
 

 
 
 
 
 
 
 
 
 

 

Trabajo Fin de Grado 
 

 

SÍNDROME DE DIGEORGE 
VARIABILIDAD EN LA EXPRESIÓN 

 

DIGEORGE SYNDROME, VARIABLE EXPRESSIVITY 
 
 
 
 

Autor/es 

 

Néstor Castán Villanueva 

 
 

Director/es 

 

Dra. Lourdes Santolaria 
 
 

 
 

Facultad de Medicina / Zaragoza 
Departamento de Anatomia y Embriología 

2015-1016 



 2 

ÍNDICE: 

 

ABREVIATURAS            3 

 

RESUMEN/ABSTRACT         4-5 

 

PLANTEAMIENTO             6 

 

CASO CLÍNICO          6-8 

 

 ARTÍCULO DE REVISIÓN: 

 

1. Historia y epidemiología        9 

2. Fisiopatología:             10-20 

2.1. Desarrollo embriológico           10-12 

2.2. Genética:             13-16 

2.2.1. Anomalías citogenéticas         13-14 

2.2.2. Anomalías génicas          14-16 

2.3. Mecanismos de variabilidad fenotípica         16-18 

2.4. Modelos experimentales para el estudio de SDG        18-20 

3. Clínica:              21-26 

3.1. Defectos Cardíacos      21 

3.2. Alteraciones Inmunitarias:     22 

  3.2.1. Hipoplasia tímica y deficiencia inmune 
4.2.2: Enfermedades autoinmunes 

3.3. Enfermedades Endocrinas:     23 

  3.3.1: Hipoparatiroidismo 

  3.3.2: Alteraciones tiroideas 
  3.3.3: Anomalías de crecimiento 
3.4 Malformaciones craneofaciales          23-24 
3.5. Desarrollo psicomotor y aprendizaje   24 
3.6. Malformaciones renales y genitales   25 
3.7. Patologías ORL y oftálmica     25 
3.8. Trastornos psiquiátricos     25 
3.9. Trastornos funcionales pediátricos    26 

4. Diagnóstico               26-29 

5. Consejo Genético             29-30 

6. Conclusión          31 

7. Bibliografía              32-36 



 3 

ABREVIATURAS 

 

 CCN: células de la cresta neural 

 CGH: hibridación genómica comparativa 

 COMT: catecol-O-metiltransferasa 

 DGP: diagnóstico preimplantacional 

 DPNI: detección fetal no invasiva 

 FGF10: Factor de crecimiento de fibroblastos 10 

 FGF8: Factor de crecimiento de fibroblastos 8 

 FISH: hibridación in situ 

 GBX2: gastrulation brain homeobox 2 

 HIRA: histone cell cycle regulation defective homolog A 

 HUMS: hospital Universitario Miguel Servet 

 LCR: low copy repeats  

 MLPA: multiplex ligation-dependet probe amplification (amplificación múltiple 

mediante sondas ligando-dependientes) 

 NAHR: recombinación homóloga no alélica  

 P95: Percentil 95 

 PITX2: paired like homeodomain 2  

 PRODH: proline dehydrogenase  

 SDG: síndrome de DiGeorge 

 TBX1: T-box transcription factor 1 

 TN: translucencia nucal 

 UFD1L: ubiquitin fusion degradation 1-like 
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RESUMEN 

 

El síndrome de DiGeorge (SDG), presenta una incidencia global de 1:4000-6000 nacidos 

vivos, y está causado por una microdeleción en heterocigosis, que afecta a la región 

cromosómica  22q11.2.  Dicha anomalía,  se produce en la mayoría de los casos como 

mutación “de novo”, y con menos frecuencia, es heredada con un patrón autosómico 

dominante.    
 

La haploinsuficiencia de cierto número de genes incluidos en la región crítica, 

especialmente de TBX1, origina anomalías en la  migración de las células de la cresta 

neural durante el desarrollo embrionario, afectando especialmente al desarrollo y 

diferenciación del tercer y cuarto arcos faríngeos, y a la formación de sus órganos 

derivados. 

 

Las manifestaciones fenotípicas características de este síndrome, consisten en un 

cuadro clínico en que confluyen: una inmunodeficiencia debida a aplasia/hipoplasia 

tímica, una hipocalcemia por hipoparatiroidismo, y distintas malformaciones cardíacas 

(tetralogía de Fallot, interrupción del arco aórtico, comunicación interventricular, etc.) 

Estos trastornos puede encontrarse asociados a malformaciones  faciales (insuficiencia 

velofaringea, labio leporino, etc.), alteraciones del desarrollo psicomotor, retraso de 

crecimiento, alteraciones renales, pérdida de audición y enfermedades psiquiátricas 

(trastorno por déficit de atención-hiperactividad, esquizofrenia, autismo, etc.).  

 

Sin embargo, este síndrome presenta una gran variabilidad fenotípica, y diferentes 

grados de expresividad, inter e intrafamiliar. Tanto es así, que en algunos casos puede 

ser incompatible con la vida, y en otros, su diagnostico pasa desapercibido. 

 

Palabras clave: Síndrome de DiGeorge, leve expresividad, inmunodeficiencia, 

malformaciones conotruncales, cresta neural, TBX1, arcos faríngeos, FISH, MLPA. 
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ABSTRACT 

 

DiGeorge syndrome (DGS), presents a worldwide incidence which is estimated at 

1/4,000-1/6,000 live births, and it’s caused by a hemizygous microdeletion at a 

location designated 22q11.2. This abnormality occurs, mostly as a "de novo" deletion 

and  is less frequently inherited in an autosomal dominant pattern. 

 

The Haploinsufficiency of a certain genes included in the critical region and, specifically 

TBX1, cause abnormalities in the processes of formation, migration and 

differentiation  of the cells located in the neural crest during the embryonic 

development, affecting specially the third and fourth pharyngeal arches, as well as the 

organs resulting therefrom.  

 

The characteristic phenotypical manifestation of this síndrome, consists of a clinical 

picture in which several elements such as immune deficit is caused by hypoplasia or 

aplasia of the thymus gland, hypocalcemia arising from parathyroid hipoplasia, and 

outflow tract defects of the heart (tetralogy of Fallot, interrupted aortic arch, 

ventricular septal defect, etc.) appear together, and are frequently associated with 

dysmorphic facial appearance, learning problems, developmental delay, renal 

anomalies, ans psychiatric disordes.  

 

However, this syndrome presents a considerable phenotypical variety as well as 

differents expressivity levels, to such extent that in some cases is incompatible with 

life or its diagnosis can go unnoticed. 

 

Keywords: DiGeorge syndrome, Velocardiofacial syndrome, immunodeficiency, 

expression varibility, conotruncal cardiac defects, neural crest, TBX1, pharyngeal 

arches, FISH, MLPA,expresividad variable. 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Autosomal_dominant
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PLANTEAMIENTO  

 

Presentamos un  caso clínico,  aportado por el Servicio de Bioquímica y Genética 

Médica del Hospital Universitario Miguel Servet.  Su interés radica especialmente en 

que, a raíz del diagnóstico de afectación fetal por síndrome de DiGeorge (SDG) durante 

los estudios prenatales,  pudo llevarse a cabo un diagnóstico tardío en la gestante, a 

los 37 años de edad.   

 

A partir de este caso se revisan los aspectos fisiopatológicos, clínicos y diagnósticos del 

SDG, haciendo especial referencia a la variabilidad en la expresión fenotípica y los 

problemas que puede plantear. 

 

 

CASO CLÍNICO 

 

Se trata de una paciente de 37 años, procedente de Europa del Este, sin antecedentes 

familiares de interés y con antecedentes personales de una intervención quirúrgica por 

fisura palatina, a los 9 meses de vida. Citada en Consulta de Ginecología y Obstetricia 

del Hospital Universitario Miguel Servet, en Abril de 2009 , para seguimiento de su 

embarazo.  

