
Repositorio de la Universidad de Zaragoza – Zaguan http://zaguan.unizar.es

Trabajo Fin de Grado

Defensa proactiva y reactiva ante ataques DDoS en
un entorno simulado de redes definidas por

software

Autor

Jorge Paracuellos Cortés

Director

Ricardo J. Rodriguez

Escuela de Ingeniería y Arquitectura / Universidad de Zaragoza

2016

DECLARACIÓN DE
AUTORÍA Y ORIGINALIDAD

TR
A

B
A

JO
S

D
E

FI
N

 D
E

G
R

A
D

O
 /

 F
IN

 D
E

M
Á

ST
ER

(Este documento debe acompañar al Trabajo Fin de Grado (TFG)/Trabajo Fin de
Máster (TFM) cuando sea depositado para su evaluación).

D./Dª. __,

con nº de DNI ______________________ en aplicación de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, del Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG y TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Máster)

___, (Título del Trabajo)

__,

es de mi autoría y es original, no habiéndose utilizado fuente sin ser citada

debidamente.

Zaragoza, ____________________________________

Fdo: __________________________________

Jorge Paracuellos Cortés

76972569 X

Grado

Defensa proactiva y reactiva ante ataques DDoS en un entorno simulado de
redes definidas por software.

8 de Abril de 2016

Jorge Paracuellos Cortés

Defensa proactiva y reactiva ante ataques DDoS en un entorno simulado de
redes definidas por software

RESUMEN

Las redes definidas por software (Software Defined Networking, SDN) presentan un cam-
bio de paradigma para las redes de comunicaciones debido a la separación del plano de
control y de datos, que abstrae el elemento hardware del elemento software y dispone
de un elemento central (controlador) que gestiona la red de manera centralizada. Es
una arquitectura de red flexible, gestionable, adaptativa y económica, siendo ideal para
soportar cualquier aplicación que se desarrolle hoy en d́ıa. Este controlador, de hecho,
proporciona al sistema una capa de abstracción que facilita la creación de nuevos servicios
de red y aplicaciones. En este trabajo se ha seleccionado el controlador OpenDayLight
por su popularidad y sus caracteŕısticas, tras analizar varios controladores de código
abierto.

Paralelamente a este cambio de paradigma, los ataques orientados a Internet, y espe-
cialmente los ataques de denegación de servicio (Distributed Denial of Service, DDoS),
siguen sucediéndose. Los ataques DDoS tratan de agotar los recursos del sistema con-
sumiendo el ancho de banda. En este Trabajo de Fin de Grado, se han estudiado los
diferentes tipos de ataques DDoS, centrándose posteriormente en uno de los más comu-
nes, flooding sobre el protocolo HTTP.

Tomando en consideración estos aspectos, en este TFG se ha desarrollado un mecanis-
mo de defensa proactiva, que rejuvenece las replicas periódicamente, independientemente
del estado en que se encuentren, y reactiva, que actúa cuando se produce la detección
de una amenaza, ante ataques DDOS sobre un controlador de SDN en un entorno de
red simulado (concretamente, por Mininet). El escenario de trabajo propuesto supone
un servidor web que se encuentra distribuido en distintos nodos (gracias al uso de SDN),
de modo que ante un ataque DDoS tolera la indisponibilidad de ciertos nodos. De este
modo, se pretende mostrar una idea del funcionamiento de redes SDN en un entorno
real y su potencial para contrarrestar ataques DDoS asegurando la calidad de servicio.
Por último, se han realizado pruebas experimentales para demostrar su funcionamiento
ante diferentes escenarios de ataque. Los resultados muestran que la defensa propuesta
proporciona una capa de seguridad adicional al sistema que es capaz de mitigar los ata-
ques DDoS. El código desarrollado se ha liberado para su utilización y para garantizar
la reproducibilidad de los resultados obtenidos.

Proactive and reactive defense against DDoS attacks in a simulated SDN
environment

ABSTRACT

Software Defined Networks (SDN) have emerged as a new paradigm for communica-
tion networks. SDN decouple the control plane from data plane and separate hardware
layer from software layer. SDN provides a flexible, manageable, adaptative, and econo-
mic network architecture, becoming an excellent choice for supporting complex network
applications currently deployed by numerous telco companies. SDN features a central
device (named controller) that manages the network in a central form. The controller
provides an abstraction layer to facilitate the creation of new network services and ap-
plications. In this project, we selected OpenDayLight among other open-source SDN
controllers OpenDayLight controller because of its popularity and its capabilities.

SDN is gaining in popularity during recent years, being adopted by well-known web-
scale providers as Google, Amazon, Facebook and Microsoft or communication service
providers as AT&T, CenturyLink, NTT, among others. Similarly, Distributed Denial-
of-Service (DDoS) attacks show also an increase trend. DDoS attacks attempt to drain
the system’s resources to disrupt the normal operation of the system, thus leading to
unavailability of services. In this work, various types of DDoS attacks were studied and
HTTP flooding attacks were chosen as the most representative DDoS attack.

In this work, we propose a defense mechanism against a DDoS attack integrated in
a SDN controller. Our mechanism performs a proactive and reactive defense in different
time intervals. We consider a system that provides a web service using a SDN composed
of different nodes (servers) that are replicated to guarantee a quality of service. A server
can be up or down. Proactive defense rejuvenates nodes periodically, regardless of their
state. Reactive defense acts only when a threat is detected, leading the node under
attack to down state and its replica to up state. We have conducted experimentation
on different scenarios to prove how the proposed defense mechanism ensures the quality
of service while mitigating a DDoS attack. The source code of the defense mechanism,
developed within OpenDayLight framework, is released for general use and to allow
others to reproduce experiments.

Índice

Índice de Figuras VI

Índice de Tablas VIII

1. Introducción 1
1.1. Contexto . 1
1.2. Motivación . 2
1.3. Objetivos del proyecto . 2
1.4. Estructura del documento . 3

2. Conocimientos previos 5
2.1. Software Defined Network . 5

2.1.1. Arquitectura y elementos de SDN 6
2.2. Protocolo OpenFlow . 7
2.3. Open vSwitch . 9
2.4. Mininet . 10
2.5. Ataques de denegación de servicio . 10
2.6. El Lenguaje Unificado de Moledado (UML) 11
2.7. Método de Montecarlo . 12

3. Trabajo relacionado 13
3.1. Vulnerabilidades SDN . 13
3.2. Mecanismos proactivos . 13
3.3. Mecanismos reactivos . 14
3.4. Mecanismos proactivos y reactivos . 14

4. Caracterización del escenario 15
4.1. Controladores SDN . 15

4.1.1. Controladores comerciales . 15
4.1.2. Controladores de código abierto . 16
4.1.3. Arquitectura OpenDayLight . 18

4.2. Ataques de denegación de servicio: Clasificación 20
4.2.1. Denegación de servicio basada en inundación 20
4.2.2. Denegación de servicio basada en reflexión 21

iii

ÍNDICE ÍNDICE

4.2.3. Denegación de servicio basada en amplificación 21
4.3. Mecanismos de defensa ante DDoS . 21

4.3.1. Prevención . 21
4.3.2. Detección . 22
4.3.3. Identificación del origen . 22
4.3.4. Mitigación . 23

5. Arquitectura del Sistema 25
5.1. Despliegue . 25
5.2. Explicación formal . 26
5.3. Funcionamiento . 27
5.4. Implementación del mecanismo de defensa y limitaciones 32

5.4.1. Diagrama de clases . 32
5.4.2. Diagramas de secuencia . 34

5.5. Disponibilidad . 38

6. Evaluación y resultados 39

7. Conclusiones 45

Acrónimos 53

A. Horas de trabajo 55

B. Configuración del entorno de trabajo 57
B.1. Configuración de Mininet . 57
B.2. Configuración controlador OpenDayLight 58
B.3. Configuración escenario de pruebas . 58

iv

Índice de Figuras

2.1. Arquitectura de capas en SDN (extráıdo de [Cis11]). 6
2.2. Elementos de SDN (extráıdo de [Net12]). 7
2.3. Componentes de Open vSwitch (extráıdo de [CSD14]). 10

4.1. Arquitectura OpenDayLight (extráıdo de [Ope16a]). 19

5.1. Diagrama de despliegue. 26
5.2. Diagrama del sistema. 27
5.3. Relación entre el intervalo temporal reactivo y proactivo. 27
5.4. Diagrama de máquina de estados del Controlador. 28
5.5. Diagrama de máquina de estados del Switch. 29
5.6. Diagrama de máquina de estados de los equipos. 30
5.7. Diagrama de secuencia del sistema. 31
5.8. Diagrama de secuencia del proceso de recuperación. 31
5.9. Diagrama de clases de la implementación. 33
5.10. Diagrama de secuencia del sistema implementado. 35
5.11. Diagrama de secuencia del mecanismo de defensa executeDefense(). 36

6.1. Topoloǵıa de la red de pruebas simulada. 40
6.2. Comparativa tiempos de servicio con el mecanismo de defensa desactivado. 40
6.3. Comparativa tiempos de servicio con el mecanismo de defensa activado. . 41
6.4. Funcionamiento del sistema ante ataques DDoS. 42

A.1. Diagrama de Gantt. 55

vi

Índice de Tablas

4.1. Tabla comparativa controladores. 17

A.1. Duración de cada tarea. 56

viii

Caṕıtulo 1

Introducción

En este primer caṕıtulo se presentan los conceptos fundamentales que se trabajan a
lo largo de la memoria. En primer lugar, se ponen en contexto las redes definidas por
software (Software Defined Networking, SDN) aśı como los ataques de denegación de
servicio distribuidos (Distributed Denial of Service, DDoS). Una vez mostrada el área
de aplicación, se presentan las motivaciones de este proyecto y los objetivos a alcanzar.
Finalmente, se describe brevemente la organización y contenido de la memoria para
ayudar al lector a ubicar con claridad los caṕıtulos.

1.1. Contexto

Este proyecto está relacionado con la nueva arquitectura de red en desarrollo desde
hace tres años denominada Software Defined Networks (SDN) [FRZ13]. Esta arquitectura
separa la capa de control y la capa de datos por medio de un elemento que actúa como
núcleo de la red, denominado controlador. La separación entre las capas es necesaria ante
el gran crecimiento de las redes de comunicaciones, ya que se debe operar de una manera
dinámica ante los eventos que ocurran y esto no es posible con redes tradicionales donde
el comportamiento de los dispositivos depende de su configuración previa.

En segundo lugar, se debe tener en cuenta el constante aumento de ataques
DDoS [ZJT13] que se están produciendo cada vez con mayor frecuencia. Por ejemplo,se
observó un aumento del 60 % entre 2009 y 2010 [Arb10]. La seguridad de todo sistema
garantiza cuatro requisitos: autenticación, integridad, confidencialidad y disponibilidad
del sistema. Un ataque de denegación de servicio distribuido es un intento de provocar la
saturación o fallo de un servicio online enviando tráfico inservible desde múltiples oŕıge-
nes. Los ataques DDoS presentan una gran amenaza para la disponibilidad de servicios
cŕıticos [Gar00], que se ven totalmente degradados a causa de estos ataques y además
pueden ocasionar pérdidas de negocio u otras catástrofes [SSKS10].

1

Sección 1.2 1. Introducción

1.2. Motivación

Se ha decidido utilizar SDN como arquitectura para este trabajo en primer lugar
por la gran apuesta que está realizando la industria para adoptar esta tecnoloǵıa en sus
nuevas redes de comunicaciones [Cis11]. En segundo lugar, presenta beneficios teóricos
y técnicos ya que requiere poca inversión inicial, proporcionando un ahorro de costes y
una mayor agilidad de red.

Por otro lado, el creciente aumento de ataques DDoS para intentar desestabilizar
e incluso minar la capacidad de respuesta de los servicios ofrecidos por las redes de
comunicaciones llevan a las grandes corporaciones del sector a buscar nuevas técnicas o
mecanismos para asegurar la demanda ante estos escenarios de ataque.

Estas necesidades presentan un contexto idóneo para pensar en la evolución de las
redes de comunicaciones actuales aplicando un mecanismo de defensa sobre las mismas,
siendo SDN una de las soluciones con mayor relevancia a d́ıa de hoy. SDN ya ha tenido
casos de éxito real que prometen las previsiones teóricas [Goo12] o casos más concretos
para grandes redes multimedia [Ver12].

1.3. Objetivos del proyecto

El objetivo de este proyecto es estudiar los ataques de denegación de servicio y diseñar
un mecanismo de defensa contra ellos en una arquitectura de red sobre SDN. El proceso
que se ha seguido es el siguiente:

Estudiar qué es una SDN y cómo funciona.

Estudiar los diferentes tipos de controladores para SDN.

Estudiar los diferentes tipos de ataques DDoS y sus mecanismos de detección.

Diseñar con UML e implementar en Java un mecanismo de defensa proactivo y
reactivo que evite la amenaza.

Experimentar la defensa en un entorno controlado.

Evaluar el alcance de la solución y su viabilidad.

