhou, Weijia Jia, Sheng Wen, Yang Xiang, and Wanlei Zhou. Detec-
tion and defense of application-layer DDoS attacks in backbone web traffic.
Future Generation Computer Systems, 38:36-46, 2014.

52

Acréonimos

s API Application Programming Interface.

= DDoS Distributed Denial of Service.

= DOM Document Object Model.

s DRDoS Distributed Re-flection Denial of Service.
= DNS Domain Name System.

= HTTP Hypertext Transfer Protocol.

s [CMP Internet Control Message Protocol.

s [P Internet Protocol.

= [SO International Organization for Standardization.
» JSON JavaScript Object Notation.

= MAC Media Access Control.

» NAT Network Address Translation.

= OO Orientado a Objetos.

= OMG Object Management Group.

= ONF Open Networking Foundation.

= OSGi Open Services Gateway Initiative.

= PCEP Path Computation Element Protocol.

= QoS Quality of Service.

= REST Representational State Transfer.

= RPC Remote Procedure Call.

» SAL Service Abstraction Layer.

53

SDN Software Defined Networking.

SNMP Simple Network Management Protocol.
SSH Secure Shell.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

UML Unified Modeling Language.

54

Anexo A

Horas de trabajo

Con el objetivo de controlar el tiempo de desarrollo del proyecto, se ha realizado un
seguimiento de las horas dedicadas a cada parte del mismo. En la Figura [A1] se puede
ver el diagrama de Gantt por semanas y tareas.

La primera etapa del proyecto ha consistido en estudiar qué es la arquitectura SDN,
cuales son sus controladores disponibles, qué son los ataques DDoS y qué es un me-
canismo proactivo y reactivo. Ademds, se ha seleccionado el controlador y qué ataque
DDoS se estudiaria en mayor profundidad. Tras el analisis del problema y el estudio de
las caracteristicas de la arquitectura SDN, se ha planteado un mecanismo de defensa
proactivo y reactivo sobre el que finalmente se evaluaron las pruebas.

Al final, de los 10 meses de proyecto se ha estimado un coste aproximado de 290 dias
de trabajo (véase Tabla . Aunque el nimero de horas excede las previstas para el
proyecto, este tiempo ha sido necesario para el estudio de la arquitectura SDN y c¢émo
implementar un mecanismo de defensa con estas caracteristicas.

2015 2016
Junio Julio Agosto Septiembre Octubre Noviembre Diciembre Enero Febrera Marzo
Etapas proyecto 2324|2526 27 28|29 30|31|32| 33|34/ 35|36 37 38/ 30|40 41|42 43 44|45 46|47 48 49 50 51 52/53 1 /2|3 4|5 6 7|8 9|10 11 12/13
SDN y controladores. :]
Atagues DDoS » (—
Mecanismo proactivo-reactivo []
Seleccian controlador) ee—
Seleccion ataque DDoS —
Modelado matematico ——
Modslado en LML []
Configuracion del sistema | v []
Mecanismo Reactivo] ———
Wecanismo Proactivo
Atague DDoS [—]
——
Memoria ~ I —

Figura A.1: Diagrama de Gantt.

55

A. Horas de trabajo

Tarea Comienzo Fin Duracion
Estudio 15/06/2015 4/09/2015 82d
SDN y controladores 15/06/2015 31/07/2015 47d
Ataques DDoS 17/07/2015 14/08/2015 28d

Mecanismo proactivo-reactivo 7/08/2015 4/09/2015 28d

Seleccién controlador 2/09/2015 16/10/2015 50d
Seleccién ataque DDoS 1/09/2015 25/09/2015 25d
Modelado matematico 25/09/2015 30/10/2015 35d
Modelado en UML 19/10/2015 31/10/2015 12d

Configuracién del sistema 2/11/2015 30/11/2015 28d

Evaluacién y pruebas 01/02/2016 1/04/2016
Memoria 01/11/2015 1/04/2016 152d

Tabla A.1: Duracién de cada tarea.

56

ot W N =

Anexo B

Configuracion del entorno de
trabajo

En estos apéndices se recogen documentos para configurar el sistema correctamente
antes de poder realizar las pruebas sobre el mismo.

B.1. Configuracién de Mininet

Instalar Mininet en Ubuntu es una tarea sencilla que se puede realizar de dos maneras.
Se puede hacer uso de los paquetes para Ubuntu ya preparados o bien compilar el cédigo
fuente.

En este caso se ha elegido usar la compilacién de codigo fuente, ya que la dltima
versién de Mininet no estaba disponible en los repositorios oficiales en el momento de su
instalacién.

Los pasos para su instalacion son:
git clone git://github.com/mininet/mininet
cd mininet
sudo ./util/install.sh -a
Una vez instalado, para comprobar su funcionamiento podemos realizar el comando

mn --test pingall

Este comando ejecuta una topologia bésica y envia mensajes de ping entre todos los
equipos simulados.

o7

Seccién B.2 B. Configuracion del entorno de trabajo

D Ut e W N =

10
11
12
13

B.2. Configuracién controlador OpenDayLight

Se ha utilizado la version base 0.2.2, sin embargo se han desarrollado varias versiones
posteriores que amplian las funcionalidades de ésta.

