
Quantification and Compensation of the Impact of Faults in

System Throughput

Ricardo J Rodŕıguez†∗, Jorge Júlvez‡, José Merseguer‡

†Babel Group, DLSIIS, Facultad de Informática

Universidad Politécnica de Madrid, Spain

‡GISED, Dpto. de Informática e Ingenieŕıa de Sistemas

Universidad de Zaragoza, Spain

rjrodriguez@fi.upm.es, {julvez,jmerse}@unizar.es

Abstract

Performability relates the performance (throughput) and reliability of software systems whose

normal behaviour may degrade due to the existence of faults. These systems, naturally mod-

elled as Discrete Event Systems (DES) using shared resources, can incorporate Fault-Tolerant

(FT) techniques to mitigate such a degradation. In this paper, compositional FT models based

on Petri nets that make its sensitive performability analysis easier are proposed. Besides, two

methods to compensate existence of faults are provided: an iterative algorithm to compute

the number of extra resources needed, and an Integer-Linear Programming Problem (ILPP)

that minimises the cost of incrementing resources and/or decrementing FT activities. The

applicability of the developed methods is shown on a Petri net that models a secure database

system.

∗This work was partially supported by by CICYT - FEDER project DPI2010-20413 and by ARTEMIS Joint
Undertaking nSafeCer under grant agreement no. 295373 and from National funding. The Group of Discrete
Event Systems Engineering (GISED) is partially co-financed by the Aragonese Government (Ref. T27) and the
European Social Fund. Corresponding author: Ricardo J Rodŕıguez. Campus de Montegancedo, Facultad
de Informática Dpto. de Lenguajes y Sistemas Informáticos e Ingenieŕıa de Software, Universidad Politécnica de
Madrid. 28660 Boadilla del Monte (Madrid), Spain. Email: rjrodriguez@fi.upm.es. Phone: (+34) 913365017 Fax:
(+34) 913363669.

1

rjrodriguez@fi.upm.es

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Keywords

Performability, Fault-Tolerant techniques, Petri nets, Integer-Linear Programming

1 Introduction1

Performability [1] evaluates the performance (throughput) and the reliability of degradable systems,2

i.e., systems whose provided services may suffer some degradation due to errors and failures. Nor-3

mally, degradable systems include Fault-Tolerant (FT) techniques [2, 3] that provide mechanisms4

to deal with failures inside the system and mitigate the consequences of faults. Some examples of5

FT techniques are: switching system requests between non-faulty components, adding watch-dogs6

for checking liveness of system components, or software exception handlers. A degradable system7

equipped with a FT technique is called a FT system.8

Many FT systems are complex systems using shared resources that are compromised (i.e.,9

they fail) by the activation of faults. These systems can be naturally modelled as Discrete Event10

Systems (DES) where resources are shared, also called Resource Allocation Systems (RAS) [4].11

In this paper, we focus on FT systems using shared resources modelled as Petri nets (PNs) –12

more precisely, as process Petri nets [5]. This kind of PNs allows to model different instances13

of a single process that use shared resources (then competing among them) to complete. An14

extension of process Petri nets called S4PR [5] can be used for modelling resource competition15

among structurally different processes.16

Many studies evaluate the performability of a FT system through analytical models, usually17

represented as Markov processes [6,7]. These studies consider the FT systems modelled ad-hoc, and18

they do not provide any solution to mitigate the impact of activation of faults into the FT system.19

An evaluation of performability using Petri net-based models is presented in [8, 9]. Stochastic20

Activity Networks (SANs) are used in [8], associating reward rates directly with the markings of21

designated places and reward impulses with the completion of activities. Such an idea is extended22

for Generalised Stochastic Petri nets (GSPNs) by Bobbio in [9]. Another work that uses GSPN23

formalism is [10], where an extension of Fault Tree Analysis called Repairable Fault Trees (RFT)24

is presented. This extension allows the modelling and analysis of the repairing process by means25

of GSPNs.26

2

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

A more recent approach is given by Reussner et al. in [11], where a compositional approach27

is presented using Markov chains as modelling formalism. Other works [12, 13] in the literature28

study the impact of error propagation on reliability, also focused on component-based systems.29

Resource optimisation and its usage have been already studied for some class of Petri nets,30

namely Workflow Petri nets [14] or variants [15–17]. The work in [14] performs reduction operations31

on the original WF-net, having exponential complexity in the worst case. In [15], a method based32

on the reachability graph is presented. However, such a method can suffer scalability problems if33

the workflow size is large. Van Hee et al. give in [16] an algorithm to compute optimal resource34

allocation in stochastic WF-nets. Such an algorithm suffers as well from scalability problems35

because its complexity depends on the number of resources. In [17], Resource Assignment Petri36

Net (RAPN) is presented, that allows to define how resources are shared and assigned among37

different and concurrent project activities. The computation of the execution project time considers38

deterministic timing and, unlike our approach, RAPN is not able to model activities that utilise39

and release the same resource intermittently.40

The contributions of this paper are threefold: firstly, we review the FT concepts [2, 3] and41

propose compositional PN models for FT techniques; secondly, we propose an iterative algorithm42

to compute the number of resources that mitigate the impact of activation of faults; and thirdly, we43

propose an Integer Linear Programming Problem (ILPP) that minimises the cost of compensation44

needed for maintaining a given throughput in a FT system.45

Running example Let us consider a packet-routing algorithm inside a router where packets46

arrive and after checking source and destination of the packets, they are filtered following some47

defined rules. Figure 1 depicts a PN modelling such an algorithm. The PN marking represents the48

number nP of packets (initial marking of the process-idle place, p0), the number nT of threads49

attending the incoming packets (initial marking of p2) and the number nS of filtering-threads50

(initial marking of p7). The number nC denotes the capacity of the system. We consider that51

this number is equal to the number nP of packets, therefore place p′
0
becomes implicit and we52

omit it for analysis. Packets arrive to the router following an exponential distribution of mean53

δ0 = 5 milliseconds1. The amount of time for checking packet headers (i.e., source, destination) is54

1We use δi as an abbreviation for δ(Ti)

3

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

represented by transition T2, which follows an exponential distribution of mean δ2 = 2 milliseconds.55

The algorithm’s decision is represented by the place p5 and its outgoing arcs: either transition t4 is56

fired (then the packet must be discarded, which happens with a probability of 0.75), or transition57

t5 is fired. In the latter case, once some filtering-thread is available, it is used. Such a use is58

represented by T7 and takes, on average, δ7 = 1 millisecond to complete. Finally, T9 represents59

the final step of the algorithm, that consists in routing the packet(acknowledgement) properly to60

its destination(source) and takes, in terms of time, about 2 milliseconds, i.e., δ9 = 2.61

[Figure 1 about here.]62

This running example will be used henceforward to illustrate our approach. First, we will add63

to the PN depicted in Figure 1 a FT technique, and will compute the impact of faults in the64

system throughput. Then, we will apply our developed methods to compensate the throughput65

degradation.66

The remainder of this paper is as follows. Section 2 introduces some basic concepts, such as FT67

concepts and Petri net theory. Then, Section 3 presents the proposed compositional PN models for68

FT techniques. Section 4 analyses, in first place, how conservative components are modified when69

adding the proposed PN models. It also presents the proposed iterative algorithm to compute the70

number of resources that mitigate the impact of activation of faults, and the ILPP that minimises71

the cost of compensation needed for maintaining a given throughput in a FT system. Section 572

shows a case study where both algorithms are tested. Finally, Section 6 summarises our findings73

and main contributions of this paper.74

2 Preliminary Concepts75

This section introduces some basic concepts that are needed to follow the rest of the paper. First,76

the concepts related to Fault Tolerance are introduced. Lastly, a background on Petri nets (PNs)77

and related concepts – such as upper throughput bounds – are introduced.78

4

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

2.1 Fault Tolerance79

Fault Tolerance (FT) aims at failure avoidance carrying out error detection and system recovery [2].80

