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INFLUENCIA DEL SO2 EN EL PROCESO DE OXIDACIÓN DE 
COMBUSTIBLES GASEOSOS EN CONDICIONES DE OXI-COMBUSTIÓN 

 
Resumen 

 
 El CO2 es el gas que más contribuye al Cambio Climático. La oxi-combustión es 
una tecnología de captura de CO2 muy prometedora, y en ella el combustible se quema 
con O2 puro en lugar de utilizar aire, junto con parte de los gases de salida que se 
recirculan para diluir el O2 y controlar la temperatura de la caldera. De esta forma, a la 
salida se tendrá una corriente muy concentrada en CO2 que puede ser capturado, 
almacenado o utilizado directamente. En el gas de salida, también pueden aparecer 
algunos contaminantes, como el SO2 o los NOx entre otros, que si son recirculados, 
pueden afectar en gran medida al proceso de combustión. En este contexto, el objetivo 
de este trabajo es el estudio de la influencia del SO2 en el proceso de oxidación de CO 
en condiciones de oxi-combustión. 
 

Los experimentos se realizan en un reactor de flujo pistón a escala de 
laboratorio. Se pretende estudiar el efecto de la presencia de SO2 analizando la 
influencia de las variables más importantes del proceso como la temperatura, la 
estequiometría y las concentraciones de CO2, SO2, CO y NO. Algunos de los 
experimentos más relevantes se realizan diluidos en N2 en lugar de CO2 para analizar la 
influencia de la atmósfera de reacción. Los experimentos se simulan utilizando un 
modelo de reactor de flujo pistón con el software de cinética química Chemkin-Pro. Se 
utiliza un mecanismo de reacción desarrollado por el propio grupo de investigación, 
obteniendo una buena correspondencia entre los resultados experimentales y las 
predicciones del modelo cinético en todos los casos. 
 
 Se detecta una importante inhibición de la oxidación de CO en atmósfera de CO2 
en comparación con el caso de N2, por la competencia entre el CO2 y O2 por radicales 
H. El efecto inhibidor del CO2 es mayor cuanto mayor es su concentración. A mayor 
concentración de CO, mayor porcentaje de conversión del mismo para una temperatura 
dada. El NO en cualquier concentración inhibe la reacción de oxidación en ausencia de 
SO2, y su efecto inhibidor es mayor cuanto mayor es su concentración. En presencia de 
SO2, el NO en bajas concentraciones favorece la reacción, mientras que la inhibe con 
mayores concentraciones.  
 
 El efecto inhibidor del SO2 en atmósfera de CO2 se debe a que favorece los 
mecanismos de recombinación de radicales. En condiciones reductoras, la eliminación 
de radicales se rige por la interconversión: SO2 → HOSO → SO2. El efecto inhibidor 
del SO2 es menor en atmósfera de CO2 que en N2 a estas estequiometrías. Sin embargo 
cuando se dan condiciones pobres en combustible, su efecto parece ser similar en ambas 
atmósferas, con independencia de la concentración de CO2, debido a la importancia 
cada vez mayor de la reacción de recombinación SO2+O para dar SO3. Se produce una 
mayor inhibición de la oxidación de CO con un aumento en la concentración de SO2, 
aunque las diferencias disminuyen a medida que los niveles de concentración de SO2 
aumentan. En presencia de NO, el efecto inhibidor del SO2 queda casi anulado. 
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1. INTRODUCCIÓN Y OBJETIVOS 
 

 Uno de los problemas medioambientales que más preocupa actualmente es el 

cambio climático. Por esta razón y con el propósito de reducir las emisiones de gases a 

la atmósfera, existen distintas iniciativas internacionales, como por ejemplo el 

“Protocolo de Kyoto”, que tiene como objetivo la disminución de las emisiones de 

gases que provocan el calentamiento global, siendo el CO2 el gas que más contribuye a 

este efecto tan negativo para el Medio Ambiente. Por esta razón, es muy importante 

desarrollar y llevar a cabo distintos métodos que limiten las emisiones de dicho gas a la 

atmósfera. Una de las formas mediante la cual esto se puede conseguir es la “captura y 

secuestro de CO2”. 

 

Uno de los procesos que se pueden señalar para la captura de CO2 es el de oxi-

combustión, que se sitúa como una tecnología muy prometedora. En la oxi-combustión 

el combustible se quema con O2 puro en lugar de utilizar aire, junto con parte de los 

gases de salida que se recirculan para diluir el O2 y controlar la temperatura de la 

caldera. De esta forma, a la salida se tendrá una corriente muy concentrada en CO2 y 

H2O. Una vez separada el agua, el CO2 puede ser capturado, almacenado o utilizado 

directamente. En el gas de salida, también pueden aparecer algunos contaminantes, 

como el SO2 o los NOx entre otros, que si son recirculados, pueden afectar en gran 

medida al proceso de combustión. Estudios en combustión con aire indican que 

generalmente el SO2 actúa como inhibidor de la oxidación del combustible, pero no se 

conocen datos para las nuevas condiciones de oxi-combustión. 

 

En este contexto, el objetivo de este trabajo es el estudio de la influencia del SO2 

en el proceso de oxidación de CO en condiciones de oxi-combustión. Se elige el CO por 

ser el combustible más sencillo. Se realiza un estudio tanto experimental como de 

modelado cinético. 

 

Los experimentos se realizan en un reactor cerámico de flujo pistón, a escala de 

laboratorio. Se pretende estudiar el efecto de la presencia de SO2 en la oxidación de CO, 

analizando la influencia de las variables más importantes del proceso como la 

temperatura (entre 500 y 1.500ºC), la estequiometría (incluyendo condiciones 
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reductoras, estequiométricas y oxidantes), la concentración de CO2 (25-75%), la 

concentración de SO2 (500-10.000 ppm), la concentración de CO (500-4.000 ppm) y la 

presencia de NO (0-2.500 ppm). Algunos de los experimentos más relevantes se 

realizan en las mismas condiciones pero diluidos en N2 en lugar de CO2 para analizar la 

influencia de la atmósfera de reacción. 

 

Los experimentos se simulan utilizando un modelo de reactor de flujo pistón con 

un software comercial de cinética química, Chemkin-Pro, que permite calcular la 

evolución en el tiempo de una mezcla homogénea de gases reactantes en un sistema 

cerrado en función de las condiciones termodinámicas impuestas. De esta forma se 

pueden comparar los resultados obtenidos experimentalmente con los obtenidos 

mediante el mecanismo cinético químico detallado de reacción, pudiéndose llegar a 

determinar las rutas de reacción por las que transcurre el proceso de reacción. 

 

El desarrollo de la presente memoria se desglosa en seis capítulos. En el 

Capítulo 1. Introducción, se aborda el contexto en el cual se encuadra el proyecto y la 

motivación que ha llevado a su realización, así como los principales objetivos. En el 

Capítulo 2. Antecedentes, se presenta un resumen de las distintas alternativas para la 

captura de CO2. Centrándose en la oxi-combustión, se comentan las emisiones y las 

diferencias con la combustión en aire. Finalmente, se estudia la influencia del SO2 en la 

oxidación de CO. En el Capítulo 3. Metodología Experimental, se describe brevemente 

la instalación experimental, las condiciones de los experimentos realizados y las 

variables más importantes en los experimentos. En el Capítulo 4. Resultados 

Experimentales, se analiza la influencia de las principales variables de operación que 

son la temperatura, la estequiometría, la concentración de CO2, la concentración de SO2, 

la concentración de CO, la concentración de NO y la presencia/ausencia de SO2. En el 

Capitulo 5. Modelado Cinético, se explica el mecanismo cinético utilizado, se realiza la 

comparación entre los resultados experimentales y los teóricos obtenidos mediante 

simulación, y se determinan los principales caminos de reacción. Por último, en el 

Capitulo 6. Conclusiones, se resumen los aspectos principales que se concluyen en este 

estudio. 
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2. ANTECEDENTES 
 

Este capítulo presenta una breve revisión de los principales estudios 

relacionados con el presente proyecto, incluyendo: las distintas técnicas de captura y 

almacenamiento de CO2 haciendo especial hincapié en el proceso de oxi-combustión, 

las emisiones de SO2 y su influencia en procesos de combustión. En el Anexo A se 

encuentra información más detallada relativa a este apartado. 

 

 

2.1. CAPTURA Y ALMACENAMIENTO DE CO2 (CAC) 
 

 Este proceso consiste en la separación del CO2 del resto de gases, su transporte a 

un lugar de almacenamiento y su aislamiento de la atmosfera en depósitos geológicos. 

Por tanto, el objetivo de la captura de CO2 es obtener un flujo muy concentrado en CO2 

para posteriormente ser almacenado de forma permanente [Panel Intergubernamental 

sobre el Cambio Climático; Wall y cols., 2007]. 

 

 Las tecnologías de captura de CO2 pueden clasificarse en función de la etapa 

donde se produce la separación del CO2. Así, podemos clasificar las opciones de captura 

en [Abanades, 2007; Wall y cols., 2007]: 
 

• Post-combustión. En este sistema, el CO2 se separa de los gases de combustión  

producidos en la combustión del combustible primario (carbón, gas o biomasa) 

con aire. El CO2 se absorbe usando agentes químicos activos que son 

regenerados calentándose para libertar el CO2, como las aminas 

monoetanolamina (MEA) y metildietilamina (MDEA). 

• Pre-combustión. En estos sistemas, el combustible debe transformarse antes de 

su combustión en un combustible de bajo o nulo contenido en carbono 

(hidrógeno). Esto se consigue mediante reacciones de gasificación en etapas con 

vapor de agua, que generan finalmente un gas rico en H2 y CO2. El H2 se quema 

después en una turbina de gas para regenerar calor y potencia. 

• Oxi-combustión. En la oxi-combustión [Buhre y cols., 2005], el aire se 

sustituye por oxígeno (con una pureza de aproximadamente 95%) en la 

combustión del combustible. En este proceso, se obtiene un gas de combustión 
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que contiene principalmente CO2 y H2O, parte del cual se recircula 

(aproximadamente 50-60%) a la entrada del combustor con objeto de diluir el 

oxigeno de alimentación y controlar así la temperatura de la caldera y la 

transferencia de calor.  

• Se están desarrollando también otras tecnologías como el Chemical Looping 

que implica la combustión de un combustible con un óxido metálico, que se 

reduce a metal y produce únicamente CO2 y H2O. 

 

 Comparando las tecnologías con y sin captura de CO2 se verifica una reducción 

de la eficacia (7-10%) [Wall y cols., 2007] para los casos de sistemas con CAC. No 

obstante, varios estudios tecno-económicos [Programa IEA Greenhouse Gas R&D; 

Singh y cols., 2003; Davison y cols., 2006] muestran que la CAC es una opción viable.  

 

 

2.2. OXI-COMBUSTIÓN 
 

 Varios estudios han demostrado la viabilidad de la oxi-combustión como una 

tecnología aplicable a centrales eléctricas para recuperación de CO2 [Molburg y cols., 

2001; Wang y cols., 1988]. 

 

2.2.1. Diferencias entre la oxi-combustión y la combustión con aire 

 

 La oxi-combustión se diferencia de la combustión tradicional con aire en 

muchos aspectos, como los que se muestran a continuación [Stanger y cols., 2011]: 
 

• El comburente es O2 prácticamente puro en lugar de aire. 

• Para alcanzar una temperatura adiabática de llama similar al caso del aire, la 

concentración requerida de O2 en los gases que pasan al quemador es 

generalmente del 30%, mientras que para el aire es del 21%. Además es 

necesario reciclar aproximadamente el 60% del gas de combustión. 

• Elevadas concentraciones de CO2 y H2O en los gases de combustión 

• El volumen de gases que fluyen a través del horno se reduce ligeramente, 

mientras que el volumen del gas de combustión después del reciclo se reduce en 

un 80%. 
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• Aumenta la densidad del gas de combustión puesto que el peso molecular del 

CO2 es mayor al del N2. 

• Sin eliminación de algunas especies en la corriente de recirculación, como los 

gases corrosivos de azufre, su concentración aumenta. 

• La oxi-combustión combinada con el secuestro del CO2 requiere operaciones 

unitarias adicionales, como la unidad de separación de aire y la compresión del 

gas de combustión lo que convierte a esta tecnología en menos eficiente por 

unidad de energía producida que una planta convencional. 

 

 

2.2.2. Emisiones de SO2 

 

 Se ha comprobado [Buhre y cols., 2005] que la oxi-combustión puede disminuir 

las emisiones de SO2 en comparación con la combustión con aire. Croiset y cols. (2001) 

observaron que la conversión del azufre del carbón a SO2 se redujo del 91% para el caso 

de la combustión con aire a alrededor del 64% durante la oxi-combustión. La razón que 

sugerían era que las altas concentraciones de SO2 en los gases de combustión durante la 

oxi-combustión podían dar lugar a la retención de mayor cantidad de azufre en las 

cenizas o formar depósitos en el horno. Se sabe que la concentración de SO2 en oxi-

combustión es superior a la de la combustión con aire debido a la recirculación de los 

gases de combustión, que produce acumulación de SO2 en el sistema. La disminución 

de las emisiones de SO2 en la región rica en combustible también puede ser debida en 

parte por la formación de otras especies como H2S, COS y CS2 y la reducción del SO2 

en atmósfera reductora. 

 

 Contrariamente a las observaciones experimentales, los modelos 

termodinámicos han sugerido que las emisiones de SOx no se verían afectadas durante 

la oxi-combustión, siendo gobernadas únicamente por la concentración de oxígeno 

[Zeng y cols., 2003]. Como los cálculos termodinámicos asumen que el equilibrio está 

establecido, los resultados contradictorios de estos estudios sugieren que la formación 

de SOx tanto en oxi-combustión como en combustión con aire no ha alcanzado el 

equilibrio y se rige por las limitaciones de velocidad. 
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 La posible corrosión del horno y de los sistemas de transporte de CO2 debido a 

las altas concentraciones de SO3 en los gases de combustión, que aumentan debido a 

que una fracción más alta de SO2 se oxida a SO3 por la acumulación de SO2 en el 

sistema, puede dar lugar a la necesidad de desulfuración de los gases de combustión 

recirculados en la oxi-combustión [Buhre y cols., 2005]. 

 

 

2.3. INFLUENCIA DEL SO2 EN LA OXIDACIÓN DE 

COMBUSTIBLES 

 

 Se sabe que el SO2 interactúa con el grupo de radicales disponibles durante la 

combustión afectando al comportamiento de la combustión. Se ha documentado que la 

presencia de SO2 inhibe la oxidación del combustible al catalizar la recombinación de 

radicales en estudios de reactores de flujo pistón [Glarborg y cols., 1996] y de mezcla 

perfecta [Dagaut, 2003; Durie y cols., 1971; Zachariah y cols., 1987] y también que 

tiene un impacto significativo en el comportamiento de la llama y en los límites de 

explosión [Webster y cols., 1965]. Se reconoce que el mecanismo de eliminación de 

radicales es del tipo: 
 

X+SO2+M → XSO2+M    (R.2.1) 

Y+XSO2 → XY+SO2     (R.2.2) 
 

donde X e Y pueden ser H, O ó OH. En condiciones con poco combustible, la 

inhibición se rige por la recombinación de los radicales O que conlleva la formación de 

SO3 [Glarborg, 2007], mientras que en condiciones ricas en combustible y 

estequiométricas la interacción del SO2 con el grupo de radicales es más compleja y 

pronunciada [Rasmussen y cols., 2007]. Dependiendo de las condiciones de operación, 

se ha demostrado que el SO2 también mejora la conversión de CO [Alzueta y cols., 

2001]. 

 

 De esta manera, en una estrecha gama de condiciones de operación próximas a 

las estequiométricas, el SO2 promueve la oxidación de CO a través del siguiente 

mecanismo de ramificación de cadena: 
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SO2+H ⇌ SO+OH     (R.2.3) 

SO+O2 ⇌ SO2+O     (R.2.4) 

mientras que en condiciones reductoras, la presencia de SO2 causa la inhibición de la 

tasa de oxidación del combustible. 

 

 A pesar de la importancia de la química del azufre en varios sistemas de 

combustión y de la creciente importancia de la tecnología de oxi-combustión, el efecto 

del SO2 sobre el comportamiento de la oxidación de combustible en una atmósfera de 

CO2 no se ha abordado todavía. La variación en la atmósfera de combustión junto con 

una concentración mayor de SO2 presente en la oxi-combustión puede modificar el 

efecto que tiene el SO2 en las características descritas de la combustión con aire 

tradicional. 
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3. METODOLOGÍA EXPERIMENTAL 
 

3.1. DESCRIPCIÓN DEL SISTEMA EXPERIMENTAL 
 

 El estudio experimental ha sido realizado en el laboratorio ReC (Reacciones en 

Combustión) del Grupo de Procesos Termoquímicos del Instituto de Investigación en 

Ingeniería de Aragón (I3A) de la Universidad de Zaragoza. Los experimentos se han 

llevado a cabo en una instalación que permite el estudio de reacciones en fase gas. Esta 

instalación se encuentra descrita de forma más detallada en el Anexo B. 

 

En la Figura 3.1 se muestra el sistema experimental que ha sido utilizado. Este 

sistema puede dividirse en tres partes principales que son el sistema de alimentación, el 

sistema de reacción y el sistema de detección y análisis de gases. 

 

 

 
 

Figura 3.1. Esquema de la instalación experimental 
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3.1.1. Sistema de alimentación de gases 

 

En el sistema de alimentación de gases se incluyen las botellas de gases a 

presión, los medidores de flujo másico, el flujómetro digital, el sistema de inyección de 

agua y las conducciones. 

 

 

3.1.2. Sistema de reacción 

 

La reacción tiene lugar en un reactor cerámico de 40 mm de diámetro interno y 1 

m de largo, que dispone de una única entrada de gases y que opera en condiciones de 

flujo pistón. El reactor está situado en el interior de un horno eléctrico de tubo vertical 

que cuenta con una zona calefactora que permite calentar el reactor. 