 

En la semana 13+2 de gestación, se le practicó una ecografía de control. En dicha 

ecografía llamaba la atención, un valor de translucencia nucal (TN) de 3,1mm (superior 

al P95). Como consecuencia de este hallazgo, se decidió un seguimiento más estrecho 

y se le derivó al Servicio de Diagnóstico Prenatal del HUMS, realizando una nueva 

ecografía en la semana 16. En ella se siguió observando una TN>P95 y no se 

visualizaron las cuatro cámaras cardíacas, por lo que se sospechó una cardiopatía 

grave y un defecto genético importante. 

 

Dados estos hallazgos, se planteó  a la paciente llevar a cabo una amniocentesis, que 

permitiera la realización de un cariotipo y un análisis de hibridación in situ (FISH) a 

partir de células fetales. 

 

En la semana 17+2 se realizó dicha prueba bajo control ecográfico, obteniendo 

muestra de líquido amniótico para estudios citogenéticos y moleculares, y 

confirmándose los mismos hallazgos en cuanto a la imagen, con una alta sospecha de 

tetralogía de Fallot.  

 

A partir del líquido amniótico, se realizó la hibridación in situ (FISH) en amniocitos sin 

cultivar observando, con la aplicación de las sondas correspondientes a la región 
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22q11.2, la presencia de “una sola señal positiva en el cromosoma 22, lo que indica 

que existe una microdeleción para el locus examinado” con una fiabilidad del 98%. 

 

Posteriormente, en el estudio citogenético en amniocitos tras cultivo, se observó 

igualmente “una sola señal positiva en el cromosoma 22 (Fig. 1), lo que indica que 

existe una microdeleción para el locus 

examinado. Fórmula cromosómica: 46 

XY. ish del (22) (q11.2q11.2)(D22S75-), 

que se corresponde con una cariotipo 

masculino afecto” compatible con el 

síndrome de DiGeorge, con una 

fiabilidad del 99%. 

 

Se aconsejó por tanto realizar el estudio citogenético a ambos progenitores, con el fin 

de realizar una correcta valoración del riesgo de recurrencia, y proporcionar un 

adecuado asesoramiento genético, en vista a posibles futuras gestaciones. Este estudio 

es aconsejable, ya que, a pesar de tratarse de una mutación de novo en el 90% de los 

casos, existe otro 10% en los que la patología es heredada con un patrón autosómico 

dominante, con alto riesgo de recurrencia.  

 

Tras el estudio a partir de muestras de sangre periférica tanto del padre como de la 

madre,  se obtuvieron los siguientes resultados:  

 

 - El estudio citogenético paterno en sangre periférica, fue completamente 

normal. Todas las metafases examinadas, tras cultivo de linfocitos, presentaban 46 

cromosomas, no observándose alteración de tipo estructural. Los resultados 

obtenidos tras la aplicación de técnicas de FISH demostraron la presencia de dos 

señales positivas de las metafases examinadas, lo que indica que NO existen 

microdeleciones para el locus examinados (Formula cromosómica: 46, XY.ish 

22q11.2 (D22S75x2) 

  

- En el estudio citogenético materno en sangre periférica, se observó una sola 

señal positiva en el cromosoma 22, lo que indica que existe una microdeleción 

para el locus examinado. La paciente es portadora de la deleción 22q11.2 

compatible con un síndrome de DiGeorge (Fórmula cromosómica 46, XX.ish del 

(22)(q11.2q11.2)(D22S75-), que se corresponde con un resultado “femenino 

afecto”). Por lo tanto la mutación que aparecía en el feto, no se trataba de una 

mutación de novo, sino que fue trasmitida por parte materna.  

Fig. 1: FISH en células amnióticas en metafase, 
con sonda para microdeleción de DiGeorge. 
Fuente: Servicio de Bioquímica y Genética Médica 
del HUMS. 
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Una vez conocida esta situación, sabemos que el riesgo de transmisión a la 

descendencia es del 50%, dependiendo de que el gameto contenga o no la alteración. 

Se informó a la pareja de este riesgo y se le ofreció la opción de  realizar un diagnóstico 

prenatal o preimplantacional en futuros embarazos.  

 

También se propuso y se realizó el estudio en los dos hermanos varones de la 

paciente, de menor edad y asintomáticos, con resultados negativos para la deleción.  

 

Revisando, a posteriori la historia de la paciente,  se tomaron en consideración los 

datos recogidos en la historia clínica, especialmente la existencia de labio leporino 

intervenido en la infancia. Además, se objetivaron dificultades de aprendizaje y leve 

retraso en el desarrollo intelectual. Fenotípicamente, solo se objetivaron la presencia 

de hendiduras palpebrales estrechas. Todos estos datos eran compatibles con 

alteraciones derivadas de SDG aunque en grado leve , sin embargo no existían otros 

antecedentes de alteraciones mucho más comunes y típicas, como serían la 

cardiopatía congénita, la hipoplasia tímica, el hipoparatiroidismo, las alteraciones 

renales e inmunológicas, y otras alteraciones analíticas. 

 

En conclusión, como determinaron las pruebas citogenéticas y el FISH, y en 

consonancia con las características fenotípicas de la paciente, concluimos que se trata 

de un síndrome de DiGeorge de leve expresividad. 
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ARTÍCULO DE REVISIÓN: SÍNDROME DE DIGEORGE 

 

  

1. HISTORIA Y EPIDEMIOLOGÍA  

 

La ausencia congénita de timo y glándula paratiroides, fue descrita en 1968, por el Dr. 

Angelo M. DiGeorge, pediatra y endocrino estadounidense. Más tarde, se añadieron a 

este fenotipo las anomalías cardíacas, y el síndrome fue llamado “Síndrome de 

DiGeorge“ (SDG).5,6 

 

Presenta una incidencia de 1:4000-6000 nacidos vivos y es una rara alteración, que en 

el 90% de los casos corresponde a una microdeleción del brazo largo (q) del 

cromosoma 22 en la porción 11.2, mientras que en el 10% restante puede originarse 

por otras deleciones o mutaciones puntuales, sugiriendo una heterogenicidad genética 

y la existencia de otros loci que determinan el mismo fenotipo.  

 

El SDG, puede afectar a muchos órganos y sistemas, dando lugar a alteraciones 

cardiacas, anomalías palatinas, dismorfias faciales, alteraciones en el desarrollo 

psicosocial, dificultades en el aprendizaje, etc., siendo las más características la 

inmunodeficiencia por déficit de células T y la hipocalcemia, aunque presentando una 

importante heterogeneidad clínica. 6 

 

Se consideraba, que este amplio espectro fenotípico, constituía diferentes entidades 

clínicas (síndrome de DiGeorge, síndrome velocardiofacial, síndrome cardiofacial) pero 

actualmente se sabe, que son etiológicamente idénticas y son denominadas como DS 

22q11.2. También se consideran equivalentes las entidades conocidas como síndrome 

de Takao (en el que predominan las alteraciones cardíacas),  síndrome de Shprintzen 

(con predominio de las malformaciones craneofaciales y palatinas) o CATCH 22 (que 

agrupa a aquellos síndromes cuya etiología reside en el cromosoma 22, y que 

presentan: Cardiac Abnormality, Abnormal facies, T cell deficit, Cleft palate, 

Hypocalcemia, 22q11 deletion).6,13 

 

La variabilidad en la expresión clínica de SDG es tan grande (se han descrito más de 

180 defectos distintos) que el diagnóstico de este síndrome puede pasar 

desapercibido, especialmente si el grado de afectación es leve o faltan las 

características fenotípicas principales.1,4,6,8  

 

Tanto la heterogeneidad genética como la variabilidad clínica, pueden ser motivo para 

que la verdadera incidencia del síndrome haya sido infraestimada. 
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2. FISIOPATOLOGIA  
 

 

2.1. Desarrollo embriológico 

 
Se sabe, que las estructuras embriológicas relacionadas con el síndrome de DiGeorge, 

son fundamentalmente el 3er y 4º arcos y bolsas faríngeas.  