Figure 2 depicts the phases involved in a FT technique.81

[Figure 2 about here.]82

Error detection tries to identify the presence of an error in the system. It takes places either83

while the system is providing its services (concurrent), or when services are not being provided84

(preemptive). For instance, a hardware checking when the system boots up is a preemptive error85

detection technique.86

Recovery techniques are aimed at handling possible errors and/or faults in the system and87

leading it to a state without detected errors. Recovery techniques may have two steps: an error88

handling (optional step), which tries to eliminate the presence of an error in the system; and fault89

handling (mandatory step), which tries to avoid the reactivation of the detected fault.90

There are three common techniques when dealing with a detected error: rollback, when the91

system is conducted to a previous saved state (i.e., prior to error occurrence) without detected92

errors; rollforward, when the system is conducted to a new state without detected errors (in this93

case, later to error occurrence); and compensation, when there is enough redundancy to mask the94

error in the erroneous state.95

Unlike rollback or rollforward that happen on demand, compensation may happen on demand96

or systematically, independently of the presence (or absence) of an error. For instance, an example97

of a compensation handling technique triggered on demand is an exception handler mechanism. In98

this paper, we consider that error handling takes place on demand.99

The fault handling techniques that can be carried out to prevent faults from reacting again are:100

diagnosis, which records the origin (cause) of the error, locating where it happened and the type of101

error raised; isolation, which excludes (in a logical or physical way) faulty components from normal102

service delivery, so avoiding its participation in service delivery; reconfiguration, which reschedules103

service requests between non-failed components; and reinitialisation, which reconfigures the faulty104

system services by changing its configuration, stores this new configuration and reinitialises such105

affected services.106

5

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

2.2 Petri Nets and Throughput Bounds107

This section introduces some basic concepts regarding to the class of Petri net (PN) we are con-108

sidering in this paper. Firstly, we define process Petri nets in the untimed framework. Then,109

timed Petri net systems and upper throughput bounds are defined. In the following, the reader is110

assumed to be familiar with Petri nets (see [18] for a gentle introduction).111

2.2.1 Untimed Petri Nets112

Definition 1. A Petri net [18] (PN) is a 4–tuple N = 〈P, T,Pre,Post〉, where:113

• P and T are disjoint non-empty sets of places and transitions (|P | = n, |T | = m) and114

• Pre (Post) are the pre–(post–)incidence non-negative integer matrices of size |P | × |T |.115

The pre- and post-set of a node v ∈ P∪T are respectively defined as •v = {u ∈ P∪T |(u, v) ∈ F}116

and v• = {u ∈ P ∪ T |(v, u) ∈ F}, where F ⊆ (P ×T)∪ (T ×P) is the set of directed arcs. A Petri117

net is said to be self-loop free if ∀p ∈ P, t ∈ T t ∈ •p implies t 6∈ p•. Ordinary nets are Petri nets118

whose arcs have weight 1. The incidence matrix of a Petri net is defined as C = Post−Pre.119

A vector m ∈ Z
|P |
≥0

which assigns a non-negative integer to each place is called marking vector120

or marking.121

Definition 2. A Petri net system, or marked Petri net S = 〈N ,m0〉, is a Petri net N with an122

initial marking m0.123

A transition t ∈ T is enabled at markingm ifm ≥ Pre(·, t), wherePre(·, t) is the column ofPre124

corresponding to transition t. A transition t enabled at m can fire yielding a new marking m′ =125

m+C(·, t) (reached marking). This is denoted bym t−→m′. A sequence of transitions σ = {ti}ni=1
is126

a firing sequence in S if there exists a sequence of markings such that m0
t1−→m1

t2−→m2 . . .
tn−→mn.127

In this case, marking mn is said to be reachable from m0 by firing σ, and this is denoted by128

m0
σ−→mn. The firing count vector σ ∈ Z

|T |
≥0

of the firable sequence σ is a vector such that σ(t)129

represents the number of occurrences of t ∈ T in σ. If m0
σ−→m, then we can write in vector form130

m = m0 +C · σ, which is referred to as the linear (or fundamental) state equation of the net.131

The set of markings reachable from m0 in N is denoted as RS(N ,m0) and is called the132

reachability set.133

6

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Two transitions t, t′ are said to be in structural conflict if they share, at least, one input place,134

i.e., •t ∩ •t′ 6= ∅. Two transitions t, t′ are said to be in effective conflict for a marking m if they135

are in structural conflict and they are both enabled at m. Two transitions t, t′ are in equal conflict136

if Pre(·, t) = Pre(·, t′) 6= 0, where 0 is a vector with all entries equal to zero.137

A transition t is live if it can be fired from every reachable marking. A marked Petri net S is138

live when every transition is live. In this paper, we assume that Ss we work with are live.139

A p-semiflow is a non-negative integer vector y ≥ 0 such that it is a left anuller of the net’s140

incidence matrix, y⊤ · C = 0. In the sequel, we omit the transpose symbol in the matrices and141

vectors for clarity. A p-semiflow implies a token conservation law independent from any firing of142

transitions. A t-semiflow is a non-negative integer vector x ≥ 0 such that is a right anuller of the143

net’s incidence matrix, C · x = 0. A support of a vector v is defined as ‖v‖ = {i|v(i) 6= 0}. A144

p-(or t-)semiflow v is minimal when its support is not a proper superset of the support of any145

other p- (or t-)semiflow, and the greatest common divisor of its elements is one. A Petri net is said146

to be conservative (consistent) if there exists a p-semiflow (t-semiflow) which contains all places147

(transitions) in its support.148

A Petri net is said to be strongly connected if there is a directed path joining any pair of nodes of149

the net structure. A state machine is a particular type of ordinary Petri net where each transition150

has exactly one input arc and exactly one output arc, that is, |t•| = |•t| = 1, ∀t ∈ T .151

In this paper, we deal with Petri nets that model systems where resources are shared. Examples152

of this kind of systems can be found in manufacturing, logistics or web services systems. In general,153

these systems represent real-life problems where some items are processed and require the use154

of different resources (which are shared) during its processing. These systems can be naturally155

modelled in terms of process Petri nets, a subclass of Petri net whose inner structure is a strongly156

connected state machine. More formally:157

Definition 3. [5] A process Petri net (PPN) is a strongly connected self–loop free Petri net158

N = 〈P, T,Pre,Post〉 where:159

1. P = P0 ∪ PS ∪ PR is a partition such that P0 = {p0} is the process-idle place, PS 6= ∅ is the160

set of process-activity places and PR = {r1, . . . , rn}, n > 0 is the set of resources places;161

2. The subnet N ′ = 〈P0 ∪ PS , T,Pre,Post〉 is a strongly connected state machine, such that162

7

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

every cycle contains p0.163

3. For each r ∈ PR, there exist a unique minimal p-semiflow associated to r, yr ∈ N
|P |, fulfilling:164

‖yr‖ ∩ PR = {r}, ‖yr‖ ∩ PS 6= ∅, ‖yr‖ ∩ P0 = ∅ and yr(r) = 1. This establishes how each165

resource is reused, that is, they cannot be created nor destroyed.166

4. PS =
⋃

r∈PR
(‖yr‖ \ {r}). This implies that every place p ∈ PS belongs to the p-semiflow of167

at least one resource.168

Definition 3 implies that PPNs are conservative and consistent. Intuitively, Definition 3 es-169

tablishes a kind of nets where there is a process using different shared resources, every place in the170

net is covered by some p-semiflow and it uses some (at least one) resource, the number of instances171

of each resource remains constant and resources cannot change its type.172

Let N = 〈P, T,Pre,Post〉 be a PPN . A vector m0 ∈ Z
|P |
≥0

is called acceptable initial mark-173

ing [5] of N if: 1) m0(p) ≥ 1, p ∈ P0; 2) m0(p) = 0, ∀p ∈ PS ; and 3) m0(r) ≥ yr(r), ∀r ∈ PR,174

where m0(r) is the capacity, i.e., number of items, of the resource r and yr is the unique minimal175

p-semiflow associated to r.176

Definition 4. A process Petri net system, or marked process Petri net S = 〈N ,m0〉, is a process177