 

Para conocer la temperatura exacta a lo largo del reactor, se necesita elaborar un 

perfil de temperaturas bien definido para el horno, como se explica en el Anexo C. 

 

 

3.1.3. Sistema de detección y análisis de gases 

 

La concentración de los gases de salida del reactor deberá ser detectada y 

analizada. Previamente, el gas de salida se refrigera utilizando aire comprimido. Entre 

los equipos que integran el sistema de detección y análisis en continuo de gases, y que 

son utilizados para la realización de los experimentos, se encuentran un Micro-

Cromatógrafo de gases, un Espectrómetro FTIR (Fourier Transform Infra-Red) y un 

analizador de NO. 

 

En la Tabla 3.1 se reflejan los distintos compuestos analizados y el equipo 

utilizado para su medida. 
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Gas analizado Equipo de análisis 

Dióxido de azufre (SO2) Espectrómetro FTIR 

Monóxido de carbono(CO) Micro-Cromatógrafo de gases 

Dióxido de carbono (CO2) Micro-Cromatógrafo de gases 

Monóxido de nitrógeno (NO) Analizador de NO 
 

Tabla 3.1. Gases y equipos de análisis utilizados en los experimentos 

 

 

3.2. PLANTEAMIENTO DE LOS EXPERIMENTOS 
 

El objetivo del presente proyecto es el estudio de la influencia del SO2 en el 

proceso de oxidación de combustibles gaseosos, en condiciones de oxi-combustión. Se 

estudia la oxidación de CO por ser el combustible más sencillo. 

 

Se pretende hacer un análisis de la influencia de las principales variables de 

operación del proceso como son la temperatura, la estequiometría, la concentración de 

CO2, la concentración de SO2, la concentración de CO, la concentración de NO y la 

presencia/ausencia de SO2. 

 

Los experimentos se llevan a cabo en un reactor cerámico de flujo pistón, a 

temperaturas comprendidas en un intervalo entre 500 y 1500ºC, y para diferentes 

estequiometrías, desde condiciones ligeramente reductoras (λ=0,7), estequiométricas 

(λ=1), hasta condiciones oxidantes (λ=2) y muy oxidantes (λ=10). 

 

Se han realizado 54 experimentos, donde se utiliza el CO como combustible 

con una concentración inicial de 2.000 ppm en todos los casos excepto en 6 

experimentos donde lo que interesa es ver cómo afecta su concentración. La 

concentración inicial del SO2 es 1.000 ppm en 25 experimentos, 0 ppm en 20 

experimentos y variable en el resto. Con esto se pretende poder analizar la influencia de 

su presencia/ausencia y de su concentración. Se trabaja con NO en 18 experimentos 

para ver cómo influye su concentración a diferentes estequiometrías. En 8 experimentos 

se utiliza una atmósfera de N2, y en los 46 restantes un 75% de CO2 para representar 
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condiciones típicas de oxi-combustión. En 8 experimentos se varía la concentración de 

CO2 para ver su impacto en la combustión. 

 

La concentración de O2 varía entre 700 y 10.000 ppm, dependiendo de la 

estequiometría considerada. Se añade un 25% de N2 en todos los casos. Una corriente de 

250 ml (STP)/min de CO2 o N2 (para los experimentos de oxi-combustión y aire 

respectivamente) se satura de agua al pasar por un borboteador a temperatura ambiente, 

por lo que se añaden aproximadamente 6.000 ppm de H2O (cálculo que aparece en el 

Anexo B). El balance se completa con N2 o con CO2, hasta una obtener un caudal total 

de entrada aproximado de 1.000 ml (STP)/min. 

 

El parámetro utilizado para describir la estequiometría y cuantificar la cantidad 

de oxígeno necesaria en cada experimento es la relación de exceso de oxígeno (λ), es 

decir, el cociente entre la relación de oxígeno/combustible_real y la relación de 

oxígeno/combustible_estequiométrico (Ec.3.1). Cuando λ>1, los reactivos forman una 

mezcla oxidante o pobre en combustible, mientras que cuando λ<1 los reactivos forman 

una mezcla reductora o rica en combustible. 
 

)(
)(

2

2

tricoestequioméO
realO

=λ
 

(Ec.3.1) 

 

La cantidad estequiométrica de oxígeno es la cantidad mínima necesaria para la 

combustión completa. El producto obtenido de la combustión del monóxido de carbono 

(CO) es dióxido de carbono (CO2) (R.3.1). 
 

222
1 COOCO →+

      (R.3.1) 

 

El parámetro λ queda definido para la oxidación de monóxido de carbono en la 

ecuación Ec.3.2. De esta forma, se pude calcular la concentración de oxígeno O2. 
 

[ ]
[ ] tricoestequiomé

real
CO

CO

O

2
1

2=λ

     (Ec.3.2)
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En el Anexo D se explica el procedimiento general para realizar un experimento, 

incluyendo la preparación previa necesaria, la forma de extraer los resultados y la propia 

descripción del experimento. Además, en el Anexo E se incluyen los resultados 

numéricos de todos los experimentos y su representación gráfica en el Capítulo 4 y en el 

Anexo H. Las condiciones iniciales detalladas de cada uno de los experimentos 

realizados se muestran en la Tabla 3.2. 

 

Experimentos λ [CO] 
ppm 

[O2] 
ppm 

[SO2] 
ppm 

[NO] 
ppm 

[N2] 
ppm 

[CO2] 
ppm 

[H2O]
ppm 

A-1 0,7 2.000 700 1.000 0 990.300 0 6.000 

A-2 1 2.000 1.000 1.000 0 990.000 0 6.000 

A-3 2 2.000 2.000 1.000 0 989.000 0 6.000 

A-4 10 2.000 10.000 1.000 0 981.000 0 6.000 

B-1 0,7 2.000 700 0 0 991.300 0 6.000 

B-2 1 2.000 1.000 0 0 991.000 0 6.000 

B-3 2 2.000 2.000 0 0 990.000 0 6.000 

B-4 10 2.000 10.000 0 0 982.000 0 6.000 

C-1 0,2 2.000 200 1.000 0 240.800 750.000 6.000 

C-2 0,7 2.000 700 1.000 0 240.300 750.000 6.000 

C-3 1 2.000 1.000 1.000 0 240.000 750.000 6.000 

C-4 2 2.000 2.000 1.000 0 239.000 750.000 6.000 

C-5 10 2.000 10.000 1.000 0 231.000 750.000 6.000 

D-1 0,7 2.000 700 0 0 241.300 750.000 6.000 

D-2 1 2.000 1.000 0 0 241.000 750.000 6.000 

D-3 2 2.000 2.000 0 0 240.000 750.000 6.000 

D-4 10 2.000 10.000 0 0 232.000 750.000 6.000 

E-1 0,7 2.000 700 1.000 0 740.300 250.000 6.000 

E-2 0,7 2.000 700 1.000 0 440.300 550.000 6.000 

E-3 0,7 2.000 700 0 0 741.300 250.000 6.000 

E-4 0,7 2.000 700 0 0 441.300 550.000 6.000 

E-5 2 2.000 2.000 1.000 0 739.000 250.000 6.000 

E-6 2 2.000 2.000 1.000 0 439.000 550.000 6.000 

E-7 2 2.000 2.000 0 0 740.000 250.000 6.000 

E-8 2 2.000 2.000 0 0 440.000 550.000 6.000 
 

Tabla 3.2.A. Condiciones de los experimentos realizados con un tr = 343/Treactor [K.min], en un intervalo 

de temperaturas entre 500 y 1.500ºC y con un caudal total de entrada aproximado de 1.000 ml (STP)/min. 
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Experimentos λ [CO] 
ppm 

[O2] 
ppm 

[SO2] 
ppm 

[NO] 
ppm 

[N2] 
ppm 

[CO2] 
ppm 

[HO2]
ppm 

F-1 1 2.000 1.000 1.000 400 239.600 750.000 6.000 

F-2 1 2.000 1.000 1.000 750 239.250 750.000 6.000 

F-3 1 2.000 1.000 1.000 1.000 239.000 750.000 6.000 

F-4 1 2.000 1.000 1.000 1.500 238.500 750.000 6.000 

F-5 1 2.000 1.000 1.000 2.500 237.500 750.000 6.000 

G-1 1 2.000 1.000 0 400 240.600 750.000 6.000 

G-2 1 2.000 1.000 0 750 240.250 750.000 6.000 

G-3 1 2.000 1.000 0 1.000 240.000 750.000 6.000 

G-4 1 2.000 1.000 0 1.500 239.500 750.000 6.000 

G-5 1 2.000 1.000 0 2.500 238.500 750.000 6.000 

H-1 1 2.000 1.000 500 0 240.500 750.000 6.000 

H-2 1 2.000 1.000 1.500 0 239.500 750.000 6.000 

H-3 1 2.000 1.000 2.500 0 238.500 750.000 6.000 

H-4 1 2.000 1.000 5.000 0 236.000 750.000 6.000 

H-5 1 2.000 1.000 10.000 0 231.000 750.000 6.000 

I-1 1 500 1.000 1.000 0 241.500 750.000 6.000 

I-2 1 1.000 1.000 1.000 0 241.000 750.000 6.000 

I-3 1 4.000 1.000 1.000 0 238.000 750.000 6.000 

J-1 1 500 1.000 0 0 242.500 750.000 6.000 

J-2 1 1.000 1.000 0 0 242.000 750.000 6.000 

J-3 1 4.000 1.000 0 0 239.000 750.000 6.000 

K-1 0,7 2.000 700 1.000 400 239.000 750.000 6.000 

K-2 0,7 2.000 700 1.000 750 238.650 750.000 6.000 

K-3 0,7 2.000 700 1.000 1.500 237.900 750.000 6.000 

K-4 0,7 2.000 700 1.000 2.500 236.900 750.000 6.000 

L-1 1 2.000 1.000 400 1.000 239.000 750.000 6.000 

L-2 1 2.000 1.000 750 1.000 238.650 750.000 6.000 

L-3 1 2.000 1.000 1.500 1.000 237.900 750.000 6.000 

L-4 1 2.000 1.000 2.500 1.000 236.900 750.000 6.000 
 

Tabla 3.2.B. Condiciones de los experimentos realizados con un tr = 343/Treactor [K.min], en un intervalo 

de temperaturas entre 500 y 1.500ºC y con un caudal total de entrada aproximado de 1.000 ml (STP)/min. 
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4. ANÁLISIS DE RESULTADOS 
 

 En este capítulo se analizan los resultados obtenidos en los 54 experimentos 

realizados, que aparecen detallados en las Tablas 3.2.A y 3.2.B. Los resultados se 

dividen en siete apartados, cada uno de los cuales aborda los experimentos desde el 

punto de vista del análisis de la influencia de una de las variables de operación más 

importante: temperatura, estequiometría, concentración de CO2, concentración de SO2, 

concentración de CO, concentración de NO, y presencia/ausencia de SO2 en la corriente 

de entrada. Los resultados completos de los mismos se muestran en el Anexo E. 

 

 

4.1. INFLUENCIA DE LA TEMPERATURA 
 

 En este apartado se analiza la influencia de la temperatura en la formación y la 

desaparición de CO y SO2 en un intervalo de temperatura de 500-1.500 ºC. Como 

ejemplo, se toman los experimentos de oxidación de monóxido de carbono en 

condiciones estequiométricas (λ=1) en dilución de N2 con SO2 (A-2) y sin SO2 (B-2), y 

en dilución de CO2 con SO2 (C-3) y sin SO2 (D-2). No obstante, los perfiles presentan la 

misma tendencia para el resto de estequiometrías analizadas. 

 

 Los perfiles de concentración del CO y SO2 en dilución de N2 y de CO2 se 

muestran en las Figuras 4.1 y 4.2. 
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Figuras 4.1 y 4.2. Influencia de la temperatura en la concentración de CO y SO2. Experimentos A-2 
y B-2: oxidación de CO en dilución de N2, con SO2 y sin SO2. Experimentos C-3 y D-2: oxidación de CO 

en dilución de CO2, con SO2 y sin SO2. 
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 En primer lugar puede observarse que la influencia de la temperatura sobre la 

concentración de SO2 es nula, ya que se mantiene constante en todo el intervalo de 

temperaturas, siendo la concentración a la salida del reactor prácticamente la que se ha 

introducido de este compuesto. 

 

 En cuanto a la concentración de CO se observan dos tendencias claras, 

dependiendo de la dilución en la que se haya realizado el experimento. Cuando se lleva 

a cabo en dilución de N2, la oxidación del CO empieza a aproximadamente 650-700 ºC 

hasta los 800-900 ºC, temperatura a la cual ha reaccionado completamente. El perfil de 

concentración de CO disminuye de forma exponencial hasta alcanzar el cero de 

concentración, valor en el que permanece a temperaturas elevadas. 

 

 Cuando el experimento se realiza en dilución de CO2 la forma del perfil de 

concentración es diferente. La oxidación del CO comienza en torno a los 750 ºC y la 

concentración disminuye hasta un mínimo que se alcanza aproximadamente a los 900-

1.000 ºC. Luego vuelve a aumentar a las temperaturas de estudio más altas. 

 

 Como puede observarse la oxidación de CO está mucho más inhibida cuando el 

experimento se realiza en dilución de CO2 que en dilución de N2. El efecto inhibidor de 

la oxidación de combustible en presencia de CO2 se encuentra explicado en trabajos 

anteriores [e.g. Giménez-López y cols., 2010] y se debe a la competencia entre el CO2 y 

el O2 por los átomos de H: 

CO2+H ⇋CO+OH     (R 4.1) 

O2+H ⇋O+OH     (R.4.2) 

 

 En presencia de altas concentraciones de CO2, el aumento de importancia de la 

reacción (R.4.1) consume más radicales H. Cuanto más baja sea la disponibilidad de 

hidrógeno atómico, la formación de radicales a través de la reacción de ramificación de 

cadena (R.4.2) disminuye, lo que reduce la tasa de combustión de CO. Las reacciones 

de consumo de CO son: 

CO+O+M ⇋CO2+M     (R 4.3) 

CO+OH ⇋CO2+H     (-R.4.1) 
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4.2. INFLUENCIA DE LA RELACIÓN ESTEQUIOMÉTRICA 
 

 En este apartado se estudia la influencia de la estequiometría en la concentración 

de CO. Se analizan las siguientes condiciones: muy reductoras con λ=0,2, reductoras 

con λ=0,7, estequiométricas con λ=1, oxidantes con λ=2 y muy oxidantes con λ=10. 

Para el análisis, se toman experimentos realizados en dilución de CO2, con y sin SO2. 

 

 En la Figura 4.3 se muestran los perfiles de concentración de CO respecto de la 

temperatura, en dilución de CO2 y en presencia de SO2, para las distintas 

estequiometrías estudiadas. Al inicio de los experimentos, con bajas temperaturas (500-

750 ºC) y abundancia de O2, el CO se oxida y forma CO2 (R.4.4). Llega un momento 

(900-1.000 ºC) en el que la concentración de CO deja de disminuir y empieza a 

aumentar, debido a la elevada concentración de CO2, que reacciona con el hidrógeno 

atómico a altas temperaturas conduciendo a la formación de CO (R.4.1). Se puede 

observar por tanto, que para bajas temperaturas la reacción R.4.4 predomina, pero a 

mayores temperaturas la reacción R.4.1 comienza a ser más competitiva y está más 

favorecida. 

CO+O2 ⇋CO2+O     (R.4.4) 
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Figura 4.3. Influencia de la estequiometría en la concentración de CO, en CO2 con SO2 

Experimentos C-1, C-2, C-3, C-4 y C-5. 
 

 Se puede observar que cuanto más oxígeno hay disponible, mayor es la 

conversión del combustible para una temperatura dada debido a la elevada 
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concentración de O2 para oxidarlo, es decir, hay más radicales disponibles para 

interaccionar con el combustible. Esto indica que el intervalo de temperaturas en el que 

se produce la conversión del monóxido de carbono se desplaza a mayores temperaturas 

a medida que disminuye el valor de λ. 

 

 Como ya se ha señalado en el apartado de influencia de la temperatura, la forma 

en que varía la concentración de CO con la temperatura es similar para las distintas 

condiciones estudiadas. El inicio de la oxidación de CO es dependiente de la 

estequiometría. Para condiciones muy oxidantes (λ=10) y oxidantes (λ=2) la oxidación 

comienza a menores temperaturas, y conforme la cantidad de oxigeno disponible es 

menor, el inicio se va desplazando a mayores temperaturas. A medida que disminuye el 

valor de λ, se observa como el mínimo de CO se da a temperaturas más altas, aunque la 

concentración correspondiente a este mínimo es mayor cuanto menor es la 

estequiometría. Se observa que sólo se alcanza la conversión total de CO para lambdas 

altas. Incluso para el valor estequiométrico no se alcanza la conversión completa. 

 

 En la Figura 4.4 se muestran los perfiles de concentración de CO respecto de la 

temperatura, en dilución de CO2 y en ausencia de SO2, para las distintas estequiometrías 

estudiadas. Como puede observarse, la tendencia de las curvas es muy similar al caso 

anterior en el que los experimentos se han realizado en presencia de SO2, aunque la 

concentración de CO deja de disminuir y empieza a aumentar a menores temperaturas. 
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Figura 4.4. Influencia de la estequiometría en la concentración de CO, en CO2 sin SO2 

Experimentos D-1, D-2, D-3 y D-4. 
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4.3. INFLUENCIA DE LA CONCENTRACIÓN DE CO2 
 

 En este apartado se estudia la influencia que tiene la concentración de CO2 (que 

varía entre 0 y 75%) en presencia y ausencia de SO2, analizándola en condiciones 

reductoras (λ=0,7). En el Capítulo 3, en la Tabla 3.2.A y 3.2.B, aparecen detallados los 

experimentos llevados a cabo para poder realizar este estudio (A-1, B-1, E-1, E-2, E-3, 

E-4, C-2 y D-1). 