 

Entorno al día 23 de la embriogénesis, se produce la fusión de los pliegues neurales, 

diferenciándose tres estructuras: ectodermo de superficie, tubo neural y cresta neural 

(fig. 2). Las células de esta cresta neural (CCN), migran desde las regiones del 

prosencéfalo, mesencéfalo y romboencéfalo de la CN, hacia los núcleos de los arcos 

faríngeos, y la región facial (fig.3), siendo fundamentales para la formación de dichas 

estructuras.10,12 

 

Los arcos faríngeos se originan durante la 4ª-5ª semana del desarrollo, y están 

formados, por un núcleo de tejido mesenquimatoso y CCN, y recubiertos por un 

epitelio endodérmico en la parte interna y otro 

ectodérmico en la externa(fig.4). Estos arcos, se 

encuentran separados por unas hendiduras 

faríngeas (formadas por evaginaciones del 

epitelio ectodérmico) y por las bolsas faríngeas 

(originadas de las evaginaciones del epitelio 

endodérmico), que dan lugar a una serie de 

órganos importantes.  

 

 

Fig. 2: Formación del tubo neural y migración de 
las CCN. Fuente: Carlson B.M. Cresta neural. 
Embriología humana y biología del desarrollo. 

Fig. 3:  Rutas migratorias de las CCN desde las regiones 
del prosencéfalo, mesencéfalo y rombencéfalo, hasta los 
arcos faríngeos y la cara. Fuente:  Sadler TLangman J. , 
2012, Langman's medical embryology. 

Fig. 4:  Sección transversal de los arcos faríngeos. Fuente: 
Sadler TLangman J. , 2012, Langman's medical embryology. 
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Para el desarrollo de los órganos derivados de las bolsas faríngeas, son fundamentales 

las CCN, que intervienen en el aporte de mesénquima, al que migrará el endodermo 

desde las bolsas faríngeas, y gracias al cual se forma un tejido conectivo, muy 

importante para la correcta formación de estos órganos derivados de las bolsas.12 

 

Las bolsas faríngeas que mas interesa estudiar en el SDG son: 

 

 3ª bolsa faríngea: durante la quinta semana de desarrollo, el epitelio de la 

región dorsal de dicha bolsa, se diferencia en la glándula paratiroidea inferior, 

y la región ventral, forma el timo (fig. 5). Ambos primordios glandulares 

pierden su conexión con el epitelio endodérmico. El timo migra en dirección 

caudal y medial, arrastrando con él la glándula paratiroidea inferior (fig. 5), 

hasta su posición final en la parte anterior del tórax donde se fusiona con su 

homólogo del lado opuesto. Por otra parte, la glándula paratiroidea inferior, se 

dirige hacia la superficie dorsal de la glándula tiroidea (fig. 5). 

De esto se deduce, que en el caso de un paciente con SDG, encontraremos un 

defecto tanto en el desarrollo de las glándulas paratiroides, como del timo, por 

afectación de la 3ª bolsa, como consecuencia de una alteración en la migración 

del tejido glandular.11,12 

 

 4ª bolsa faríngea: a partir de ella se forma la glándula paratiroidea superior. 

Esta pierde el contacto con el epitelio endodérmico de la pared faríngea, y se 

une a la superficie dorsal del tiroides, migrando en sentido caudal (fig. 5). La 

parte ventral de la cuarta bolsa origina el cuerpo último-branquial, que se une 

posteriormente al tiroides (fig. 5). Esta estructura origina las células 

parafoliculares o células C de la glándula tiroidea, encargadas de la secreción 

de calcitonina (hormona que participa en la regulación de calcio sérico).  

Como en el caso anterior, puede deducirse que en el SDG, se producirán 

diferentes grados de hipocalcemia, debido al hipoparatiroidismo como 

consecuencia de un anormal desarrollo de la cuarta bolsa faríngea.11,12 

 

Como se ha dicho, las células de la cresta neural también son imprescindibles para la 

formación de la mayor parte de la región cráneo-facial, de manera que la alteración en 

la migración de dichas células, provoca malformaciones craneofaciales graves, como 

ocurre en el SDG, donde observamos alteraciones en la formación labio-palatina 

(fisura palatina, incompetencia velofaringea, etc.), además de otras alteraciones 

faciales (nariz alargada con raíz prominente, orejas de implantación baja con lóbulos 

hipoplásicos, fisuras palpebrales estrechas, telecantos, retrognatia, etc.).10 
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Además, las CCN también contribuyen a la formación de las almohadillas endocárdicas 

conotruncales, imprescindibles para la separación del infundíbulo del corazón hacia los 

canales pulmonar y aórtico, y cuyo defecto puede dar lugar a troncos arteriosos 

persistentes, tetralogía de Fallot o transposición de grandes vasos, defectos que 

observamos en los pacientes con SDG en un gran número de casos.12 

 

Como conclusión, puede determinarse, que los defectos presentes en el síndrome de 

DiGeorge, se originan por una alteración en la migración de las células de la cresta 

neural, que contribuyen no solo a las alteraciones craneofaciales y cardíacas, sino 

también a los defectos en la formación tímica y paratiroidea.10-12 

 

 

 

 

 

 

 

 

 

Fig. 5: Origen embrionario y recorrido de los primordios de las glándulas derivadas de las bolsas 
faríngeas. Fuente: Carlson B.M. Cresta neural. Embriología humana y biología del desarrollo. 
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2.2. Genética  

 

2.2.1. Anomalías citogenéticas 

 

El síndrome de DiGeorge está causado por la supresión de una de las copias de la 

región cromosómica correspondiente a parte de la sub-banda 11.2 del brazo largo (q) 

del cromosoma 22. En la mayoría de los casos (85-90%), se trata de una deleción de 3 

Mb en dicha región cromosómica (denominándose deleción típica), mientras que los 

casos restantes (10%) presentan una deleción proximal algo menor de 1.5 Mb 

(deleción proximal atípica).13 Existen además un pequeño numero de casos, que 

muestran otras deleciones atípicas fuera de esta región o bien otras alteraciones 

genéticas como mutaciones puntuales del gen TBX-1.15  

 

Por tanto, las anomalías genéticas más comunes, son pequeñas deleciones que se 

presentan en heterocigosis. Reciben el nombre de microdeleciones, ya que su tamaño 

es demasiado pequeño para que puedan detectarse en  un cariotipo convencional 

(cuya resolución es de aproximadamente 5 Mb), requiriendo otras técnicas para 

ponerlas de manifiesto. 

 

Son causadas por procesos de recombinación homologa no alélica (NAHR), mediadas 

principalmente por la presencia, entorno a esta sub-banda de la región 22q11, de 

regiones con repeticiones con bajo numero de copias (LCR, low copy repeats). Estas 

regiones LCR, confieren gran inestabilidad a la región cromosómica 22q11, siendo 

diana de una gran numero de reordenamientos 

genómicos de novo. Dentro de esta región 

observamos (Fig. 6): 4 LCR proximales (LCR-A, LCR-B, 

LCR-C Y LCR-D) localizados desde el centrómero al 

telómero, y son los que con mayor frecuencia, están 

involucrados en los reordenamientos recurrentes de 

22q11.2 que conducen al SDG y 4 LCR distales (LCR-E, 

LCR-F, LCR-G, LCR-H) que rara vez se han asociado 

con deleciones.5 

 

 

 

El modelo que explica el origen de la deleción, se basa en el alineamiento 

intercromosómico erróneo durante la Meiosis I de los cromosomas homólogos, siendo 

las regiones LCR las responsables de dicho error. Como consecuencia del  crossing-over 

Fig. 6: Vista esquemática del cromosoma 22. Posición de las 
regiones LCR en 22q11.2. LCR, repeticiones de bajo numero de 
copias; TDR, región tipicamente deletada. Fuente: Hacıhamdioğlu B et 
al, 2015, 22q11 deletion syndrome: current perspective. 
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en estas zonas de alineamiento, tiene lugar 

los eventos de deleción y duplicación 

responsables de las alteraciones (Fig. 7).5 

 

Este mecanismo, sería el responsable de la aparición de la mutación de novo, dando 

lugar a la anomalía cromosómica y por tanto al síndrome, aproximadamente en un 85-

90% de los casos.  Estos pacientes con mutación de novo, han recibido un cromosoma 

22 con la microdeleción, a través del gameto paterno o materno. Sin embargo como 

esta alteración se origina durante la meiosis,  ni uno ni  otro progenitor son portadores 

de la misma en sus células somáticas, y, evidentemente, no son enfermos.  Por otra 

parte, en el 10-15% restante de los casos, la deleción si se hereda de uno de los dos 

progenitores,  que a su vez la presentan en sus células somáticas, independientemente 

de las manifestaciones fenotípicas que presenten. 