Este proceso ha dado como resultado un modelo teórico para el mecanismo de de-
fensa proactivo y reactivo, implementado como prototipo sobre el controlador de SDN
OpenDayLight [Ope16a] y el simulador de redes Mininet [Min15]. Un sistema reactivo
mantiene una continua interacción con su entorno de tal forma que responde ante los
est́ımulos externos en función de su estado. Por el contrario, un sistema proactivo es
aquel que interacciona periódicamente independientemente de los eventos que sucedan.
Con este prototipo se ha podido evaluar la viabilidad de la defensa propuesta en diferen-
tes escenarios de ataque DDoS. Se han obtenido resultados satisfactorios de modo que
se ha demostrado que el prototipo de mecanismo de defensa funciona correctamente.

2

1. Introducción Sección 1.4

1.4. Estructura del documento

El presente documento está dividido en dos partes: la memoria, donde se explica el
desarrollo del trabajo de fin de grado; y los apéndices, donde se ampĺıa la información
de ciertos puntos relevantes.

El Caṕıtulo 2 define los conocimientos previos necesarios para comprender este tra-
bajo en su totalidad. El Caṕıtulo 3 muestra los trabajos relacionados con este TFG.
El Caṕıtulo 4 explica las diferentes posibilidades sobre las que centrar dicho proyecto
respecto a los tipos de ataques DDoS y sus mecanismos de defensa, aśı como de los
controladores de SDN. El Caṕıtulo 5 explica el mecanismo de defensa tanto a nivel
conceptual como su implementación. El Caṕıtulo 6 muestra y analiza los resultados ob-
tenidos y finalmente, en el Caṕıtulo 7 se exponen las conclusiones obtenidos con este
TFG.

Respecto a los anexos, el Apéndice A es donde se hace balance del esfuerzo invertido
en este TFG. Por último, el Anexo B detalla la configuración necesaria del sistema para
poner en marcha los escenarios y poder realizar las pruebas. El código correspondiente
a la implementación puede encontrarse en Bitbucket.

https://bitbucket.org/Nessaji/sdnproreactdefense

3

https://bitbucket.org/Nessaji/sdnproreactdefense

Sección 1.4 1. Introducción

4

Caṕıtulo 2

Conocimientos previos

En este caṕıtulo se describe con mayor detalle el entorno sobre el que se desarrolla
el TFG. En concreto: qué es una SDN; el protocolo OpenFlow; aśı como el software
Open vSwitch y Mininet; qué es un ataque DDoS; el lenguaje de modelado de sistemas
de software (Unified Modeling Language, UML);y finalmente el método de Montecarlo
utilizado para realizar las pruebas.

2.1. Software Defined Network

Las redes definidas por software son un concepto que actualmente se encuentra en
desarrollo y expansión. Sin embargo, el concepto en śı lleva años evolucionando hasta
alcanzar el punto en el que se encuentra hoy en d́ıa [FRZ13, KREV+15].

Este tipo de redes trata de separar de una manera independiente el plano de control
(software) del plano de datos (hardware que se encarga de la conmutación de los paque-
tes) tal y como se observa en la Figura 2.1, consiguiendo con esto redes programables,
automatizadas y adaptables a las necesidades y problemas futuros. Se debe diferenciar
que las redes tradicionales deterministas en las que el comportamiento de los dispositivos
depende de su configuración previa van a evolucionar a una arquitectura de red dinámica
con una interfaz de programación en la que un software gobierna su comportamiento.

Una de sus principales caracteŕısticas es su gestión centralizada gracias al uso de
un controlador que mantiene una visión global tanto de la red como del contenido de
la misma, de modo que tiene la capacidad de modificar, eliminar o añadir flujos de
datos según necesidades. Una de las ventajas es que se implementa bajo estándares
abiertos de modo que no depende de protocolos propietarios o dispositivos de proveedores
espećıficos. Además, dentro de la arquitectura SDN se puede programar directamente
sobre la arquitectura de red utilizando módulos software instalados en el controlador, lo
que permite agilizar los procesos de administración y configuración.

5

Sección 2.1 2. Conocimientos previos

Figura 2.1: Arquitectura de capas en SDN (extráıdo de [Cis11]).

2.1.1. Arquitectura y elementos de SDN

Toda arquitectura de SDN [SNK12] se basa en un elemento central, el controlador,
que se encarga de comunicar las capas de control y aplicación mediante el uso de dos
APIs: la NorthBound API y la SouthBound API. NorthBound API es la encargada de
interpretar las aplicaciones y establecer la comunicación con el controlador, mientras que
la SouthBound API se encarga de comunicar el hardware con el controlador de manera
transparente e independiente del elemento hardware que se encuentra debajo. Se puede
observar en la Figura 2.2 cómo funcionan dichas API entre el plano de control y de
aplicación, teniendo al controlador en un punto intermedio.

Aśı pues, los elementos más importantes son:

Controlador: Como ya se ha descrito, el controlador [sdx13] es el elemento cen-
tral y más importante de la arquitectura. Además de que se permite replicar el
controlador, se pueden utilizar varios controladores para diferentes dominios de
modo que hacen las redes SDN mucho más escalables y seguras [KRV13]. Uno de
los puntos fuertes de la arquitectura SDN es que se pueden incluir nuevos módulos
en el núcleo del controlador según las necesidades del sistema.

SouthBound API: Se encarga de la comunicación entre el controlador y los
elementos de la red. Permite hacer cambios dinámicos en todos los elementos de
la red para adaptarse a las necesidades en tiempo real por parte de los usuarios.
Existen varios tipos de soluciones a esta problemática pero el que está tomando
mayor relevancia en la actualidad es OpenFlow [Ope15b].

6

2. Conocimientos previos Sección 2.2

Figura 2.2: Elementos de SDN (extráıdo de [Net12]).

NorthBound API: Se encarga de facilitar la comunicación entre el core del con-
trolador con nuevas APIs o aplicaciones. Gracias a la presente arquitectura de SDN
las aplicaciones pueden incluir nuevas funcionalidades de red más potentes como
es el caso del mecanismo de defensa propuesto en este trabajo.

2.2. Protocolo OpenFlow

Según la definición dada por ONF [Ope15b], OpenFlow es la primera interfaz de co-
municación definida entre la capa de transporte y la capa de control en una arquitectura
SDN. Es decir, OpenFlow permite la manipulación y monitorización de los elementos
del plano de control, como switches o routers.

La solución de OpenFlow [Ope15c] consiste en separar distintos tipos de tráfico dentro
de switches y routers teniendo en cuenta sólo el transporte de datos. Una de sus carac-
teŕısticas principales es la utilización de tablas de flujo como las que ya implementan
los switches convencionales. Todos los tipos de switches, aún dependiendo del fabricante,
suelen contar con tablas Network Address Translation (NAT), tablas del firewall o tablas
QoS. OpenFlow pretende explotar las caracteŕısticas comunes entre todas ellas.

El controlador y el switch se comunican entre śı a través del protocolo OpenFlow
mediante un conjunto de mensajes predefinidos de modo que sea capaz de monitori-
zar y gestionar los paquetes recibidos, los paquetes enviados, modificar las tablas de

7

Sección 2.2 2. Conocimientos previos

encaminamiento y la identificación de estados.

La ruta de datos de un switch OpenFlow está definida según una tabla de flujos
que contiene algunos campos de la cabecera de los paquetes y una acción a realizar con
dicho paquete (parecido a las reglas de un firewall). Si un switch recibe un paquete
desconocido, para el cual no tiene entradas en su tabla de flujo coincidentes, reenv́ıa el
paquete al controlador para que éste tome la decisión sobre cómo gestionar el paquete.
Esta funcionalidad es vital en este proyecto porque es una de las caracteŕısticas más
importantes para el desarrollo del mecanismo de defensa propuesto: el controlador es
capaz de interrumpir los flujos de datos tras detectar un ataque de manera reactiva y
reiniciar dichos flujos cada cierto tiempo de una manera proactiva.

Por lo tanto, OpenFlow permite desplegar una estrategia de reenv́ıo de paquetes
diferente a todo lo conocido e implementar protocolos de comunicación de red de forma
centralizada y global. Por ejemplo, OpenFlow se está utilizando para aplicaciones tales
como redes de nueva generación y redes de alta seguridad [Ben13].

Componentes de OpenFlow

OpenFlow utiliza principalmente dos componentes:

1. Switch: Es el encargado de procesar los paquetes de acuerdo a las reglas definidas
previamente por el controlador. Estas reglas son instaladas en la propia tabla de
flujo del switch.

2. Controlador: Elemento principal y más importante de una red SDN y OpenFlow,
es capaz de evaluar el estado de toda la red y añadir o eliminar flujos de los swit-
ches OpenFlow, según las aplicaciones instaladas en el controlador. Está conectado
directamente con todos los switches que dependen de él mediante una comunica-
ción segura TCP bajo TLS. Un controlador puede ser una aplicación simple que
tan sólo añade flujos de forma sistemática o bien una aplicación compleja que
tiene instalados varios módulos que reaccionan de forma dinámica ante distintas
situaciones de estado de la red, siendo un elemento transparente para el usuario
final. Se pueden tener más de un controlador en una red SDN, y aunque esto crea
una situación mucho más compleja para gestionar, es menos vulnerable ante un
fallo en el controlador al eliminar el problema de punto único de fallo. Además, el
controlador puede encontrarse en un dispositivo remoto diferente si es necesario.

Tablas de flujo

Una tabla de flujo está compuesta por un conjunto de entradas [Ope15a], siendo
relevantes para este proyecto:

Match Fields: comprueba que el paquete coincide con esta entrada de flujo,
comprobando el puerto de entrada del paquete aśı como las cabeceras del mismo.

Prioridad: prelación de coincidencia con una entrada anterior.

8

2. Conocimientos previos Sección 2.3

Contador: Existe un gran número de contadores posibles, los más relevantes son
aquellos relacionados con el número de entradas y con los puertos.

Instrucciones: modificación del conjunto de acciones a realizar con dicho paquete
cuando el proceso de coincidencia es satisfactorio. Las instrucciones más impor-
tantes son aquellas que escriben o borran acciones para cada entrada de flujo.

Timeouts: existen dos tipos de timeouts definidos para cada entrada de flujo:

1. IdleTimeOut : tras la ausencia de paquetes coincidentes con dicho flujo en
un intervalo de tiempo definido, el flujo es eliminado.

2. HardTimeOut : siempre que transcurra un intervalo de tiempo, el flujo será
eliminado de la tabla a menos que el controlador env́ıe una actualización del
intervalo temporal o modifique su comportamiento.

Cookie : dato seleccionado por el controlador que sirve para filtrar las estad́ısticas
de flujos, eliminarlos o modificarlos.

2.3. Open vSwitch

Open vSwitch [Ope14] es un software con licencia de código abierto Apache 2.0.
Este software fue desarrollado para ser utilizado como un switch virtual en entornos de
servidores virtualizados, de modo que se encarga de reenviar el tráfico entre diferentes
máquinas virtuales en el mismo equipo f́ısico y a su vez entre las propias máquinas
virtuales y la red f́ısica. Open vSwitch soporta múltiples tecnoloǵıas de virtualización
basadas en Linux como VirtualBox o VMWare, y también se ha integrado en sistemas
de gestión virtual como OpenStack [Ope16b].

Open vSwitch tiene principalmente dos componentes que se pueden diferenciar en la
Figura 2.3:

Ovs-vswitchd: Demonio1 que implementa todas las funcionalidades del switch.
Está formado por un módulo del kernel de Linux para la conmutación basada en
flujos.

Ovsdb-server: Base de datos ligera donde se almacenan los parámetros de confi-
guración del switch y que éste consulta para obtener su configuración.

Los principales motivos por los se ha optado por utilizar el software Open vSwitch
durante la realización de este proyecto son: i) su licencia de código abierto; ii) su com-
patibilidad completa con el protocolo OpenFlow en su versión 1.0 y posteriores; y iii) su
perfecta integración con el software Mininet.

1Nomenclatura utilizada en GNU/Unix que hace referencia a un tipo especial de proceso informático
no interactivo, es decir, que se ejecuta en segundo plano en vez de ser controlado directamente por el
usuario.

9

Sección 2.4 2. Conocimientos previos

Figura 2.3: Componentes de Open vSwitch (extráıdo de [CSD14]).

2.4. Mininet

Mininet es un emulador de redes de código abierto capaz de crear una red de comu-
nicaciones virtual compuesta por equipos, switches, controladores y enlaces. Los equipos
de Mininet ejecutan el kernel de redes básico de Linux y los switches son capaces de
ejecutar el protocolo OpenFlow consiguiendo un enrutamiento personalizado altamente
flexible y escalable. Mininet aśı permite realizar una topoloǵıa de red personalizada sin
la necesidad de un potente hardware.

Su página web [Min15] facilita la familiarización con el programa ya que cuenta con
extensos tutoriales y una gran cantidad de información de cómo funciona este software.

2.5. Ataques de denegación de servicio

Los ataques de denegación de servicio tienen como objetivo impedir la disponibilidad
de un servicio (o activo) mediante el agotamiento de los recursos del sistema. Cuando
son originados desde distintos oŕıgenes reciben el nombre de ataques de denegación de
servicio distribuidos (en inglés Distributed Denial of Service attacks, DDoS). Debido a su
mayor capacidad de provocar daño, estos últimos son los más populares en la actualidad
y a menudo usados por redes ajenas controladas por ciber-criminales [LJP+08]. Normal-
mente, los ataques DDoS logran sus objetivos mediante el env́ıo masivo de información,
intentando ocupar la mayor parte del ancho de banda de la red en la que se encuentra
el objetivo del ataque. Esto limita sustancialmente el acceso a sus recursos provocando
graves problemas de disponibilidad.