La ejecucion de OpenDayLight puede presentar un problema y es que no conecten los
switches emulados en Mininet, para solucionarlo es necesario reiniciar la topologia y el
controlador.

Para ejecutar el controlador tan solo debemos ejecutar el comando

sudo ./run.sh

De esta forma ponemos en marcha el controlador y ya se encontrara listo para conectarse
con la topologia de Mininet. OpenDayLight proporciona una interfaz web a través de la
cual se pueden gestionar sus médulos y tablas de flujo.

B.3. Configuracién escenario de pruebas

Los médulos de OpenDayLight funcionan a través del compilador Maven, de modo
que la carpeta del médulo necesitara todos aquellos archivos adicionales necesarios para
compilar como el caso del pom.xml. Este archivo XML es indispensable para Maven ya
que contiene la informacién (dependencias, nombres de proyectos, paquetes y referencias)
indispensable para poder construir el proyecto y compilarlo. Una vez se dispone de todo
lo necesario ya se puede compilar

sudo mvn clean install

Este comando nos proporciona un archivo .jar que ya se puede instalar en OpenDayLight.

El mecanismo de defensa se encuentra programado como un médulo de OpenDay-
Light, para ello serd necesario instalarlo en el controlador y desactivar aquellos médulos
que presentan un conflicto. Cuando el controlador se ha iniciado completamente se paran
aquellos moédulos.

osgi>ss simple
"Framework is launched"

id State Bundle

223 ACTIVE
org.opendaylight.controller.samples.simpleforwarding_0.5.0.SNAPSHOT

osgi>

osgi>stop 223
osgi>ss load

"Framework is launched."
id State Bundle

58

14

15
16

17
18
19

[SLE N I M

B. Configuracién del entorno de trabajo Seccion B.3

181 ACTIVE

org.opendaylight.controller.samples.loadbalancer.northbound_0.5.0.SNAPSHOT

212 ACTIVE org.apache.commons.fileupload_1.2.2

267 ACTIVE
org.opendaylight.controller.samples.loadbalancer_0.6.0.SNAPSHOT

osgi>

osgi>stop 267

Una vez se han parado estos médulos se puede proceder a instalar y activar el nuevo
modulo desarrollado. Para poder ver los logs que se incluyen en el cédigo adecuadamente
es necesario activarlos en el controlador.

install file:/home/jorge/Escritorio/sdnproreactdefense/target/
sdnproreactdefense-0.1. jar

setLoglevel es.unizar.disco.sdnproreactdefense.PacketHandler trace

start (id bundle)

A continuacion se tiene que iniciar Mininet simulando la topologia de red, en este
caso se ha decidido por una topologia sencilla en la que todos nodos estan conectados
directamente al switch. De los nueve nodos simulados, dos actian como servidor, cuatro
como clientes y tres como atacantes.

sudo mn --controller=remote,ip=127.0.0.1 --topo single,9 --mac --arp --switch=
ovsk,protocol=0penFlowl3

Una vez encendidos todos los nodos, en primer lugar se inician los servidores web en
el nodo hl y h2.

sudo http-server 80

Posteriormente, en los demds nodos se abre un zterminal y en cada una de las consolas
de cada equipo se anade la ruta ARP a la direccién publica del servidor.

arp -s 10.0.0.100 00:00:00:00:00:64

Segun si el nodo es un nodo legitimo o un nodo atacante se ejecutara un script de Python
distinto. Si se trata de un cliente legitimo se ejecuta Traffic.py, si por el contrario es un
atacante se ejecuta DDoS.py. Ambos archivos han sido programados para evaluar el
sistema. Con todo esto ya estard conectada la topologia simulada de Mininet con el
controlador OpenDayLigth y todos los nodos simulados funcionando correctamente.

Finalmente tras completar cada prueba se puede observar la tabla OpenFlow del
switch para analizar lo sucedido.

sudo ovs—ofctl -0 OpenFlowl3 dump-flows sl

59

Seccién B.3 B. Configuracion del entorno de trabajo

Adicionalmente el cédigo cuenta con un thread encargado de escribir en el log cada
segundo todos los datos correspondientes de cada flujo del switch de modo que el fichero
de log se procesa y se obtienen los datos de los flujos y los servidores.

awk ’/ @/ {printf "Ys, %s, %s, %s\n",$2,$9,$11,$13}’ /home/jorge/Escritorio/log >
/home/jorge/Escritorio/Resultados/packets

awk ’/ #/ {printf "Y%s, %s, %s\n",$2,$9,$11}’ /home/jorge/Escritorio/log> /home/
jorge/Escritorio/Resultados/server_state

60