 

En conclusión, se trata de un trastorno, que sigue  un modelo de herencia autosómico 

dominante, pero caracterizado por la alta tasa de mutaciones de novo y la  

expresividad variable. 

 

 

2.2.2. Anomalías génicas 

 

Las deleciones de la región 22q11.2  afectan a la carga génica de cerca de 40-60 genes, 

cuando la pérdida es de 3Mb, y de aproximadamente 30 genes cuando esta es de 1,5m 

Mb.5-7 La deleción más común de 3Mb, descrita en el 85-90% de los individuos, se 

extiende desde la LCR-A a LCR-D e 

incluye TBX1, un gen considerado 

responsable de características 

típicamente asociadas a anomalías 

cardíacas conotruncales, aplasia o 

hipoplasia tímica y paratiroidea, y otros 

defectos propios del SDG (Fig. 8). 5,7,9 

Fig. 7: Representación gráfica de recombinación 
homóloga no alélica (NAHR). Las regiones LCR (cajas azules 
y blancas) proporcionan un sustrato para la NAHR, debido 
a un crossing-over intercromosómico entre las LCR de 
cromosomas (a) causando duplicación (b) o deleción (c). 
Fuente: Carpeta Sánchez S., 2014, Estudio citogenético y 
molecular de pacientes con fisura labio y/o palatina y 
sospecha de síndrome de deleción 22q11.2. 

Fig. 8: Representación esquemática de la región 22q11.2. Ubicación de los LCR y de las deleciones descritas en 
dicha región. Fuente: Carpeta Sánchez S., 2014, Estudio citogenético y molecular de pacientes con fisura labio y/o 
palatina y sospecha de síndrome de deleción 22q11.2. 
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Así pues, hasta 40-60 genes han sido vinculados con el fenotipo 22q11DS, siendo 

algunos de ellos: 

 

a) Gen TBX1: es uno de los genes más importantes, presentándose como 

candidato principal  para este síndrome.  

 

El gen TBX1, codifica un factor de transcripción (el T-box transcription factor 

TBX1), que pertenece a la familia T-Box. Se trata de una familia de factores de 

transcripción, distribuidos cada uno de ellos en diferentes loci a lo largo del 

genoma humano (TBX-1, se encuentra en el cromosoma 22). Todos ellos 

comparten un dominio de unión de DNA (cuya secuencia es 5’-TCACACCT-3’) 

conocido como dominio T-box. Tienen una función tanto represora como 

activadora del ADN, teniendo un papel fundamental en la migración y 

diferenciación celular, y el desarrollo de tejidos específicos. También están 

relacionados con la interpretación de señales de los genes Hox (algunos de los 

cuales, Hoxb 2 y 3, intervienen en el desarrollo de la tercera y cuarta bolsa 

faríngea).20,21  

 

Como se detallará más adelante, las investigaciones hechas en ratones han 

demostrado que la homocigosis (Tbx1 -/-) para la mutación en TBX1, muestra 

características similares a las del síndrome de deleción 22q11.2. El primer arco 

faríngeo se forma de manera anormal, el segundo arco es hipoplásico y el 

tercero, cuarto y sexto arcos no son identificables. De esta manera, estos 

animales presentan defectos conotruncales, características faciales anormales, 

fisura palatina, hipoplasia del timo y alteraciones de glándula paratiroidea. 

Estos resultados dan evidencia probable, de que el gen TBX1 es el mayor 

determinante genético en la etiología del 22q11.2.15,17,20 

 

Este gen, tiene una función esencial en el desarrollo y la organogénesis 

temprana, incluyendo la formación de mesodermo y endodermo, y la 

formación de algunos órganos derivados de la cresta neural como la faringe y 

especialmente el sistema cardiovascular. Su haploinsuficiencia (es decir, la 

disminución de la dosis génica, que resulta de la deleción del gen en 

heterocigosis) ha demostrado ser responsable de muchas de las características 

fenotípicas presentes en el síndrome de Di George, por tanto, el gen TBX1 

juega un papel crítico. 15,17,20 

 

Sin embargo TBX1 no siempre es el responsable directo del síndrome, sino que 

contribuye a la aparición de dichas anomalías como consecuencia de la 

regulación e interacción con otros genes cruciales para la embriogénesis, 
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Incluyendo los genes homeobox (hoxb 2 y hoxb 3) que están muy involucrados 

en el desarrollo regional de los arcos faringe dos y bolsas.5,15 

 

b) Gen HIRA: este gen es un regulador transcripcional. Estudios en ratones han 

evidenciado su expresión embrionaria durante el desarrollo del tubo neural.23 

Se han realizado experimentos, con ratones homocigotos para Hira (Hira -/-), 

dando lugar a una falta de expresión de este regulador, en la cresta neural 

cardíaca durante la embriogénesis, que han demostrado la persistencia del 

tronco arterioso. Por tanto, dicho gen puede contribuir al defecto cardíaco que 

se da en el SDG.5,22 

 

c) Gen UFD1L: este gente está relacionado con la ubiquitinización. Se ha 

localizado la expresión de este gen, en los arcos faríngeos y 4to arco faríngeo, 

sustrato fundamental de las anomalías de el SDG. Ratones con mutaciones de 

estos genes presentan defectos en el desarrollo del corazón.22,24 

 

d) Gen CRKL: codifica factores de crecimiento y señalización de adhesión celular. 

Se expresa en los tejidos derivados de la cresta neural durante el desarrollo 

embrionario. La homocigosis de CRKL en ratones es letal, y el fenotipo es muy 

similar al de la deleción 22q11.2, incluyendo defectos conotruncales y del arco 

aórtico.25 

 

e) Gen COMT y PRODH: el gen COMT (catecol-O-metiltransferasa) es responsable 
de la degradación de las catecolaminas (dopamina y epinefrina), mientras que 
el gen PRODH codifica una deshidrogenasa. Estos dos genes están 
potencialmente involucrados en el fenotipo psiquiátrico (en ocasiones incluso 
con la esquizofrenia) y las alteraciones del comportamiento de los pacientes 
con síndrome 22q11.2. Se ha demostrado que las mutaciones en el gen COMT, 
provocan alteraciones en el comportamiento emocional de ratones.5,26  

 
Otros genes que también tienen una posible implicación en la patología 
psiquiátrica son: la proteína de unión al nucleótido guanina (proteína G) y beta-
1-como polipéptido (GNB1L). 
 
 

 
2.3. Mecanismos de variabilidad fenotípica 
 

Estos parecen ser algunos de los genes más importantes para la aparición del SDG, sin 

embargo, no son los únicos determinantes del fenotipo, ya que existe una elevada 

variabilidad en la expresión clínica entre unos enfermos y otros, incluso entre aquellos 

con  la misma anomalía cromosómica.  
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Estas variaciones no parecen ser atribuibles al tamaño de la deleción o al origen 

parental del cromosoma deletado.27,28 De hecho, también existen variaciones 

fenotípicas entre familiares que han heredado una mutación idéntica, o entre padres 

afectos y los hijos a quienes han transmitido el mismo defecto genético.  Esto confirma 

que, si bien los genes que quedan suprimidos de la región 22q11.2 son los causantes 

del síndrome, su expresión fenotípica está modulada por otros factores que pueden 

ser genéticos o no.  