10

2. Conocimientos previos Sección 2.6

Estos ataques requieren pocos conocimientos para su ejecución y su éxito depende
de los recursos del sistema atacado y de la cantidad de nodos desde donde se origina el
ataque. Existen también otros tipos de ataques de denegación de servicio que no necesitan
el env́ıo masivo de información, sino que intentan inyectar paquetes de datos capaces
de comprometer alguna vulnerabilidad de la v́ıctima, como por ejemplo el popularmente
conocido como “ping de la muerte”. En [PLR07] se muestra en detalle estos casos y otros
ejemplos.

2.6. El Lenguaje Unificado de Moledado (UML)

El Lenguaje Unificado de Modelado UML [RJB04] es un lenguaje estándar gráfico
destinado al modelado de sistemas tanto de hardware como de software. UML actual-
mente es promovido por Object Management Group y es un estándar ISO. El lenguaje
UML permite abstraerse del lenguaje para el que se desarrolla, proporcionando sopor-
te para cada etapa de desarrollo a través del modelado completo de vida del sistema.
El modelo es esencial en la definición y diseño del software que se quiere desarrollar,
por ello se debe hacer hincapié en lograr un modelo congruente que facilite el posterior
desarrollo.

UML define trece tipos distintos de diagramas que sirven para describir diferentes
vistas de un modelo que necesita ser caracterizado, enfocado desde el paradigma Orien-
tado a Objetos (OO). Para enumerarlos de una manera ordenada es mejor organizarlos
por categoŕıas:

1. Diagramas de estructura: clases, componentes, objetos, estructura compuesta,
despliegue y paquetes.

2. Diagramas de comportamiento: actividades, casos de uso y estados.

3. Diagramas de interacción: secuencia, comunicación, tiempos y vista de inter-
acción.

Aquellos que se han empleado en este proyecto y han sido más relevantes son el
Diagrama de secuencia y el Diagrama de estados.

Diagrama de secuencia

Un diagrama de secuencia muestra las clases o componentes que forman parte del
sistema aśı como las llamadas que se realizan en cada uno de ellos para llevar a cabo
distintas tareas. Los diagramas de secuencia definen las acciones que se pueden realizar
en la aplicación. Un diagrama de secuencia contiene ĺıneas de vida, mensajes y objetos.
Los mensajes se representan con ĺıneas continuas con una punta de flecha en el extremo,
los objetos se representan como rectángulos y el tiempo se representa con una progre-
sión vertical; es decir, aquello que se encuentra más arriba en el diagrama sucede con
anterioridad. Los mensajes pueden ser simples, śıncronos o aśıncronos. Un mensaje sim-
ple es aquel que produce una transferencia de control de un objeto a otro. Un mensaje

11

Sección 2.7 2. Conocimientos previos

śıncrono es cuando el objeto receptor se encuentra esperando el mensaje para continuar
sus acciones. Finalmente, un mensaje aśıncrono es aquel donde el objeto no espera la
respuesta para continuar.

Diagrama de estados

Un diagrama de estados modela la vida de un objeto mediante una máquina de
estados. Cada objeto cuenta con su propio diagrama de estados de modo que se puede
referenciar desde un objeto a otro distinto. Este tipo de diagramas muestra el flujo de
control entre estados; es decir, en qué estados posibles puede estar el objeto y cómo se
producen los cambios entre dichos estados. Un diagrama de estados contiene estados,
eventos y transiciones. Un estado es una situación en la vida de un objeto durante la
cual satisface una condición, realiza alguna actividad o espera algún evento. Un evento
es la representación de un acontecimiento significativo que ocurre en el tiempo. Una
transición es una relación entre dos estados e indica que un objeto que esté en el primer
estado realizará ciertas acciones y entrará en el segundo estado cuando ocurra un evento
especificado y se satisfagan unas condiciones impuestas en la transición.

2.7. Método de Montecarlo

El método de Montecarlo [SS77] es un método no determinista que permite resolver
problemas mediante la simulación de variables aleatorias. En este proyecto se ha utilizado
para realizar evaluaciones de los distintos escenarios configurados.

12

Caṕıtulo 3

Trabajo relacionado

En este caṕıtulo se presentan los trabajos relacionados con el TFG en categoŕıas según
su temática principal.

3.1. Vulnerabilidades SDN

En [EAJ+] y [KRV13] se presentan las vulnerabilidades que puede sufrir una arqui-
tectura SDN aśı como algunos de los mecanismos que se pueden implementar a nivel de
software para resolverlos. En [AL14] también se realiza un estudio de las vulnerabilidades
de SDN y se propone un mecanismo de mitigación mediante técnicas de machine lear-
ning. En [LHK+14] se presenta una aplicación sobre un controlador SDN que permite la
detección de ataques DDoS cuando se realizan desde redes de equipos infectados y cómo
la arquitectura SDN facilita su mitigación. Por último, [RH15] presenta un rootkit que es
capaz de instalarse en el sistema operativo de la arquitectura SDN sin ser detectado de tal
forma que es capaz de espiar todas la comunicaciones que se realizan en la red. Además,
está implementado para el controlador utilizado en este proyecto,OpenDayLight (véase
Sección 4.1.2).

3.2. Mecanismos proactivos

En [PDBAA15] se presenta una aplicación para SDN que es capaz de establecer co-
municaciones cŕıticas fiables. Utiliza un mecanismo proactivo que sirve para resolver la
problemática de un tráfico multicast robusto de modo que es capaz de soportar múlti-
ple cantidad de fallos del sistema. Otro ejemplo de mecanismos proactivos es [HBPG15]
donde se presenta un mecanismo proactivo aplicado a la gestión masiva de datos centra-
lizada.

13

Sección 3.3 3. Trabajo relacionado

3.3. Mecanismos reactivos

Una parte importante de los trabajos previos relacionados con este TFG están es-
trechamente relacionados con la implementación de mecanismos de defensa reactivos
utilizando distintas técnicas, como es el caso de [KKSG] donde se presenta un mecanis-
mo de defensa para SDN en el que se desarrolla un firewall a nivel de aplicación. Este
es capaz de actuar desde la capa f́ısica hasta la capa de aplicación ampliando las carac-
teŕısticas de un firewall común. En [LWLP15] se presenta un mecanismo de defensa para
evitar ataques DDoS (Distributed Denial of Service) similar a este proyecto. Sin embar-
go, tan sólo hacen uso de poĺıticas reactivas para mitigar los ataques DDoS —aunque
a cambio también se desarrolla un sistema de detección más sofisticado. En [MDC+14]
se presenta un mecanismo de defensa reactivo para múltiples tipos de ataques DDoS.
Otro caso de uso es [BMP10], donde se presenta un mecanismo de defensa reactivo capaz
de detectar ataques lightweight DDoS utilizando redes neuronales con una gran tasa de
éxito. En el art́ıculo [SPY+13] se presenta un proyecto mucho más complejo que consiste
en un framework modular utilizado para implementar componentes software de seguri-
dad, añadiendo una nueva capa de abstracción sobre la capa de aplicación. Finalmente
en [WZLH15] se presenta un mecanismo de defensa ante ataques DDoS en arquitecturas
de Cloud Computing y SDN que realiza una implementación de detección de diferentes
tipos de ataques y medidas de mitigación de modo que se puede configurar qué se desea
utilizar.

3.4. Mecanismos proactivos y reactivos

Apenas se encuentran desarrollados proyectos con mecanismos proactivos y reactivos a
la vez, aunque es posible encontrar algunos muy completos como la tesis doctoral [Chu15]
donde se muestra cómo la arquitectura SDN facilita la defensa ante vulnerabilidades que
sufre Cloud Computing aplicando un mecanismo de defensa proactivo y reactivo ante
multitud de amenazas. También se debe destacar [LBZ+14], el cual desarrolla una solu-
ción llamada DrawBridge que consiste en capacitar a los equipos finales con capacidad
para mejorar la ingenieŕıa de tráfico cuando sufren ataques DDoS, de modo que funciona
de manera reactiva y proactiva. Finalmente en el art́ıculo [SBC+10] se presenta un sis-
tema proactivo y reactivo basado en un modelo distribuido h́ıbrido para desarrollar un
sistema replicado tolerante a intrusiones aunque no aplicado a SDN. En este caso se pre-
senta un mecanismo capaz de garantizar un mı́nimo de réplicas disponibles asegurando
aśı el correcto funcionamiento del sistema.

El sistema de defensa propuesto en este proyecto aporta un mecanismo proactivo y
reactivo para mitigar ataques DDoS siendo capaz de gestionar y modificar la arquitectura
de red gracias a SDN en función de las necesidades del servicio.

14

Caṕıtulo 4

Caracterización del escenario

En este caṕıtulo se muestran los diferentes tipos de controladores de SDN aśı como
el motivo de por qué se ha escogido OpenDayLight, los tipos de ataques DDoS y sus
mecanismos de mitigación.

4.1. Controladores SDN

Uno de los elementos principales de la arquitectura SDN es el controlador, núcleo de
la arquitectura del cual depende cómo se comporta la red. Actualmente existen varias
alternativas diferentes de controladores según si son controladores comerciales, o bien
controladores de código abierto. Los más interesantes y relevantes son los controladores
de código abierto, ya que sobre ellos se puede desarrollar libremente y cuentan con un
gran apoyo de la comunidad. Algunos controladores comerciales también están basados
en código abierto, con lo que elegir cuál es el controlador más adecuado para este trabajo
ha sido una tarea muy importante y determinante en el resultado final.

Para este proyecto se necesita un controlador de código abierto que permita el desa-
rrollo de aplicaciones sin coste alguno, se encuentre en fases estables de desarrollo y
además cuenten con una comunidad que de apoyo en la resolución de problemas. Sin
embargo, es necesario realizar un análisis de los diferentes controladores comerciales y
de código abierto más importantes para evaluar sus capacidades, fortalezas y debilidades.

4.1.1. Controladores comerciales

Aunque este tipo de controladores se encuentran en desarrollo en la actualidad, al
igual que los controladores de código abierto, ya se pueden encontrar algunas soluciones
finales ofertadas. Surgen como necesidad de un desarrollo privado frente a los controlado-
res abiertos. Empresas del sector tecnológico como Cisco, NEC o IBM, por ejemplo, son
miembros importantes de algunos controladores de código abierto, que también desarro-
llan sus propias soluciones comerciales. A continuación se describen brevemente algunas
de estas distribuciones comerciales.

15

Sección 4.1 4. Caracterización del escenario

Application Policy Infrastructure Controller [Cis15]. Diseñado por Cisco, es
el controlador para la alternativa de OpenFlow llamada OpFlex. Proporciona una
API central, un repositorio de poĺıticas y un repositorio central de datos globales. A
diferencia de los controladores SDN OpenFlow, APIC funciona de manera diferente
porque no se encarga de encaminar cada flujo de datos, sino que según el estado
de la red, aplica distintas poĺıticas en los elementos de red y son estos los que se
encargan de tomar las decisiones en función de las poĺıticas establecidas.

Virtual Application Networks (VAN) [HP15]. Controlador desarrollado por
HP sobre OpenFlow, su funcionamiento interno está orientado a incluir seguri-
dad en las comunicaciones del controlador con el resto de elementos de la red.
Además, realiza una administración centralizada, tiene capacidad de automatiza-
ción de actividades y otras capacidades inherentes de redes SDN. El esquema que
presenta VAN no es muy diferente al de otros controladores de código abierto como
OpenDayLight.

IBM Software Defined Network for Virtual Environments. Diseñado por
IBM a principios del año 2014. Ofertado como la solución de virtualización de red
añadiendo flexibilidad y adaptabilidad a la demanda del cliente actual, está orien-
tado a proporcionar seguridad a los datos y servicios ofrecidos dentro de la red.
Cuenta con una versión adaptada para OpenFlow pero también funciona indepen-
dientemente utilizando una tecnoloǵıa propia denominada Virtual Environment.

4.1.2. Controladores de código abierto

Entre los controladores de código abierto existen multitud de alternativas (véase la Ta-
bla 4.1), algunas todav́ıa en fase de desarrollo y otras ya son una referencia en el mercado.
En esta sección se describen algunas de ellas según los datos aportados en [KZMB14].

POX [NOX15]. POX es una evolución del controlador NOX, pero desarrollado
sobre Pyhton. POX surgió como una introducción a las SDN de modo que aque-
llos usuarios que quieran comenzar con SDN encuentren un entorno de desarrollo
sencillo y manejable. Cuenta con dos métodos de desarrollo, en un primer lugar
una API basada en Python y en segundo lugar una API en web que utiliza JSON-
RPC. Como muchos otros controladores, cuenta además con una interfaz gráfica
en web desde la cual se puede monitorizar la red y controlar otras operaciones. Sin
embargo, tiene algunos aspectos negativos como que no cuenta con demasiada in-
formación para comenzar desde cero, ni manuales disponibles siendo algo bastante
negativo a la hora desarrollar sobre este controlador.