Petri net N with an acceptable initial marking m0.178

2.2.2 Timed Petri Nets179

In order to be able to use Petri nets for systems performance evaluation, the inclusion of the180

notion of time must be considered. There are two ways of introducing the notion of time in181

Petri nets, either in places or transitions. Since transitions are representing the actions of a182

system, which have associated some duration, we associate such a duration to the firing delay of183

transitions [19]. Besides, we consider that the firing delays of transitions follow an exponential184

distribution functions.185

A Petri net model where a set of exponential rates is considered (one for each transition in the186

model) is called a Stochastic Petri net (SPN) model [20,21]. These rates characterise the probability187

distribution function of the transition delay, which follow an exponential distribution function and188

are obtained as the inverse of the mean. These rates are considered to be marking-independent,189

i.e., its values are constant.190

8

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

In this paper, we consider that the average service time of a transition t can be zero, i.e., it fires191

in zero units of time. These transitions are called immediate transitions. Otherwise, transition192

t is a timed transition. The exponential transitions are graphically represented by a white box,193

whilst immediate transitions are black boxes. It will be assumed that all transitions in conflict are194

immediate. An immediate transition t in conflict will fire with probability
r(t)

∑

t′∈A r(t′)
, where A is195

the set of enabled immediate transitions in conflict and r(t) ∈ N>0 is the routing rate associated196

to transition t. The firing of immediate transitions consumes no time. When a timed transition197

becomes enabled, it fires following an exponential distribution with mean δ(t). More formally, we198

will consider the following timed Petri net classes:199

Definition 5. A Stochastic Petri Net (SPN) [20] system is a pair 〈S, δ, r〉 where S =200

〈P, T,Pre,Post,m0〉 is a Petri net system, δ ∈ R
|T |
≥0

is a positive real function such that δ(t)201

is the mean of the exponential firing time distribution associated to transition t ∈ T and r ∈ N
|T |
>0

202

is the vector of routing rates associated to transitions.203

Definition 6. A Stochastic Marked Graph (SMG) is a Stochastic Petri net whose underlying204

Petri net is a Marked Graph.205

Definition 7. A Stochastic Process Petri net (SPPN) system is a Stochastic Petri net system206

whose underlying Petri net is a Process Petri net.207

There exist different semantics for the firing of transitions, being infinite and finite server208

semantics the most frequently used. Given that infinite server semantics is more general (finite209

server semantics can be simulated by adding self-loop places), we will assume that the timed210

transitions work under infinite server semantics.211

The average marking vector, m, in an ergodic [22] Petri net system is defined as [23]:212

m(p) =
AS

lim
τ→∞

1

τ

∫ τ

0

m(p)udu (1)

where m(p)u is the marking of place p at time u and the notation =
AS

means equal almost surely.213

Similarly, the steady-state throughput, χ, in an ergodic Petri net is defined as [23]:214

χ(t) =
AS

lim
τ→∞

σ(t)τ
τ

(2)

9

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

where σ(t)τ is the firing count of transition t at time τ .215

By definition, all the places of a SPPN are covered by p-semiflows, and therefore it is struc-216

turally bounded. In this work, we will assume that the SPPN under study is a live and structurally217

bounded net with Freely Related T-semiflows (i.e., a FRT-net) [24]. It is known that the Markov218

process that describes the time evolution [21] of these nets is ergodic [24], i.e., when the observation219

period tends to infinite, the estimated values of average marking and steady-state throughput tend220

to a certain value, what implies the existence of the above limits.221

The vector of visit ratios expresses the relative throughput of transitions in the steady state.222

The visit ratio v(t) of each transition t ∈ T normalised for transition ti , vti(t), is expressed as223

follows:224

vti(t) =
χ(t)

χ(ti)
= Γ(ti) · χ(t), ∀t ∈ T (3)

where Γ(ti) =
1

χ(ti)
represents the average inter-firing time of transition ti.225

The visit ratios of two different transitions t, t′ in equal conflict must be proportional to the226

corresponding routing rate r(t), r(t′) defining the conflict resolution condition r(t) ·vti(t′) = r(t′) ·227

vti(t). This condition can be also written in vector form as:228

R · vti = 0 (4)

where R is a matrix containing as many rows as pairs of transitions in equal conflict.229

In FRT-nets, the vector of visit ratios v exclusively depends on the structure of the net and230

on the routing rates [24]. The vector of visit ratios v normalised for transition ti, v
ti , can be231

calculated by solving the following linear system of equations [24]:232







C

R






· vti = 0

vti(ti) = 1

(5)

10

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

2.2.3 Performance Estimation233

A lower bound for the average inter-firing time of transition ti, Γ
lb(ti), can be computed by solving234

the following LP problem (LPP) [24]:235

Γ(ti) ≥ Γlb(ti) = maximum y ·Pre ·Dti

subject to y ·C = 0

y ·m0 = 1

y ≥ 0

(6)

where Γ(ti) is the average interfiring time of transition ti and Dti is the vector of average service236

demands of transitions, Dti(t) = δ(t)·vti(t) (the vector of visit ratios vti is normalised for transition237

ti)
2.238

As a side product of the solution of (6), y represents the slowest p-semiflow of the system, thus239

LPP (6) can also be seen as a search for the most constraining p-semiflow. This p-semiflow will240

be the one with highest ratio
y ·Pre ·D
y ·m0

. Therefore, an upper bound Θ(ti) for the steady-state241

throughput can be calculated as the inverse of the lower bound for the average inter-firing time242

Γlb(ti), that is, Θ(ti) =
1

Γlb(ti)
.243

Let us recall that the vector of average service times of transitions δ does not depend on the244

marking. Otherwise, LPP 6 could not be applied, basically because having a δ depending on the245

marking will lead to a non-linear programming problem.246

3 Compositional PN Models for Fault Tolerance247

In this section, we provide compositional PN-based models for the Fault-Tolerant (FT) techniques248

based on the basic concepts of FT given in Section 2.1. Recall that a FT technique may involve249

both error detection – concurrent or preemptive – and recovery phases – divided in error handling250

(rollback, rollforward or compensation) and fault handling (diagnosis, isolation, reconfiguration or251

reinitialisation).252

2In the sequel, we omit the superindex ti in Dti for clarity

11

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

[Figure 3 about here.]253

Consider we have a system modelled with a PN in which there is an activity (represented by254

a timed transition Tf) which is subject to fail. We called it faulty transition, as it may lead to255

a fault. Before adding any FT technique to the system, we apply a transformation rule T R in256

the PN. This transformation rule allows us to apply our approach in general case, and it is not257

modifying the behaviour of the original PN model anyhow.258

Figure 3 shows how this transformation rule T R works: an immediate transition t(t′) and place259

•Tf(T
•
f) are added just from(to) transition Tf , and all input(output) places of transition Tf are260

accordingly connected to transition t(t′).261

[Figure 4 about here.]262

Figure 4 depicts the interaction between a PN that models the behaviour of a given system263

and a PN that models a FT technique. A PN-based FT model is subdivided in Error Detection264

and Recovery sub-models. Each sub-model respectively represents the phases involved in a FT265

technique. In the sequel, we explain each model and its interactions in detail.266

3.1 PN Error Detection Model267

Figure 5(a) depicts the PN model for error detection. The timed transition Tdetect represents268

how long the error detection activity takes. Note that this transition is abstracting the behaviour269

for detecting an error, so that it may be refined into a more complex model representing error270

detection in more detail (Detection phase in Figure 5(a)). After error detection activity takes271

place, the presence of an error is discriminated. When an error arises (transition terr), then a272

token is put on place p|eed. Otherwise, a token is put on place p|ned.273

The integration between the Error Detection model and the System model is done through274

labelled places p|sed, p|eed (a labelled place p is defined as p|label). We have followed the compo-275

sitional rules over the places defined in [25, 26] to combine models using labelled places: pairs of276

places with matching labels are superposed. Figure 5(a) depicts the places p|sed, p|ned added to the277

system model. The origin of the incoming arc of place p|sed depends on the type of error detection,278

and synchronises the execution of error detection model with the system model: when concurrent,279