 

 

Se ha propuesto varios mecanismos que explicarían esta variabilidad:5,28  

 

 La presencia de genes modificadores que se encuentran fuera de la región 

deletada. 

 Variaciones alélicas de los genes, dentro de la región 22q11.2 del cromosoma 

no deletado. 

 Mutaciones somáticas  

 Fenómenos epigenéticos. 

 Características individuales como la raza y el sexo, factores ambientales, etc. 

 

 

Uno de los mecanismos de variabilidad que parece tener más peso son los llamados 

genes modificadores: el factor de crecimiento de fibroblastos 8 (Fgf8), el factor de 

crecimiento de fibroblastos 10 (Fgf10), el gen GBX2 y el gen Pitx2:5,15,18 

 

a) Factor de crecimiento de fibroblastos 8 (FGF8): el gen Fgf8 pertenece a la 

familia del factor de crecimiento de fibroblastos asociado con la proliferación, 

migración y diferenciación celular.19 Los embriones de ratones con alteraciones 

en Fgf8 muestran fenotipos similares a los observados en el SVCF/SDG como 

alteraciones craneofaciales, tímicas, paratiroideas y cardiovasculares.33,34 

 

b) Factor de crecimiento de fibroblastos 10 (FGF10): el gen Fgf10, es co-expresado 

con TBX1 en el núcleo del mesodermo y en el campo del corazón anterior.5,33  

 

c) Gen GBX2: este gen es un factor de transcripción Homeobox. Los embriones de 

ratones nulisómicos para Gbx2, presentan defectos cardiovasculares asociados 

con el desarrollo anormal del cuarto arco faríngeo, incluyendo arteria aorta 

interrumpida y alteración retroesofágica de la arteria subclavia. Estos defectos 

están relacionados con el síndrome de DiGeorge, por lo que se cree que este 

gen puede ser un modificador del locus para dicho síndrome.28,36 
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d) Gen Pitx2: es un gen homeobox, co-expresado con TBX1 durante el desarrollo 

faríngeo. Los estudios con ratones heterocigotos Pitx2 +/- TBX1 +/- han 

mostrado un aumento de la penetrancia de los defectos cardiovasculares35, 

planteando así la hipótesis de que estos dos genes pueden interactuar, siendo 

Pitx2 un modificador genético de los defectos cardiovasculares hallados en el 

SDG.28 

 

Probablemente, tanto el número de genes modificadores, como la interacción entre 

ellos y con TBX1, sea muy extensa y en su mayor parte desconocida,  pero  es un 

campo de interés en la investigación actual, no sólo en lo referente al SDG y otros 

síndromes, sino también en  la búsqueda de una mejor comprensión del control 

genético en el desarrollo embrionario. Otros factores moduladores de la expresión 

clínica, como causas epigenéticas, o la interacción con determinadas condiciones 

ambientales,  pueden ser todavía más complejas y difíciles de estudiar.  

 

 

2.4.  Modelos experimentales en el estudio de SDG 
 

Evidentemente no hay estudios de la afección de dichos genes en el fenotipo humano 

durante el desarrollo fetal, pero si hay numerosos estudios de las características 

fenotípicas de ratones con mutaciones similares o idénticas a las que se producen en el 

síndrome de DiGeorge, especialmente las relacionadas con el gen TBX1, que como se 

ha visto anteriormente, es el que tiene una relación más específica  con este síndrome.  

 

Para llevar a cabo estas investigaciones, se utilizan un tipo de ratones knock-out para 

TBX1 u otros genes relacionados. Estos están modificados genéticamente, de forma 

que una o ambas copias del gen estudiado se inactivan,  con objeto de investigar los 

déficits y alteraciones que se producen en el animal y poder deducir de esta manera la 

función del gen analizado. 

 

Así se ha demostrado en algunos estudios,15,20 que los ratones heterocigotos TBX1+/- 

para la mutación, muestran una alta incidencia de anomalías del tracto de salida 

cardíaco (Fig. 9b), modelando así una de las principales anomalías del síndrome 

humano. Por otra parte, los ratones homocigotos TBX1-/- muestran una amplia gama 

de anomalías del desarrollo, que abarcan casi la totalidad de las características del 

SDG, incluyendo hipoplasia del timo (Fig. 9b) y paratiroides, anomalías del tracto de 

salida cardíaco, estructuras faciales anormales (Fig. 9a), malformaciones vertebrales y 

paladar hendido:  
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a) Anormal desarrollo de los arcos y bolsas faríngeas: los embriones de ratones 

TBX -/-, son normales en el día 7 de la embriogénesis, pero a partir del 8º día, 

ya presentan anomalías. Los arcos y bolsas faríngeas I, II y III, están presentes 

entorno al día 9 de la embriogénesis, y sin embargo, los ratones TBX -/- sólo 

desarrollan el primer arco y bolsa 

faríngeas (Fig. 10). Además las vesículas 

óticas, que formas el oído interno, son 

más pequeñas y parecen estar algo 

engrosadas (Fig 9).20-29 

 

 

 

 

 

 

Entre los días 10 y 12 de gestación, el primordio del timo, fruto de la 3ª bolsa 

faríngea, y el primordio paratiroideo, fruto de la 3ª y 4ª bolsas faríngeas, no se 

observan en ratones TBX1 -/- . En el día 17 de la embriogénesis, la glándula 

tiroides si que es evidente, pero no se encuentra timo ni paratiroides.20-30  Otro 

hallazgo de los ratones 

mutantes homocigotos es la 

presencia de un paladar 

hendido, con déficit en la fusión 

palatina (Fig. 11). También se 

observan anomalías en la 

columna vertebral, los atlas 

carecen del arco anterior. 20-31 

 

 

 

 

Fig. 9: Comparación del fenotipo de ratones salvajes (TBX1+/+) con ratones mutantes homocigotos (TBX1-/-). 
(a), Comparación de apariencia externa. (b), Ausencia de timo (t) e hipoplasia ventricular, debido a alteraciones 
en el tracto de salida del corazón (h). Fuente: Jerome, L. A. et al, 2001, DiGeorge syndrome phenotype in mice 
mutant for the T-box gene, Tbx1. 

Fig. 10: Desarrollo de los arcos y bolsas faríngeas I, II 
,III, en ratones TBX1 +/+. En ratones TBX1 -/-, solo se 
desarrolla el primer arco y bolsa faríngea. Fuente: 
Jerome, L. A. et al, 2001, DiGeorge syndrome phenotype 
in mice mutant for the T-box gene, Tbx1. 