Floodlight [Pro15]. Floodlight fue la evolución del controlador Beacon. Está desa-
rrollado sobre Java y también posee una interfaz web. Soporta el uso de API REST
y tiene una comunidad de usuarios bastante grande. La comunidad actúa de ma-
nera muy activa en las listas de correo, aspecto muy importante a tener en cuenta.

16

4. Caracterización del escenario Sección 4.1

Pox FloodLight OpenDayLight

Interfaces
SB

(OpenFlow)
SB(OpenFlow) NB

(Java & REST)

SB(OpenFlow &
Others SB Protocolos)

NB,(Java & REST)

Virtualización
Mininet &

Openv Switch
Mininet &

Openv Switch
Mininet &

Openv Switch
GUI Śı Web UI Śı

REST API No Śı Śı
Productividad Medio Medio Alto
Código Abierto Śı Śı Śı
Documentación Escasa Media Media

Lenguaje
Programación

Python
Java + cualquier lenguaje

que utilice REST
Java

Modularidad Media Alta Alta

S.O. Soportado
Linux, Mac Os
and Windows

Linux, Mac Os
and Windows

Linux

Edad 3 años 4 años 2 años
Soporte

OpenFlow
OF v1.0 OF v1.3 OF v1.3

OpenStack
Networking

No Medio Medio

Tabla 4.1: Tabla comparativa controladores.

17

Sección 4.1 4. Caracterización del escenario

Pese a todo esto, presenta algunos inconvenientes como la dependencia de desa-
rrollo de API REST. A lo largo de su tiempo ha ido perdiendo importancia y
actualmente apenas es relevante frente a OpenDayLight. En un primer momen-
to se decidió utilizar este controlador para este trabajo, pero surgieron bastantes
problemas respecto a la configuración y puesta en marcha porque junto con Mi-
ninet hace uso de máquinas virtuales para simular la arquitectura SDN, lo que
conllevaba una gran cantidad de carga para el sistema y numerosos conflictos de
interconexión entre diferentes máquinas debido a las interfaces virtuales de red.

Para elegir el controlador que se ha utilizado durante la realización de este proyecto
se tuvieron en cuenta varios aspectos, desde la comunidad que se encontraba detrás
de cada uno, el lenguaje y APIs que utilizaba cada uno, aśı como su eficiencia y
relevancia en el mundo empresarial. Finalmente tras intentar utilizar Floodlight se
ha optado por OpenDayLight el cual se explica a continuación.

OpenDayLight.OpenDayLight [Ope16a] es el controlador elegido para este pro-
yecto. A modo de resumen se enumeran a continuación sus principales fortalezas:

• Apoyo de la industria con más de 50 miembros implicados, algunos de ellos
de gran importancia como Cisco, Intel o NEC.

• Proyecto de código abierto y bajo el amparo de Linux Foundation.

• Desarrollo completo en Java, con posibilidades de desarrollo de aplicaciones a
través de varias tecnoloǵıas como son API REST o Document Object Model
(DOM).

• Documentación extensa y detallada con una comunidad amplia y muy activa.

• Proyecto en continuo desarrollo.

4.1.3. Arquitectura OpenDayLight

En la Figura 4.1 se encuentra la arquitectura del controlador en su segunda versión
denominada Helium utilizada en este proyecto. Se pueden distinguir tres capas en esta
arquitectura:

Aplicaciones de red e instrumentación: En la capa superior se encuentran las
aplicaciones que se encargan del control y monitorización de la red. Además en
esta capa se pueden encontrar soluciones que hagan uso de diferentes tecnoloǵıas
como es el caso de computación en la nube o servicios de virtualización de red.
En esta capa se encuentran aquellas aplicaciones que computan la ingenieŕıa de
tráficos de la red, aśı como las aplicaciones de seguridad.

Controlador: Se encuentra en la capa central y es donde se manifiestan las abs-
tracciones que proporciona SDN. El controlador cuenta con una serie de módulos
implementados que permiten a las aplicaciones de la capa superior obtener datos
e información sobre el estado de la red, tal y como se hace en el mecanismo de

18

4. Caracterización del escenario Sección 4.1

Figura 4.1: Arquitectura OpenDayLight (extráıdo de [Ope16a]).

defensa propuesto. Además cuenta con una serie de APIs que permiten el desa-
rrollo de las aplicaciones superiores (DOM API, REST API o JAVA), mientras se
implementan varios protocolos que permiten la comunicación con los elementos de
red inferiores (OpenFlow, Path Computation Element Protocol, Simple Network
Management Protocol).

Elementos de red: La capa inferior está compuesta por aquellos elementos de
red que son programables mediante los protocolos implementados por el controla-
dor. Gracias a la capa de abstracción del controlador, se pretende que todos los
elementos sean compatibles con el controlador OpenDayLight independientemente
del fabricante o de si son elementos virtuales o f́ısicos.

El controlador de OpenDayLight está implementado por software, haciendo uso de su
propia máquina virtual de Java. El desarrollo de aplicaciones para OpenDayLight puede
realizarse por diferentes v́ıas gracias a la NorthBound API. Por un lado el controlador
soporta el desarrollo mediante el uso del framework Open Services Gateway Initiative
(OSGi) 14, pero también soporta la comunicación bidireccional usando la REST API.
El uso de la API v́ıa web permite ejecutar aplicaciones que no se encuentran en el
mismo dominio de direcciones que el controlador, mientras que OSGi se usa para aquellas
aplicaciones que śı están en el dominio del controlador como es el caso del mecanismo de
defensa propuesto en este trabajo. El controlador es completamente independiente de los

19

Sección 4.2 4. Caracterización del escenario

elementos de red y protocolos inferiores gracias al uso de la capa de Service Abstraction
Layer (SAL), que se encarga de exponer y trasladar las peticiones de las aplicaciones
de capas superiores hacia abajo, transformando estas peticiones según el protocolo de
comunicación hacia los dispositivos de red.

4.2. Ataques de denegación de servicio: Clasificación

A continuación se muestra una clasificación de los ataques de denegación de servicio.
Únicamente han sido considerados los ataques que, por similitud o por impacto, pueden
llegar a ser relevantes en una arquitectura SDN. El resto quedan fuera del alcance de
este proyecto. En base a estos criterios se han establecido tres conjuntos de ataque:
inundación (que finalmente serán los que se prueben con mayor detenimiento en la fase
de evaluación), reflexión y ampliación. El éxito de un ataque puede depender tanto de
su capacidad de amplificación, como de inundación. A continuación se describe cada uno
de ellos y se motiva por qué se ha elegido estudiar con mayor profundidad el ataque por
inundación.

4.2.1. Denegación de servicio basada en inundación

La denegación de servicio basada en inundación trata de alcanzar sus objetivos por
inyección de grandes volúmenes de tráfico. Ha sido uno de los mayores temas de in-
terés en la actualidad debido a su sencillez de ejecución y la magnitud de su impacto.
En [WCXJ13] se pueden ver las diferentes estrategias para conseguir una inundación
eficaz, como inundaciones de tasa alta y baja. Las primeras consisten en la emisión
de grandes cantidades de tráfico de manera constante y uniforme, o bien de manera
evolutiva que son aquellas en las que se centra este proyecto.

Cuando los ataques de inundación actúan en la capa de red, explotan funcionali-
dades propias de sus protocolos, siendo TCP, UDP, ICMP y DNS los más explotados.
En [DM04] son descritas algunas de sus variantes, siendo la más popular de ellas la inun-
dación SYN, tomada como objeto de estudio para el mecanismo de defensa desarrollado
en este proyecto. Este ataque explota el protocolo TCP y su negociación del inicio de
sesión en tres pasos. Para lograrlo el atacante env́ıa paquetes SYN con direcciones IP
inexistentes o en desuso y cuando el servidor ubica la petición en la memoria, espera a
la confirmación del cliente. Mientras espera, dicha petición sigue almacenada en la pila
de la memoria. Como estas direcciones IP no son válidas, el servidor nunca recibe la
confirmación. De esta manera, el ataque explota el hecho de que cada una de las cone-
xiones abiertas o iniciadas ocupa un espacio de memoria y que se mantiene en ella hasta
un cierto intervalo temporal. Con la pila llena, el servidor leǵıtimo no puede tramitar
nuevas peticiones, denegando el acceso a nuevos usuarios e interrumpiendo el servicio.
Por otro lado, la capa de aplicación ofrece nuevas posibilidades a los atacantes.

En [ZJT13] se trata este tema en mayor profundidad y se distinguen tres conjuntos de
amenazas: las que se basan en inicios de sesión, env́ıos de peticiones y en respuesta lenta
del servidor. Muy similar a la inundación SYN, el primer grupo trata de colapsar las colas

20

4. Caracterización del escenario Sección 4.3

que permiten el acceso de usuarios a los servicios web. En segundo lugar, la inundación
por peticiones consiste en el env́ıo masivo de solicitudes web HTTP (GET/POST) que
el servidor tiene que atender. En último lugar, los ataques de respuesta lenta se basan
en intentar mantener las conexiones HTTP el mayor tiempo posible enviando datos
lentamente, o bien procesando las respuestas con lentitud.

4.2.2. Denegación de servicio basada en reflexión

La inundación basada en reflexión surge de la necesidad de los atacantes de ocultar su
origen de la intrusión. Este tipo de ataques, llamados ataques de denegación de servicio
distribuida y reflejada (del inglés Distributed Reflection Denial of Service, DRDoS),
tratan de aprovechar vulnerabilidades en terceras partes para forzarlas a emitir el tráfico
malicioso.

Un ejemplo de ataque de reflexión se encuentra en los conocidos ataques de smur-
fing [Kum07]. Los ataques smurf son una variante de la inundación SYN que aprovecha
elementos intermedios de la red para enmascarar su origen. En su ejecución, el origen
de los paquetes es reemplazado por la dirección de la v́ıctima. De esta forma consiguen
que todas las máquinas intermedias respondan a la v́ıctima tras recibir su solicitud.

4.2.3. Denegación de servicio basada en amplificación

La inundación basada en amplificación consiste en realizar peticiones a terceras partes
con el objetivo de que las respuestas sean de mayor tamaño que el de las propias peti-
ciones. Estas direcciones falsifican su dirección de retorno de manera que las respuestas,
en lugar de llegar al atacante, llegan a la v́ıctima.

Uno de los elementos de red más aprovechados para lograr la amplificación son los ser-
vidores DNS. Esta vulnerabilidad, denominada amplificación DNS, se discute en detalle
en [AKK+13] donde se identifica como principal causante al hecho de que las consultas
realizadas al servidor se realizan con datagramas con menor cantidad de información
que las respuestas. Se puede amplificar con otros tipos de servidores como es el caso
de [Nol13].

4.3. Mecanismos de defensa ante DDoS

Las distintas técnicas de defensa frente a intentos de denegación de servicio son clasi-
ficadas según el momento del proceso de intrusión en que actúan. Por lo tanto se pueden
agrupar en cuatro tipos de mecanismos: prevención, detección, identificación del origen
y mitigación. A continuación se resumen brevemente.

4.3.1. Prevención

Los mecanismos de prevención son aquellos que actúan antes de que el ataque su-
ceda e independientemente de su detección. Su objetivo es minimizar el daño causado

21

Sección 4.3 4. Caracterización del escenario

por los atacantes. En este proyecto la parte proactiva actúa como prevención porque
periódicamente se reinician los nodos de la red aunque no hayan sufrido un ataque.

4.3.2. Detección

La detección de los ataques es vital para que actúen el resto de los componentes
defensivos. Su eficacia se basa en la proporción de ataques reales que son capaces de
detectar sin equivocarse. Sin embargo, el hecho de que se presente un alto ı́ndice de
acierto no implica que sean de buena calidad. También deben afrontar otros problemas,
como los falsos positivos, la capacidad para procesar en tiempo real y la distinción de
ciertos fenómenos en la red, tales como el conocido “Efecto Menéame”. Este último son
acumulaciones inesperadas de accesos al sistema de forma leǵıtima por usuarios correctos
que habitualmente acarrean errores de detección [ZJW+14].

En la identificación de DDoS son considerados dos paradigmas de los sistemas
de detección de intrusiones: reconocimiento de firmas y anomaĺıas. El reconocimien-
to de firmas se basa en la identificación de patrones de ataques previamente conoci-
dos [TYZM14, SY13, YM05]. Este proyecto no se centra en la detección de patrones, sin
embargo, se ha implementado un sistema simple de detección de patrones para realizar
las pruebas sobre el mecanismo de defensa, dejando abierto una posible mejora en el
módulo de detección. La mayor parte de la comunidad investigadora ha optado por el
desarrollo de sistemas basados en el estudio de anomaĺıas porque el sistema de detección
de patrones dificulta la detección de nuevas amenazas. El reconocimiento de anomaĺıas
implican el modelado del comportamiento habitual y leǵıtimo de un sistema, con el fin de
identificar eventos que difieran de las acciones leǵıtimas. De este tipo de detecciones han
sido propuestas diferentes técnicas, tales como modelos probabilistas basados en Mar-
kov [SNK12], teoŕıa del caos [CMW13], lógica difusa [KS13] o estudio de las variaciones
de la entroṕıa [ÖB15].