 

 En las Figuras 4.5 y 4.6 se muestran los perfiles de concentración de CO 

respecto de la temperatura, en presencia y ausencia de SO2 respectivamente, para las 

distintas concentraciones de CO2 estudiadas y en condiciones reductoras. 

 

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

0%CO2 25%CO2 55%CO2 75%CO2

 
Figura 4.5. Influencia de la concentración de CO2 en la concentración de CO, en condiciones 

reductoras (λ=0,7) y en presencia de SO2. Experimentos A-1, E-1, E-2 y C-2. 
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Figura 4.6. Influencia de la concentración de CO2 en la concentración de CO, en condiciones 

reductoras (λ=0,7) y sin SO2. Experimentos B-1, E-3, E-4 y D-1. 
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 Como se ha comentado en apartados anteriores, el CO2 tiene un efecto inhibidor 

en la oxidación de CO. Se observa que cuando se introduce un 25% de CO2 la reacción 

de oxidación de CO está más inhibida que cuando se trabaja con un 0%. Cuando se 

aumenta el CO2 hasta el 55 o el 75% la reacción está aún más inhibida, aunque se puede 

apreciar que prácticamente no existe diferencia entre ambas o, si existe, es pequeña. Por 

ello se puede afirmar que a partir del 55% de CO2, con y sin SO2, un aumento de su 

concentración no genera un efecto notable en la oxidación de CO. 

 

 Además se ha comprobado que en condiciones oxidantes (λ=2) la tendencia es 

similar, aunque se observa una influencia mucho menor de la concentración de CO2 en 

el efecto inhibidor del SO2. 

 

 

4.4. INFLUENCIA DE LA CONCENTRACIÓN DE SO2 
 

 En este apartado se estudia la influencia de la concentración de SO2 en la 

concentración de CO. Se analiza la influencia, en condiciones estequiométricas (λ=1), 

de las siguientes concentraciones: 0, 500, 1.000, 1.500 2.500, 5.000 y 10.000 ppm. En la 

Figura 4.7 se muestran los perfiles de concentración de CO respecto de la temperatura 

para las distintas concentraciones de SO2 estudiadas en condiciones estequiométricas. 

 

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500T [ºC]

C
O

/C
O

o

[SO2]=0 [SO2]=500 [SO2]=1.500
[SO2]=2.500 [SO2]=5.000 [SO2]=10.000

 
Figura 4.7. Influencia de la concentración de SO2 en la concentración de CO, en condiciones 

estequiométricas (λ=1). Experimentos D-2, H-1, C-3, H-2, H-3, H-4 y H-5. 
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 La presencia de SO2 en el medio de combustión, incluso en pequeñas cantidades, 

produce una inhibición de la oxidación de CO, que es mayor a medida que aumenta la 

concentración de SO2, debido a que la mayor disponibilidad de SO2 facilita el desarrollo 

de mecanismos de recombinación del SO2 con otros radicales disponibles. Sin embargo, 

el aumento del efecto inhibidor con la concentración de SO2 es mucho menos 

pronunciado para los niveles más altos de concentración de SO2. Los mecanismos de 

recombinación de radicales que provocan esta inhibición se explican detalladamente en 

el capítulo siguiente. 

 

 

4.5. INFLUENCIA DE LA CONCENTRACIÓN DE CO 
 

 En este apartado se estudia la influencia de la cantidad de combustible en la 

oxidación y la evolución de su concentración. Se analiza la influencia, en condiciones 

estequiométricas (λ=1) y en presencia de SO2, de las siguientes concentraciones: 500, 

1.000, 2.000 y 4.000 ppm. 

 

 En la Figuras 4.8 se muestran los perfiles de concentración de CO respecto de la 

temperatura para las distintas concentraciones de combustible introducido, en 

condiciones estequiométricas y en presencia de SO2. Puede apreciarse la tendencia de la 

oxidación del CO en dilución de CO2 comentada anteriormente en otros apartados. 
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Figura 4.8. Influencia de la concentración de CO, en condiciones estequiométricas (λ=1) y en 

presencia de SO2. Experimentos I-1, I-2, C-3 e I-3. 
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 Cuanto mayor es la concentración del combustible (CO), mayor es el porcentaje 

de conversión del mismo para una temperatura dada. No obstante, este efecto se hace 

más pequeño cuanto mayor es la concentración de CO inicial. Como se ha comprobado, 

los experimentos realizados en ausencia de SO2 siguen la misma tendencia y no existen 

grandes diferencias entre ellos. 

 

 

4.6. INFLUENCIA DE LA CONCENTRACIÓN DE NO 
 

 Hasta este momento se ha estudiado la influencia de los principales parámetros 

que afectan a la reacción de combustión de CO. Puesto que el NO es uno de los 

contaminantes que se forma mayoritariamente, junto con el SO2, resulta interesante 

estudiar el efecto de la presencia de NO en la oxidación de CO. 

 

 En este apartado se analiza la influencia de la concentración de NO en la 

evolución de la concentración de CO durante su oxidación, en presencia/ausencia de 

SO2 y en condiciones reductoras (λ=0,7) y oxidantes (λ=1). Además se analiza la 

influencia de la concentración de SO2 en presencia de NO, en condiciones 

estequiométricas. 

 

 En las Figuras 4.9 y 4.10 se muestran los perfiles de concentración de CO 

respecto de la temperatura para las distintas concentraciones de NO estudiadas, en 

condiciones estequiométricas, en presencia y ausencia de SO2 respectivamente. 

 

 En la Figura 4.9 se observa que los resultados de la reacción que ocurre en 

ausencia de NO dividen en dos la representación gráfica. Por debajo de ella se 

encuentran los resultados de los experimentos realizados con una concentración de NO 

menor o igual a 1.000 ppm mientras que por encima se encuentran los resultados de los 

experimentos realizados con concentraciones de NO mayores de 1.000 ppm. De esto 

puede deducirse que en condiciones estequiométricas (λ=1) y en presencia de SO2, el 

NO en concentraciones bajas (relación SO2/NO>1)) favorece la reacción de oxidación 

de CO mientras que la inhibe con mayores concentraciones. 
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Figura 4.9. Influencia de la concentración de NO en la concentración de CO, en condiciones 

estequiométricas (λ=1) y en presencia de SO2. Experimentos C-3, F-1, F-2, F-3, F-4 y F-5. 
 

 Cuando la reacción de oxidación sucede en las mismas condiciones pero en 

ausencia de SO2, Figura 4.10, se observa como la presencia de NO en cualquier 

concentración inhibe la reacción aunque cuanto mayor es esta concentración mayor es el 

efecto inhibidor. 
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Figura 4.10. Influencia de la concentración de NO en la concentración de CO, en condiciones 

estequiométricas (λ=1) y sin SO2. Experimentos D-2, G-1, G-2, G-3, G-4 y G-5. 
 

 A continuación se analiza este mismo caso pero en condiciones reductoras 

(λ=0,7), por lo que la Figura 4.11 muestra los perfiles de concentración de CO para las 

distintas concentraciones de NO en estas condiciones y en presencia de SO2. La 
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tendencia es similar a la observada en condiciones estequiométricas aunque las 

diferencias son menores ya que la cantidad de oxígeno y por tanto de radicales 

disponibles es menor. Se suman el efecto de la menor disponibilidad de oxígeno y el de 

la presencia de NO. 
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Figura 4.11. Influencia de la concentración de NO en la concentración de CO, en condiciones 

reductoras (λ=0,7) y en presencia de SO2. Experimentos C-2, K-1, K-2, K-3 y K-4. 
 

 En la Figura 4.12 se muestran los perfiles de concentración de CO respecto de la 

temperatura para distintas concentraciones de SO2, en condiciones estequiométricas y 

en presencia de NO. 
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Figura 4.12. Influencia de la concentración de SO2 en la concentración de CO, en condiciones 

estequiométricas (λ=1) y en presencia de NO. Experimentos F-3, L-1, L-2, L-3 y L-4. 
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 Parece claro que existen interacciones SO2-NO, aunque existe mucha 

incertidumbre al respecto [Glarborg y cols., 2007]. En presencia de NO el efecto 

inhibidor del SO2 queda anulado puesto que la reacción de oxidación de CO ocurre 

prácticamente igual con una concentración de SO2 variable en el intervalo analizado (0 

a 2.500 ppm). 

 

 

4.7. INFLUENCIA DE LA PRESENCIA/AUSENCIA DE SO2 
 

 En este apartado se estudia la influencia de la presencia/ausencia de SO2 en la 

evolución de la concentración de CO durante su oxidación. Se analiza esta influencia 

para distintas estequiometrías y concentraciones de CO2, CO y NO. 

 

 En la Figura 4.13 se muestran los perfiles de concentración de CO en 

presencia/ausencia de SO2, para distintas condiciones estequiométricas (lambda 0,7 a 

10) y en atmósfera de CO2 [a la izquierda] y en atmósfera de N2 [a la derecha]. 

 

 Se observa que la presencia del SO2 inhibe la oxidación de CO para ambas 

atmósferas y para todas las estequiometrías, a pesar de que la conversión de CO a altas 

temperaturas es casi independiente de la existencia de SO2. 

 

 Aunque esta inhibición está detectada para todas las estequiometrías, se observa 

que el efecto inhibidor es insignificante en las condiciones más oxidantes llevadas a 

cabo (λ=10). Se puede esperar entonces que en las instalaciones de oxi-combustión la 

presencia de SO2 tenga un leve efecto en la oxidación del combustible ya que 

normalmente estos procesos se realizan con un gran exceso de oxígeno, aunque puede 

haber determinadas zonas de la caldera de combustión en las que se encuentren 

condiciones más reductoras. 
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Figura 4.13. Influencia de la presencia/ausencia de SO2 para distintas condiciones estequiométricas 
(λ=0.7 a λ=10) en dilución de CO2 y en dilución de N2. Experimentos (CO2): A-1, B-1, A-2, B-2, A-3, 

B-3, A-4 y B-4. Experimentos (N2): C-2, D-1, C-3, D-2, C-4, D-3, A-4 y B-4. 
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 Comparando ambas atmósferas de combustión, el efecto inhibidor de la 

presencia de SO2 es más pronunciado en N2 que en CO2. Para aclarar esta tendencia, se 

representa en la Figura 4.14 la influencia de la presencia de SO2 en la oxidación de CO 

como una función de la concentración de CO2 (0-75%) para condiciones reductoras 

(λ=0.7). 
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Figura 4.14. Influencia de la presencia/ausencia de SO2 para distintas concentraciones de CO2 (0 a 
75%) en condiciones oxidantes (λ=0,7). Experimentos A-1, B-1, E-1, E-3, E-2, E-4, C-2 y D-1. 

 

 Puede apreciarse como el aumento de la concentración de CO2 del 0 al 75%, 

manteniendo igual el resto de condiciones, produce una apreciable disminución del 

efecto inhibidor del SO2. Se observa que las diferencias entre la ausencia y la presencia 

de SO2 en la oxidación de CO en estas condiciones son más pronunciadas para bajos 

valores de concentración de CO2. 

 

 Para completar este estudio se han realizado los mismos experimentos pero en 

condiciones oxidantes con λ=2 (exp. A-3, B-3, E-5, E-7, E-6, E-8, C-4 y D-4) y se ha 

comprobado que el incremento en la concentración de CO2 produce una disminución del 
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efecto inhibidor del SO2, pero muy leve, pudiéndose considerar que este efecto en estas 

condiciones es prácticamente independiente de la concentración de CO2. 

 

 En la Figura 4.15 se representa la influencia del SO2 en la oxidación de CO 

como una función de la concentración de CO (entre 500 y 4.000 ppm), en condiciones 

estequiométricas (λ=1). Se observa que el aumento de dicha concentración produce un 

incremento en el efecto inhibidor del SO2 
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Figura 4.15. Influencia de la presencia/ausencia de SO2 para distintas concentraciones de CO (500 a 

4.000 ppm) en condiciones estequiométricas. Experimentos I-1, J-1, I-2, J-2, C-3, D-2, I-3 y J-3. 
 

 Para la concentración más baja de CO prácticamente no hay diferencia entre los 

resultados del experimento realizado en presencia de SO2 y el realizado sin él. A medida 

que aumenta la concentración de combustible, el efecto inhibidor aumenta hasta llegar a 

2.000 ppm de CO. Entre esa concentración y 4.000 ppm no hay diferencia en la 

inhibición. Por ello puede afirmarse que a elevadas concentraciones de CO, el efecto 

inhibidor del SO2 prácticamente no depende de la concentración de combustible. 
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 En la Figura 4.16 se muestran los perfiles de concentración de CO en 

presencia/ausencia de SO2, para distintas concentraciones de NO (entre 0 y 2.500 ppm) 

y en condiciones estequiométricas (λ=1). Sólo se observa claramente el efecto inhibidor 

del SO2 cuando la concentración del NO es 0 ppm, es decir, en ausencia de NO. Tanto a 

bajas como a altas concentraciones de NO el efecto inhibidor del SO2 es prácticamente 

nulo. Esto se debe a las interacciones SO2-NO existentes. Puede apreciarse también que 

cuanto mayor es la concentración de NO, se llega incluso a favorecer la conversión de 

CO en presencia de SO2, aunque las diferencias son muy pequeñas y entrarían dentro el 

error experimental. 
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Figura 4.16. Influencia de la presencia/ausencia de SO2 para distintas conc. de NO (0 a 2.500 ppm) 

en condiciones estequiométricas. Exp. C-3, D-2, F-1, G-1, F-2, G-2, F-3, G-3, F-4, G-4, F-5, G-5. 
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5. MODELADO CINÉTICO 
 

 En esta sección se muestran algunos de los resultados de simulación del 

mecanismo cinético-químico utilizado para modelar la oxidación de monóxido de 

carbono en condiciones de oxi-combustión. Los datos obtenidos en la simulación se 

comparan con los resultados experimentales, y se muestran los principales caminos de 

reacción para la oxidación. 

 

 

5.1. SOFTWARE Y MODELOS UTILIZADOS 
 

 El software utilizado para realizar las simulaciones es el modelo de Reactor de 

Flujo Pistón perteneciente al programa de cinética química CHEMKIN-PRO. Este 

software permite calcular la evolución en el tiempo de una mezcla homogénea de gases 

reactantes en un sistema cerrado. Además, ofrece la posibilidad de realizar análisis de 

velocidad de reacción, mediante la herramienta Reaction Path Analyzer Tool. Una 

información más detallada sobre este software se encuentra en el Anexo F [Chemkin-

pro, 2009]. 

 

 El modelo cinético utilizado en este estudio fue desarrollado por Alzueta y cols. 

(2001) para representar la oxidación de CO con aire en presencia de SO2. Sin embargo, 

las constantes de velocidad de reacción del subconjunto del azufre han sido actualizadas 

por el Grupo de Procesos Termoquímicos (GTP) del Instituto de Investigación en 

Ingeniería de Aragón (I3A), de acuerdo con los últimos estudios publicados. Las 

constantes inversas se obtuvieron de las constantes directas y los datos termodinámicos 

se tomaron de la misma fuente que el mecanismo. El mecanismo completo actualizado 

aparece en el Anexo G. 
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5.2. COMPARACIÓN ENTRE DATOS EXPERIMENTALES Y 

TEÓRICOS 
 

 La simulación se realiza en las condiciones reales a las que tienen lugar los 

experimentos (temperatura, presión, flujo total, concentración de reactantes y tiempo de 

residencia). La simulación en CHEMKIN-PRO permite un análisis según dos modelos: 
 

•  Con perfiles de temperatura: se introduce el perfil de temperaturas completo a 

lo largo de todo el reactor (calculado en el Anexo C) para cada temperatura a la 

que se realiza la simulación. 

•  A temperatura constante: se supone una temperatura constante en la zona de 

reacción (zona isoterma), que se ha considerado de una longitud de 15 cm. Con 

ello, se supone que las zonas anterior y posterior están a muy baja temperatura y 

por tanto se considera que no hay reacción. Este modelo es menos preciso pero 

agiliza la resolución computacional. 

 

 En la Figura 5.1 se muestran los datos obtenidos para dos experimentos, 

realizados en las mismas condiciones pero el primero en presencia y el segundo en 

ausencia de SO2, simulados con ambos modelos. 

 

 Se observa que los resultados que más se ajustan a los experimentales son los 

que proporciona la simulación con perfiles. 
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Figura 5.1. Resultados experimentales y de simulación con los modelos de perfiles y de temperatura 

constante, de los experimentos C-3 y D-2. (λ=1, 75% de CO2 y en presencia/ausencia de SO2) 
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 Se verifica que en la mayoría de los casos introduciendo los perfiles de 

temperatura se obtienen mejores resultados que considerando una zona isoterma, por 

ello, la simulación del resto de experimentos se lleva a cabo mediante el modelo con 

perfiles. A continuación, se muestran sólo algunos ejemplos de la comparación entre los 

datos simulados con el modelo elegido y los obtenidos experimentalmente. Los demás 

aparecen en el Anexo H. 

 

 Las Figuras 5.2, 5.3 y 5.4 muestran la comparación entre los resultados 

experimentales y las predicciones del modelo con perfiles de temperatura. En todas ellas 

se observa que el modelo se ajusta de manera bastante precisa a los datos 

experimentales registrados, por lo que se confirma la tendencia. 
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Figura 5.2. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en atmósfera de CO2, con distintas estequiometrías. 

Experimentos C-2, D-1, C-3 y D-2. 
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Figura 5.3. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en atmósfera de N2, con distintas estequiometrías. 

Experimentos A-1, B-1, A-2 y B-2. 
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Figura 5.4. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones reductoras (λ=0,7), con distintas 

concentraciones de CO2. Experimentos E-1, E-2, E-3 y E-4. 
 

 

5.3. PRINCIPALES CAMINOS DE REACCIÓN 

 

 Los principales caminos de reacción del SO2 que involucra la recombinación de 

radicales han sido determinados a través del análisis de velocidad de reacción y se 

resumen en la Figura 5.7 en función de la estequiometría. Las líneas continuas indican 

los caminos importantes en la gama de estequiometrías investigadas, mientras que las 

líneas discontinuas indican los caminos importantes sólo en condiciones reductoras. Las 

líneas continuas en negrita representan los caminos de reacción más importantes. 