 

Fig. 11: Desarrollo del paladar secundario.  (*) muestra el espacio entre los maxilares superiores, y 
las flechas  indican los espacios entre los elementos óseos del paladar superior en los ratones TBX1 -
/-. Fuente:  Jerome, L. A. et al, 2001, DiGeorge syndrome phenotype in mice mutant for the T-box gene, 
Tbx1. 
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b) Defectos del arco aórtico y del tracto de salida cardíaco: la alteración del 

desarrollo de los arcos faríngeos, 

también tiene implicaciones para el 

desarrollo de estas estructuras. En los 

embriones homocigotos TBX1 -/-, el 

tracto de salida del corazón (que 

normalmente se separa en las arterias 

pulmonares y aorta), no consigue 

separase por el tabique aórtico-

pulmonar, dando lugar a un tronco 

arterioso persistente (Fig. 12) 20-32 

 

 

 

 

 

 

3. CLÍNICA 

 

El síndrome de DiGeorge, se caracteriza por una hipoplasia o  aplasia de la glándula 

paratiroides, con una consecuente hipocalcemia neonatal (que se presenta en forma 

de tetania), así como una hipoplasia/aplasia del timo, provocando déficit inmunitario, 

que se manifiesta en forma de infecciones de repetición en la infancia, debido a un 

déficit de células T. También son frecuentes una serie de malformaciones cardíacas, 

que afectan fundamentalmente al tracto de salida del corazón (tetralogía de Fallot, 

interrupción del arco aórtico, persistencia del tronco arterioso, etc.). Pueden 

encontrarse rasgos fenotípicos faciales característicos, tales como las orejas de 

implantación baja, telecantos con fisuras palpebrales cortas, un filtrum corto, boca 

pequeña, etc. 6-9-14 Además, en no pocas ocasiones, el síndrome se relaciona con un 

retraso en el desarrollo psico-social, manifestado como retraso en el aprendizaje e 

incluso determinadas enfermedades psiquiátricas como la esquizofrenia.1-6 

 

Sin embargo, cada paciente con SDG es único en cuanto a sus manifestaciones clínicas. 

El número de síntomas y su gravedad varían, incluso teniendo la misma deleción 

genética. También varían con la edad, el sexo, la exposición ambiental, genes 

modificadores, etc. como se ha comentado anteriormente (apartado 3.2. Genética). 

 

Se pueden agrupar las diferentes manifestaciones clínicas en diferentes áreas: 

 

 

 

Fig. 12: Tracto de salida del corazón en ratones salvajes y en mutantes homocigotos TBX1-/-. (a) 
arco aórtico; (pu), tracto pulmonar; (s),  septo aórtico-pulmonar; (ta), truncus arteriosus. Fuente:  
Jerome, L. A. et al, 2001, DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. 
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3.1. Defectos cardíacos 

 

Entorno al 70-85% de los individuos afectados presentan malformaciones cardíacas 

congénitas, y son la causa principal de la mortalidad (> 90% de todas las muertes). 

Estas cardiopatias congénitas, son principalmente malformaciones conotruncales, 

apareciendo de forma más frecuente la tetralogía de Fallot (Fig. 14,15,16), la 

interrupción del arco aórtico y defectos de septo ventricular (CIV) (Fig. 13).14 

 

Estos defectos cardíacos dan lugar a síntomas muy precozmente, y se objetivan, bien 

en el periodo prenatal mediante un diagnóstico ecografico, o bien a los pocos días de 

vida por auscultación de soplos, polipnea, o ausencia de pulsos femorales.37 

 

Fig. 14: Estenosis pulmonar. Se observa; 1. Arteria 
Pulmonar; 2. Aorta; 3. Cava. No se observa hipertrofia 
ventricular derecha, puesto que se desarrolla en vida 
postnatal. Fuente: Servicio de Bioquímica y Genética 
Médica del HUMS. 

 

Fig. 15: Comunicación interventricular. Fuente: Servicio 
de Bioquímica y Genética Médica del HUMS. 

Fig. 16: Acabalgamiento aórtico. Fuente: Servicio de 
Bioquímica y Genética Médica del HUMS. 

 

Fig. 13: Frecuencia de aparición de las diferentes 

malformaciones cardíacas e el SDG. Fuente:    

Manouvrier-Hanu S et al, 2015, Protocole National de 

Diagnostic et de Soins (PNDS) Délétion 22q11. 
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3.2. Alteraciones inmunitarias 

 

La mayoría de los pacientes con deleción 22q11, presenta una inmunodeficiencia que 

puede ser desde moderada a grave, y tienen mayor riesgo de padecer ciertas 

enfermedades autoinmunes. El déficit de células T por hipoplasia tímica, es uno de los 

rasgos característicos de los pacientes con SDG. 

 

3.2.1. Aplasia/Hipoplasia tímica y deficiencia inmune 
 

El defecto inmunitario, es secundario a alteraciones del timo dando lugar a un 

problema en la producción o en la función de las células T. 

 

En casos excepcionales (≤1%), se produce una aplasia tímica, por lo que la deficiencia 

inmune es importante y se revela poco después del nacimiento. Esta es una 

inmunodeficiencia combinada grave, que se manifiesta fundamentalmente por el gran 

numero de infecciones, a menudo mortales, que sufren estos pacientes, y por lo tanto 

una emergencia diagnóstica y terapéutica absoluta. 

 

Es más común sin embargo, que se de una hipoplasia tímica, o bien que el timo no 

haya migrado a su lugar apropiado en la cavidad torácica. Esto conduce a una 

inmunodeficiencia leve-moderada, que se presenta principalmente como una mayor 

vulnerabilidad a las infecciones, principalmente del tracto respiratorio superior y del 

oído.38 

 

En la mayoría de los individuos, este aumento de la susceptibilidad a las infecciones se 

corrige de forma espontánea con la maduración, y es más o menos normal durante el 

transcurso de los años preescolares y escolares del niño. Sin embargo, la 

inmunodeficiencia puede durar hasta la edad adulta, con un aumento de la 

vulnerabilidad a las infecciones y la fatiga, así como un mayor riesgo de enfermedades 

autoinmunes.39 

 

3.2.2. Enfermedades autoinmunes 
 

Las enfermedades autoinmunes (≈10%)  se producen con una frecuencia más alta que 

en la población general. Algunas de ellas son: artritis reumatoide juvenil (frecuencia 20 

veces superior al de la población), púrpura trombocitopénica idiopática (3%), 

hipotiroidismo (6%), hipertiroidismo, vitíligo, anemia hemolítica, neutropenia 

autoinmune y enfermedad celíaca.14 
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3.3. Enfermedades endocrinas 

 

3.3.1. Hipoparatiroidismo: 

 

La prevalencia del hipoparatiroidismo es del 20-60% de los pacientes. Se produce una 

hipocalcemia secundaria, que puede ser transitoria, permanente o recurrente. Ésta 

varía con la edad, corrigiéndose en la mayoría de los casos con el desarrollo, durante 

los primeros meses de vida (por la menor necesidad de hormona paratiroidea), aunque 

puede reaparecer en la infancia y adolescencia, o incluso en la edad adulta.  

 

Los síntomas de la hipocalcemia pueden variar desde  ataques de temblor y calambres 

musculares, hasta desmayos e incluso crisis convulsivas en las formas más graves, que 

se dan principalmente en el período neonatal. La hipocalcemia puede salir a la luz, 

durante una cirugía, sobretodo en las cirugías cardíacas, lo que implica una vigilancia 

particular de estas intervenciones.40 

 

3.3.2. Alteraciones tiroideas 

 

Existe un riesgo de disfunción tiroidea (hipotiroidismo e hipertiroidismo) que a 

menudo aparece después de los 10 años de edad. Esto también se debe, a que el 

desarrollo de la glándula tiroides está determinada en parte por el gen TBX1.  

 

El hipotiroidismo es más frecuente en estos pacientes, mientras que el hipertiroidismo 

es secundario a la enfermedad autoinmune.14 

 

3.3.3. Anomalías de crecimiento 

 

Una talla pequeña (alrededor de - 2 SD) esta presente en la mayoría de los pacientes. 

Es de origen constitucional, ligada a la deleción, pero puede estar asociada con una 

deficiencia en la hormona del crecimiento.41 

 

 

3.4. Malformaciones craneofaciales  

 

Se observan características morfológicas 

faciales típicas (Fig. 17). Sin embargo, 

algunas de ellas, son poco evidentes al 

nacer y se revelan progresivamente con 

la edad: 
Fig. 17: Rasgos faciales dismorficos leves, en una 
mujer con SDG (Izq:11 años; dcha: 25 años). Fuente: 
Kapadia, Ronak K. et al, 2008, Recognizing a Common 
Genetic Syndrome: 22q11.2 Deletion Syndrome. 
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o Anomalías del suelo del paladar; son muy frecuentes, entorno a el 40-100% de 

los pacientes presentan algún defecto. Lo más característico es la presencia de 

una fisura palatina submucosa (16-38%), una fisura palatina franca (9%) o 

incluso un labio leporino (2%).  También aparecen otros defectos como la úvula 

bífida (5%), y muchos pacientes tienen una incompetencia velofaríngea 

funcional aislada (27%).43  Estas anomalías son en gran parte la fuente de los 

trastornos del habla. 