4.3.3. Identificación del origen

En la etapa de identificación del origen, la v́ıctima trata de desenmascarar la ruta
del vector de ataque con el fin de señalar a su autor. Este proceso a menudo es muy
complicado, ya que el atacante dispone de diferentes métodos para ocultar su rastro. Es-
tos vaŕıan desde sencillos procesos de suplantación de identidad, hasta atravesar tramos
de redes anónimas. Por lo tanto, llegar hasta el extremo final es una situación id́ılica
que apenas se consigue. Para realizar las pruebas de este proyecto se ha optado por no
ocultar el origen de los equipos que atacan, ya que el mecanismo propuesto actúa sobre
los flujos de datos directamente. Se debe tener en cuenta que aproximar la ubicación
permite la realización de un despliegue defensivo mucho más eficaz ya que no se permite
el tráfico posterior (incluso leǵıtimo) de un atacante [KBP14].

22

4. Caracterización del escenario Sección 4.3

4.3.4. Mitigación

Una vez detectada una amenaza debe procederse a su mitigación. En el caso de la
denegación de servicio, la mitigación consiste en el despliegue de una serie de medidas
que reduzcan el daño causado y, a ser posible, restauren los servicios del sistema compro-
metido. Habitualmente consisten en el incremento de la reserva de recursos disponibles
para la supresión de cuellos de botella [KVF+12] y la actualización de las listas de acceso
y poĺıticas de cifrado.

El mecanismo propuesto en este proyecto es capaz de incrementar la reserva de re-
cursos disponibles en función de las necesidades de la red. La arquitectura SDN permite
desactivar aquellos nodos que se encuentran comprometidos y conectar un nuevo nodo
(backup) en la posición que se encontraba el nodo comprometido. Junto a esto se cuenta
con un mecanismo reactivo que es capaz de eliminar los flujos de datos dañinos en tiempo
real, aśı como bloquear la comunicación con los nodos en los que se detecta un proceso
de ataque hacia el sistema.

23

Sección 4.3 4. Caracterización del escenario

24

Caṕıtulo 5

Arquitectura del Sistema

En primer lugar, en este caṕıtulo se explica cuál es el despliegue de la arquitectura
propuesta donde se implementa el mecanismo de defensa. A continuación, se justifica
el modelo implementado en el mecanismo de defensa y se explica cómo funciona tan-
to conceptualmente (a nivel de diagramas de secuencia y máquinas de estados de los
componentes), como a nivel de implementación.

5.1. Despliegue

El despliegue del sistema se muestra en la Figura 5.1. En un equipo se ha instalado
el sistema operativo Ubuntu 14.04 en su versión más estable y sobre éste se ha insta-
lado Mininet (véase Sección 2.4), y el software del controlador OpenDayLight (véase
Sección 4.1.2) en una versión estable para el desarrollo (versión base 0.2.2). El controla-
dor de OpenDayLight se conecta con Mininet mediante el acceso remoto por la interfaz
localhost a través de un túnel SSH.

Los ataques DDoS se ejecutan desde los propios equipos emulados por Mininet de
modo que en la topoloǵıa de Mininet cuenta con un cierto número de nodos que actúan
como servidores y un número concreto de equipos que actúan como clientes y atacantes
según las pruebas que se realizan. Aśı los equipos clientes actúan como Traffic generator
y los atacantes como Attack DDoS.

25

Sección 5.2 5. Arquitectura del Sistema

Figura 5.1: Diagrama de despliegue.

5.2. Explicación formal

El modelo del sistema que se puede observar en la Figura 5.2 funciona como un
clúster, es decir, se cuenta con un número n de nodos, el cual se puede definir según las
necesidades y capacidad del sistema. A su vez, cada nodo se encuentra replicado m veces
de modo que estas réplicas actúan como posibles backups de cada nodo. Si se produce
un ataque sobre uno de los nodos, se colocará su réplica posterior, eliminando la réplica
afectada y creando una nueva réplica backup.

Dado que el número de nodos lo puede definir el administrador del sistema y éste viene
condicionado según los recursos hardware del equipo, también se deben definir el número
de réplicas asociadas a cada nodo. De este modo, si el numero de nodos es muy pequeño el
número de réplicas para cada nodo debeŕıa ser mayor para lograr una mayor estabilidad
del sistema ante una gran cantidad de ataques. Si por el contrario se cuenta con muchos
nodos, se puede permitir que el número de réplicas sea más limitado e inferior. El objetivo
de este sistema es garantizar que en todo momento existen el suficiente número de nodos
disponibles capaces de asegurar la calidad del servicio ofrecido por el sistema.

De este modo se debe asegurar que la relación entre m y n sea m · n = i, siendo i el
número total de equipos que actúan como servidor y que el sistema es capaz de simular
simultáneamente en ejecución.

Cuando uno de los nodos se ve afectado por un ataque y por lo tanto se debe colo-
car una nueva réplica en su posición se debe tener en cuenta el tiempo que transcurre
realizando dicha recuperación del sistema. De este modo se definen dos intervalos tem-
porales (véase Figura 5.3) de modo que en el intervalo reactivo TR se divide en z slots
temporales en el que en cada uno se realiza la detección y se pueden recuperar k réplicas

26

5. Arquitectura del Sistema Sección 5.3

Figura 5.2: Diagrama del sistema.

Figura 5.3: Relación entre el intervalo temporal reactivo y proactivo.

simultáneamente. La duración de dichos slots viene definida según Tcoste y con la relación
Tslot > Tcoste · k.

El intervalo reactivo TR se define en la configuración del sistema y se puede modificar
en tiempo real. El número de slots en los que se divide el intervalo reactivo depende de
su duración definida en su configuración y el tiempo de slot Tslot de modo se cumple la
relación z = TR/Tslot.

El tiempo de duración del intervalo proactivo TP viene definido según Tslot. Durante
el intervalo proactivo se deben realizar rejuvenecimientos sobre las réplicas de un número
concreto de nodos k. Aquellos nodos que van a recibir un rejuvenecimiento no dependen
de los hechos acontecidos en el intervalo reactivo y se ejecutará de manera secuencial
entre la lista de nodos n cada vez que se acceda al intervalo proactivo, garantizando aśı
un rejuvenecimiento periódico de todos nodos al cabo de cierto número de intervalos
completos.

5.3. Funcionamiento

En este mecanismo de defensa se destacan tres elementos en su arquitectura: el con-
trolador, los switch y los equipos. Para cada uno de ellos se ha modelado una máquina

27

Sección 5.3 5. Arquitectura del Sistema

Figura 5.4: Diagrama de máquina de estados del Controlador.

de estados, para observar su comportamiento y todas las etapas de su funcionamiento.

Como se puede observar en la Figura 5.4, en primer lugar el controlador se inicia
al comienzo de la ejecución de OpenDayLight, desde el primer momento el controlador
se encuentra en el estado Detection en el cual se encuentra ejecutando constantemente
la función Detect. Para realizar la transición al estado Recovery debe suceder una de
las situaciones indicadas en el arco de la transición, que pase del estado reactivo al
estado proactivo (t = tx), o bien si se encuentra en el intervalo temporal donde actúa de
manera reactiva, se produce una detección de ataque y si dispone de suficientes nodos
para continuar con el servicio (i < m)&(t! = tx)&Detect()), pasa al estado Recovery.

En el estado Recovery lo primero que se hace es bloquear el flujo de datos del equipo
atacante, aśı como borrar todos los flujos relacionados con dicho equipo en todos los
nodos. A continuación si no se dispone de un número suficiente de réplicas (i < k) se
emula un nuevo equipo que se añadirá a la reserva de réplicas pasando al estado Backup;
sino se pasa al estado Attacked donde se realiza una nueva conexión y se configura la
réplica que ahora actuará como nodo. Posteriormente se balancea el tráfico que estaba
sirviendo el nodo atacado en el estado Forward, de modo que se reparte equitativamente
entre el resto de nodos servidores para evitar pérdidas de tráfico y que el usuario leǵıtimo
no se vea afectado por una interrupción del servicio. A continuación se desconecta el nodo
afectado por el ataque DDoS pasando al estado Dettached para finalmente desconectarlo
y volver al estado de Detection.

En el caso de los equipos su funcionamiento se puede observar en la Figura 5.6. En
primer lugar se produce el evento de creación de un nuevo equipo el cual puede ser invo-
cado por el controlador cuando necesita un mayor número de réplicas o bien por el propio
sistema al iniciarse. Para pasar al estado de Connected es necesario que se produzca el
evento net ifconfig backup, que se produce cada vez que se quiere conectar una nueva
réplica como nodo de trabajo. En el estado Connected el equipo realiza constantemente

28

5. Arquitectura del Sistema Sección 5.3

Figura 5.5: Diagrama de máquina de estados del Switch.

la tarea Work en la que procesa los flujos de paquetes entrantes. El equipo se mantiene
trabajando hasta que el controlador avise de un supuesto ataque DDoS que es entonces
cuando el equipo pasa al estado Standby y se produce la eliminación de sus flujos de
datos(ban data). Finalmente el equipo se apaga cuando el controlador lo indica.

En la Figura 5.5 se observa la máquina de estados correspondiente al switch. Los
switch se encienden todos al comienzo de la ejecución de Mininet pasando al estado de
Connected. En dicho estado se mantendrá hasta que reciba un mensaje de prohibir una
dirección IP y MAC concreta(ACL ban IP-MAC), en ese instante pasa al estado ACL
restricted. A continuación realiza la creación de un nuevo enlace y su unión con la répli-
ca(new link and attach link backup) pasando al estado Attached. Posteriormente pasa al
estado Forwarded cuando el controlador le notifica que debe comenzar a redirigir tráfico
a la nueva réplica(forward backup). Finalmente pasa por el estado Dettached cuando
el controlador le indica que debe eliminar el enlace asociado con el nodo atacado(link
dettach host) y vuelve al estado inicial Connected.

Gracias a los diagramas de secuencia se puede explicar el funcionamiento del sistema
desde un punto más abstracto, de modo que se puede observar cómo funciona el sistema
y el mecanismo de recuperación además, de cómo se realizan los pasos de mensajes entre
los diferentes componentes del sistema, de modo que se relaciona directamente con los
diagramas de máquina de estados de cada componente.

En el diagrama del sistema (véase la Figura 5.7), se puede observar como se inicia
la ejecución del sistema con la creación de los distintos componentes (switch, nodos y
controlador). Justo en la parte inferior se puede ver la diferencia entre la parte del sistema
que actúa de manera reactiva, que seŕıa la primera parte con el loop de modo que se
encuentra en una perspectiva reactiva durante un intervalo de tiempo. Alternativamente,
debajo se tiene la sección alt que se produce cuando el contador de tiempo llega a la
marca temporal, en este momento el sistema actúa de manera proactiva aplicando el
mecanismo de Recovery para los nodos seleccionados.

En el diagrama de la función Recovery de la Figura 5.8 se puede observar cómo se

29

Sección 5.3 5. Arquitectura del Sistema

Figura 5.6: Diagrama de máquina de estados de los equipos.

produce el paso de mensajes entre las instancias de los componentes del sistema. Las
transiciones se encuentran numeradas en orden del 1 al 9 y la sección alt es una excepción
que tan solo se produce cuando no se encuentran disponibles suficientes réplicas activas.

30

5. Arquitectura del Sistema Sección 5.3

Figura 5.7: Diagrama de secuencia del sistema.

Figura 5.8: Diagrama de secuencia del proceso de recuperación.

31

Sección 5.4 5. Arquitectura del Sistema

5.4. Implementación del mecanismo de defensa y limita-
ciones

El mecanismo de defensa proactivo y reactivo propuesto se ha implementado en Java
como módulo de OpenDayLight, de este modo el controlador es capaz de analizar los
paquetes entrantes en el sistema, añadir los flujos necesarios en el switch para que éste
conmute y encamine los paquetes de un mismo flujo y además realizar una monitorización
y control sobre la cantidad de paquetes que entran en el sistema siendo capaz de detectar
patrones de ataques DDoS. Dado que no se contaba con una arquitectura SDN real y
se ha tenido que utilizar el emulador Mininet, el sistema implementado tiene ciertas
limitaciones que el software impone.

En primer lugar no se puede actuar sobre la arquitectura de la red modificando el
estado de los nodos o la topoloǵıa de la red en tiempo real. Para poder evaluar las
prestaciones del sistema propuesto, se ha decidido no utilizar ninguna réplica m como
backup del sistema, de modo que todos los nodos de la topoloǵıa actúan como nodos n
porque Mininet no nos permite realizar una modificación en los enlaces de la red ni en
la distribución de los nodos directamente desde el código de Java, sino que es necesario
ejecutar scripts de Python a través de su consola.

Para solucionar este problema se ha decidido evaluar los rejuvenecimientos del sistema
como periodos temporales en los que los nodos se encuentran ocupados y no sirven
ningún tipo de servicio, al transcurrir el tiempo de recuperación teórico, el nodo vuelve
a funcionar y dar servicio correctamente. Como Tcoste se ha seleccionado un intervalo
temporal comprendido entre 10 y 14 segundos que es lo que le cuesta en promedio a
Amazon EC2 realizar un despliegue de un equipo pequeño [OIY+09].

5.4.1. Diagrama de clases

Para describir el funcionamiento de la implementación en primer lugar se debe hacer
referencia al Diagrama de clases (véase la Figura 5.9) que muestra una perspectiva a
grandes rasgos de cómo se relacionan las diferentes clases del código y cómo se organiza.