12

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

the arc added is the red-dashed one; otherwise (preemptive), the green-dotted arc is considered.280

Note that the place p|ned is synchronised with T •
f (which is added to the system by transformation281

rule T R).282

[Figure 5 about here.]283

This simple model allows us to represent the most common error detection techniques, e.g., to284

validate input data, or intermediate data generated and reused during faulty transition (it can be285

concurrently done), and to validate output after faulty transition execution (preemptive).286

3.2 PN Recovery Model287

Recovery phase involves two steps, a first (optional) step of error handling (rollback, rollforward or288

compensation) and a second one of fault handling technique (diagnosis, isolation, reconfiguration289

or reinitialisation).290

Following the definitions given in [2], we have grouped the fault handling techniques in two291

groups: diagnosis and reinitialisation techniques; and isolation and reconfiguration. This decision292

is based on the abstracted behaviour of these techniques, as we explain henceforward. We have293

composed models that represent valid combinations of the recovery phase as it is shown in Table 1.294

This classification is made based on how the techniques work. For instance, we believe that a295

rollforward technnique cannot be combined with reconfiguration or reinitialisation, because recon-296

figuration switches the request to spare components, while reinitialisation updates and records a297

new system configuration. Thus, we consider that to move to a future correct state after recovering298

is unmeaning.299

[Table 1 about here.]300

Figure 6(a) shows the PN model of diagnosis and reinitialisation FT recovery techniques. Place301

p|eed is superposed with the one of Error Detection model, and place p|T•

f
is superposed with302

place T •
f in the system model. A token in place p|eed indicates that an error has been detected.303

Once transition trm is fired, a (optional) compensation activity may take place (Compensation304

phase). Then, recovery activity takes place (abstracted in Recovery phase). As in the previous305

model of error detection, we have represented compensation and recovery phases as a single timed306

13

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

transitions (Tc and Trec, respectively). These transitions may be refined into a more complex307

models representing compensation and recovery activities in more detail.308

Finally, the token flow is redirected through place p|rtn. The superposition of this place depends309

on the error handling technique used: it will be a place which becomes eventually marked after310

the faulty transition Tf is fired (rollforward), or which was eventually marked before its firing311

(rollback). In both cases and to keep conservativeness of the model, place p|rtn must belong to the312

p-semiflow associated to the resource r (we called it faulty resource), being r the inner resource313

used by faulty activity. Although a transition Tf can represent an activity where several resources314

are being used, for the sake of simplicity in this paper we assume that the fault is caused by the315

use of the inner resource (i.e., the last one acquired). Otherwise, note that after recovering phase316

other resources acquired after faulty resource should be released to keep conservativeness.317

The difference between diagnosis and reinitialisation technique can be established by the du-318

ration of recovery phase. For instance, when diagnosis technique is considered, the recovery phase319

will have a much lower duration than when reinitialisation is taken into account due to the actions320

that are performed.321

[Figure 6 about here.]322

Figure 6(b) shows the PN model of isolation and reconfiguration FT recovery techniques. This323

case is identical to the previous until the (optional) compensation phase. After the compensation324

phase takes place, the type of the fault is discriminated [2] as intermittent (that is, the fault is325

transient) or solid (i.e., the faults whose activation is reproducible). When the fault is intermittent,326

as proposed in [2], normal execution can keep going on and token is returned to place p|rtn (as327

before, the superposed place depends on the type of error detection). On the contrary, when a328

solid fault is detected, the faulty resource is excluded from normal service delivery – as indicated329

by both isolation and reconfiguration techniques – and the token is moved to the place p|safe. We330

assume that place p|safe is superposed with the place previous to acquire the faulty resource r,331

i.e., p|safe = •tacq, where tacq is the transition where faulty resource r is acquired.332

In the case of isolation and reconfiguration, the recovery phase is called Maintenance phase,333

because it involves the participation of an external agent [2]. We have modelled maintenance334

phase as a single transition TMTTR that represents the Mean Time To Repair (MTTR) spent on335

14

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

fixing the faulty resource. As in the previous case, this model can be refined to a more complex336

maintenance model. Anyhow, after maintenance phase takes place the fixed resource is returned337

to place p|ir, which is superposed to the resource place pr.338

As in the previous techniques, the difference between isolation and reconfiguration technique339

can be established by the duration of maintenance phase. For instance, when isolation technique340

is considered, the maintenance phase will have a much greater duration than when reconfiguration341

is taken into account.342

Finally, note that most of the FT techniques can be modelled with the proposed models. For343

instance, a watchdog can be modelled as a reconfiguration FT technique with concurrent error344

detection and rollforward (or rollback), and a checkpointing and rollback can be modelled as a345

reinitialisation FT technique. Unfortunately, other FT techniques, such as n-version programming346

or combined proactive-reactive techniques [27] cannot be adapted to the proposed model and some347

tweaks must be done. We aim to extend these models to cover all FT techniques as a future work.348

[Figure 7 about here.]349

Recall the PN of the running example depicted in Figure 1. Suppose that the filtering activity350

may fail, i.e., the faulty transition is T7. The router manufacturer is interested in adding a watchdog351

(recall it can be modelled as a reconfiguration FT technique) into the algorithm such that the352

threads that fail (they are hanged) are discarded, and they are cleaned with a fixed internal timer.353

In this case, the error detection model is concurrent, as the failure can be detected during normal354

operation; and the error handling technique used is rollback: when an error is detected, the packet355

is filtered by another thread, when available.356

The resulting PN after adding the FT technique described above is depicted in Figure 7. We357

assume that the detection activity takes, on average, δdetect = 0.5 milliseconds, and the recovery358

activity takes, on average, δMTTR = 2 seconds. Let us suppose a probability of raising an error359

of 0.2, resulting the 5% of the times in a solid fault. This PN will be used in the next section for360

sensitive performability analysis.361

15

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

4 Analysis of PN-based FT Models362

This section introduces, in first place, how the conservative components (i.e., the p-semiflows) are363

modified when FT models are added to a PPN . Then, we perform a sensitive analysis on upper364

throughput bound of the PPN system with respect to the failure probabilities. Lastly, we propose365

an optimisation technique that tries to compensate the throughput degradation produced by the366

existence of faults.367

4.1 Conservative Components368

Let us analyse how minimal p-semiflows are modified. The addition of the proposed FT models369

transforms each p-semiflow yr associated to a resource r that makes use of the faulty transition tf370

(i.e, ‖yr‖∩{•tf , t•f} 6= ∅) into two p-semiflows y′
r,y

′′
r ,y

′
r 6= y′′

r such that ‖yr‖ ⊂ ‖y′
r‖, ‖yr‖ ⊂ ‖y′′

r‖.371

This transformation is due to the fact that FT models consume/produce tokens from/to the original372

p-semiflows. These p-semiflows cover all places added by the FT technique, thus the net remains373

conservative.374

[Table 2 about here.]375

For instance, the minimal initial p-semiflows of the net in Figure 1 are: y1 =376

{p0, p1, p3, p4, p5, p6|safe, p8|rtn, p9, p10, p11}, y2 = {p2, p3, p4, p5, p6|safe, p8|rtn, p9, p10, p11} and377

y3 = {p7|ir, p8|rtn, p9}. The minimal p-semiflows of the PN in Figure 1 that contain places from/to378

transition T7 (p8|rtn and p9, respectively) are y1,y2 and y3. Thus, the new p-semiflows of PN in379