 

o Cara alargada , con un borramiento del relieve de los pómulos. 

 

o Nariz larga, grande, bulbosa, con una raíz prominente14 

 

o Fisuras palpebrales estrechas, inclinadas hacia arriba y afuera, con telecanto en 

algunas ocasiones.14 

 

o Orejas de implantación baja, pequeñas, redondas, con lóbulos hipoplásicos, 

adherentes o ausentes.42 

 

o Boca estrecha, hipoplasia de la mandíbula inferior con retrognatismo 

 

o Anomalías dentales. 

 

 

3.5. Desarrollo psicomotor y aprendizaje 

 

Estos niños tienen discapacidades en el desarrollo intelectual y motor, que se 

manifiestan por problemas en el aprendizaje, trastornos cognitivos tempranos, 

retrasos en el lenguaje expresivo y dificultades motoras gruesas, durante los primeros 

años. Estos déficits se hacen más evidentes en edades escolares avanzadas.  

 

La mayoría de los pacientes con deleción 22q11 tienen un nivel intelectual dentro del 

rango normal (CI entre 70-84). El 55% de ellos tienen un CI> 71, alrededor del 33% 

tienen discapacidad intelectual leve (CI 55-69) y menos del 10% tienen un retraso 

moderado a severo.  

 

La mayoría de los niños con SDG pueden llevar a cabo un desarrollo escolar dentro de 

la normalidad, aunque a un ritmo más lento o con apoyos adicionales.14 
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3.6. Malformaciones renales y genitales:  

 

Presentes en aproximadamente el 35% de los pacientes, van desde agenesia, 

hipoplasia renal, riñones displásicos, uropatía obstructiva o reflujo vesicorenal. En 

niños, existen un 8% de hipospadias y  5% de criptorquidias.44 

 

 

3.7. Patologías ORL y oftálmica 

 

La pérdida de audición; suele ser secundaria otitis serosas recurrentes, agravadas por 

el déficit inmunitario, en los primeros años de vida. 45 

 

En cuanto a alteraciones oftalmológicas, se encuentran a menudo anomalías de 

refracción, estrabismo, ambliopía y conjuntivitis. 14 

  

 

3.8. Trastornos psiquiátricos 

 

Existe una alta frecuencia de trastornos de ansiedad, en particular durante el período 

de la infancia y la adolescencia, y de trastornos de estrés y depresión, especialmente 

en los adultos.14 

 

Son particularmente frecuentes en los niños (40%), los trastornos por déficit de 

atención con o sin hiperactividad (TDAH). Tienden a disminuir en el periodo adulto, 

pero son más frecuentes que en la población general (4%).47 

 

También puede darse patología psiquiátrica dentro del espectro autista (15-50%). Es 

más común cuando el niño presenta dificultades en las relaciones sociales y el 

reconocimiento de emociones.46 

 

Hay que destacar los trastornos psicóticos, ya que el 10% de los adolescentes (de 

entre 13 y 17 años) y el 23-43% de los adultos con SDG, desarrollan esquizofrenia. La 

edad media de inicio de los trastornos psicóticos entre los jóvenes con deleción 22q11 

es de 17.7 años. El espectro fenotípico de la esquizofrenia es extremadamente amplio, 

con síntomas muy variables de una persona a otra.14-48 
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3.9.  Trastornos funcionales pediátricos  

 

 Trastornos de la alimentación y de tránsito: la mayoría son de origen mixto, como el 

reflujo gastroesofágico o la falta de coordinación e hipotonía de los músculos de la 

faringe-laringe. El estreñimiento puede estar presente. 

 

 Problemas respiratorios: secundarios a dificultades en la deglución y al reflujo 

gastroesofágico, responsables de inhalaciones bronquiales, a veces secundarias de 

laringomalacia.  

 

 Anomalías musculo-esqueléticas: durante los primeros años de vida, la hipotonía 

suele estar presente. Pueden darse escoliosis tempranas debidas a las 

malformaciones vertebrales. 

 

 Trastornos del sueño: asociados a patologías faríngeas o a apnea del sueño. 

 

  Anomalías dentales; las caries son frecuentes, así como anomalías del esmalte. 

 

 Trastornos del habla: el desarrollo del lenguaje, presenta un retraso medio de unos 

dos años (se atenúa entorno a los 3-5 años). El discurso de los pacientes puede ser 

ininteligible, y estas dificultades están relacionadas con la alta prevalencia de la 

insuficiencia velofaríngea y pérdida de la audición, a veces exacerbado por las otitis 

medias recurrentes. La hipernasalidad es una característica de los pacientes con 

deleción 22q11. 

 

 

 

4. DIAGNÓSTICO   

 

La prueba diagnóstica para la deleción 22q11, más comúnmente utilizada, es la 

hibridación in situ (FISH). Sin embargo, un negativo por FISH no excluye 

necesariamente un diagnóstico, en pacientes que tienen deleciones más pequeñas o 

atípicas, requiriendo en estas ocasiones, otras técnicas moleculares más especificas 

para confirmar el diagnóstico, como la amplificación múltiple mediante sondas 

ligando-dependientes (MLPA), o la hibridación genómica comparada con microarrays 

(CGH). 8-13 

 

La hibridación fluorescente in situ (FISH) es una técnica, que usa moléculas 

fluorescentes para localizar genes o fragmentos de DNA (en este caso DNA de la región 

11.2 del brazo largo del cromosoma 22), siendo muy útil para mapear genes y localizar 

anormalidades cromosómicas.  
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La técnica consiste, en preparar cortas secuencias de DNA de una sola hebra, llamadas 

sondas, que son complementarias a las secuencias de DNA que se quieren marcar y 

examinar. Estas sondas se "tiñen" con moléculas fluorescentes, se hibridan, es decir, se 

unen al DNA complementario y permiten localizar las secuencias en las que se 

encuentran, o detectar aquellas que están ausentes (Fig. 1). A diferencia de otras 

pruebas utilizadas para estudiar los cromosomas, puede ser llevada a cabo en células 

no activas.49  

 

El kit que se utilizan actualmente en el hospital Miguel Servet para el análisis FISH 

22q11.2 es Vysis DiGeorge Region Probe - LSI TUPLE 1 SpectrumOrange/LSI ARSA 

SpectrumGreen Probe Kit, que contiene las sondas TUPLE1 (22q11.2, región critica 

SDG, sonda de 120kb) y ARSA (22q13.3, región control), ubicadas en la parte proximal 

del inicio de la deleción entre el LCR A y B. Sin embargo, existen determinadas 

ocasiones, en las que bien debido a que se trata de deleciones pequeñas (<100 kb) o 

bien de deleciones atípicas, esta técnica no es lo suficientemente sensible. Sin 

embargo en casos de mosaicismos, es la técnica de elección ya que el MLPA no los 

detecta y el array-CGH solo cuando son superiores al 30%. 

 

En la actualidad, están tomando fuerza otras técnicas como la MLPA o los mycroarrays, 

ya que son técnicas con un tiempo de respuesta más rápido, mas rentables y con 

capacidad para la detección de supresiones no detectables mediante FISH. 

 

La MLPA (Multiplex Ligation-dependent Probe Amplification),  es una técnica biología 

molecular, que en una misma reacción, puede detectar copias anómalas de hasta 50 

secuencias genómicas diferentes de DNA (mientras con el FISH, sólo pueden analizarse 

una o dos regiones específicas).  