 

 

Figura 5.7. Principales caminos de reacción del mecanismo de recombinación de 
radicales catalizado por el SO2 

 

 En condiciones pobres en combustible, el efecto inhibidor del SO2 en la 

oxidación de CO se atribuye principalmente a la recombinación de los átomos de 
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oxígeno con el SO2, debido a que los radicales O son los radicales predominantes en 

presencia de altas cantidades de O2: 

 SO2+O (+M) ⇋ SO3 (+M)       (R.5.1) 

 

 El SO3 reacciona principalmente con HO2 que conduce a HOSO2, el cual se 

descompone de nuevo a SO2: 

 SO3+HO2 ⇋ HOSO2 +O2       (R.5.2) 

 HOSO2(+M) ⇋ SO2 +OH(+M)      (R.5.3) 

 

 Pequeñas cantidades de SO3 también son capaces de reaccionar con los átomos 

de H: 

 SO3+H ⇋ SO2 +OH        (R.5.4) 

 

 El resultado de las reacciones (R.5.1) y (R.5.3) es O+HO2 ⇋ OH +O2, y de las 

reacciones (R.5.1) y (R.5.4) es O+H ⇋ OH, que corresponde a una reducción neta del 

grupo de radicales. Sin embargo, no es una fuerte inhibición, ya que los radicales OH 

formados en ambas reacciones globales puede reaccionar fácilmente con el CO a través 

de la reacción CO+OH ⇋ CO2+H, contribuyendo al proceso de oxidación y por lo tanto 

reduciendo el efecto inhibidor. 

 

 A medida que disminuye la concentración de oxígeno y que las condiciones se 

hacen más reductoras, la recombinación del SO2 con H se hace más importante debido a 

la importancia cada vez mayor de átomos de hidrógeno como portadores de la cadena: 

 SO2+H (+M) ⇋ HOSO (+M)      (R.5.5) 

El consumo principal de HOSO tiene lugar por la reacción con el O2: 

 HOSO+O2 ⇋ SO2 +HO2       (R.5.6) 

 

 La secuencia de la reacción (R.5.5) y (R.5.6) es equivalente a H+O2 ⇋ H2O, lo 

que implica una inhibición significativa en el proceso de oxidación, debido al consumo 

de oxígeno molecular porque el HO2 es un radical mucho menos reactivo comparado 
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con otros radicales. Por lo tanto, la inhibición en condiciones ricas en combustible es 

mayor que el efecto inhibidor en condiciones pobres en combustible, como se ha 

observado experimentalmente. En menor medida, la especie HOSO es capaz de 

reaccionar con los radicales H mediante dos reacciones diferentes: 

 HOSO+H ⇋ 1SO +H2O       (R.5.7) 

 HOSO+H ⇋ SO2 +H2       (R.5.8) 

 

 La formación de 1SO+H2O es la formación principal de producto, y el SO 

primario se convierte completamente al estado terciario (3SO): 

 1SO (+M) ⇋ 3SO (+M)       (R.5.9) 

El 3SO reacciona rápidamente con O2: 

 3SO+ O2 ⇋ SO2+O                 (R.5.10) 

 

 La secuencia (R.5.5)+(R.5.7)+(R.5.9)+(R.5.10) se convierte en la cadena de 

propagación, H+H+O2 ⇋ HO2+O, disminuyendo la eficiencia del ciclo de eliminación 

de radicales. 

 

 La secuencia a través del canal de productos SO2+H2 (R.5.5) y (R.5.8) resulta en 

la cadena de terminación H+H ⇋ H2 y contribuye por lo tanto a la reducción de 

radicales disponibles, pero este canal de productos tiene poca importancia en las 

condiciones estudiadas. 

 

 A pesar de que el mecanismo de recombinación de SO2 se rige por la formación 

de HOSO en condiciones ricas en combustible, el impacto del SO2 en el grupo de 

radicales disponibles es más complejo en estas condiciones. Menores cantidades de la 

reacción de SO2+H pueden llevar también a otros productos: 

 SO2+H(+M) ⇋ HSO2(+M)                (R.5.11) 

 SO2+H(+M) ⇋ 3SO+OH(+M)               (R.5.12) 

 

 El aducto HSO2 es muy inestable y se convierte rápidamente en el isómero 

HOSO: 
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 HSO2(+M) ⇋ HOSO(+M)                (R.5.13) 

 

 Además de su reacción con el O2, el 3SO formado también es capaz de 

reaccionan con el OH produciendo el aducto HOSO en condiciones reductoras, que se 

convertiría nuevamente a SO2, como se ha visto anteriormente: 

 3SO +OH(+M) ⇋ HOSO(+M)               (R.5.14) 
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6. CONCLUSIONES 
 

 Se ha llevado a cabo un estudio experimental y de modelado cinético de la 

influencia de la presencia de SO2 en la oxidación de CO en atmósfera de CO2, en un 

reactor de flujo, en un intervalo de temperaturas de 500-1.500 ºC y para diferentes 

estequiometrías. Se ha realizado la comparación de esos datos con los resultados de 

combustión tradicional en una atmósfera de N2 y en condiciones similares. Además se 

ha analizado la influencia de la concentración de CO2, CO, SO2 y NO, y se han 

identificado los principales caminos de reacción de los mecanismos de recombinación 

de radicales catalizados por el SO2. 

 

 En las simulaciones se utiliza un mecanismo cinético detallado desarrollado por 

el Grupo de Procesos Termoquímicos (GTP) del Instituto de Investigación en Ingeniería 

de Aragón (I3A). El modelo es capaz de reproducir satisfactoriamente los resultados 

experimentales para todas las condiciones de operación estudiadas. 

 

 Se detecta una importante inhibición de la oxidación de CO en atmósfera de CO2 

en comparación con el caso de N2, porque la competencia entre el CO2 y O2 por los 

radicales H reduce la formación de precursores de cadena mediante la reacción 

O2+H=O+OH. Por lo tanto, para los distintos valores de estequiometría y temperatura 

estudiados, la conversión de CO siempre es mayor en atmósfera de N2. 

 

 El efecto inhibidor del CO2 es mayor cuanto mayor es su concentración, aunque 

puede observarse que a partir de un 55% de CO2, no se aprecia el efecto de un aumento 

de la concentración de CO2 en la oxidación de CO. Esto sucede tanto en presencia y en 

ausencia de SO2, y en condiciones reductoras. En condiciones oxidantes la tendencia es 

similar pero se observa una influencia mucho menor de la concentración de CO2 en el 

efecto inhibidor del SO2. 

 

 Se ha observado que la presencia de SO2 inhibe la oxidación de CO, tanto en 

atmósfera de CO2 como en N2 y para todas las estequiometrías del intervalo analizado, a 

pesar de que la inhibición es menor cuanto más oxidantes son las condiciones. El efecto 

inhibidor del SO2 en la oxidación de CO en atmósfera de CO2 se debe a mecanismos de 
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recombinación de radicales. En condiciones reductoras, la eliminación de radicales se 

rige por la interconversión: SO2 → HOSO → SO2. El efecto inhibidor del SO2 es menor 

en atmósfera de CO2 que en N2 a estas estequiometrías. Sin embargo cuando se dan 

condiciones pobres en combustible, el efecto inhibidor del SO2 parece ser similar en 

ambas atmósferas, con independencia de la concentración de CO2, debido a la 

importancia cada vez mayor de la reacción de recombinación SO2+O para dar SO3. 

 

 Se produce una mayor inhibición de la oxidación de CO con un aumento en la 

concentración de SO2, aunque las diferencias disminuyen a medida que los niveles de 

concentración de SO2 aumentan. 

 

 Cuanto mayor es la concentración del combustible CO, mayor es el porcentaje 

de conversión del mismo para una temperatura dada. No obstante, este efecto se hace 

más pequeño cuanto mayor es la concentración de CO inicial. Puede observarse la 

misma tendencia en el proceso con y sin SO2. 

 

 Por último, se ha observado que la presencia de NO afecta de manera diferente 

en presencia y en ausencia de SO2. El NO en cualquier concentración inhibe la reacción 

de oxidación de CO cuando en el medio de combustión no hay SO2, y su efecto 

inhibidor es mayor cuanto mayor es su concentración. En presencia de SO2, el NO en 

concentraciones comparativamente bajas favorece la reacción de oxidación de CO, 

mientras que la inhibe con mayores concentraciones. En presencia de NO el efecto 

inhibidor del SO2 queda anulado. 
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Anexo A. ESTUDIO BIBLIOGRÁFICO 
 

A.1. INTRODUCCIÓN 
 

 Durante la última década, el papel del carbón como una fuente de energía de 

futuro ha ganado interés por su estabilidad probada en el suministro y el coste, así, el 

carbón permanecerá en una posición importante en el futuro próximo. La mayor parte 

de los escenarios del uso de energía mundial prevé un aumento sustancial de las 

emisiones de CO2 a lo largo del siglo si no se adoptan medidas específicas para mitigar 

el cambio climático. Asimismo, sugieren que el suministro de energía primaria seguirá 

estando dominado por los combustibles fósiles hasta, al menos, mediados de siglo. 

 

 La reducción de emisiones necesaria para estabilizar la concentración 

atmosférica de CO2 dependerá tanto del nivel de las emisiones futuras como del 

objetivo perseguido de concentración de CO2 a largo plazo. El Tercer Informe de 

Evaluación (TIE) del IPCC establece que, según el escenario que se considere, a lo 

largo de este siglo habría que evitar las emisiones acumulativas de cientos, o incluso 

miles, de gigatoneladas de CO2 para estabilizar la concentración de CO2 a un nivel de 

entre 450 y 750 ppmv. 

 

 Las emisiones de CO2 proceden principalmente de la quema de combustibles 

fósiles, tanto en grandes unidades de combustión, por ejemplo las utilizadas para la 

generación de energía eléctrica, como en fuentes menores distribuidas, por ejemplo los 

motores de los automóviles y los quemadores utilizados en edificios residenciales y 

comerciales. Las emisiones de CO2 también se originan en ciertos procesos industriales 

y de extracción de recursos, así como en la quema de bosques. 

 

 Existen varias posibilidades para la reducción de emisiones de CO2 en procesos 

de combustión, tales como [Wall y cols., 2007; Singh y cols., 2003]: 
 

• Reducción de la demanda de energía mediante el aumento de la eficacia de las 

plantas de energía. 

• Introducción de ciclos combinados, como IGCC. 
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• La descarbonatación del suministro de energía, optando por combustibles que 

utilicen menos carbono (como sustitución del carbón por el gas natural). 

• Sustitución de combustibles hidrocarburos por energías renovables y/o energía 

nuclear. 

• Captura y almacenamiento del CO2 en plantas convencionales de combustión de 

combustibles fósiles. 

 

 Las primeras cuatro opciones pueden ser aplicadas en la reducción de emisiones 

de gases de efecto invernadero, sin embargo, el CO2 producido en la combustión tiene 

que ser capturado y almacenado. 

 

 

A.2. CAPTURA Y ALAMACENAMIENTO DE CO2 (CAC) 
 

 La captura y el almacenamiento geológico permanente de dióxido de carbono 

(CAC) es una opción muy interesante para la mitigación del cambio climático. 

 

 El CAC usa la tecnología, primero, para recoger y concentrar el CO2 producido 

en las fuentes industriales (como grandes centrales eléctricas, cementeras, refinerías, 

etc), transportarlo a un lugar de almacenamiento apropiado y, entonces, almacenarlo 

aislándolo de la atmósfera en depósitos geológicos (como yacimientos de petróleo o gas 

agotados o acuíferos salinos profundos) de forma permanente. Así pues, el CAC 

permitiría que los combustibles fósiles fueran utilizados produciendo bajas emisiones de 

gases de efecto invernadero. 

 

 La reducción de las emisiones utilizando la CAC depende de los siguientes 

factores [Panel Intergubernamental sobre el Cambio Climático]: 
 

• Fracción de CO2 captado. 

• Aumento de la producción debido a la energía necesaria para la captura, 

transporte y almacenamiento. 

• Posibles fugas durante el transporte. 
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 Con este sistema es posible captar aproximadamente el 85-95% del CO2 

generado en la combustión, sin embargo, una planta  con CAC necesita un 10-40% más 

de energía que una planta sin captura, energía que se necesita para la captura, la 

compresión y el almacenamiento del CO2. 

 

 Las tecnologías de captura de CO2 pueden clasificarse en función de la etapa 

donde se produce la separación del CO2. Así, podemos clasificar las opciones de captura 

de CO2 en [Wall y cols., 2007; Abanades, 2007]: post-combustión, pre-combustión, oxi-

combustión y otras tecnologías en desarrollo como el chemical looping. 

 

 

A.2.1. Post-combustión 

 

 Los sistemas de PCC existen comercialmente y se pueden aplicar en plantas ya 

existentes. En este sistema, el CO2 se separa de los gases de combustión (principalmente 

N2 del aire) producidos en la combustión del combustible primario (carbón, gas o 

biomasa) con aire. La captura de CO2 se efectúa a presión atmosférica con presiones 

parciales de CO2 bajas, así, se utiliza normalmente un solvente líquido para captar el 

CO2 presente en el flujo de gases de combustión. El CO2 se absorbe usando agentes 

químicos activos que son regenerados calentándose para libertar CO2, como las aminas 

monoetanolamina (MEA) y metildietilamina (MDEA). 

 

 Estos solventes tipo amina son una opción en la absorción de pequeñas 

concentraciones de CO2 del gas de combustión, pero requiere una gran cantidad de 

energía. Además el O2 en el gas de salida también causa la degradación de las aminas 

con los subproductos, lo que conduce a problemas de corrosión. 

 

 

A.2.2. Pre-combustión 

 

 En estos sistemas, el combustible debe transformarse antes de su combustión en 

un combustible de bajo o nulo contenido en carbono (hidrógeno). Esto se consigue 

mediante reacciones de gasificación en etapas con vapor de agua, que generan 

finalmente un gas rico en H2 y CO2. 
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 Puesto que estas reacciones ocurren a altas presiones, la separación de estos 

gases se facilita (la captura del CO2) pudiendo utilizar métodos de separación más 

eficientes que para el caso de PCC, como solventes físicos, metanol o polietilenglicol. 

El H2 se quema después en una turbina de gas para regenerar calor y potencia. El H2 

podría utilizarse también como combustible de transporte impulsando la llamada 

economía de hidrógeno. La técnica de precombustión puede ser aplicada en plantas de 

gas o a base de carbono naturales. 

 

 

A.2.3. Oxi-combustión 

 

 En la oxi-combustión, el aire es sustituido por oxígeno puro en la combustión 

del combustible. En este proceso se obtiene un gas de combustión que contiene 

principalmente CO2 y H2O, parte del cual se recircula (aproximadamente 50-60%) a la 

entrada del combustor para diluir el oxigeno de alimentación y controlar así la 

temperatura de combustión y la transferencia de calor en la caldera. El uso de oxígeno 

en lugar de aire incrementa la concentración de CO2 en el gas de salida y facilita su 

purificación antes del almacenamiento, ya que el agua puede eliminarse fácilmente por 

condensación. El principal inconveniente es la obtención de O2 de elevada pureza a 

partir del aire, lo que supone un elevado coste energético. 

 

 En la Figura A.1 se muestran esquematizados los distintos sistemas de captura 

que se acaban de describir [Panel Intergubernamental sobre el Cambio Climático]. 

 

 
Figura A.1. Sistemas de captura de CO2 (Fuente: IPCC, 2005). 



Anexo A. Estudio Bibliográfico 
 

 48

A.2.4. Chemical Looping 

 

 La combustión se realiza en un lecho fluidizado con un óxido metálico, el cuál 

se reduce a metal produciendo como gases únicamente CO2 y H2O. Posteriormente, el 

metal hay que regenerarlo con aire en otro lecho. De esta forma se evita el coste de 

producir oxígeno. El problema es que hay que desarrollar los materiales, para conseguir 

que sean resistentes y muy reactivos. Además, hay que tener el combustible en forma 

gaseosa. 

Oxidación: M + 1/2O2 → MO 

Reducción: CH4 + 4MO → CO2 + 2H2O + 4M 

CH4: combustible; M: metal; MO: óxido metálico. 

 

 Comparando las tecnologías con y sin captura de CO2 se verifica una reducción 

de la eficacia (7- 10%) [Wall y cols., 2007] para los casos de sistemas con CAC. Esta 

pérdida de eficacia se debe principalmente a la regeneración del solvente (en post-

combustión), a la producción de O2 (pre-combustión y oxi-combustión) y a la 

compresión del CO2 separado (en todos los procesos CAC). Debido a la pérdida de 

eficacia, los costes de energía y el consumo de combustibles aumentan. La aplicación de 

estas tecnologías es poco viable para la mayoría de las centrales existentes debido a la 

pérdida de rendimiento asociado a la etapa de captura de CO2. En centrales de 

combustión nuevas se requiere un aumento del 20-35% en el consumo de combustible  

para generar la misma potencia eléctrica que las plantas sin captura de CO2. 

 

 El programa IEA Greenhouse Gas R&D [Programa IEA Greenhouse Gas R&D] 

ha hecho un estudio de los costes para plantas nuevas de carbón y gas natural  con y sin 

captura. El estudio ha concluido que la eficiencia de las centrales eléctricas con CAC 

basada en tecnologías actuales es del 32-35% para plantas de carbón y 45-50% para 

plantas de gas natural. El coste de captura y compresión de CO2 (excluyendo el 

transporte y almacenamiento de CO2) y el coste de electricidad es mayor para plantas 

combinadas de gas natural. 