Activator: Es la clase encargada de conectar el módulo desarrollado con el soft-
ware de OpenDaylight y activar los módulos que necesitamos.

Flow management: es la estructura de datos para almacenar toda la información
relacionada con cada flujo.

Server: es la estructura de datos que almacena toda la información de cada ser-
vidor.

Client: es la estructura de datos que almacena la información relacionada con
cada cliente.

PacketHandler: es la clase que implementa el scheduler de paquetes y flujos en el
sistema. Se encarga de añadir los nuevos flujos, modificarlos, eliminarlos y obtener
la informacion de dichos flujos cuando el sistema de defensa necesita obtener datos.

32

5. Arquitectura del Sistema Sección 5.4

F
ig

u
ra

5.
9:

D
ia

gr
am

a
d

e
cl

as
es

d
e

la
im

p
le

m
en

ta
ci

ón
.

33

Sección 5.4 5. Arquitectura del Sistema

ProReactDefense: es la clase que implementa el sistema de defensa, además es
la que realiza los rejuvenecimientos del sistema y gestiona los intervalos temporales
reactivo y proactivo.

5.4.2. Diagramas de secuencia

Para explicar el funcionamiento del sistema y el mecanismo de defensa proactivo y
reactivo en mayor detalle se han realizado dos diagramas de secuencia que explican en
profundidad cómo funciona el sistema (véase la Figura 5.10) y otro de cómo funciona
la función encargada del mecanismo de defensa (véase la Figura 5.11). Además se ha
añadido un pseudocódigo que explica en detalle cómo funciona el scheduler (véase el
Algoritmo 1).

El sistema comienza cuando se recibe el primer paquete de datos en nuestro scheduler,
el sistema comienza a funcionar ejecutando en paralelo por una parte el mecanismo de
defensa mediante executeDefense() en el thread ProReactDefense y en el thread Packet-
Handler se ejecuta la función receivePacket() que es el scheduler de paquetes, de modo
que si es tráfico TCP se procesa y gestiona el servicio mediante la función receivePacket()
y sino se ignoran dichos paquetes.

El mecanismo de defensa que se observa en la Figura 5.11 está funcionando constan-
temente en un bucle infinito de modo que siempre se ejecuta la detección de ataques de
manera reactiva (detectReactive()) y el balanceo de carga reactivo (loadBalancerReac-
tive()) tantas veces como slots z contenga el intervalo reactivo TR, posteriormente se
ejecuta el periodo proactivo TP mediante la función loadBalancerProactive(). Esta eje-
cución sucesiva implementa el mecanismo proactivo y reactivo comentado en la sección
anterior, de modo que cuenta con un intervalo reactivo y un intervalo proactivo que se
repiten ćıclicamente.

El método detectReactive() realiza una detección de patrones en función del número
de paquetes servidos en un mismo flujo durante un intervalo de tiempo, de modo que
si detecta un ataque de flooding, se marca dicho flujo y aplica los mecanismos de miti-
gación correspondientes, que consisten en eliminar dicha flujo y todos flujos asociados
con dicho cliente, añadir dicho cliente a la blacklist de modo que no pueda volver a
solicitar el servicio (sus paquetes directamente pasan al estado DROP en la tabla de
OpenFlow del switch) y realizar el rejuvenecimiento sobre el servidor afectado. En el
intervalo reactivo la función loadBalanceReact(k, j, tout) se encarga de repartir los flujos
de los servidores afectados por ataque DDoS entre los nodos disponibles. En el intervalo
proactivo la función loadBalanceProact(k, l, tout) se encarga de seleccionar cuales son
aquellos servidores que deben entrar en rejuvenecimiento y repartir los flujos de estos
entre los demás nodos disponibles.

En este caso el scheduler está configurado para tan solo procesar paquetes TCP, pero
sin embargo se podŕıa implementar para cualquier protocolo. Además, se pueden procesar
los datos del paquete directamente de modo que se podŕıan implementar mecanismos de
detección más complejos.

En el Algoritmo 1 se explica cómo funciona el scheduler de paquetes con mayor
detenimiento. De todos aquellos paquetes que se reciben se toman los puertos origen y

34

5. Arquitectura del Sistema Sección 5.4

Figura 5.10: Diagrama de secuencia del sistema implementado.

35

Sección 5.4 5. Arquitectura del Sistema

Figura 5.11: Diagrama de secuencia del mecanismo de defensa executeDefense().

destino (ĺıneas 1 y 2), las direcciones IP fuente y destino (ĺınea 3) y el enlace del switch
por el que se ha encaminado(ĺınea 4). En primer lugar, si el cliente no se encuentra
registrado en el sistema se añade a la lista de clientes (ĺıneas 6 y 7), posteriormente
se obtiene la lista de flujos de dicho cliente (ĺınea 9). Si el flujo del paquete entrante
ya existe, simplemente se actualiza la información de dicho flujo añadiendo un nuevo
paquete al contador, se actualiza su marca temporal y se obtiene el servidor que se
encarga de servir dicho flujo (ĺıneas 10, 11 y 12). Si por el contrario, no existe dicho flujo
se crea, se asigna un servidor a dicho flujo y se añade a la lista de flujos del sistema
(ĺıneas 14, 15 y 16). Independientemente del camino hasta llegar al final, se env́ıa el
paquete al servidor correspondiente (ĺınea 18) y anteriormente decidido.

36

5. Arquitectura del Sistema Sección 5.4

Algoritmo 1: receivePacket

Input : Packet p
Output: Consume or ignore the packet (PacketResult.Ignore or

PacketResult.Consume)
1 Get client port clientPort from p
2 Get destination port dstPort from p
3 Get IP address dstAddr & srcAddr from p
4 Get link ingressConnector from p
5 Get list of client C from ProReactDefense
6 if @ client c ∈ C, srcAddr = c.srcIP then
7 c = createAndAddClient(p)
8 end
9 Get list of flows F from c

10 if ∃ f ∈ F , clientPort = f.clientPort then
11 updateFlows(f)
12 Get Server s from f

13 else
14 Get list of Server S from ProReactDefense
15 s = SelectServers(S)
16 addFlows (clientPort, dstPort, dstAddr, c, s, ingressConnector)

17 end
18 sendPacket(s,p)

37

Sección 5.5 5. Arquitectura del Sistema

5.5. Disponibilidad

Todo el código fuente de la implementación del mecanismo de defensa se encuentra
disponible en el repositorio online BitBucket.La carpeta doc contiene todo el Javadoc
(documentación en formato HTML del código del proyecto).

https://bitbucket.org/Nessaji/sdnproreactdefense

con licencia GNU General Public License publicada por la Free Software Foundation
en su versión 3.

38

https://bitbucket.org/Nessaji/sdnproreactdefense

Caṕıtulo 6

Evaluación y resultados

Para evaluar las prestaciones del mecanismo de defensa proactivo y reactivo propues-
to se han considerado diferentes tipos de configuraciones del sistema limitadas por el
hardware del equipo donde se han realizado. El equipo donde se han realizado las prue-
bas cuenta con un Intel Core i7-2630QM CPU @ 2.00GHz x 8 y 6GBytes de memoria
RAM, con el sistema operativo Ubuntu 14.04 en su versión más estable, Mininet versión
2.2.1 y el software del controlador OpenDayLight versión base 0.2.2.

Para ello se han realizado tres escenarios distintos, la caracteŕıstica común de todos
ellos es que cuentan con 2 nodos servidor, 4 nodos que actúan como clientes leǵıtimos
y dentro de cada uno 3 configuraciones distintas según su probabilidad de ataque que
se ha variado entre 25 %, 50 % y 75 %. En cada configuración se iniciado un script que
ejecuta cada atacante para realizar un ataque DDoS a la IP pública del servidor cada
60s.

1. Escenario 1: 1 atacante.

2. Escenario 2: 2 atacantes.

3. Escenario 3: 3 atacantes.

Para demostrar la viabilidad del mecanismo de defensa se ha medido el tiempo de
servicio de los clientes en los mismos escenarios bajo la misma configuración en un
primer lugar (véase la Figura 6.1) sin activar la defensa y posteriormente activando el
mecanismo, obteniendo un total de 7200 muestras que se resumen a continuación en la
Figura 6.2 y en la Figura 6.3.

Los clientes (rango 10.0.0.3 al 10.0.0.6) solicitan el fichero en paralelo al servidor (nodo
10.0.0.1 y 10.0.0.2) y es el servidor quien balancea la carga del sistema repartiendo los
diferentes flujos entre sus nodos de manera transparente para los clientes. Los atacantes
(rango 10.0.0.7 al 10.0.0.9, según el número de atacantes) no conocen la arquitectura del
servidor y tan sólo pueden atacar a la dirección pública que en este caso es la 10.0.0.100,
de modo que el sistema internamente es capaz de gestionar y balancear los flujos según
la situación que se encuentre. El scheduler tiene implementando un balanceo de carga

39

6. Evaluación y resultados

Figura 6.1: Topoloǵıa de la red de pruebas simulada.

(a)Escenario 1 (b) Escenario 2

(c) Escenario 3

Figura 6.2: Comparativa tiempos de servicio con el mecanismo de defensa desactivado.

40

6. Evaluación y resultados

(a)Escenario 1 (b) Escenario 2

(c) Escenario 3

Figura 6.3: Comparativa tiempos de servicio con el mecanismo de defensa activado.

Round-Robin de modo que reparte los flujos teniendo mayor prioridad aquel servidor con
menor cantidad. Cuando se realizan los rejuvenecimientos de los nodos del servidor tanto
en la casúıstica proactiva como reactiva los flujos se balancean hacia el nodo activo.

Sobre cada una de ellas se ha aplicado el método de Montecarlo (véase Sección 2.7)
de modo que se han realizado 10 pruebas sobre cada configuración. En cada una de éstas
pruebas se ha descargado un fichero de 105 MB a una tasa ĺımite de 1,46MB/s, de este
modo cuatro clientes leǵıtimos en paralelo han solicitado la descarga del fichero durante
10 iteraciones en cada una de las pruebas de modo que se han obtenido 400 muestras
para cada configuración.

Para un fichero de dicho tamaño en caso de que el sistema se encontrase con la capa-
cidad de servir a su tasa ĺımite, el fichero tardaŕıa entre 66 y 68 segundos en descargarse.
Se puede observar cómo aumentar la frecuencia de los ataques y el número de los ataques
es directamente proporcional al aumento del tiempo de servicio llegando a provocar en la
configuración más cŕıtica que se tarde hasta 10 segundos más en completar la descarga.

En los casos en que la defensa se encuentra activa se puede observar que el sistema
es incluso capaz de en algunas ocasiones mitigar el ataque hasta el punto que el tiempo
de servicio es el mismo que el ideal. En un escenario mucho más agresivo como es el
escenario 3 con una probabilidad de ataque del 75 % el mecanismo es capaz de mitigar
ataques pero cuando se producen más ataques que nodos disponibles el mecanismo de
defensa no es capaz de soportarlo adecuadamente. Esto se solucionaŕıa aumentando la
cantidad de nodos en función de la carga de los ataques tal y como se expone en el

41

6. Evaluación y resultados

Figura 6.4: Funcionamiento del sistema ante ataques DDoS.

Caṕıtulo 5 y que en la evaluación no se ha podido implementar por limitaciones de
hardware y del simulador respecto a la topoloǵıa.

En la Figura 6.4 se puede observar el funcionamiento del sistema a lo largo de una
configuración, en este caso representa el escenario 2 en la que se cuenta con 2 nodos
atacantes con una probabilidad del 50 % cada 60s. En la figura se puede diferenciar el
cambio de estado de los dos nodos servidores, representado el servidor 1 en el intervalo
discreto [0,1] indicando el estado 0 que el servidor se encuentra en funcionamiento y el
estado 1 que se encuentra en rejuvenecimiento, de forma análoga se representa el servidor
2 en el intervalo discreto [-1,0] donde en esta ocasión se representa con el estado -1 su
rejuvenecimiento.

Se pueden diferenciar varios cambios de estado debido a los intervalos proactivos y
reactivos del sistema, la ĺınea roja representa la tasa de paquetes que sirve el sistema
en cada segundo normalizada a 20.000 paquetes/segundo. Se pueden observar distintas
fluctuaciones bruscas que son producidas por los distintos ataques DDoS. En particular
se puede observar cómo cuando se produce una mitigación de los ataques se produce
una tasa negativa dado que se eliminan todos los paquetes de dicho cliente del sistema.
Cabe destacar que el sistema de detección implementado tarda alrededor de unos 10
segundos en actuar pero en ocasiones según la posición temporal y el intervalo en el que
se encuentre (proactivo o reactivo) puede tardar mayor cantidad de tiempo en actuar,
como es el caso del ataque en el instante 380 segundos que dura bastante tiempo hasta
que el sistema lo mitiga (concretamente, 25s).

En algunas situaciones coincide que el intervalo proactivo mitiga ataques DDoS por-
que justo toca el rejuvenecimiento de dicho servidor en prácticamente el mismo instante

42

6. Evaluación y resultados

proactivo que le toca rejuvenecerse (véase el instante temporal de 515s).

43

6. Evaluación y resultados

44

Caṕıtulo 7

Conclusiones

Este caṕıtulo presenta algunas conclusiones obtenidas de la elaboración de este tra-
bajo de fin de grado aśı como posibles ĺıneas de trabajo futuras con los que mejorarlo.