Figure 7 are the ones showed in Table 2.380

Note that these new p-semiflows violate the third property of definition of PPN (see Section 2),381

given that there exist more than a single minimal p-semiflow containing the same resource, e.g.,382

y′
2
and y′′

2
contain the resource place p2 on its support. Nevertheless, in the new net system it still383

holds that each minimal p-semiflow contains only one initially marked place.384

4.2 Sensitive Analysis of Upper Throughput Bounds385

As we have seen in the previous section, the p-semiflows of the PPN change once some of the386

proposal FT models are added. Recall that an upper throughput bound Θ of a PPN system is387

16

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

related to the slowest p-semiflow y, i.e., Θ =
y ·m0

y ·Pre ·D .388

Given that in the considered nets all the components of minimal p-semiflows are equal to 1389

and the only initially marked places are resource places, i.e., ∀p ∈ ‖yr‖ \ {r},m0(p) = 0, the390

previous equation can be written as Θ =
m0(r)

yr ·Pre ·D where yr is minimal. Let us assume that391

after adding some FT technique, there are n minimal p-semiflows, y1, . . . ,yn that are modified.392

Thus, the throughput bound of the new net system is:393

Θ′ = minimum(Θ,minimumn
i=1

m0(ri)

yi ·Pre ·D) (7)

where yi is a minimal p-semiflow, i.e., ∀p ∈ ‖y‖,y(p) = 1.394

Recall the running example of the previous section. Suppose an initial marking of nP = 10,395

nT = 2 and nS = 2. The slowest p-semiflow is, with this configuration and before adding the396

FT technique (Figure 1), y = {p2, p3, p4, p5, p6|safe, p8|rtn, p9, p10, p11}; and the upper throughput397

bound is Θ = 0.470588. After adding the proposed FT technique, the equations
m0(ri)

yi ·Pre ·D398

related to p-semiflows that change are:399

y′
1
→ m0(p0)

δ0 · v0 + δ2 · v2 + δ7 · v7 + δ9 · v9

y′′
1
→ m0(p0)

δ0 · v0 + δ2 · v2 + δdetect · vdetect + δ9 · v9

y′
2
→ m0(p2)

δ2 · v2 + δ7 · v7 + δ9 · v9

y′′
2
→ m0(p0)

δ2 · v2 + δdetect · vdetect + δ9 · v9

y′
3
→ m0(p2)

δ7 · v7 + δMTTR · vMTTR

y′′
3
→ m0(p0)

δdetect · vdetect + δMTTR · vMTTR

(8)

Note that as error detection is concurrent, there is no p-semiflow containing both faulty tran-400

sition and error detection transition at the same time. Otherwise, the faulty transition appears401

in conjunction with error detection transition in all p-semiflows generated. Besides, in the case402

of concurrent error detection, the number of minimal p-semiflows to be checked can be simpli-403

fied, taking only the generated one that it is max(δdetect, δTf
). Thus, the p-semiflows of interest404

17

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

here are: y′
1
, y′

2
and y′

3
(as δ7 > δdetect). The throughputs of these p-semiflows are, respectively,405

Θ1 = 1.073825, Θ2 = 0.463768 and Θ3 = 0.304762.406

Therefore, the new slowest p-semiflow is y′
3
, and the new upper throughput bound is Θ′ = Θ3 =407

0.304762. That is, with the described configuration, the addition of an isolation FT technique408

causes a degradation of 35.23% to the upper throughput bound of the system.409

We have performed a sensitive analysis of Θ1,Θ2 and Θ3 with respect to the probability of410

errors re, re ∈ [0 . . . 1], taking steps of 0.01. The results are plotted in Figure 8(a). The solid line411

is Θ, the upper throughput bound of the original system. The dotted line is Θ1, while dot-dashed412

is Θ2 and dashed line is Θ3.413

[Figure 8 about here.]414

The findings show that Θ2 is a bit lower than the original upper throughput bound for low415

probabilities of error. This holds until the probability of error reaches a value near to 0.14. From416

that point, Θ3 becomes the new upper throughput bound, which besides exponentially decreases.417

It is remarkable that y′
3
, i.e., the p-semiflow associated to Θ3, is even faster than the others for418

low probabilities of error (re < 0.06). Lastly, when probability of error reaches a value near to 0.8,419

the throughput of all minimal p-semiflows quickly decreases and tends to zero.420

4.3 Resource Assignment421

This section introduces an iterative strategy that computes the number of resources needed to422

maintain a given upper throughput bound in a degradable system where our proposed FT models423

are added.424

Such a strategy is presented in Algorithm 1. As input, it needs the description of the PN model425

with the FT techniques added to it with the initial marking and the vector of service times of426

transitions, 〈N ,m0, δ〉; the upper throughput bound Θ before adding the FT techniques; and the427

set YFT of minimal p-semiflows that are modified after adding the FT techniques. As output,428

it returns the initial marking m′
0 such that the upper throughput bound Θ′ of the FT system is429

greater than or equal than Θ.430

Algorithm 1 works as follows. It iterates in the content of the set YFT of minimal p-semiflows431

that have been modified when adding a proposed FT model. For each minimal p-semiflow yi ∈432

18

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Algorithm 1 An iterative algorithm to compute initial marking needed to maintain a certain
upper throughput bound with a probability of error.

Input: 〈N ,m0, δ〉, Θ, YFT

Output: m′
0

1: m′
0
= m0

2: for each yi ∈ YFT do
3: m′

0
(ri) = maximum(m0(ri), ⌈(yi ·Pre ·D) ·Θ⌉)

4: end for each

YFT , the value of the initial marking for associated resource ri is computed as the maximum of433

the previous initial marking of the resource (i.e., m0(ri)) or the ⌈(yi ·Pre ·D) · Θ⌉. The latter434

equation comes from solving Θ =
m0(ri)

yi ·Pre ·D . The ceiling is needed because m′
0(ri) ∈ N.435

Let us apply the Algorithm 1 in the running example. The previous upper throughput bound436

is Θ = 0.470588, and the set of minimal p-semiflows that are modified after adding isolation437

FT is YFT = {y′
1
,y′

2
,y′

3
}. For a given initial marking m0(p0) = 10,m0(p2) = 2,m0(p7) = 2,438

Algorithm 1 returns as solution: m′
0
(p0) = m0(p0) = 10,m′

0
(p2) = 3,m′

0
(p7) = 4. That is, it is439

needed another thread and two more filtering-threads to compensate a 20% of errors (and a 5% of440

them deriving in solid faults) using reconfiguration as FT technique.441

We have plotted in Figure 8(b) the initial marking needed to support the given throughput of442

Θ = 0.470588 varying the probability of error re, re ∈ [0 . . . 1], taking steps of 0.01. The dotted443

line is the initial number of tokens of p0 (packets, nP), the solid line corresponds to the initial444

number of tokens of p2 (threads, nT) and the dashed line is the initial number of tokens of p7445

(filtering-threads, nS). The results show that the number of packets and threads remain more446

or less equal, i.e., there is no need to increment too much units to be able to maintain the given447

throughput, even with high probability of errors. However, the number of filtering-threads needed448

increases rapidly with respect to the probability of error.449

4.4 Minimising Cost of Compensating Throughput Degradation450

In this section, we present an Integer-Linear Programming Problem (ILPP) that minimises the451

cost of compensating throughput degradation caused by the presence of errors.452

We are able to compute the initial marking needed to maintain a given throughput with the453

previous Algorithm 1. However, the increment of items of resources can have a cost in real systems454

19

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

and we may not be able to increment as much as it is desired. Recall that equation
m0(ri)

yi ·Pre ·D455

relates not only the number of items of resources (m0(ri)) but also activity timings and error456