 

 Estudios tecno-económicos de captura de CO2 han comparado plantas de post-

combustión con sistemas de absorción con MEA y de oxi-combustión con reciclo de 

O2/CO2 [Singh y cols., 2003]. Los resultados muestran que ambos procesos son 
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opciones caras para la captura de CO2 en centrales eléctricas de carbono ya existentes, 

sin embargo, la opción de combustión con reciclo de O2/CO2 parece ser la más atractiva. 

En el caso de post-combustión, la utilización de nuevos solventes de mayor eficiencia 

energética va a tener mayor impacto en reducir los gastos de captura de CO2. Sin 

embargo, la utilización de aminas tiene que ser mejorada en un 50% para ser 

competitiva con el proceso de O2/CO2. 

 

 

A.3. OXI-COMBSUTIÓN 
 

 Buhre y cols. (2005) han estudiado el estado y las necesidades de la tecnología 

de oxi-combustión. Este estudio ha demostrado la viabilidad económica de su 

implantación tanto en plantas ya existentes como en plantas nuevas. Han comparado la 

tecnología de oxi-combustión con las tecnologías de post y pre-combustión, 

concluyendo que la oxi-combustión es una opción muy prometedora. 

 

 En este sistema se utiliza O2 (con una pureza de aproximadamente 95%) como 

comburente en lugar de aire y el gas de combustión obtenido (mayoritariamente CO2 y 

H2O) se recicla a la entrada del combustor con objeto de diluir el oxigeno de 

alimentación y controlar así la temperatura de la caldera y la transferencia de calor. El 

vapor de agua se condensa para producir una corriente de elevada pureza de CO2, 

siendo después capturado y comprimido para su posterior transporte y almacenamiento. 

En la Figura A.2 se muestra un esquema detallado del proceso de oxi-combustión. 

 

 
Figura A.2. Esquema del proceso de oxi-combustión. 
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La oxi-combustión es una tecnología que puede utilizarse tanto en plantas 

nuevas como en plantas convencionales de energía, sin embargo, implica 

modificaciones de la tecnología, lo cual es una desventaja. 

 

 

A.3.1. Estudios previos a escala piloto 

 

 La Energy and Environmental Research Corporation (EERC) [Molburg y cols., 

2001; Wang y cols., 1988] demostró la viabilidad técnica del reciclo de CO2 en la 

caldera, determinó la cantidad de gas a reciclar para que la transferencia de calor fuera 

similar a la combustión con aire y cuantificó algunos cambios operacionales, como la 

estabilidad de la llama y las emisiones de contaminantes. Concluyeron que la oxi-

combustión puede ser aplicada con éxito en  plantas existentes. 

 

 Un estudio realizado por la  International Flame Research Foudation (IFRF) 

[Woycenko y cols., 1995], evaluó la oxi-combustión de carbón pulverizado en plantas 

ya existentes con objeto de maximizar la concentración de CO2 en el gas de combustión. 

Optimizaron las condiciones de oxi-combustión para que la radiación y la transferencia 

de calor convectiva fueran similares a la combustión con aire y evaluaron el impacto de 

la aplicación de estas nuevas condiciones en el funcionamiento del horno: la ignición y 

estabilidad de la llama, la transferencia de calor, la eficacia de la combustión y las 

emisiones de contaminantes. El estudio concluyó que la oxi-combustión era capaz de 

conseguir una interpretación similar a la combustión con aire. 

 

 Las compañías Babcock &Wilcox (B&W) y Air Liquide [Sangras y cols., 2004; 

Châtel-Pélage y cols., 2003] demostraron la viabilidad técnica de la conversión de 

combustión con aire a oxi-combustión en quemadores a gran escala. Mostraron que la 

tecnología genera considerablemente menos contaminantes (NOx, SO2 y Hg) y que se 

aumenta  la eficacia de la caldera debido a la gran reducción de inquemados en las 

cenizas volantes. 

 

 La organización canadiense, CANMET [Chui y cols., 2003] estudió la 

combustión de carbón en varias mezclas de O2/gases de salida recirculados, comparando 

con combustión con aire. Entre sus conclusiones se encuentra: la concentración de CO2 
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alcanzada a la salida está cerca del valor teórico, aumentos de la concentración de O2 a 

la entrada aumentan la temperatura de la llama, la emisión de NOx disminuye con 

respecto a la combustión con aire y el SO2 no se ve afectado significativamente por 

variaciones en las concentraciones de CO2 y O2. 

 

 

A.3.2. Factores del proceso que afectan a la concentración del SO2 

 

 Una consecuencia del flujo volumétrico reducido y de la introducción del reciclo 

de los gases de combustión durante la oxi-combustión es un incremento de la 

concentración del SO2 en los gases de combustión. Por ejemplo, Ochs y cols. (2004) 

calcularon un aumento en la concentración del SO2 de 200 ppm en combustión con aire 

y de 900 ppm en oxi-combustión. Kakaras y cols. (2007) estimaron un aumento de 270 

a 800 ppm cuando cambiaban de aire a O2/CO2 (reciclo) usando lignito como base. 

 

 Los resultados a escala piloto indican que la concentración de SO2 aumenta de 

combustión en aire a oxi-combustión y que es 2-4 veces mayor [Croiset y cols., 2001], 

aunque en realidad la concentración de SO2 depende de varios factores, resumidos en 

las Tablas A.3.A. y A.3.B. El reciclo húmedo de los gases de combustión (sin condensar 

el agua) ha mostrado un incremento de la concentración de SO2 comparado con el 

reciclo seco (con el agua condensada antes del reciclo) en un estudio [Weller y cols., 

1985] pero no en otro [Tan y cols., 2006]. 

 

Variables Factores Efectos relacionados 

Azufre en el 
combustible 

Calidad del carbón Química de las cenizas, conversión SO3/SO2, 
formación de H2SO4 

Materia mineral Calidad del carbón/cenizas El Na, K, Ca y Mg de las cenizas volantes son 
propensos a formar sulfatos y reducir los 
niveles de SO2. Las tasas de captura de azufre 
en las cenizas volantes dependen de la 
cantidad, tamaño de partícula, forma y 
distribución de óxidos de metales en las 
cenizas 

O2 estequiométrico 
necesario (relación 

combustible/O2) 

Calidad del carbón Los niveles más altos de cenizas y humedad 
conducen a una reducción de la relación 
combustible/O2 

 

Figura A.3.A. Factores que afectan a la concentración de SO2 en condiciones de oxi-combustión. 
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Variables Factores Efectos relacionados 

Exceso de O2 Gestión de la llama Las especies H2S and COS se forman en medio 
reductor, char que afecta a la conversión total 
del S del carbón 

Concentración 
de O2 

Gestión de la llama Char, temperatura de llama, transferencia de 
calor por radiación a la caldera 

Relación de reciclo 
de los gases de 

combustión 

Gestión de la llama (gas 
portador primario/secundario, 

perfil de velocidad) 

Cambio volumétrico en el flujo de gas a través 
del quemador, dilución/reciclo del SO2 

Impurezas de los 
gases de combustión 

(O2, N2, Ar, H2O) 

Unidad de separación del aire, 
entrada de aire incontrolada 

Cambio volumétrico en el flujo de gas a través 
del quemador, dilución del SO2 

Punto de rocío ácido Gestión de la transferencia 
de calor 

Las unidades operativas de intercambio de 
calor por debajo del punto de rocío ácido de 
los gases de combustión darán lugar a la 
deposición de H2SO4 y la creación de 
problemas de corrosión. El calor específico del 
gas de combustión va a cambiar en 
condiciones oxi-combustión, al igual que las 
concentraciones de SO3 y H2O 

 

Figura A.3.B. Factores que afectan a la concentración de SO2 en condiciones de oxi-combustión. 
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ANEXO B. METODOLOGÍA EXPERIMENTAL 
 

B.1. INSTALACIÓN EXPERIMENTAL 
 

 El estudio experimental ha sido realizado en el laboratorio ReC (Reacciones en 

Combustión) del Grupo de Procesos Termoquímicos del Instituto de Investigación en 

Ingeniería de Aragón (I3A) de la Universidad de Zaragoza. Los experimentos se han 

llevado a cabo en una instalación que permite el estudio de reacciones en fase gas. 

 

Los experimentos se han llevado a cabo en una instalación que permite el 

estudio de reacciones en fase gas, y que dispone de tres partes principales que son el 

sistema de alimentación de gases, el sistema de reacción y el sistema de detección y 

análisis de gases. La Figura B.1 muestra el sistema experimental que ha sido utilizado. 

 

 

 
 

Figura B.1. Esquema de la instalación experimental 
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B.2. SISTEMA DE ALIMENTACIÓN 
 

El sistema de alimentación consta de los equipos, los elementos y los accesorios 

necesarios para controlar el flujo de gases reactivos adecuado en cada experimento. 

También se dispone de un sistema auxiliar de inyección de agua. 

 

Los componentes básicos del sistema de alimentación de gases son los gases, los 

medidores de flujo másico, el flujómetro digital, el sistema de inyección de agua y las 

conducciones. 

 

B.2.1. Gases 

 

Los gases utilizados para la realización de los experimentos de los que consta 

este PFC son el SO2, CO, O2, CO2, N2 y NO, que se encuentran almacenados en el 

laboratorio en botellas a presión. 

 

Cada botella tiene un manorreductor con dos llaves reguladoras y con sus 

correspondientes indicadores de presión: 

• Manómetro de alta, que permite conocer en cualquier momento la presión 

del gas en el interior de la botella. 

• Manómetro de baja, que indica la presión de la línea desde la salida de la 

botella hasta el medidor de flujo másico. 

 

 El regulador de presión de alta mantiene la presión del gas a la salida de la 

botella, mientras que el regulador de baja reduce la presión de la línea a un valor 

requerido, que es de aproximadamente 4 bares en nuestro caso. 

 

 Las concentraciones de los gases que se utilizan en los distintos experimentos 

varían dependiendo de las condiciones de operación que se quieran conseguir. Los gases 

se encuentran diluidos en N2 o en CO2. Algunos de ellos se usan diluidos en un gas o en 

otro dependiendo del experimento y de la concentraciones que se quieran alcanzar. En 

algunos casos para conseguir las concentraciones de O2 necesarias para realizar el 

experimento se utiliza aire sintético. Además algunos de los experimentos más 
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relevantes se realizan en las mismas condiciones pero diluidos en N2 en lugar de CO2 

para analizar la influencia de la atmósfera de reacción. En la Tabla B.1 se muestran las 

concentraciones de los gases utilizados. 

 

Gas Pureza 

SO2 0,50% en N2 - 5,01% en N2 

CO 1% en CO2 – 1,84% en N2 

O2 
1,04% en CO2 - 1,95% en CO2 - 0,45% en N2 - 

1,80% en N2 - 21% Aire sintético 

CO2 99,99% 

N2 100% 

Ar 99,99% 

NO 0,51% en CO2 - 0,99% en CO2 
 

Tabla B.1. Concentración de los gases en las botellas a presión 

 

Sabiendo la concentración inicial de los diferentes reactivos y tomando como 

base de cálculo un caudal total de mezcla de 1000mlN/min, el caudal de alimentación 

de cada uno de los reactivos gaseosos se obtiene en la ecuación Ec. B.1. 
 

0C
QC

Q tg
i

×
=   (Ec. B.1) 

 Donde: 

⇒iQ Caudal de gas i en condiciones normales (mlN/min). 

⇒tQ Caudal total de gases en condiciones normales (mlN/min). 

⇒gC Concentración inicial del gas i en cada experimento (ppm). 

⇒0C Concentración del gas i en la botella a presión (ppm). 

 

 El caudal de CO2 (o el caudal de N2 en los experimentos con Ar y sin CO2) para 

cada caso se calcula como la diferencia entre el caudal total de entrada (1000 mlN/min) 

y la suma de todos los caudales de gases reactivos en condiciones normales, es decir: 
 

∑−= itCO QQQ
2

     (Ec. B.2) 
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Los caudales se expresan en condiciones normales para utilizar siempre un 

mismo sistema de referencia. Así, para calcular el caudal real introducido se utiliza la 

ecuación Ec. B.3. 
 

)()(
)()(min)/(

min)/(
mmHgPKT

KTmmHgPmlNQ
mlQ

Nreal

Nrealgas
gas ×

××
=    (Ec. B.3) 

 

Donde: 

⇒realT Temperatura en las condiciones ambientales del laboratorio. 

⇒realP  Presión en las condiciones ambientales del laboratorio. 

⇒NT  Temperatura en condiciones normales (TN =273K). 

⇒NP  Presión en condiciones normales (PN=760mmHg). 

 

Este caudal se mide mediante el uso de un flujómetro digital de la casa 

comercial Agilent modelo OPTI FLOW 650, cuyo funcionamiento se detalla en el 

apartado B.2.3. 

 

 

B.2.2. Medidores de flujo másico 

 

Para trabajar con un caudal constante a lo largo de todo el experimento se regula 

el caudal de los reactantes mediante medidores de flujo másico suministrados por la 

casa comercial FISHER-ROSEMOUNT, modelo 5850TRP. Constan de un sensor de 

caudal y una válvula de control. 

 

 A estos medidores llega el caudal de gases de la botella y de ahí salen hasta el 

reactor. El control de caudal se realiza mediante un módulo de control digital MFC de 8 

canales suministrado por el servicio de Instrumentación y Electrónica de la Universidad 

de Zaragoza. Este módulo se controla mediante el software H3Z_2002, que permite 

regular el grado de apertura del medidor, cuyo valor es recomendable que esté 

comprendido entre el 10-90% del valor máximo permitido por el regulador. En cada 

experimento, se ajusta la apertura de la válvula y se mide el caudal real mediante el uso 

del flujómetro digital con el fin de obtener el caudal deseado de cada reactante. 
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B.2.3. Flujómetro digital 

 

 Los medidores de flujo másico son necesarios para mantener un flujo constante 

de gas, sin embargo, no permiten saber el caudal real que se utiliza, ya que están 

calibrados con nitrógeno (en condiciones normales de presión y temperatura). Así, 

cuando se trabaja en distintas condiciones, es necesario medir el caudal real alimentado, 

para lo que se utiliza el flujómetro digital. 

 

El flujómetro tiene un intervalo de medida comprendido entre 5-5000 ml/min. El 

caudal volumétrico de gas se determina mediante un sensor que recoge el tiempo que 

una burbuja de jabón tarda en recorrer una determinada distancia. Es importante señalar 

que no sólo debe medirse el caudal individual de cada gas y de mezcla reactante, sino 

que además es necesario determinar el caudal de salida del reactor con el fin de 

comprobar que no existen fugas a lo largo de la instalación. 

 

 

B.2.4. Sistema de inyección de agua 

 

 Para que el proceso transcurra de forma adecuada se suministra vapor de agua en 

los experimentos, ya que a elevada temperatura se generan una gran cantidad de 

radicales y así se evita el posible efecto catalítico de recombinación de radicales en las 

paredes del reactor denominado quenching. 

 

 En todos los experimentos se introduce una determinada concentración de agua 

en fase gas (aproximadamente unos 6.000 ppm). Para mantener la cantidad de vapor de 

agua constante en todos los experimentos se hace pasar un caudal constante de N2 o de 

CO2 (dependiendo del experimento) de 250 mlN/min por el borboteador. Sin embargo, 

el agua adicionada puede variar debido a los cambios de temperatura que se producen 

en las condiciones ambientales. 

 

 El sistema de inyección de agua está formado por un borboteador lleno de agua, 

por cuya parte inferior se hace pasar la corriente de N2 o de CO2 (dependiendo del 

experimento). El gas se satura de agua y abandona el borboteador por la parte superior. 
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Se trabaja con el agua del borboteador a temperatura ambiente. En la Figura B.2 se 

muestra la imagen real de este equipo. 

 

 
 

Figura B.2. Sistema de inyección de agua. Borboteador 

 

 Utilizando el modelo de Amagat es posible calcular la cantidad de vapor de agua 

arrastrada por el caudal de N2 o de CO2 (dependiendo del experimento) introducido al 

borboteador. En este modelo se supone la saturación de la corriente de N2 o de CO2, y 

se basa en las ecuaciones siguientes: 
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 Donde: 
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 ⇒OHQ
2

Caudal de agua introducido (mlN/min). 

 ⇒
2/ COArQ Caudal de Ar o CO2 que entra en el borboteador (mlN/min). 

 ⇒srP Presión del sistema de reacción cuando se han introducido todos los gases

 en el reactor ( mbarPsr 1000= ). 

 ⇒vP Presión de vapor de agua a la temperatura del borboteador (mbar). 

 ⇒vy Fracción molar de vapor de agua. 

 

 La presión de vapor de agua se calcula a partir de la ecuación Ec. B.8 que recibe 

el nombre de la ecuación de Antoine. Los parámetros de la ecuación son referentes al 

N2, sin embargo, suponemos que son también válidos para el CO2 ya que experimentos 

previos realizados en la planta demostraron que la cantidad de H2O que se absorbe por 

el mismo caudal de una corriente de N2 y otra de CO2 era similar. 
 

mmHgP
CKT

BAmmHgLnP v
rborboteado

v 2956.18
)(

)( =⇔
+

−=   (Ec. B.8) 

 Donde: 

 A = 18,3036 

 B = 3816,44 

 C = -46,13 
 

 Tborboteador==294K 
 

 [ ] ppmOHmlNQ OH 6250min/25049.6 22
=⇒=  

 

 

B.2.5. Conducciones 

 

 Los tubos que se utilizan en la planta para la conducción de gases tienen 

dimensiones de 6mm de diámetro exterior y 4mm de diámetro interior, y son de 

poliuretano y poliamida. Las uniones se realizan con racores de acero inoxidable o de 

plástico, lineales o de tipo T. 

 

 Las líneas se encargan de conducir los gases hacia el reactor. Empiezan en los 

medidores de flujo y siguen hacia un panel de válvulas de tres vías, que se muestra en la 
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Figura B.3. Desde ahí las conducciones se conectan directamente con el reactor. 

Dependiendo de la orientación de la llave, el gas circulará hacia el bypass de salida o 

hacia la entrada del reactor. De la misma forma, el caudal de salida del reactor puede ser 

conducido a los distintos analizadores de gases, hacia el flujómetro o hacia la calle. 