La arquitectura SDN vio la luz hace muy poco tiempo (2014) y por lo tanto todav́ıa
queda mucho desarrollo por delante. El potencial de esta arquitectura de red es enorme
y se está viendo reflejado entre la gran mayoŕıa de empresas tecnológicas. Paralelamente
se están presentando un gran aumento de ataques DDoS a todo tipo de servicios en
Internet; de modo que aprovechar la nueva arquitectura de red para mitigar y solucionar
los problemas que estos están causando puede resultar muy beneficioso. En este proyecto
se pueden apreciar las mejoras conseguidas respecto a un sistema sin defensa y cómo es
necesario implementar algún tipo de sistema de mitigación ante ataques DDoS.

Como resultado global del proyecto se ha implementado un mecanismo de defensa
viable y extrapolable a infraestructuras de mayor tamaño y carga. Además, se han
adquirido conocimientos sobre la arquitectura de red SDN y sobre los tipos de ataques
DDoS. Pese a los inconvenientes acontecidos debido a las limitaciones del hardware y
software se ha probado la viabilidad y funcionamiento del sistema propuesto. Mediante
simulaciones se ha podido demostrar cómo la defensa proporciona una capa de seguridad
adicional al sistema de modo que es capaz de mitigar ataques DDoS.

Otro concepto adquirido a ráız de este trabajo es que un buen diseño, y una buena
organización y planificación son elementos esenciales a la hora de realizar cualquier
proyecto ya que facilitan enormemente su desarrollo y ahorran gran cantidad de tiempo
y esfuerzo.

Las ĺıneas de trabajo futuros que se pueden realizar a partir de este proyecto con
el objetivo de ampliar o complementar este trabajo se pueden dividir en función de
los ámbitos de este proyecto. En primer lugar, se pueden centrar en formalizar dicho
mecanismo de defensa mediante modelos matemáticos basados en cadenas de Markov.
También se puede actualizar la versión del controlador OpenDayLight y desarrollar la de-
fensa para la nueva versión, orientada en model-driven. Por último, se puede profundizar
en los mecanismos de detección que se aplican en el mecanismo de defensa desarrollando
nuevos patrones o implementando los más extendidos en la comunidad cient́ıfica.

45

7. Conclusiones

46

Bibliograf́ıa

[AKK+13] Marios Anagnostopoulos, Georgios Kambourakis, Panagiotis Kopanos,
Georgios Louloudakis, and Stefanos Gritzalis. DNS amplification attack
revisited. Computers & Security, 39:475–485, 2013.

[AL14] Javed Ashraf and Saeed Latif. Handling intrusion and DDoS attacks in
Software Defined Networks using machine learning techniques. In Software
Engineering Conference (NSEC), 2014 National, pages 55–60. IEEE, 2014.

[Arb10] Arbortnetworks. The Internet Goes to War. [Online], Diciembre 2010.
https://asert.arbornetworks.com/the-internet-goes-to-war/.

[Ben13] Benny Har-Even. CTO, SK Telecom, South Korea: “SDN and network
virtualisation hold great promise for mobile carriers”. [Online], Abril
2013. http://telecoms.com/interview/cto-sk-telecom-south-korea-sdn-and-
network-virtualisation-hold-great-promise-for-mobile-carriers/.

[BMP10] Rodrigo Braga, Edjard Mota, and Alexandre Passito. Lightweight DDoS
flooding attack detection using NOX/OpenFlow. In Local Computer Net-
works (LCN), 2010 IEEE 35th Conference on, pages 408–415. IEEE, 2010.

[Chu15] Chun-Jen Chung. SDN-based Proactive Defense Mechanism in a Cloud
System. PhD thesis, ARIZONA STATE UNIVERSITY, 2015.

[Cis11] Cisco. Open Networking Foundation Formed to Speed Network
Innovation. [Online], Marzo 2011. http://newsroom.cisco.com/

press-release-content?articleId=5973381.

[Cis15] Cisco. Cisco controller APIC. [Online], 2015. http://

www.cisco.com/c/en/us/products/cloud-systems-management/

application-policy-infrastructure-controller-apic/index.html.

[CMW13] Yonghong Chen, Xinlei Ma, and Xinya Wu. DDoS detection algorithm
based on preprocessing network traffic predicted method and chaos theory.
Communications Letters, IEEE, 17(5):1052–1054, 2013.

[CSD14] CSDN. sqx2011. OVS. [Online], 2014. http://blog.csdn.net/sqx2011/

article/details/39344869.

47

https://asert.arbornetworks.com/the-internet-goes-to-war/
http://newsroom.cisco.com/press-release-content?articleId=5973381
http://newsroom.cisco.com/press-release-content?articleId=5973381
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-apic/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-apic/index.html
http://www.cisco.com/c/en/us/products/cloud-systems-management/application-policy-infrastructure-controller-apic/index.html
http://blog.csdn.net/sqx2011/article/details/39344869
http://blog.csdn.net/sqx2011/article/details/39344869

BIBLIOGRAFÍA BIBLIOGRAFÍA

[DM04] Christos Douligeris and Aikaterini Mitrokotsa. DDoS attacks and defen-
se mechanisms: classification and state-of-the-art. Computer Networks,
44(5):643–666, 2004.

[EAJ+] Egbenimi Beredugo Eskca, Omar Abuzaghleh, Priya Joshi, Sandeep Bon-
dugula, Takamasa Nakayama, and Amreen Sultana. Software Defined Net-
works’ Security: An Analysis of Issues and Solutions.

[FRZ13] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN.
Queue, 11(12):20, 2013.

[Gar00] Lee Garber. Denial-of-service attacks rip the Internet. Computer, (4):12–17,
2000.

[Goo12] Google. OpenFlow @ Google. [Online], Abril 2012. http://

opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf.

[HBPG15] Akram Hakiri, Pascal Berthou, Prithviraj Patil, and Aniruddha Gokhale.
Towards a Publish/Subscribe-based Open Policy Framework for Proactive
Overlay Software Defined Networking. ISIS, pages 15–115, 2015.

[HP15] HP. Hp controller VAN. [Online], 2015. http://h17007.

www1.hp.com/us/en/networking/products/network-management/

HPVANSDNControllerSoftware/index.aspx#.VXA2pq3tmko.

[KBP14] Ankunda R Kiremire, Matthias R Brust, and Vir V Phoha. Using network
motifs to investigate the influence of network topology on PPM-based IP
traceback schemes. Computer Networks, 72:14–32, 2014.

[KKSG] Karamjeet Kaur, Krishan Kumar, Japinder Singh, and Navtej Singh Ghum-
man. Programmable Firewall Using Software Defined Networking.

[KREV+15] Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Este-
ve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined
networking: A comprehensive survey. proceedings of the IEEE, 103(1):14–
76, 2015.

[KRV13] Diego Kreutz, Fernando Ramos, and Paulo Verissimo. Towards secure and
dependable software-defined networks. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking, pages
55–60. ACM, 2013.

[KS13] P. Arun Raj Kumar and S. Selvakumar. Detection of distributed denial
of service attacks using an ensemble of adaptive and hybrid neuro-fuzzy
systems. Computer Communications, 36(3):303–319, 2013.

[Kum07] Sanjeev Kumar. Smurf-based distributed denial of service (ddos) attack am-
plification in internet. In Internet Monitoring and Protection, 2007. ICIMP
2007. Second International Conference on, pages 25–25. IEEE, 2007.

48

http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf
http://h17007.www1.hp.com/us/en/networking/products/network-management/HP VAN SDN Controller Software/index.aspx#.VXA2pq3tmko
http://h17007.www1.hp.com/us/en/networking/products/network-management/HP VAN SDN Controller Software/index.aspx#.VXA2pq3tmko
http://h17007.www1.hp.com/us/en/networking/products/network-management/HP VAN SDN Controller Software/index.aspx#.VXA2pq3tmko

BIBLIOGRAFÍA BIBLIOGRAFÍA

[KVF+12] Sanjeev Khanna, Santosh S Venkatesh, Omid Fatemieh, Fariba Khan, Carl
Gunter, et al. Adaptive selective verification: An efficient adaptive counter-
measure to thwart dos attacks. Networking, IEEE/ACM Transactions on,
20(3):715–728, 2012.

[KZMB14] Rahamatullah Khondoker, Adel Zaalouk, Ronald Marx, and Kpatcha Ba-
yarou. Feature-based comparison and selection of Software Defined Networ-
king (SDN) controllers. In Computer Applications and Information Systems
(WCCAIS), 2014 World Congress on, pages 1–7. IEEE, 2014.

[LBZ+14] Jun Li, Skyler Berg, Mingwei Zhang, Peter Reiher, and Tao Wei. Draw-
bridge: software-defined DDoS-resistant traffic engineering. In Proceedings
of the 2014 ACM conference on SIGCOMM, pages 591–592. ACM, 2014.

[LHK+14] Sharon Lim, Jung-Ik Ha, Heonhwan Kim, Youngjae Kim, and Songping
Yang. A SDN-oriented DDoS blocking scheme for botnet-based attacks. In
Ubiquitous and Future Networks (ICUFN), 2014 Sixth International Conf
on, pages 63–68. IEEE, 2014.

[LJP+08] Jae-Seo Lee, HyunCheol Jeong, Jun-Hyung Park, Minsoo Kim, and Bong-
Nam Noh. The activity analysis of malicious http-based botnets using de-
gree of periodic repeatability. In Security Technology, 2008. SECTECH’08.
International Conference on, pages 83–86. IEEE, 2008.

[LWLP15] Shibo Luo, Jun Wu, Jianhua Li, and Bei Pei. A Defense Mechanism for
Distributed Denial of Service Attack in Software-Defined Networks. In
Frontier of Computer Science and Technology (FCST), 2015 Ninth Inter-
national Conference on, pages 325–329. IEEE, 2015.

[MDC+14] Nishat Mowla, Inshil Doh, Kijoon Chae, et al. Multi-defense Mechanism
against DDoS in SDN Based CDNi. In Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), 2014 Eighth International Con-
ference on, pages 447–451. IEEE, 2014.

[Min15] Mininet. An Instant Virtual Network on your Laptop (or other PC). [On-
line], 2015. http://mininet.org/.

[Net12] NetworkComputing. SDN Is Business, OpenFlow Is Technology.
[Online], 2012. http://www.networkcomputing.com/networking/

sdn-business-openflow-technology/53316220.

[Nol13] Alejandro Nolla. Amplification DDoS attacks with games servers from the
perspective of both the attacker and the defender. GreHack, 2013.

[NOX15] NOXRepo.org. Pox controller. [Online], 2015. http://www.noxrepo.org/
pox/about-pox/.

49

http://mininet.org/
http://www.networkcomputing.com/networking/sdn-business-openflow-technology/53316220
http://www.networkcomputing.com/networking/sdn-business-openflow-technology/53316220
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/

BIBLIOGRAFÍA BIBLIOGRAFÍA

[ÖB15] İlker Özçelik and Richard R Brooks. Deceiving entropy based DoS detec-
tion. Computers & Security, 48:234–245, 2015.

[OIY+09] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu Prodan, Tho-
mas Fahringer, and Dick Epema. A performance analysis of EC2 cloud
computing services for scientific computing. In Cloud computing, pages
115–131. Springer, 2009.

[Ope14] Open vSwitch. What is Open vSwitch? [Online], 2014. http://

openvswitch.org/.

[Ope15a] Open Networking Foundation. Openflow switch specification, version
1.3.5. [Online], Marzo 2015. https://www.opennetworking.org/images/
stories/downloads/sdn-resources/onf-specifications/openflow/

openflow-switch-v1.3.5.pdf.

[Ope15b] Open Networking Foundation. SDN-resources: OpenFlow. [Online], 2015.
https://www.opennetworking.org/sdn-resources/openflow.

[Ope15c] OpenFlow. OpenFlow. [Online], 2015. http://archive.openflow.org/

wp/learnmore/.

[Ope16a] OpenDayLight. OpenDaylight Platform. [Online], 2016. https://www.

opendaylight.org/.

[Ope16b] OpenStack. Scenario: Legacy with Open vSwitch. [Online],
Enero 2016. http://docs.openstack.org/liberty/networking-guide/

scenario_legacy_ovs.html.

[PDBAA15] Thomas Pfeiffenberger, Jia Lei Du, Pedro Bittencourt Arruda, and Ales-
sandro Anzaloni. Reliable and flexible communications for power systems:
Fault-tolerant multicast with SDN/OpenFlow. In New Technologies, Mo-
bility and Security (NTMS), 2015 7th International Conference on, pages
1–6. IEEE, 2015.

[PLR07] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. Survey of
network-based defense mechanisms countering the DoS and DDoS pro-
blems. ACM Computing Surveys (CSUR), 39(1):3, 2007.

[Pro15] Project Floodlight. Floodlight controller. [Online], 2015. http://www.

projectfloodlight.org/floodlight/.

[RH15] Christian Röpke and Thorsten Holz. SDN Rootkits: Subverting Network
Operating Systems of Software-Defined Networks. In Research in Attacks,
Intrusions, and Defenses, pages 339–356. Springer, 2015.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Lan-
guage Reference Manual. Pearson Higher Education, 2004.