(and solid faults) probabilities (D). If we consider a given error probability re and solid faults457

probability rs, a compensation may be done in two ways: either the number of resources in the458

system can be incremented, or the timing of FT activities (detection, compensation and recovery459

phases) can be decremented. Both ways can have some cost associated.460

Let us assume that FT phases are abstracted in single timed transition, i.e., a FT technique461

j adds to the system three timed transition: T
j
detect (detection phase), T j

c (compensation phase)462

and T j
rec/T

j
MTTR (recovery/maintenance phase). Let cri the cost of an increment of one unit of the463

resource ri, and cdj the cost of a decrement of one unit of time of detection phase of FT technique j,464

while ccj(c
rm
j) is the cost of a decrement of one unit of time of compensation(recovery/maintenance)465

phase.466

We can build an Integer-Linear Programming Problem (ILPP) to compute the minimum cost467

that guarantees a compensation of the throughput system after adding a number m of FT tech-468

niques as follows:469

minimum





n
∑

i=1

cri · αi +
m
∑

j=1

(

cdj · βd
j + ccj · βc

j + crmj · βrm
j

)



 subject to

m0(ri) + αi ≥ Θ · yi ·Pre ·D′

δ′(T j
detect) = δ(T j

detect)− βd
j

δ′(T j
c) = δ(T j

c)− βc
j (9)

δ′(T j
rec) = δ(T j

rec)− βrm
j

δ′(t) ≥ δmin(t), ∀t ∈ T

αi, β
d
j , β

c
j , β

rm
j ≥ 0, αi ∈ N, ∀i ∈ [1 . . . n], ∀j ∈ [1 . . .m]

where n p-semiflows have been modified by the addition of m FT techniques to the original system;470

D′(t) = δ′(t) · v(t), ∀t ∈ T ; and δmin(t) is a lower bound for the service time of transition t (that471

is, we impose a minimum service time for transitions). The new number of resources and firing of472

20

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

transitions will be given by the values of αi, β
d
j , β

c
j , β

rm
j , respectively.473

This ILPP is applied to the case study in the next section.474

5 Case Study: a Secure Database System475

This section introduces a case study to test our approach. We have considered the design of476

a Secure Database System (SDBS) deployed as a Web Service that stores confidential data and477

keeps traceability of all operations made over the data. Examples of this kind of system are a478

medical insurance company (that keeps customer’s medical data), or a bank company (that keeps479

customer’s balance accounts).480

The UML-Sequence Diagram in Figure 9 models how SDBS works when a user requests an481

operation on its stored data (for instance, a bank customer asks for all operations made on its482

bank accounts). When a new request arrives at the system (attended by WS-Requester), it asks483

for a security token that is provided by WS-SecurityToken. Once it is provided, the request is484

accordingly encrypted and set to WS-PolicyService, where it is validated, decrypted and trans-485

mitted to WS-Coordinator. Finally, WS-Coordinator unpacks the request and sends it to the486

WS-Application, which accesses the database through WS-DBApplication service via a secure in-487

tranet. An acknowledgement is sent back through the system to the origin of the request, reporting488

the results to the user. Note that the result also needs a security token to be securely transmitted489

back to the user.490

[Figure 9 about here.]491

Figure 10 depicts the Petri net (PN) corresponding to the behaviour of the SDBS sys-492

tem described in Figure 9. The transformation from UML to PN is documented in [28],493

and can be carried out by several tools, such as ArgoPN, ArgoPerformance [28] or Ar-494

goSPE [29]. Each resource is represented by a dark grey place in the PN: p2 (WS-Requester),495

p5 (WS-PolicyService), p13 (WS-SecurityToken), p24 (WS-Coordinator), p29 (WS-Application)496

and p32 (WS-DBApplication); while user’s requests are represented by the process-idle place p0497

(depicted in light grey). As the running example, we consider that there is a place p′
0
with the498

same initial marking that p0, thus it becomes implicit and it is not considered for the analysis499

21

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

(indeed, we omitted it in the Figure 10). The number of instances of each resource is summarised500

in Table 3(b), and they will be represented by tokens in the respective place. Due to the state501

explosion problem the computation of the number of states with this configuration using different502

tools (e.g. PeabraiN [30] or GreatSPN [31]) has not been possible in reasonable time in a Intel503

Pentium IV 3.6GHz with 3GiB RAM DDR2 533MHz host machine.504

The acquire (release) of a resource is represented by an immediate transition with an input (out-505

put) arc. For example, transition t2 represents the reception of the request by the WS-Requester506

service, while t7 represents the release of such a resource.507

[Figure 10 about here.]508

[Table 3 about here.]509

Consider that transition that represents an operation on data after reading the DB, T31, may510

fail with a probability of 0.15. We decide to add a reinitialisation FT technique FT 1, without511

compensation phase and with a concurrent error detection that takes, on average, δ(T 1

detect) =512

0.5ms. The recovery time, i.e., the time needed for reconfiguring DB service takes, on average,513

δ(T 1

rec) = 20ms. Lastly, place p36 (the one before faulty transition T31) is labelled as p36|rtn.514

The upper throughput bound of the system is, before adding the FT technique, Θ = 1.481481,515

and it is associated to the minimal p-semiflow of p32 – i.e., WS-DBApplication. When adding the516

FT technique described, the minimal p-semiflows that are modified correspond to the ones that517

use T31, i.e., yp0 ,yp2 , yp29 and yp32 , and the upper throughput bound decreases near to a 133.98%,518

that is, Θ′ = 0.633147 and it is related as well to WS-DBApplication.519

Let us apply now Algorithm 1 to compute the initial marking needed to compensate the through-520

put degradation. The minimal p-semiflows under study here are: y′
p0

= yp0 ∪{•T31, T
•
31, p

1

4},y′
p2

=521

yp2 ∪ {•T31, T
•
31, p

1
4},y′

p29
= yp29 ∪ {•T31, T

•
31, p

1
4},y′

p31
= yp31 ∪ {•T31, T

•
31, p

1
4} (the other p-522

semiflows y′′
p0
,y′′

p2
,y′′

p29
,y′′

p31
are not of interest due to δdetect <= δ31). The computation of value of523

y1
pi
·Pre ·D is, respectively, 41.9520, 41.6557, 10.3965, 9.3594. Thus, the solution of Algorithm 1 is524

m′
0
(p0) = 100,m′

0
(p2) = 50,m′

0
(p29) = 11,m′

0
(p31) = 10. That is, the number of WS-Application525

(p29) and WS-DBApplication (p31) must be incremented to 11 and 10 units, respectively, to main-526

tain the given throughput of Θ = 1.481481 and a probability of error of 0.15. If resources are527

incremented as it is given by the solution of this algorithm, the new upper throughput bound has528

22

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

a value of Θ′ = 1.567476.529

Let us consider that the addition of new resources has some associated cost, more precisely, the530

cost of adding new instances of any host service is $350 each (for instance, because new licenses531

for deploying more virtual servers must be purchased). In the case of recovery method, it can be532

improved having a cost, on average, of $250 per each millisecond, and the minimum required time533

for recovering is 5ms (i.e., δmin(Trec) = 5ms).534

With this configuration, we apply now the proposal ILPP (10) for computing the minimal cost535

that compensate a probability of error of 0.15. The result of applying ILPP (10) is that 4 more536

resources of WS-Application (p29), 5 more resources of WS-DBApplication (p32) and recovery537

time must be decremented in 2ms. The cost associated to these actions is $3, 650. After applying538

these changes, the upper throughput bound is Θ′′ = 1.500441, which represents an improvement539

near to 1.28% of the previous upper throughput bound Θ.540

Note that as the number of resources and the timing must be natural numbers, we will always541

obtain an upper throughput bound in the FT system where results of ILPP (10) are applied542

(slightly) better than in the original system model.543

In summary, the solution of Algorithm (10) has an associated cost of $3, 850, because 11 more544

resources must be added, whilst the solution giving by minimising cost through ILPP (10) costs545

$3, 650.546

6 Conclusions547

Software systems are usually subject to faults that may lead to the existence of error and failures.548

Normally, Fault-Tolerant (FT) techniques are incorporated to these systems (then called FT sys-549

tems) to mitigate the impact of activations of faults. FT systems can be naturally modelled as550