 

 
 

Figura B.3. Panel de válvulas de tres vías de la instalación 

 

 

B.3. SISTEMA DE REACCIÓN 
 

 El sistema de reacción está constituido por el reactor cerámico de flujo pistón, el 

horno eléctrico y el sistema de control de la temperatura en el horno. 

 

 

B.3.1. Reactor de flujo pistón 

 

 El reactor utilizado es un tubo cerámico de alumina sinterizada no porosa, que 

opera en condiciones de flujo pistón (Figura B.4). Ha sido construido por la empresa 

Horns Hobersal S.L. y tiene unas dimensiones de 50 mm de diámetro externo, 40 mm 

de diámetro interno y 1 m de largo. Para conectar el reactor con la entrada de gases, se 

dispone de unas cabezas de acero inoxidable, las cuales disponen de refrigeración 

mediante el paso de aire comprimido por su interior. El reactor dispone de una única 

entrada por donde se introducen los gases, tal y como se muestra en la Figura B.5. 
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Figura B.4. Reactor de tubo cerámico no poroso 

 

 
 

Figura B.5. Entrada de los gases al reactor 

 

 Los gases pasan por una zona de precalentamiento, donde se mezclan 

rápidamente antes de llegar a la zona de reacción. Posteriormente, y bajo condiciones de 

flujo pistón, los productos de reacción atraviesan la zona de refrigeración donde la 

reacción se detiene gracias al flujo de aire que atraviesa la cabeza de salida del reactor. 

 

 La temperatura a lo largo del reactor se conoce con exactitud, ya que se ha 

realizado el perfil de temperaturas del reactor, como se muestra en el Anexo C. 

 

 El tiempo de residencia en el reactor se calcula mediante la siguiente ecuación 

(Ec B.9): 
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Donde:  

 tr ⇒ Tiempo de residencia (min). 

 PN ⇒ Presión en condiciones normales (P=1 bar). 
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 Psr ⇒ Presión del reactor (P=1 bar). 

 TN ⇒Temperaturas en condiciones normales (T=273 K). 

 Tsr ⇒Temperatura del reactor (K). 

 Qt (Psr,Tsr) ⇒ Caudal total de gases reactantes a la presión y temperatura del 

 reactor (ml/min) ( Qt= 1000Nml/min). 

 Qt,N ⇒ Caudal total de gases reactantes en condiciones normales (mlN/min). 

 Vreactor ⇒ Volumen del reactor. 

 

 El tiempo de residencia depende solamente de la temperatura, porque la presión 

y el flujo son constantes durante todo el experimento. 

 

 

B.3.2. Horno eléctrico 

 

 El reactor cerámico se encuentra ubicado en el interior de un horno eléctrico de 

tubo vertical de “alta temperatura” de la casa Horns Hobersal S.L, modelo ST16VC-1, 

con una zona calefactora que proporciona la temperatura deseada en cada momento 

mediante una unidad de control que regula la potencia de trabajo. La temperatura 

máxima que permite alcanzar este equipo es 1500ºC. En la Figura B.6 se muestra el 

horno eléctrico. 

 

 
 

Figura B.6. Parte exterior del horno 
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 El sistema de control de temperatura se encuentra en una caja independiente, que 

incluye un módulo regulador de temperatura y un módulo que controla la potencia de 

trabajo del horno para alcanzar las temperaturas deseadas en la zona calefactora. Dicha 

temperatura es perfectamente conocida, ya que se ha elaborado el perfil de temperaturas 

a lo largo del reactor para todo el intervalo de temperaturas estudiado (Anexo C). 

 

 

B.4. SISTEMA DE DETECCIÓN Y ANÁLISIS DE GASES 
 

 La concentración de los gases de salida del reactor deberá ser detectada y 

analizada. Para eso, se dispone de equipos que integran el sistema de detección y 

análisis de gases, que son: 
 

• Micro-Cromatógrafo de gases 

• Espectrómetro FTIR (Fourier Transform Infra-Red) 

• Analizador de NO por infrarrojos 

 

 En la Tabla B.2 se muestran los gases analizados y el equipo en el que se 

analizan cada uno de ellos: 

 

Gas analizado Equipo de análisis 

Dióxido de azufre (SO2) Espectrómetro FTIR 

Monóxido de carbono(CO) Micro-Cromatógrafo de gases 

Dióxido de carbono (CO2) Micro-Cromatógrafo de gases 

Monóxido de nitrógeno (NO) Analizador de NO 
 

Tabla B.2. Gases y equipos de análisis utilizados en los experimentos 

 

 

B.4.1. Micro-Cromatógrafo de gases Agilent 3.000 

 

 En la Figura B.7 se muestra el Micro-Cromatógrafo de gases (µGC) donde se 

miden las concentraciones de CO y de CO2. 
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Figura B.7. Micro-Cromatógrafo de gases (µCG) Agilent 3.000 
 

 Este analizador consta de tres módulos, cada uno de los cuales está conformado 

por los siguientes elementos: 
 

• Columna de muestra 

• Columna de referencia 

• Detector de conductividad térmica (TCD) 

• Equipo de control electrónico de la presión (EPC) 

• Solenoides de flujo de gas 

• Tarjeta de control 

 

 El Micro-Cromatógrafo de gases se controla a través de una conexión estándar 

directamente desde el ordenador, mediante un cable cruzado. Es software de control 

SOPRANE procesa todos los parámetros experimentales, la recogida y el análisis de 

datos. 

 

 Debido al diseño de los microcomponentes de los módulos del µGC, se han de 

introducir sólo gases o vapores limpios, y evitar aerosoles, vapores condensables, 

líquidos y partículas sólidas. Se ha instalado un filtro Genie G2817A (Figura B.8), para 

asegurarnos de que los gases producto que se están introduciendo están libres de dichos 

contaminantes para el µGC. 
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Figura B.8. Separador de gas/líquido G2817A 

 

 Los módulos del cromatógrafo son los siguientes: 
 

• Módulo A, constituido por la columna OV1 cuyo gas portador es argón. Este 

módulo detecta los compuestos C3, C4 y más pesados (en teoría hasta C12), los 

compuestos polares y los oxigenados. 

• Módulo B, constituido por la columna PPU y cuyo gas portador es helio. Este 

módulo detecta los hidrocarburos ligeros, tales como el etano (C2H6), acetileno 

(C2H2), etileno (C2H4), así como el CO2. Los gases permanentes salen al 

principio en un solo frente. 

• Módulo C, constituido por la columna tamiz molecular cuyo gas portador es 

helio. En esta columna se detectan los gases permanentes: He, Ar, H2, N2, O2, 

CH4, CO. Gracias al backflush, conformado por una precolumna PU, el resto de 

sustancias contenidas en la muestra no llegan a entrar en la columna, evitando 

que ésta se contamine. 

 

 La técnica backflush evita que ciertos compuestos que podrían contaminar una 

columna entren en la misma. Los módulos dotados de backflush constan de una 

precolumna situada antes de la columna de separación. Esta precolumna separa 

previamente los compuestos a analizar de aquéllos que se considera que no deben entrar 

en la columna de análisis. Después de separar los compuestos, y de acuerdo al tiempo 

de backflush seleccionado, la precolumna gira, enviando a la salida del µGC los 

compuestos indeseados. Es fundamental optimizar el tiempo de backflush, ya que si 

escogemos un tiempo demasiado alto no veremos la señal de los analitos que nos 

interesan, y si es demasiado corto, entrarán analitos que pueden contaminar la columna 

favoreciendo una degradación más rápida de la misma. 
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 En la Tabla B.3 se muestran las condiciones de operación del método fijado para 

el micro-cromatógrafo de gases: 

 

Columna Módulo A - OVI Módulo B - PPU Módulo C – MS5A 

TINYECCIÓN [ºC] 100 90 90 

TCOLUMNA [ºC] 70 75 100 

tiempo Backflush [s] - 10 10 

Presión [psi] 24 25 40 

tiempo análisis [s] 100 100 100 
 

Tabla B.3. Condiciones de operación del método fijado en el micro-GC 

 

 La muestra gaseosa se introduce en la cámara calentada del µGC. La cámara 

regula la temperatura de la muestra y la dirige al inyector. A continuación, el inyector 

conduce la muestra a la columna, mientras que una bomba de vacío contribuye a 

trasladar la muestra por el sistema. Después de atravesar el inyector, el gas de muestra  

se introduce en  la columna, que normalmente lo separa en los gases componentes en 

menos de 180 segundos. 

 

 Después de realizarse la separación en la columna, el gas de muestra fluye a 

través del detector de conductividad térmica variable (TDC). Los gases portador y de 

muestra alimentan por separado este detector, pasando cada uno de ellos por diferentes 

filamentos calientes. La conductividad térmica variable de las moléculas presentes en la 

muestra produce un cambio en la resistencia eléctrica de los filamentos de muestra en 

comparación con la referencia o los filamentos portadores. 

 

 El control electrónico de la presión (EPC) controla electrónicamente y con 

exactitud la temperatura, la presión y el flujo durante el análisis y entre los gases sin 

intervención del operador. 

 

B.4.2. Espectrómetro FTIR (Fourier Transform Infra-Red) 

 

 El espectrómetro FTIR se utiliza para la determinación de la cantidad de SO2, y 

nos permite comprobar que esta cantidad se mantiene constante y por ello se puede 

deducir que no reacciona. 
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 El instrumento utilizado es un espectrómetro multiplex que utiliza la 

transformada de Fourier para el tratamiento de datos (FTIR). El equipo pertenece a la 

casa comercial Ati Mattson, modelo GENESIS II (Figura B.9). Los componentes 

principales son: 

• Láser de He-Ne 

• Software WINFIRST v.3.1 

• Celda complementaria para el análisis de gases 

• Interferómetro: Divisor de haz de KBr y espejos (móvil, inmóvil) 

• Detector DTGS (IR medio 4000-400 cm-1) 

 

 
Figura B.9. Espectrómetro FTIR Ati Mattson GENESIS II 

 

 El FTIR se maneja por medio del ordenador, mediante el software Winfirst 

v.3.1, que a su vez actúa de sistema de recogida, lectura y almacén de datos. Es 

importante destacar que antes de comenzar la recogida de datos, es necesario realizar un 

blanco, más comúnmente llamado Background. Para ello, se introduce en la celda de 

gases una corriente de 750 mlN/min de CO2 y 250 mlN/min de N2, que serán las 

condiciones aproximadas en las que estarán diluidos los reactantes en los experimentos. 

 

 Los componentes electrónicos del espectrómetro FTIR y, en especial, la parte 

llamada interferómetro deben purgarse constantemente con nitrógeno con el fin de crear 

una atmósfera inerte y evitar su oxidación. Para ello, la planta dispone de un rotámetro 

que permite mantener constante el caudal de purga de nitrógeno (30 mlN/min). 

 

 El FTIR es extremadamente sensible a las vibraciones, calor, humedad, etc., por 

lo que hay que tener cuidado y evitar trabajar en situaciones extremas de estas 

condiciones. 
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 Según la ley de Lambert-Beer, la absorbancia que detecta el espectrómetro varía 

proporcionalmente con la concentración. Sin embargo, empíricamente se comprueba 

que esta variación no es lineal, especialmente en el caso de las moléculas ligeras (CO, 

NO, etc.). Esto es debido en gran parte a que las bandas de absorción en el infrarrojo 

son relativamente estrechas. Por este motivo, es imprescindible disponer de un calibrado 

de todas las especies que vayan a ser analizadas en los experimentos. 

 

 

B.4.3. Analizador de NO 

 

 El analizador de NO se utiliza para determinar cuantitativamente la 

concentración de NO del gas de salida del reactor. El análisis de NO es sencillo ya que 

se recoge directamente en pantalla el valor de concentración de esta especie en los gases 

de salida analizados. 

 

 El analizador utilizado pertenece a la casa comercial ABB, modelo URAS14 de 

detección en el infrarrojo (Figura B.10). El aparato consta de una celda de análisis 

construida en aluminio con recubrimiento interior de oro y ventanas de fluoruro cálcico. 

Los gases introducidos en la celda son irradiados y absorben diferente energía 

dependiendo de la concentración de las especies. La energía restante es devuelta y 

transformada en corriente eléctrica, pudiéndose leer en forma de mA en el ordenador y 

en ppm en la pantalla del equipo. El equipo tiene que calibrarse al comienzo de cada 

experimento. 

 

 
 

Figura B.10. Analizador de NO. ABB (Modelo URAS14) 
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ANEXO C. PERFIL DE TEMPERATURAS 

 

C.1. PERFIL DE TEMPERATURAS 
 

 La realización de un perfil de temperaturas previo al comienzo de los 

experimentos es fundamental para conocer la temperatura exacta que se tiene en cada 

punto del reactor en todo o momento. El horno dispone de un único elemento calefactor 

eléctrico, una resistencia, cuya temperatura se controla mediante el controlador del 

horno. La temperatura en el interior del reactor se mide con un termopar tipo S de 

platino con vaina cerámica, de 5mm de diámetro y 1m de longitud, que se muestra en la 

Figura C.1. 

 

 
 

Figura C.1. Termopar de tipo S con vaina cerámica 

 

 Se han realizado perfiles de temperaturas a lo largo de la longitud de la zona de 

reacción, desde 500 hasta 1500ºC, en intervalos de 100ºC. Como el perfil de 

temperaturas se ve afectado por el flujo que circula por el reactor, se ha introducido un 

caudal volumétrico constante de 1000 mlN/min de una corriente de N2 (caudal utilizado 

en los experimentos). 

 

 El método utilizado para alcanzar este objetivo consiste en introducir el termopar 

en la zona de reacción y medir la temperatura real que se da dentro de la zona de 

reacción cada dos centímetros a lo largo de los 80cm de los que consta la zona de 

reacción. Para cada medida hay que esperar a que se estabilice la temperatura. En la 

Tabla C.1 se muestra la temperatura de consigna seleccionada en el controlador, así 

como la temperatura media alcanzada en la zona de reacción con esta consigna. 
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 Temperatura [ºC] 

L [cm] 500 600 700 800 900 1.000 1.100 1.200 1.300 1.400 1.500 

80 36 39 42 48 51 55 59 66 80 87 111 

76 46 49 54 66 74 112 131 160 175 187 206 

72 100 122 515 165 175 206 240 289 315 326 346 

68 210 231 304 331 343 384 472 512 563 576 618 

64 325 385 461 513 584 652 734 797 881 950 1016 

60 388 471 563 655 727 810 895 990 1081 1172 1259 

56 426 525 622 722 810 901 997 1090 1186 1284 1382 

52 445 546 646 752 841 939 1036 1134 1231 1330 1432 

50 451 554 654 760 851 950 1047 1145 1243 1344 1447 

48 457 559 658 765 859 957 1054 1153 1250 1352 1457 

46 459 561 660 768,5 863 962 1059 1157 1254,5 1357 1462 

44 460 560 662 770 864 962 1060 1160 1258 1360 1466 

42 458 558 662 766 863 963 1059 1159 1258 1359 1466 

40 455 551 653 754 857 955 1054 1155 1252,5 1353 1461 

36 425 521 622 718 817 919 1025 1128 1225 1329 1441 

32 335 431 531 643 723 850 950 1058 1160 1271 1385 

28 219 293 369 457 558 639 745 851 954 1094 1225 

24 159 188 238 308 381 414 504 587 692 813 970 

20 118 150 175 208 242 278 331 389 436 520 641 

16 88 113 128 154 180 206 235 275 310 365 441 

12 71 85 100 120 140 158 174 208 226 270 337 

4 40 51 61 68 81 90 100 113 115 144 177 

0 34 35 36 40 43 48 53 58 66 76 90 
 

Tabla C.1. Temperatura real a lo largo de la longitud del reactor 

 

 En la Figura C.2 se puede observar el resultado del perfil de temperaturas a lo 

largo del reactor, para el intervalo de temperaturas de 500 a 1500ºC. La longitud de 0 

cm corresponde a la entrada de los gases en la zona de reacción y la longitud de 80 cm a 

la salida. Un perfil de temperaturas ideal incluye una sección inicial antes del reactor a 

temperatura baja y constante seguida de un incremento instantáneo justo a la entrada de 

la zona de reacción hasta una temperatura alta y constante, finalizando por una 

reducción similar a la salida del reactor hasta bajas temperaturas fuera de la zona de 

reacción. Como se observa en la Figura C.2, este perfil es imposible de crear, ya que 

siempre existirá una zona de calentamiento y otra de enfriamiento antes y después de la 

zona de reacción isoterma respectivamente. 
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Figura C.2. Perfil de temperaturas del horno 
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ANEXO D. PROCEDIMIENTO EXPERIMENTAL 
 

D.1. INTRODUCCIÓN 
 

 Para estudiar la influencia del SO2 en el proceso de oxidación de combustibles 

gaseosos en condiciones de oxi-combustión se llevan a cabo experimentos en un reactor 

cerámico no poroso de flujo pistón a escala de laboratorio. 

 

En concreto, se estudia la oxidación de CO. Se pretende hacer un análisis de la 

influencia de las principales variables de operación del proceso como son la temperatura 

(comprendida en un intervalo entre 500 y 1.500ºC), la estequiometría (condiciones 

reductoras con λ=0.7, estequiométricas con λ=1, oxidantes con λ=2 y muy oxidantes 

con λ=10), la concentración de CO2, la concentración de SO2, la concentración de CO, 

la concentración de NO y la presencia/ausencia de SO2. 

 

 

D.2. PROCEDIMIENTO EXPERIMENTAL 
 

D.2.1. Preparación de los equipos 

 

 Para que los resultados experimentales sean viables es necesario asegurar que los 

equipos se encuentren en las condiciones adecuadas, así, antes de empezar el 

experimento debe procederse a la calibración de los mismos. 

 

Calibración del micro-GC 

 El micro-cromatógrafo no requiere calibración previa, únicamente se efectúan 

varios pinchazos con N2 para la limpieza de las columnas. 