50

http://openvswitch.org/
http://openvswitch.org/
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.3.5.pdf
https://www.opennetworking.org/sdn-resources/openflow
http://archive.openflow.org/wp/learnmore/
http://archive.openflow.org/wp/learnmore/
https://www.opendaylight.org/
https://www.opendaylight.org/
http://docs.openstack.org/liberty/networking-guide/scenario_legacy_ovs.html
http://docs.openstack.org/liberty/networking-guide/scenario_legacy_ovs.html
http://www.projectfloodlight.org/floodlight/
http://www.projectfloodlight.org/floodlight/

BIBLIOGRAFÍA BIBLIOGRAFÍA

[SBC+10] Paulo Sousa, Alysson Neves Bessani, Miguel Correia, Nuno Ferreira Ne-
ves, and Paulo Verissimo. Highly available intrusion-tolerant services
with proactive-reactive recovery. Parallel and Distributed Systems, IEEE
Transactions on, 21(4):452–465, 2010.

[sdx13] sdxCentral. What are sdn controllers? [Online], 2013. https://www.

sdxcentral.com/resources/sdn/sdn-controllers/.

[SNK12] Myung-Ki Shin, Ki-Hyuk Nam, and Hyoung-Jun Kim. Software-defined
networking (SDN): A reference architecture and open APIs. In ICT Con-
vergence (ICTC), 2012 International Conference on, pages 360–361. IEEE,
2012.

[SPY+13] Seungwon Shin, Phillip A Porras, Vinod Yegneswaran, Martin W Fong,
Guofei Gu, and Mabry Tyson. FRESCO: Modular Composable Security
Services for Software-Defined Networks. In NDSS, 2013.

[SS77] Robert Solovay and Volker Strassen. A fast Monte-Carlo test for primality.
SIAM journal on Computing, 6(1):84–85, 1977.

[SSKS10] Monika Sachdeva, Gurvinder Singh, Krishan Kumar, and Kuldip Singh.
Measuring impact of DDOS attacks on web services. 2010.

[SY13] Ahmad Sanmorino and Setiadi Yazid. Ddos attack detection method and
mitigation using pattern of the flow. In Information and Communica-
tion Technology (ICoICT), 2013 International Conference of, pages 12–16.
IEEE, 2013.

[TYZM14] Theerasak Thapngam, Shui Yu, Wanlei Zhou, and S Kami Makki. Dis-
tributed Denial of Service (DDoS) detection by traffic pattern analysis.
Peer-to-peer networking and applications, 7(4):346–358, 2014.

[Ver12] Verizon. Adoption of SDN: Progress Update. [Online], Abril 2012. http:

//opennetsummit.org/archives/apr12/elby-tue-sdn.pdf.

[WCXJ13] Wei Wei, Feng Chen, Yingjie Xia, and Guang Jin. A rank correlation
based detection against distributed reflection DoS attacks. Communications
Letters, IEEE, 17(1):173–175, 2013.

[WZLH15] Bing Wang, Yao Zheng, Wenjing Lou, and Y Thomas Hou. DDoS attack
protection in the era of cloud computing and Software-Defined Networking.
Computer Networks, 81:308–319, 2015.

[YM05] Jian Yuan and Kevin Mills. Monitoring the macroscopic effect of DDoS
flooding attacks. Dependable and Secure Computing, IEEE Transactions
on, 2(4):324–335, 2005.

51

https://www.sdxcentral.com/resources/sdn/sdn-controllers/
https://www.sdxcentral.com/resources/sdn/sdn-controllers/
http://opennetsummit.org/archives/apr12/elby-tue-sdn.pdf
http://opennetsummit.org/archives/apr12/elby-tue-sdn.pdf

BIBLIOGRAFÍA BIBLIOGRAFÍA

[ZJT13] Saman Taghavi Zargar, Jyoti Joshi, and David Tipper. A survey of defense
mechanisms against distributed denial of service (DDoS) flooding attacks.
Communications Surveys & Tutorials, IEEE, 15(4):2046–2069, 2013.

[ZJW+14] Wei Zhou, Weijia Jia, Sheng Wen, Yang Xiang, and Wanlei Zhou. Detec-
tion and defense of application-layer DDoS attacks in backbone web traffic.
Future Generation Computer Systems, 38:36–46, 2014.

52

Acrónimos

API Application Programming Interface.

DDoS Distributed Denial of Service.

DOM Document Object Model.

DRDoS Distributed Re-flection Denial of Service.

DNS Domain Name System.

HTTP Hypertext Transfer Protocol.

ICMP Internet Control Message Protocol.

IP Internet Protocol.

ISO International Organization for Standardization.

JSON JavaScript Object Notation.

MAC Media Access Control.

NAT Network Address Translation.

OO Orientado a Objetos.

OMG Object Management Group.

ONF Open Networking Foundation.

OSGi Open Services Gateway Initiative.

PCEP Path Computation Element Protocol.

QoS Quality of Service.

REST Representational State Transfer.

RPC Remote Procedure Call.

SAL Service Abstraction Layer.

53

SDN Software Defined Networking.

SNMP Simple Network Management Protocol.

SSH Secure Shell.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

UDP User Datagram Protocol.

UML Unified Modeling Language.

54

Anexo A

Horas de trabajo

Con el objetivo de controlar el tiempo de desarrollo del proyecto, se ha realizado un
seguimiento de las horas dedicadas a cada parte del mismo. En la Figura A.1 se puede
ver el diagrama de Gantt por semanas y tareas.

La primera etapa del proyecto ha consistido en estudiar qué es la arquitectura SDN,
cuáles son sus controladores disponibles, qué son los ataques DDoS y qué es un me-
canismo proactivo y reactivo. Además, se ha seleccionado el controlador y qué ataque
DDoS se estudiaŕıa en mayor profundidad. Tras el análisis del problema y el estudio de
las caracteŕısticas de la arquitectura SDN, se ha planteado un mecanismo de defensa
proactivo y reactivo sobre el que finalmente se evaluaron las pruebas.

Al final, de los 10 meses de proyecto se ha estimado un coste aproximado de 290 d́ıas
de trabajo (véase Tabla A.1). Aunque el número de horas excede las previstas para el
proyecto, este tiempo ha sido necesario para el estudio de la arquitectura SDN y cómo
implementar un mecanismo de defensa con estas caracteŕısticas.

Figura A.1: Diagrama de Gantt.

55

A. Horas de trabajo

Tarea Comienzo Fin Duración
Estudio 15/06/2015 4/09/2015 82d
SDN y controladores 15/06/2015 31/07/2015 47d
Ataques DDoS 17/07/2015 14/08/2015 28d
Mecanismo proactivo-reactivo 7/08/2015 4/09/2015 28d
Desarrollo 1/09/2015 31/10/2015 61d
Selección controlador 2/09/2015 16/10/2015 50d
Selección ataque DDoS 1/09/2015 25/09/2015 25d
Modelado matemático 25/09/2015 30/10/2015 35d
Modelado en UML 19/10/2015 31/10/2015 12d
Configuración del sistema 2/11/2015 30/11/2015 28d
Implementación 27/11/2015 25/01/2016 59d
Mecanismo reactivo 27/11/2015 24/12/2015 27d
Mecanismo proactivo 8/12/2015 25/01/2016 48d
Ataque DDoS 4/01/2016 22/01/2016 18d
Evaluación y pruebas 01/02/2016 1/04/2016 60d
Memoria 01/11/2015 1/04/2016 152d

Tabla A.1: Duración de cada tarea.

56

Anexo B

Configuración del entorno de
trabajo

En estos apéndices se recogen documentos para configurar el sistema correctamente
antes de poder realizar las pruebas sobre el mismo.

B.1. Configuración de Mininet

Instalar Mininet en Ubuntu es una tarea sencilla que se puede realizar de dos maneras.
Se puede hacer uso de los paquetes para Ubuntu ya preparados o bien compilar el código
fuente.

En este caso se ha elegido usar la compilación de código fuente, ya que la última
versión de Mininet no estaba disponible en los repositorios oficiales en el momento de su
instalación.

Los pasos para su instalación son:

1 git clone git://github.com/mininet/mininet

2

3 cd mininet

4

5 sudo ./util/install.sh -a

Una vez instalado, para comprobar su funcionamiento podemos realizar el comando

1 mn --test pingall

Este comando ejecuta una topoloǵıa básica y env́ıa mensajes de ping entre todos los
equipos simulados.

57

Sección B.2 B. Configuración del entorno de trabajo

B.2. Configuración controlador OpenDayLight

Se ha utilizado la versión base 0.2.2, sin embargo se han desarrollado varias versiones
posteriores que ampĺıan las funcionalidades de ésta.

La ejecución de OpenDayLight puede presentar un problema y es que no conecten los
switches emulados en Mininet, para solucionarlo es necesario reiniciar la topoloǵıa y el
controlador.

Para ejecutar el controlador tan solo debemos ejecutar el comando

1 sudo ./run.sh

De esta forma ponemos en marcha el controlador y ya se encontrará listo para conectarse
con la topoloǵıa de Mininet. OpenDayLight proporciona una interfaz web a través de la
cual se pueden gestionar sus módulos y tablas de flujo.

B.3. Configuración escenario de pruebas

Los módulos de OpenDayLight funcionan a través del compilador Maven, de modo
que la carpeta del módulo necesitará todos aquellos archivos adicionales necesarios para
compilar como el caso del pom.xml. Este archivo XML es indispensable para Maven ya
que contiene la información (dependencias, nombres de proyectos, paquetes y referencias)
indispensable para poder construir el proyecto y compilarlo. Una vez se dispone de todo
lo necesario ya se puede compilar

1 sudo mvn clean install

Este comando nos proporciona un archivo .jar que ya se puede instalar en OpenDayLight.

El mecanismo de defensa se encuentra programado como un módulo de OpenDay-
Light, para ello será necesario instalarlo en el controlador y desactivar aquellos módulos
que presentan un conflicto. Cuando el controlador se ha iniciado completamente se paran
aquellos módulos.

1 osgi>ss simple

2 "Framework is launched"

3

4

5 id State Bundle

6 223 ACTIVE

org.opendaylight.controller.samples.simpleforwarding_0.5.0.SNAPSHOT

7 osgi>

8

9 osgi>stop 223

10

11 osgi>ss load

12 "Framework is launched."

13 id State Bundle

58

B. Configuración del entorno de trabajo Sección B.3

14 181 ACTIVE

org.opendaylight.controller.samples.loadbalancer.northbound_0.5.0.SNAPSHOT

15 212 ACTIVE org.apache.commons.fileupload_1.2.2

16 267 ACTIVE

org.opendaylight.controller.samples.loadbalancer_0.6.0.SNAPSHOT

17 osgi>

18

19 osgi>stop 267

Una vez se han parado estos módulos se puede proceder a instalar y activar el nuevo
módulo desarrollado. Para poder ver los logs que se incluyen en el código adecuadamente
es necesario activarlos en el controlador.

1 install file:/home/jorge/Escritorio/sdnproreactdefense/target/

sdnproreactdefense-0.1.jar

2

3 setLogLevel es.unizar.disco.sdnproreactdefense.PacketHandler trace

4

5 start (id bundle)

A continuación se tiene que iniciar Mininet simulando la topoloǵıa de red, en este
caso se ha decidido por una topoloǵıa sencilla en la que todos nodos están conectados
directamente al switch. De los nueve nodos simulados, dos actúan como servidor, cuatro
como clientes y tres como atacantes.

1

2 sudo mn --controller=remote,ip=127.0.0.1 --topo single,9 --mac --arp --switch=

ovsk,protocol=OpenFlow13

Una vez encendidos todos los nodos, en primer lugar se inician los servidores web en
el nodo h1 y h2.

1 sudo http-server 80

Posteriormente, en los demás nodos se abre un xterminal y en cada una de las consolas
de cada equipo se añade la ruta ARP a la dirección pública del servidor.

1 arp -s 10.0.0.100 00:00:00:00:00:64

Según si el nodo es un nodo leǵıtimo o un nodo atacante se ejecutara un script de Python
distinto. Si se trata de un cliente leǵıtimo se ejecuta Traffic.py, si por el contrario es un
atacante se ejecuta DDoS.py. Ambos archivos han sido programados para evaluar el
sistema. Con todo esto ya estará conectada la topoloǵıa simulada de Mininet con el
controlador OpenDayLigth y todos los nodos simulados funcionando correctamente.

Finalmente tras completar cada prueba se puede observar la tabla OpenFlow del
switch para analizar lo sucedido.

1 sudo ovs-ofctl -O OpenFlow13 dump-flows s1

59

Sección B.3 B. Configuración del entorno de trabajo

Adicionalmente el código cuenta con un thread encargado de escribir en el log cada
segundo todos los datos correspondientes de cada flujo del switch de modo que el fichero
de log se procesa y se obtienen los datos de los flujos y los servidores.

1 awk ’/ @/ {printf " %s, %s, %s, %s\n",$2,$9,$11,$13}’ /home/jorge/Escritorio/log >

/home/jorge/Escritorio/Resultados/packets

2

3 awk ’/ #/ {printf " %s, %s, %s\n",$2,$9,$11}’ /home/jorge/Escritorio/log> /home/

jorge/Escritorio/Resultados/server_state

60