Discrete Event Systems (DES) where sharing resources are used.551

In this paper, firstly we have provided compositional models for FT techniques that allow552

us to make performability (i.e., performance under failure conditions) analysis easier when FT553

parameters change. Thus, these FT models can be useful for evaluating different FT approaches554

in the same system model. Secondly, we have presented an iterative algorithm that computes the555

initial marking needed to maintain a given upper throughput bound in a system model within our556

23

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

proposed FT models. Thirdly, we present an Integer-Linear Programming Problem (ILPP) that557

minimises the cost of compensating throughput degradation caused by the presence of faults and558

errors). The use of linear programming techniques guarantees its efficiency and scalability to large559

models. Both algorithms are applied to a process Petri net modelling a Secure Database System.560

This paper provides upper throughput bounds for the kind of systems under study since upper561

throughput bounds are usually closer to the real system throughput [24, 32]. The work here562

presented is a starting point, and as future work, we aim at analysing lower throughput bounds563

following the same methodology. The lower throughput bounds would enhance the throughput564

analysis under failure, as an interval for the throughput would be provided.565

References566

[1] Meyer JF. Closed-Form Solutions of Performability. IEEE Trans Comput. 1982 Jul;31(7):648–567

657. Available from: http://dx.doi.org/10.1109/TC.1982.1676062.568

[2] Avizienis A, Laprie JC, Randell B, Landwehr C. Basic Concepts and Taxonomy of Dependable569

and Secure Computing. IEEE Transactions on Dependable and Secure Computing. 2004 jan-570

march;1(1):11–33.571

[3] Avizienis A. Toward Systematic Design of Fault-Tolerant Systems. Computer. 1997572

apr;30(4):51–58.573

[4] Colom J. The Resource Allocation Problem in Flexible Manufacturing Systems. In: van der574

Aalst W, Best E, editors. Applications and Theory of Petri Nets. vol. 2679 of LNCS. Springer575

Berlin / Heidelberg; 2003. p. 23–35.576

[5] Tricas F. Deadlock Analysis, Prevention and Avoidance in Sequential Resource Allocation Sys-577

tems. Dpto. de Informática e Ingenieŕıa de Sistemas, Universidad de Zaragoza; 2003. Available578

from: http://webdiis.unizar.es/~ftricas/Articulos/FernandoTricasFinal.pdf.gz.579

[6] Goŝeva-Popstojanova K, Trivedi KS. Architecture-based approach to reliability assess-580

ment of software systems. Performance Evaluation. 2001;45(2–3):179–204. Available from:581

http://www.sciencedirect.com/science/article/pii/S0166531601000347.582

24

http://dx.doi.org/10.1109/TC.1982.1676062
http://webdiis.unizar.es/~ftricas/Articulos/FernandoTricasFinal.pdf.gz
http://www.sciencedirect.com/science/article/pii/S0166531601000347

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

[7] Gokhale SS, Wong WE, Horgan JR, Trivedi KS. An analytical approach to architecture-based583

software performance and reliability prediction. Performance Evaluation. 2004;58(4):391–412.584

[8] Sanders WH, Meyer JF. A Unified Approach for Specifying Measures of Performance, Depend-585

ability, and Performability. Dependable Computing and Fault-Tolerant Systems: Dependable586

Computing for Critical Applications. 1991;4:215–237.587

[9] Bobbio A. Petri Nets Generating Markov Reward Models for Performance/Reliability Analysis588

of Degradable Systems. In: Potier D, Puigjaner B, editors. Proceedings of the Fourth Interna-589

tional Conference on Modeling Techniques and Tools for Computer Performance Evaluation.590

New York, NY, USA: Plenum; 1989. p. 353–365.591

[10] Raiteri DC, Franceschinis G, Iacono M, Vittorini V. Repairable Fault Tree for the auto-592

matic evaluation of repair policies. In: International Conference on Dependable Systems and593

Networks. IEEE; 2004. p. 659–668.594

[11] Reussner RH, Schmidt HW, Poernomo IH. Reliability prediction for component-595

based software architectures. J Syst Softw. 2003 June;66(3):241–252. Available from:596

http://dx.doi.org/10.1016/S0164-1212(02)00080-8.597

[12] Abdelmoez W, Nassar DM, Shereshevsky M, Gradetsky N, Gunnalan R, Ammar HH, et al.598

Error Propagation in Software Architectures. In: Proceedings of the 10th International Sym-599

posium on Software Metrics (ISSME); 2004. p. 384–393.600

[13] Cortellessa V, Grassi V. A Modeling Approach to Analyze the Impact of Error Prop-601

agation on Reliability of Component-Based Systems. In: Schmidt H, Crnkovic I,602

Heineman G, Stafford J, editors. Proceedings of the 10th International Conference on603

Component-Based Software Engineering. vol. 4608 of Lecture Notes in Computer Science.604

Berlin, Heidelberg: Springer Berlin / Heidelberg; 2007. p. 140–156. Available from:605

http://dl.acm.org/citation.cfm?id=1770657.1770670.606

[14] Li J, Fan Y, Zhou M. Performance Modeling and Analysis of Workflow. IEEE T Syst Man607

Cy A. 2004 March;34(2):229–242.608

25

http://dx.doi.org/10.1016/S0164-1212(02)00080-8
http://dl.acm.org/citation.cfm?id=1770657.1770670

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

[15] Wang H, Zeng Q. Modeling and Analysis for Workflow Constrained by Resources and609

Nondetermined Time: An Approach Based on Petri Nets. IEEE T Syst Man Cy A. 2008610

July;38(4):802–817.611

[16] Hee KV, Reijers H, Verbeek E, Zerguini L. On the Optimal Allocation of Resources In612

Stochastic Workflow Nets. In: Djemame K, Kara M, editors. Proceedings of the 7th UK613

Performance Engineering Workshop. University of Leeds, Leeds, UK; 2001. p. 23–34.614

[17] Chen YL, Hsu PY, Chang YB. A Petri Net Approach to Support Resource Assignment in615

Project Management. IEEE T Syst Man Cy A. 2008 May;38(3):564–574.616

[18] Murata T. Petri Nets: Properties, Analysis and Applications. In: Proceedings of the IEEE.617

vol. 77; 1989. p. 541–580.618

[19] Ramchandani C. Analysis of Asynchronous Concurrent Systems by Petri Nets. Dept. of619

Electrical Engineering, Massachusetts Institute of Technology. Cambridge, MA, USA; 1974.620

[20] Florin G, Natkin S. Les réseaux de Petri stochastiques. Technique et Science Informatique.621

1985;4:143–160.622

[21] Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G. Modelling with Gen-623

eralized Stochastic Petri Nets. Wiley Series in Parallel Computing. John Wiley and Sons;624

1995.625

[22] Ross SM. Stochastic Processes. Wiley series in mathematical statis-626

tics. Probability and mathematical statistics. Wiley; 1983. Available from:627

http://books.google.es/books?id=Hj7bAAAAMAAJ.628

[23] Florin G, Natkin S. Necessary and Sufficient Ergodicity Condition for Open Synchronized629

Queueing Networks. IEEE T Software Eng. 1989;15(4):367–380.630

[24] Campos J, Silva M. Structural Techniques and Performance Bounds of Stochastic Petri Net631

Models. Lecture Notes in Computer Science. 1992;609:352–391.632

[25] Donatelli S, Franceschinis G. The PSR Methodology: Integrating Hardware and Software633

Models. In: Proceedings of the 17th International Conference of Application and Theory of634

Petri Nets (ICATPN); 1996. p. 133–152.635

26

http://books.google.es/books?id=Hj7bAAAAMAAJ

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

[26] Bernardi S, Donatelli S, Horváth A. Implementing Compositionality for Stochastic Petri Nets.636

Journal of Software Tools for Technology Transfer. 2001;3:417–430.637

[27] Sousa P, Bessani AN, Correia M, Neves NF, Verissimo P. Highly Available Intrusion-Tolerant638

Services with Proactive-Reactive Recovery. IEEE Transactions on Parallel and Distributed639