 

Calibración del FTIR 

 Para el calibrado del FTIR se deja pasar un caudal de 750 mlN/min de CO2 y 

250 mlN/min N2 durante 15min. El objetivo de dejar pasar esta mezcla es el de realizar 

un background, es decir, la línea base de los espectros que se obtengan durante el 

experimento. 
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Calibración del analizador de NO 

 El analizador de NO requiere dos puntos de calibración: gas cero (para lo cuál se 

usa una corriente de N2) y cubetas de calibración (una concentración de NO 

determinada de 5.150 ppm). 

 

 

D.2.2. Realización de los experimentos 

 

1. Calcular el caudal real de cada gas que se necesita introducir en función de las 

condiciones del experimento 

2. Verificar las conexiones de las botellas a los medidores 

3. Abrir las botellas de los gases reactantes 

4. Medir los caudales necesarios de cada gas reactante, para lo cual se ajusta la 

apertura de la válvula de control de flujo másico y se comprueba que el caudal 

suministrado es el deseado con el flujómetro digital 

5. Los equipos de análisis se conectan en serie: Micro-Cromatógrafo, FTIR y 

analizador de NO (cuando entre los gases reactantes figure el NO) 

6. Se pone en marcha el sistema de refrigeración mediante aire comprimido 

7. Terminada la calibración y asegurado que todas las conexiones están correctas 

se puede empezar la toma de datos, empezando desde temperatura ambiente 

hasta 1500ºC 

8. Para la toma de los datos se espera a que la temperatura y la concentración de 

compuestos sean completamente estables 

9. En el Micro-Cromatógrafo de gases se hacen varios muestreos hasta que la 

concentración de los gases quede homogénea y los resultados obtenidos sean 

fiables. Cada análisis dura 100 segundos 

10. La toma de datos en el FTIR se lleva a cabo tal y como se detalla en el apartado 

B.4.2 del Anexo B 

11. Se anotan los valores de concentración obtenidos para NO leídos en el 

analizador de NO/NO2 (cuando entre los gases reactantes figure el NO) 

12. Cuando ya se ha realizado el análisis para una temperatura, se sube la 

temperatura hasta el siguiente valor deseado, se espera hasta que se estabilice la 

temperatura en los controladores y se vuelve a empezar el proceso de toma de 

datos descrito. 
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13. Terminado el experimento, se cierran las botellas de gases, se apaga el horno y 

los distintos equipos. 
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Anexo E. RESULTADOS EXPERIMENTALES 

 

E.1. INTRODUCCIÓN 
 

 Los resultados de los 54 experimentos llevados a cabo se presentan en este 

anexo de forma numérica mediante tablas. Se muestran los valores de concentración a la 

salida de CO y de CO2 en los experimentos realizados en atmósfera de N2. Para los que 

se han llevado a cabo en atmósfera de CO2, se muestran los valores de concentración a 

la salida de CO y de NO en los experimentos en los que se usa este gas. 

 

 

E.2. RESULTADOS DE LA OXIDACIÓN DE CO EN N2, CON 

DISTINTAS RELACIONES ESTEQUIOMÉTRICAS 
 

 Se llevó a cabo la toma de datos en los experimentos realizados en atmósfera de 

N2, en presencia/ausencia de SO2 y con distintas relaciones estequiométricas (λ entre 

0,7 y 10). Los resultados se indican en las Tablas E.1 y E.2. 

 

 Exp A-1 Exp A-2 Exp A-3 Exp A-4 

T [ºC] 
CO 

[ppm] 

CO2 

[ppm] 

CO 

[ppm] 

CO2 

[ppm] 

CO 

[ppm] 

CO2 

[ppm] 

CO 

[ppm] 

CO2 

[ppm] 

500 2.050 0 2.026 0 2.036 0 2.056 0 

600 2.069 0 2.026 0 2.055 0 2.069 0 

700 2.027 0 1.934 123 1.804 270 2.079 0 

750 1.736 340 1.392 657 562 1.389 1.822 295 

800 1.164 910 713 1115 123 1.947 300 1.791 

850 724 1.307 379 1734 0 2.039 0 2.099 

900 509 1.511 83 1913 0 - 0 - 

1.000 354 1.668 0 2008 0 - 0 - 

1.100 283 1.731 0 - 0 - 0 - 

1.300 259 1.796 0 - 0 - 0 - 

1.500 242 1.813 0 - 0 - 0 - 
 

Tabla E.1. Resultados de los experimentos de oxidación de CO en atmósfera de N2 y en presencia de 
SO2. Exp A-1: λ=0,7. Exp A-2: λ=1. Exp A-3: λ=2. Exp A-4: λ=10. 
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 Exp B-1 Exp B-2 Exp B-3 Exp B-4 

T [ºC] CO 

[ppm] 

CO2 

[ppm] 

CO 

[ppm] 

CO2 

[ppm] 

CO 

[ppm] 

CO2 

[ppm] 

CO 

[ppm] 

CO2 

[ppm] 

500 1.908 0 2.048 0 2.025 0 2.056 0 

600 1.903 0 2.067 0 2.049 0 2.086 0 

650 1.853 59 2.062 0 1.995 0 2.060 0 

700 331 1.631 126 1.889 269 1.760 1.253 844 

750 249 1.708     57 2.040 

800   0 2.025 0 2.026 0 2.089 

850 183 1.780 0 - 0 - 0 - 

1.000 131 1.833 0 - 0 - 0 - 

1.200 121 1.850 0 - 0 - 0 - 

1.500 146 1.853 0 - 0 - 0 - 
 

Tabla E.2. Resultados de los experimentos de oxidación de CO en atmósfera de N2 y en ausencia de 
SO2. Exp B-1: λ=0,7. Exp B-2: λ=1. Exp B-3: λ=2. Exp B-4: λ=10. 

 

 

E.3. RESULTADOS DE LA OXIDACIÓN DE CO EN CO2, CON 

DISTINTAS RELACIONES ESTEQUIOMÉTRICAS 
 

 Se llevó a cabo la toma de datos en los experimentos realizados en atmósfera de 

CO2, en presencia/ausencia de SO2 y con distintas relaciones estequiométricas (λ entre 

0,2 y 10). Los resultados se indican en las Tablas E.3 y E.4. 

 

 Exp C-1 Exp C-2 Exp C-3 Exp C-4 Exp C-5 

T [ºC] CO [ppm] CO [ppm] CO [ppm] CO [ppm] CO [ppm] 

500 2.141 2.062 2.065 2.170 2.060 

600 2.159    1.997 

700 2.125 2.093 2.030 2.130 1.471 

800 2.133 1.745 1.646 1.133 419 

850  1.438 1.053 490  

900 1.924 1.132 656 161 0 

950 1.851 939 532 99  

1.000 1.778 876 434 37 0 

1.050 1.719     

1.100 1.579 827 402 77 0 
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1.200 1.691 806  97  

1.300 1.708 879 489 147 0 

1.400 1.847 1.029  253  

1.500 2.087 1.148 978 342 0 
 

Tabla E.3. Resultados de los experimentos de oxidación de CO en atmósfera de CO2 y en presencia 
de SO2. Exp C-1: λ=0,2. Exp C-2: λ=0,7. Exp C-3: λ=1. Exp C-4: λ=2. Exp C-5: λ=10. 

 

 

 Exp D-1 Exp D-2 Exp D-3 Exp D-4 

T [ºC] CO [ppm] CO [ppm] CO [ppm] CO [ppm] 

500 2.031 2.099 2.110  

600   2.014 2.002 

700 2.021 1.960 1.984 2.002 

750 1.749 1.517  1.402 

800 906 696 372 332 

850 798 476 69  

900 755 348 36 0 

950 738 394 56  

1.000 748 416 62 0 

1.050 780    

1.100 796 368 58 0 

1.200 795    

1.300 833 498 169 0 

1.400 980    

1.500 1.213 830 497 0 
 

Tabla E.4. Resultados de los experimentos de oxidación de CO en atmósfera de CO2 y en ausencia 
de SO2. Exp D-1: λ=0,7. Exp D-2: λ=1. Exp D-3: λ=2. Exp D-4: λ=10. 

 

 

E.4. RESULTADOS DE LA OXIDACIÓN DE CO CON DISTINTAS 

CONCENTRACIONES DE CO2 

 

 Se llevó a cabo la toma de datos en los experimentos de oxidación de CO 

realizados con distintas concentraciones de CO2 (entre 0 y 75%), en presencia/ausencia 

de SO2 y en condiciones reductoras (λ=0,7) y oxidantes (λ=2). Los resultados se indican 

en las Tablas E.5 y E.6. 
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 Exp E-1 Exp E-2 Exp E-3 Exp E-4 

T [ºC] CO [ppm] CO [ppm] CO [ppm] CO [ppm] 

500 1.966 2.127 1.985 2.057 

600 1.966 2.127 1974 2.057 

700 1.910 2.127 1950 2.004 

750   546 1.452 

800 1.228 1.759  725 

850 807 1.388 550 674 

900 753 1.086   

950 663 967   

1.000 610 880 536 695 

1.050 598 831   

1.100 548 833   

1.200 553 877 548 707 

1.300 572 902   

1.400 621 1.013   

1.500 686 1.218 617 1.047 
 

Tabla E.5. Resultados de los experimentos de oxidación de CO con distintas concentraciones de 
CO2 en condiciones reductoras (λ=0,7) y en presencia/ausencia de SO2. Exp E-1: 25% CO2, con 

SO2. Exp E-2: 55% CO2, con SO2. Exp E-3: 25% CO2, sin SO2. Exp E-4: 55% CO2, sin SO2. 
 

 

 Exp E-5 Exp E-6 Exp E-7 Exp E-8 

T [ºC] CO [ppm] CO [ppm] CO [ppm] CO [ppm] 

500 2.080 2.111 1.982 2.098 

600   1.982 2.098 

650   1.957 2.098 

700 2.211 2.259 1.536 1.981 

750 1.782 2.151 143 1.284 

800 745 1.507 0 210 

850 146 659 0 58 

900 17 149 0 34 

950 0 76   

1.000 0 47 0 0 

1.200 0 69 0 69 

1.500 110 429 55 268 
 

Tabla E.6. Resultados de los experimentos de oxidación de CO con distintas concentraciones de 
CO2 en condiciones oxidantes (λ=2) y en presencia/ausencia de SO2. Exp E-5: 25% CO2, con SO2. 

Exp E-6: 55% CO2, con SO2. Exp E-7: 25% CO2, sin SO2. Exp E-8: 55% CO2, sin SO2. 



Anexo E. Resultados Experimentales 
 

 83

E.5. RESULTADOS DE LA OXIDACIÓN DE CO CON DISTINTAS 

CONCENTRACIONES DE NO 
 

 Se llevó a cabo la toma de datos en los experimentos de oxidación de CO 

realizados con distintas concentraciones de NO en presencia/ausencia de SO2 y en 

condiciones estequiométricas (λ=1), y en condiciones reductoras (λ=0,7) en presencia 

de SO2. Los resultados se indican en las Tablas E.7, E.8, E-9, E-10. E-11 y E-12. 

 

 Experimento F-1 Experimento F-2 Experimento F-3 

T [ºC] CO [ppm] NO [ppm] CO [ppm] NO [ppm] CO [ppm] NO [ppm] 

500 2.137 403 2.377 765 2.072 1.009 

600 1.892 404     

700 1.442 404 2.198 750 2.015 1.010 

800 941 403 1.258 750 1.913 1.010 

850 648 403 975 752 1.253 1.010 

900 453 402 714 752 929 1.009 

950   564 753 668 1.003 

1.000 338 402 465 753   

1.050     442 1.007 

1.100   419 752   

1.200 348 404 433 751 351 1.008 

1.400   702 748   

1.500 873 402 904 746 891 1.002 
 

Tabla E.7. Resultados con distintas concentraciones de NO en condiciones estequiométricas (λ=1) y 
en presencia de SO2. Exp F-1-: 400 ppm NO. Exp F-2-: 750 ppm NO. Exp F-3-: 1.000 ppm NO 

 

 

 Experimento F-4 Experimento F-5 

T [ºC] CO [ppm] NO [ppm] CO [ppm] NO [ppm] 

500 2.164 1.515 2.114 2.511 

700 2.155 1.522 2.057 2.517 

750   2.020 2.518 

800 1.719 1.521 1.856 2.517 

850 1.238 1.520 1.472 2.511 

900 934 1.519 1.032 2.510 

950 669 1.520   
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1.000 549 1.521 554 2.510 

1.100 463 1.519   

1.200 409 1.519 369 2.515 

1.400 756 1.512   

1.500 958 1.499 919 2.497 
 

Tabla E.8. Resultados con distintas concentraciones de NO en condiciones estequiométricas (λ=1) y 
en presencia de SO2. Exp F-4-: 1.500 ppm NO. Exp F-5-: 2.500 ppm NO. 

 
 

 Experimento G-1 Experimento G-2 

T [ºC] CO [ppm] NO [ppm] CO [ppm] NO [ppm] 

500 2.007 400 2.017 748 

700 1.804 403 1.903 750 

750 1.058 403 1.778 751 

800 711 414 1.116 751 

850 496 410 720 750 

900 414 401 529 749 

1.000 316 402 428 750 

1.200 465 402 453 750 

1.500 913 399 960 745 
 

Tabla E.9. Resultados con distintas concentraciones de NO en condiciones estequiométricas (λ=1) y 
en ausencia de SO2. Exp G-1-: 400 ppm NO. Exp G-2-: 750 ppm NO. 

 
 

 Experimento G-3 Experimento G-4 Experimento G-5 

T [ºC] CO [ppm] NO [ppm] CO [ppm] NO [ppm] CO [ppm] NO [ppm] 

500 2.050 1.009 2.100 1.512 1.999 2.419 

700 1.985 1.003 2.036 1.512 1.991 2.420 

750 1.889 1.010   1.961 2.426 

800 1.525 1.002 1634 1.525 1.900 2.427 

850 1.010 1.002 1.103 1.520 1.538 2.418 

900 695 1.007 723 1.515 1.073 2.420 

950   560 1.512   

1.000 411 1.007 467 1.512 617 2.422 

1.100   435 1.513   

1.200 439 1.001   479 2.425 

1.500 917 1.002 907 1.521 981 2.401 
 

Tabla E.10. Resultados con distintas concentraciones de NO en condiciones estequiométricas (λ=1) 
y ausencia de SO2. Exp G-3-: 1.000 ppm NO. Exp G-4-: 1.500 ppm NO. Exp G-5-: 2.500 ppm NO. 
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 Experimento K-1 Experimento K-2 

T [ºC] CO [ppm] NO [ppm] CO [ppm] NO [ppm] 

500 2.167 400 2.096 740 

700 1.964 403 2.065 732 

750 1.762 403 1.912 732 

800 1.420 414 1.558 733 

850 1.181 410 1.290 732 

900 1.049 401 1.082 732 

950   915 732 

1.000 865 402 880 733 

1.200 879 399 814 733 

1.500 1.415 402 1.317 735 
 

Tabla E.11. Resultados con distintas concentraciones de NO en condiciones reductoras (λ=0,7) y en 
presencia de SO2. Exp K-1: 400 ppm NO. Exp K-2-: 750 ppm NO. 

 

 

 Experimento K-3 Experimento K-4 

T [ºC] CO [ppm] NO [ppm] CO [ppm] NO [ppm] 

500 2.156 1.009 2.163 1.475 

700 2.078 1.003 2.083 1.465 

750 2.015 1.010 2.046 1.463 

800 1.762 1.002 1.901 1.464 

850 1.461 1.002 1.544 1.463 

900 1.240 1.007 1.235 1.460 

950   1.065 1.461 

1.000 939 1.007 910 1.460 

1.200 861 1.003 750 1.463 

1.500 1.348 1.001 1.355 1.457 
 

Tabla E.12. Resultados con distintas concentraciones de NO en condiciones reductoras (λ=0,7) y en 
presencia de SO2. Exp K-3-: 1.000 ppm NO. Exp K-4-: 1.500 ppm NO. 

 

 

E.6. RESULTADOS DE LA OXIDACIÓN DE CO CON DISTINTAS 

CONCENTRACIONES DE SO2 
 

 Se llevó a cabo la toma de datos en los experimentos de oxidación de CO 

realizados con distintas concentraciones de SO2 (entre 500 y 10.000 ppm) y en 
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condiciones estequiométricas (λ=1). Los resultados se indican a continuación en las 

Tablas E-13. 

 

 Exp H-1 Exp H-2 Exp H-3 Exp H-4 Exp H-5 

T [ºC] CO [ppm] CO [ppm] CO [ppm] CO [ppm] CO [ppm] 

500 2.122 2.168 2.237 2.192 2.201 

700 2.173 2.124 2.292 2.257 2.217 

800 1.463 1.727 2.193 2.161 2.189 

850 931 1.283 1.841 1.974 2.064 

900 642 838 1.258 1.382 1.665 

950 476 589 870 984 1.179 

1.000 405 372 651 723 808 

1.100 471 353 544 510 537 

1.300 558 439 610 554 462 

1.500 946 920 702 1.114 956 
 

Tabla E.13. Resultados de los experimentos de oxidación de CO con distintas concentraciones de 
SO2 en condiciones estequiométricas. Exp H-1-: 500 ppm SO2. Exp H-2-: 1.500 ppm SO2. 

Exp H-3-: 2.500 ppm SO2. Exp H-4-: 5.000 ppm SO2. Exp H-5-: 10.000 ppm SO2. 
 

 

 Se llevó a cabo la toma de datos en los experimentos de oxidación de CO 

realizados con distintas concentraciones de SO2, en condiciones estequiométricas y en 

presencia de NO. Los resultados se indican en la Tabla E-14. 

