000057487 001__ 57487
000057487 005__ 20200221144308.0
000057487 0247_ $$2doi$$a10.1007/s10973-016-5268-2
000057487 0248_ $$2sideral$$a93625
000057487 037__ $$aART-2016-93625
000057487 041__ $$aeng
000057487 100__ $$aBeltran-Lopez, J.
000057487 245__ $$aApplication of simulations to thermodynamic properties of materials for magnetic refrigeration: A calorimetric approach to material’s magnetocaloric parameters
000057487 260__ $$c2016
000057487 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057487 5203_ $$aA magnetic refrigeration system is a complex system that involves the magnetocaloric effect (MCE) and the heat transfer problems working in a coupled manner. For this purpose, characterization of materials showing MCE is needed. Calorimetric characterization allows the obtention of thermodynamic variables needed for a precise quantification of this effect. More specifically, in systems with continuous magnetic field variation, in order to calculate the heat generation due to MCE, the knowledge of their magnetocaloric parameters—adiabatic temperature change (Formula presented.) and isothermal entropy change (Formula presented.)—and the heat capacity (Formula presented.), for every temperature and magnetic field present is needed. In this work, (Formula presented.) family materials have been either characterized or interpolated and used in numerical simulations in COMSOL Multiphysics™ software. The characterization was carried out with measurements of (Formula presented.), (Formula presented.) and (Formula presented.) and the calculation of other derived parameters, at different temperatures and magnetic fields.
000057487 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-44063-R$$9info:eu-repo/grantAgreement/ES/DGA/E100
000057487 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000057487 590__ $$a1.953$$b2016
000057487 591__ $$aTHERMODYNAMICS$$b20 / 58 = 0.345$$c2016$$dQ2$$eT2
000057487 591__ $$aCHEMISTRY, ANALYTICAL$$b41 / 76 = 0.539$$c2016$$dQ3$$eT2
000057487 591__ $$aCHEMISTRY, PHYSICAL$$b85 / 145 = 0.586$$c2016$$dQ3$$eT2
000057487 592__ $$a0.608$$b2016
000057487 593__ $$aPhysical and Theoretical Chemistry$$c2016$$dQ2
000057487 593__ $$aCondensed Matter Physics$$c2016$$dQ2
000057487 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000057487 700__ $$0(orcid)0000-0002-2586-7095$$aSazatornil, M.
000057487 700__ $$0(orcid)0000-0003-3567-7030$$aPalacios, E.$$uUniversidad de Zaragoza
000057487 700__ $$0(orcid)0000-0003-2962-9251$$aBurriel, R.$$uUniversidad de Zaragoza
000057487 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000057487 773__ $$g125,  2 (2016), 579–583$$pJ. therm. anal. calorim.$$tJOURNAL OF THERMAL ANALYSIS AND CALORIMETRY$$x1388-6150
000057487 8564_ $$s13560634$$uhttps://zaguan.unizar.es/record/57487/files/texto_completo.pdf$$yPostprint
000057487 8564_ $$s105660$$uhttps://zaguan.unizar.es/record/57487/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000057487 909CO $$ooai:zaguan.unizar.es:57487$$particulos$$pdriver
000057487 951__ $$a2020-02-21-13:35:49
000057487 980__ $$aARTICLE