 

Consiste en una primera reacción de unión-ligación de sondas, con la zona homóloga 

de interés. Sólo las sondas que hayan hibridado podrán ser ligadas, y posteriormente 

amplificadas por PCR, obteniendo una 

cantidad cuantificable de ADN y 

permitiendo detectar deleciones y 

amplificaciones (Fig.18).51  

 

 

Mediante un análisis de fragmentos y aprovechando la diferencia de tamaño de cada 

una de las sondas, se podrán identificar aberraciones en el número de copias 

genómicas.  

Fig. 18:  Demostración de la deleción 22q11.2 
mediante la técnica de MLPA. Fuente: Grassi M et 
al, 2014, Congenital Heart Disease as a Warning 
Sign for the Diagnosis of the 22q11.2 Deletion 
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Se ha demostrado que esta es una técnica costo-efectiva, rápida, y un método 

altamente sensible y específico para la detección de deleciones y duplicaciones en la 

región proximal 22q11 y de variantes distales o solapadas, que frecuentemente se 

pueden presentar dentro de esta región. La identificación de estas variantes es de 

particular interés, ya que puede dar una idea de qué genes o regiones genómicas son 

cruciales para manifestaciones fenotípicas.50,51 

 

El Array CGH (Array Comparative Genomic Hybridization) o cariotipo molecular, (Fig. 

19) se basa en la hibridación competitiva entre un ADN problema (marcado con un 

fluorocromo rojo) y un ADN de referencia (marcado en verde) con las sondas (probes) 

de ADN conocidas, que están fijadas sobre una superficie sólida (microarray).52,53 

 

El perfil de fluorescencia obtenido permite determinar si existen cambios en la 

cantidad de material génico del paciente. Actualmente las plataformas comerciales 

más utilizadas, usan aproximadamente 60.000 sondas de tipo oligonucleótido (Oligos 

25-70 mer) que estudian variaciones del número de copias de todo el genoma. Es una 

técnica con mayor resolución que el FISH (x10-100) y que analiza de una sola vez el 

genoma completo, pudiendo detectar casos de SDG en regiones atípicas. Su 

inconveniente es que no detecta mosaicos inferiores al 30%.52  

 

 

 

 

 

 

 

 

 

 

 

 

 

En resumen se puede decir que: 

 El FISH, es una técnica que utiliza una sola sonda en la región 22q11.2 

acompañada de otra control. Es la técnica de elección, aunque en algunas 

ocasiones (deleciones pequeñas o deleciones atípicas) no detecta el problema. 

 El MLPA, es una técnica en la que se usan hasta 50 sondas diferentes de la 

región estudiada, con la posterior amplificación del material genético por PCR. 

 El Array-CGH, se basa en la hibridación del ADN del paciente, con miles de 

sondas que abarcan todo el genoma de una sola vez. 

Fig. 19: Proceso de la técnica Array CGH. Fuente: Theisen, A., 20008, 
 Microarray-based Comparative Genomic Hybridization. 
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Aunque el fenotipo de la deleción 22q11 está bien caracterizado, como se ha dicho  su 

variabilidad extrema, en ocasiones dificulta el diagnóstico. Montes C. et al, 54 en un 

estudio retrospectivo observacional, de 268 pacientes con sospecha clínica de 

síndrome de microdeleción 22q11.2, diagnosticaron 32 casos de SDG. En el resto de 

pacientes, se establecieron distintas anomalías cromosómicas y otros síndromes 

genéticos, que presentan características fenotípicas similares.  

 

Por tanto, ante la sospecha clínica de este síndrome, se debe establecer un diagnostico 

diferencial con algunas  entidades como el síndrome de CHARGE,  Alagille, Noonan, 

Cayler, Stickler, o anomalías cromosómicas como la translocación (10q;8q), la 

duplicación (15)(q13q24), la inversión pericéntrica del cromosoma, etc.   

 

 

 

5. CONSEJO GENÉTICO 

 

El asesoramiento genético es esencial. En aproximadamente el 90% de los casos, la 

supresión 22q11 se produce de novo. Sin embargo, en el 10% restante de los casos, la 

mutación es transmitida por uno de los progenitores (familiar).14 

 

Una vez se ha confirmado el diagnóstico de síndrome de DiGeorge en el hijo, debe 

ofrecerse a los padres la posibilidad de someterse a un estudio genético, ante la 

posibilidad de que sea una mutación heredada. La detección de la alteración 

cromosómica en los padres antes de cualquier nuevo embarazo es fundamental para 

evitar nuevos casos de enfermedad. En caso de que la mujer se encuentre ya 

embarazada, y tengan un primer hijo afecto, los padres deben ser derivados 

inmediatamente a la consulta de genética.  

 

Si ninguno de los padres es portador de la deleción (90% de los casos), el riesgo de 

recurrencia es muy baja (≈1%). Este riesgo se relaciona con la posibilidad de un 

mosaicismo germinal en uno de los padres (presencia varios gametos mutados de uno 

de los padres, mientras que el análisis de ADN sanguíneo es normal). En esta situación, 

puede realizarse un DPN mediante muestreo de vellosidades coriónicas o 

amniocentesis.14 

  

Por el contrario, un progenitor portador de la deleción tiene un riesgo del 50% de 

transmitir la mutación en cada embarazo (Fig. 20). No hay ninguna herramienta para 

predecir la gravedad del síndrome, y no existe una correlación entre la gravedad de la 

enfermedad en los parientes afectados. En estas situaciones, los padres tienen varias 

opciones:14 
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1.  Aceptar el riesgo y no llevar a cabo el DPN. 

2. Cribado ecográfico de malformaciones fetales graves. 

3. DPN por muestreo de vellosidades coriónicas o amniocentesis 

4. Diagnóstico preimplantacional (DGP). 

5. La posibilidad de la detección fetal no invasiva (DPNI) mediante el estudio de 

ADN fetal, extraído de la sangre materna. Aunque esta posibilidad  todavía no 

ha sido evaluada, podría ser una alternativa interesante cuando la madre no 

presente a deleción.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20: Herencia autosómica dominante. Fuente: Óskarsdóttir S., 2016, 
22q11 deletion syndrome., Soocialstyrelsen. 



 31 

6. CONCLUSIONES 

 

El síndrome de DiGeorge se origina por una alteración en el desarrollo del tercer y 

cuarto arcos faríngeos, debido probablemente,  a una anomalía en la migración de las 

células de la cresta neural, por la disfunción de algunos genes que regulan este 

proceso.  

 

La utilización de modelos animales experimentales, han sido fundamentales para 

estudiar los efectos de la pérdida de dichos genes, y han permitido demostrar el papel 

primordial del gen TBX1 en las anomalías del SDG. 

 

Las manifestaciones clínicas tienen un amplio rango de variación, en cuanto a los 

órganos afectados y a su gravedad. Como ilustra el caso clínico que presentamos,  

pueden  existir formas clínicas de SDG  de baja expresividad, cuyo diagnóstico pase 

desapercibido. Como consecuencia de esto podemos deducir, que es posible que la 

incidencia real del síndrome se esté infraestimando, y que no se esté ofreciendo un 

asesoramiento genético adecuado en aquellos casos no diagnosticados,  o que se han 

interpretado  como una malformación aislada. 

 

Actualmente, el conocimiento de la anomalía genética que origina el síndrome, y la 

utilización de técnicas de biología molecular, permiten un diagnóstico preciso. La 

aplicación de estas técnicas en pacientes con expresión incompleta o cuadros clínicos 

leves, pueden ayudar a identificar aquellas formas de expresividad fenotípica leve. 

 

A pesar de los avances en el campo de la genética, todavía no se conoce con claridad 

porqué se producen tales diferencias, en cuanto a la expresión clínica, entre dos 

individuos que han heredado una idéntica mutación. Por tanto, son necesarios 

estudios que clarifiquen cuáles son los factores moduladores que intervienen en la 

expresión fenotípica y la forma en que lo hacen. 
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