Systems. 2010 april;21(4):452–465.640

[28] Distefano S, Scarpa M, Puliafito A. From UML to Petri Nets: The PCM-Based Methodology.641

IEEE Transactions on Software Engineering. 2011 jan-feb;37(1):65–79.642

[29] Gómez-Mart́ınez E, Merseguer J. ArgoSPE: Model-Based Software Performance Engineering.643

In: International Conference of Application and Theory of Petri Nets; 2006. p. 401–410.644

[30] Rodŕıguez RJ, Júlvez J, Merseguer J. PeabraiN: A PIPE Extension for Performance Esti-645

mation and Resource Optimisation. In: Proceedings of the 12th International Conference on646

Application of Concurrency to System Designs (ACSD). IEEE; 2012. p. 142–147. Available647

from: http://webdiis.unizar.es/~ricardo/files/papers/RJM-ACSD-12.pdf.648

[31] Baarir S, Beccuti M, Cerotti D, De Pierro M, Donatelli S, Franceschinis G. The GreatSPN649

tool: recent enhancements. SIGMETRICS Perform Eval Rev. 2009;36(4):4–9.650

[32] Rodŕıguez RJ, Júlvez J. Accurate Performance Estimation for Stochastic Marked Graphs651

by Bottleneck Regrowing. In: Proceedings of the 7th European Performance Engineer-652

ing Workshop (EPEW). vol. 6342 of LNCS. Springer; 2010. p. 175–190. Available from:653

http://webdiis.unizar.es/~ricardo/files/papers/RJ-EPEW-10.pdf.654

27

http://webdiis.unizar.es/~ricardo/files/papers/RJM-ACSD-12.pdf
http://webdiis.unizar.es/~ricardo/files/papers/RJ-EPEW-10.pdf

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

List of Figures655

1 Petri net representation of a packet-routing algorithm. 30656

2 Phases involved on a Fault-Tolerant technique (adapted from [2]). 31657

3 Transformation rule T R of a transition tf subject to fail (faulty transition). 32658

4 Integration between a PN-based system model and a PN-based FT technique. . . . 33659

5 PN-based model of Error Detection and faulty activity inside the system. 34660

6 PN-based models of Recovery model: (a) and (b) isolation & reconfiguration. . . . 35661

7 Petri net representation of the packet-routing algorithm depicted in Figure 1 extended with a FT technique.662

8 Results of (a) throughput values and (b) initial marking with respect to probability of error. 37663

9 SDBS Request Customer’s Data scenario. 38664

10 Petri net of the SDBS. Resource places are depicted in dark grey, whilst process-idle place in light grey. 39665

28

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

List of Figures666

29

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Figure 1: Petri net representation of a packet-routing algorithm.

30

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Fault

Tolerance

Techniques

Error Detection

Recovery

Fault

Handling

Error

Handling

Concurrent Detection

Preemptive Detection

Rollback
Rollforward
Compensation

Diagnosis

Reconfiguration
Isolation

Reinitialisation

Figure 2: Phases involved on a Fault-Tolerant technique (adapted from [2]).

31

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

(a) Original model (b) Transformed model

Figure 3: Transformation rule T R of a transition tf subject to fail (faulty transition).

32

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Figure 4: Integration between a PN-based system model and a PN-based FT technique.

33

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

(a) Error Detection model

(b) Places p|sed, p|ned added to the system model

Figure 5: PN-based model of Error Detection and faulty activity inside the system.

34

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

(a) Diagnosis & reinitialisation

(b) Isolation & reconfiguration

Figure 6: PN-based models of Recovery model: (a) and (b) isolation & reconfiguration.

35

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Figure 7: Petri net representation of the packet-routing algorithm depicted in Figure 1 extended
with a FT technique.

36

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Probability of error

T
h

ro
u

g
h

p
u

t

Upper Throughput Bound (original)
Throughput y’

1

Throughput y’
2

Throughput y’
3

(a) Throughput of minimal p-semiflows

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

Probability of error

In
it

ia
l

m
ar

k
in

g

Initial marking nP

Initial marking nT

Initial marking nS

(b) Initial marking of resource places

Figure 8: Results of (a) throughput values and (b) initial marking with respect to probability of
error.

37

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

WS-Requester

User

initialise()validate(encRequest)

transmit(request)

decrypt(encRequest)

requestAccess(encRequest)

processRequest()

validate(request)

parseOutputFormat()

pack()getToken()

sign&encrypt(result)transmit(encResult)

WSDone()

initProcessing()

unpack&validate()

generateToken()

token

initProcessing()

unpack&validate()

generateToken()

getToken()

validate(encResult)

decrypt(encResult)
display(result)

DBread()

retrieveData()

doOperation()

sign&encrypt(request)

DBread()

retrieveData()

 newAccess(request)

WS-SecurityToken WS-PolicyService WS-Coordinator WS-Application WS-DBapplication

result

checkParams()

Figure 9: SDBS Request Customer’s Data scenario.

38

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Figure 10: Petri net of the SDBS. Resource places are depicted in dark grey, whilst process-idle
place in light grey.

39

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

List of Tables667

1 Valid combinations of error handling and fault handling techniques. The symbol ∗ means optional. 41668

2 New p-semiflows of the PN in Figure 7. 42669

3 Experiments parameters. 43670

40

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Rollforward Rollbackward
(& compensation)∗ (& compensation)∗

Diagnosis
√ √

Isolation
√ √

Reconfiguration X
√

Reinitialisation X
√

Table 1: Valid combinations of error handling and fault handling techniques. The symbol ∗ means
optional.

41

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

y′
1 = y1 ∪ {•T7, T

•
7 , p

1
4}

y′′
1
= y1 ∪ {p1|sed, p12, p13, p1|eed, p14}

y′
2 = y2 ∪ {•T7, T

•
7 , p

1
4}

y′′
2 = y2 ∪ {p1|sed, p12, p13, p1|eed, p14}

y′
3
= y3 ∪ {•T7, T

•
7
, p1

4
, p1

5
}

y′′
3 = y3 ∪ {p1|sed, p12, p13, p1|eed, p14, p15}

Table 2: New p-semiflows of the PN in Figure 7.

42

Rodŕıguez et al. Journal of Risk and Reliability 0(0)

Transition Method Value(s)
T0 newAccess() 0.2ms

T2, T8, T10, T49 $delayNet 2.5ms

T13, T16, T19, T23, $intranetLag 0.2ms

T36, T41, T46

T26, T29, T32, T34 $secIntraLag 0.5ms

T4, T43 initProcessing() 1ms

T5, T44 unpack&validate() 0.1ms

T6, T45 generateToken() 0.5ms

T9, T48 sign&encrypt() 0.8ms

T12 initialise() 0.3ms

T15, T22, T52 validate() 0.3ms

T18, T54 decrypt() 1ms

T28, T33 DBread() 0.2ms

T30 checkParams() 0.6ms

T31 doOperation() 0.2ms

T39 parseOutputFormat() 0.3ms

T40 pack() 0.1ms

T55 display() 1.5ms

(a) Activity times
Place Meaning Value(s)
p0 No. users 100
p2 No. request capacity 50
p5 No. security hosts 25
p13 No. policy hosts 10
p24 No. coordinator hosts 10
p29 No. application hosts 6
p32 No. DB hosts 4
(b) Initial number (no.) of resources

Table 3: Experiments parameters.

43

	Introduction
	Preliminary Concepts
	Fault Tolerance
	Petri Nets and Throughput Bounds
	Untimed Petri Nets
	Timed Petri Nets
	Performance Estimation

	Compositional PN Models for Fault Tolerance
	PN Error Detection Model
	PN Recovery Model

	Analysis of PN-based FT Models
	Conservative Components
	Sensitive Analysis of Upper Throughput Bounds
	Resource Assignment
	Minimising Cost of Compensating Throughput Degradation

	Case Study: a Secure Database System
	Conclusions