 

 Exp L-1 Exp L-2 Exp L-3 Exp L-4 

T [ºC] CO [ppm] CO [ppm] CO [ppm] CO [ppm] 

500 2.048 2.075 2.099 2.084 

700 2.004 1.969 2.033 2.052 

750 1.862 1.764 1.881 1.8258 

800 1.378 1.483 1.390 1.483 

850 984 967 939 1.012 

900 672 732 633 802 

1.000 469 463 383 407 

1.200 440 451 379 365 

1.500 865 895 859 984 
 

Tabla E.14. Resultados de los experimentos de oxidación de CO con distintas concentraciones de 
SO2 en condiciones estequiométricas y en presencia de NO. Exp L-1-: 400 ppm SO2. Exp L-2-: 750 

ppm SO2. Exp L-3-: 1.000 ppm SO2. Exp L-4-: 1.500 ppm SO2. 
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E.7. RESULTADOS DE LA OXIDACIÓN DE CO CON DISTINTAS 

CONCENTRACIONES DE CO 
 

 Se llevó a cabo la toma de datos en los experimentos de oxidación de CO 

realizados con distintas concentraciones de CO en presencia/ausencia de SO2 y en 

condiciones estequiométricas. Los resultados se indican en las Tablas E-15 y E-16. 

 

 Exp I-1 Exp I-2 Exp I-3 

T [ºC] CO [ppm] CO [ppm] CO [ppm] 

500 519 1.121 4.131 

700 515 1.101 3.899 

750 541  3.648 

800 547 898 2.708 

850 569 856 1.653 

900 546 731 1.057 

1.000 472 475 695 

1.100 435 412  

1.300 473 526  

1.500 1.185 1.048 1.120 
 

Tabla E.15. Resultados de los experimentos de oxidación de CO con distintas concentraciones de 
CO (500, 1.000 y 4.000 ppm) en condiciones estequiométricas y en presencia de SO2. 

 
 

 Exp J-1 Exp J-2 Exp J-3 

T [ºC] CO [ppm] CO [ppm] CO [ppm] 

500 512 1.227 4.194 

700 533 1.150 3.816 

750 528  2.497 

800 567 926 894 

850 578  665 

900 616 545 611 

1.000 475 499 608 

1.100 505 534  

1.300 486   

1.500 1.126 737 1.168 
 

Tabla E.16. Resultados de los experimentos de oxidación de CO con distintas concentraciones de 
CO (500, 1.000 y 4.000 ppm) en condiciones estequiométricas y en ausencia de SO2. 
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ANEXO F. SOFTWARE CHEMKIN-PRO 
 

F.1. INTRODUCCIÓN 
 

 Para realizar la simulación del proceso de oxidación de CO en condiciones de 

oxi-combustión se ha utilizado el software de cinética química CHEMKIN-PRO. Este 

software es una herramienta orientada a resolver problemas que involucren modelos 

químicos complejos con cinéticas que pueden estar compuestas por muchas reacciones 

y especies químicas. CHEMKIN facilita la formulación, solución e interpretación de 

problemas en fase homogénea, e incluso algunos en fase heterogénea. Entre los 

problemas que se pueden simular mediante esta herramienta, los más relevantes son los 

relacionados con la combustión, la catálisis y la corrosión. 

 

 En este estudio se utiliza la versión comercial CHEMKIN-Pro [Chemkin-Pro, 

2008], suministrada por la compañía Reaction Design, sucesora del código de 

combustión CHEMKIN [Lutz y cols. 1990] desarrollado en los laboratorios Sandia. 

 

 

F.2. ESTRUCTURA DEL PROGRAMA 
 

 La estructura general de las utilidades de GAS-PHASE KINETICS y la relación 

entre las utilidades del programa de uso CHEMKIN-PRO, se muestran en la Figura F.1. 

 

 El GAS-PHASE KINETICS Pre-processor es un programa que lee una 

descripción simbólica del mecanismo de reacción en fase gas y extrae los datos 

termodinámicos necesarios de cada especie involucrada en el mecanismo. Para su 

ejecución se necesitan dos ficheros: 

 

• Gas Phase Chemistry: es el fichero en el que se introducen las reacciones que 

integran el mecanismo de reacción. Este fichero se realiza en una notación química 

familiar y debe incluir los elementos y especies que intervienen en el mecanismo de 

reacción, así como la descripción del mismo. En la descripción de las reacciones, se 
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deben incluir los tres coeficientes de la ecuación de Arrhenius modificada para el 

cálculo de la constante cinética de la reacción. 

• Thermodynamic Data: es la base de datos donde está incluida toda la información 

termodinámica de las especies involucradas en el mecanismo de reacción. La base 

de datos debe contener una serie de datos para cada especie química en un formato 

específico. 

 

 
Figura F.1. Esquema de la estructura general de funcionamiento del software CHEMKIN-Pro 

 

 Cuando tanto el mecanismo cinético como los datos termodinámicos están en el 

formato adecuado, el Pre-processor se ejecuta para producir el GAS-PHASE 

KINETICS Linking File, que contiene toda la información química requerida respecto a 

la cinética en fase gas del problema (elementos, especies y reacciones). Este fichero 

tiene que crearse para cualquier tipo de aplicación o modelo de reactor de Chemkin-Pro 

que se quiera realizar. Sin embargo, el usuario no debe intentar leer este fichero 

directamente, ya que la estructura cambia de una versión a otra de los distintos casos de 
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CHEMKIN-Pro. En su lugar, las llamadas a las subrutinas de inicialización dentro de la 

GAS-PHASE KINETICS Library facilitan la extracción de los datos almacenados. 

 

 El software CHEMKIN-Pro permite trabajar con muchos modelos de reactor 

distintos (CHEMKIN Application): reactores de flujo-pistón, de mezcla perfecta, de 

plasma, llamas, ondas de choque, motores de combustión interna, etc. Nuestro caso de 

trabajo es el modelo de Reactor de Flujo Pistón (PFR). 

 

 Según el modelo de reactor elegido, el usuario debe especificar unas condiciones 

del proceso determinadas (Application Input). En este estudio se considera un modelo 

de presión y temperatura constantes, por lo que para cada análisis de simulación se 

requiere especificar las siguientes condiciones del proceso: temperatura, presión, 

concentración y caudal de gases reactantes y dimensiones del reactor (longitud y 

diámetro). Respecto de la temperatura, se puede realizar el análisis para dos modelos 

distintos: 
 

• Con perfil de temperaturas. Para cada temperatura de análisis, se introduce el 

perfil de temperaturas completo a lo largo de la longitud del reactor. 

• Con temperatura constante. En este caso, se considera que la zona de reacción es 

isoterma, suponiendo que las zonas anterior y posterior se encuentran a una 

temperatura muy baja a la que no se produce reacción. 

 

 El modelo de temperatura constante es menos preciso que la introducción del 

perfil de temperaturas completo pero agiliza la resolución computacional, puesto que 

permite realizar estudios paramétricos de temperatura (resolver el mismo caso 

manteniendo exactamente las mismas condiciones excepto la temperatura, que irá 

variando en función de lo que haya asignado el usuario). De esta manera, se puede 

realizar la simulación de todo el perfil de temperaturas deseado en una única resolución 

computacional, mientras que con perfiles de temperatura se tiene que resolver para cada 

temperatura por separado. 

 

 Durante el cálculo, y en función de la complejidad del caso a resolver, pueden 

aparecer problemas de convergencia en la resolución. Para solucionarlo, se pueden 

modificar algunos parámetros de cálculo, como las tolerancias absoluta y relativa, el 
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número de iteraciones, el número de tramos en que se separa el reactor para el cálculo, 

etc. No existe un valor estándar óptimo de estos parámetros que funcione en todos los 

casos, sino que cada caso particular requerirá la selección de los valores más apropiados 

para una adecuada resolución del caso de estudio. 

 

 Respecto al tratamiento de datos (Text Output), una vez realizado el cálculo de 

cada caso particular, el software CHEMKIN-Pro permite analizar los resultados a través 

del propio programa, ya que dispone de un post-procesador bastante completo para 

representar los datos de forma gráfica. Otra opción es utilizar un post-procesador 

externo (por ejemplo Excel), donde se obtendrán todos los datos del proceso que se 

deseen de una forma numérica, que requerirán un posterior tratamiento. 

 

 Además, el software también ofrece otras herramientas de gran utilidad, como el 

análisis de velocidad de reacción (Reaction Path Analyzer Tool). Esta herramienta 

permite comparar la importancia de cada reacción con respecto al conjunto de 

reacciones en que interviene una especie determinada y todo ello con respecto al 

mecanismo global de reacción planteado en el modelo. De este modo, se pueden 

identificar los caminos preferenciales por los que transcurre un mecanismo de reacción 

en unas condiciones determinadas. 
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Anexo G. MECANISMO DE REACCIÓN 

 

G.1. MECANISMO DE REACCIÓN 
 

 El mecanismo cinético químico seleccionado se ha desarrollado en el Grupo de 

Procesos Termoquímicos (GTP) del Instituto de Investigación en Ingeniería de Aragón 

(I3A), a raíz de los resultados experimentales obtenidos durante la realización de este 

proyecto. 

 

 A continuación, en el apartado G.2, se muestran todas las reacciones con los 

valores de los parámetros de la ecuación de Arrhenius modificada (Ec. G.1) que se 

utiliza para el cálculo de la constante de velocidad de reacción: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −=

RT
E

ATk aexpβ      (Ec. G.1) 

 

Donde: 

A  = Factor pre-exponencial [mol, cm, s, K]. 

β = Exponente de temperatura. 

aE = Energía de activación [cal/mol]. 

T = Temperatura [K]. 

R = Constante universal de los gases (1,989 cal/mol K). 
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G.2. REACCIONES 
 

Mecanismo de reacción de la interacción CO-SO2 in atmósfera de CO2 
Unidades de los parámetros de la ecuación de Arrhenius: mol, cm, s, cal y K 

 

Reacción A β Ea Fuente 

OH+H2 ⇋ H2O+H 2.14E+08 1.5 3449 [Alzueta y cols., 2001]

O+OH ⇋ O2+H 2.02E+14 -0.4 0 [Alzueta y cols., 2001]

O+H2 ⇋ OH+H 5.06E+04 2.7 6290 [Alzueta y cols., 2001]

H+O2+M ⇋ HO2+M 
Enhanced third-body efficiencies: 

H2O: 10; N2: 0; H2: 2.86; CO: 2.11;CO2: 4.2 
2.10E+18 -1 0 [Alzueta y cols., 2001]

H+O2+N2 ⇋ HO2+N2 6.70E+19 -1.4 0 [Alzueta y cols., 2001]

OH+HO2 ⇋ H2O+O2 1.90E+16 -1 0 [Alzueta y cols., 2001]

H+HO2 ⇋ 2OH 1.69E+14 0 874 [Alzueta y cols., 2001]

H+HO2 ⇋ H2+O2 4.28E+13 0 1411 [Alzueta y cols., 2001]

H+HO2 ⇋ O+H2O 3.01E+13 0 1721 [Alzueta y cols., 2001]

O+HO2 ⇋ O2+OH 3.25E+13 0 0 [Alzueta y cols., 2001]

2OH ⇋ O+H2O 4.33E+03 2.7 -2485.7 [Alzueta y cols., 2001]

H+H+M ⇋ H2+M 
Enhanced third-body efficiencies: 

H2O: 0; H2: 0; CO2: 0 
1.00E+18 -1 0 [Alzueta y cols., 2001]

H+H+H2 ⇋ H2+H2 9.20E+16 -0.6 0 [Alzueta y cols., 2001]

H+H+H2O ⇋ H2+H2O 6.00E+19 -1.2 0 [Alzueta y cols., 2001]

H+H+CO2 ⇋ H2+CO2 5.49E+20 -2 0 [Alzueta y cols., 2001]

H+OH+M ⇋ H2O+M 
Enhanced third-body efficiencies: 

H2O: 5 
1.60E+22 -2 0 [Alzueta y cols., 2001]

H+O+M ⇋ OH+M 
Enhanced third-body efficiencies: 

H2O: 5 
6.20E+16 -0.6 17 [Alzueta y cols., 2001]

O+O+M ⇋ O2+M 
Enhanced third-body efficiencies: 

H2O: 5; CO: 2; CO2: 3; H2: 2 
1.89E+13 0 -1788 [Alzueta y cols., 2001]

HO2+HO2 ⇋ H2O2+O2 
DUP 

4.20E+14 0 11982 [Alzueta y cols., 2001]

HO2+HO2 ⇋ H2O2+O2 
DUP 

1.30E+11 0 -1629 [Alzueta y cols., 2001]

H2O2+M ⇋ OH+OH+M 
Enhanced third-body efficiencies: 

H2O: 5; CO: 2; CO2: 3; H2: 2 
1.30E+17 0 45500 [Alzueta y cols., 2001]
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Reacción A β Ea Fuente 

H2O2+H ⇋ HO2+H2 1.69E+12 0 3755 [Alzueta y cols., 2001] 

H2O2+H ⇋ OH+H2O 1.02E+13 0 3576 [Alzueta y cols., 2001] 

H2O2+O ⇋ OH+HO2 6.63E+11 0 3974 [Alzueta y cols., 2001] 

H2O2+OH ⇋ H2O+HO2 7.83E+12 0 1331 [Alzueta y cols., 2001] 

CH3+CH3(+M) ⇋ C2H6(+M) 
Low pressure limit: 

Troe parameters: 0.5325 151 1038 4970 
Enhanced third-body efficiencies: 

N2: 1.43; H2O: 8.59; H2: 2; CO: 2; CO2: 3 

2.10E+16 
1.26E+50 

-1 
-9.67 

620 
6220 

[Alzueta y cols., 2001] 

CH3+H(+M) ⇋ CH4(+M) 
Low pressure limit: 

Troe parameters: 0.783 74 2941 6964 
Enhanced third-body efficiencies: 

H2: 2.86; H2O: 8.57; CH4: 2.86; CO: 2.14; 
CO2: 2.86; C2H6: 4.29; N2: 1.43 

1.30E+16 
1.75E+33 

-0.6 
-4.76 

383 
2440 

[Alzueta y cols., 2001] 

CH4+O2 ⇋ CH3+HO2 7.90E+13 0 56000 [Alzueta y cols., 2001] 

CH4+H ⇋ CH3+H2 1.30E+04 3 8040 [Alzueta y cols., 2001] 

CH4+OH ⇋ CH3+H2O 1.60E+06 2.1 2460 [Alzueta y cols., 2001] 

CH4+O ⇋ CH3+OH 1.02E+09 1.5 8604 [Alzueta y cols., 2001] 

CH4+HO2 ⇋ CH3+H2O2 1.80E+11 0 18700 [Alzueta y cols., 2001] 

CH3+HO2 ⇋ CH3O+OH 8.00E+12 0 0 [Alzueta y cols., 2001] 

CH3+O ⇋ CH2O+H 8.00E+13 0 0 [Alzueta y cols., 2001] 

CH3+O2 ⇋ CH3O+O 2.87E+13 0 30481 [Alzueta y cols., 2001] 

CH3+O2 ⇋ CH2O+OH 1.85E+12 0 20315 [Alzueta y cols., 2001] 

CH3+O2(+M) ⇋ CH3O2(+M) 
Low pressure limit: 

Enhanced third-body efficiencies: 
N2: 1.1; H2O: 10 

7.80E+08 
5.4E+25 

1.2 
-3.3 

0 
0 

[Alzueta y cols., 2001] 

CH3O2+H ⇋ CH3O+OH 1.00E+14 0 0 [Alzueta y cols., 2001] 

CH3O2+O ⇋ CH3O+O2 3.60E+13 0 0 [Alzueta y cols., 2001] 

CH3O2+OH ⇋ CH3OH+O2 6.00E+13 0 0 [Alzueta y cols., 2001] 

CH3O2+HO2 ⇋ CH3OOH+O2 2.50E+11 0 -1570 [Alzueta y cols., 2001] 

CH3O2+H2O2 ⇋ CH3OOH+HO2 2.40E+12 0 9940 [Alzueta y cols., 2001] 

CH3O2+CH2O ⇋ CH3OOH+HCO 2.00E+12 0 11665 [Alzueta y cols., 2001] 

CH3O2+CH4 ⇋ CH3OOH+CH3 1.80E+11 0 18500 [Alzueta y cols., 2001] 

CH3O2+CH3 ⇋ CH3O+CH3O 2.40E+13 0 0 [Alzueta y cols., 2001] 

CH3O2+CH3O ⇋ CH2O+CH3OOH 3.00E+11 0 0 [Alzueta y cols., 2001] 

CH3O2+CH2OH ⇋ CH2O+CH3OOH 1.20E+13 0 0 [Alzueta y cols., 2001] 
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Reacción A β Ea Fuente 

CH3O2+CH3OH ⇋ CH3OOH+CH2OH 1.80E+12 0 13700 [Alzueta y cols., 2001]

CH3O2+CH3O2 ⇋ CH3O+CH3O+O2 1.00E+11 0 300 [Alzueta y cols., 2001]

CH3O2+CH3O2 ⇋ CH3OH+CH2O+O2 4.00E+09 0 -2210 [Alzueta y cols., 2001]

CH3OOH ⇋ CH3O+OH 6.30E+14 0 42300 [Alzueta y cols., 2001]

CH3OOH+H ⇋ CH3O2+H2 8.80E+10 0 1860 [Alzueta y cols., 2001]

CH3OOH+H ⇋ CH3O+H2O 8.20E+10 0 1860 [Alzueta y cols., 2001]

CH3OOH+O ⇋ CH3O2+OH 1.00E+12 0 3000 [Alzueta y cols., 2001]

CH3OOH+OH ⇋ CH3O2+H2O 1.80E+12 0 -378 [Alzueta y cols., 2001]

CH2OH+H ⇋ CH3+OH 1.00E+14 0 0 [Alzueta y cols., 2001]

CH3O+H ⇋ CH3+OH 1.00E+14 0 0 [Alzueta y cols., 2001]

CH3+OH ⇋ CH2+H2O 7.50E+06 2 5000 [Alzueta y cols., 2001]

CH3+HCO ⇋ CH4+CO 1.20E+14 0 0 [Alzueta y cols., 2001]

CH3+H ⇋ CH2+H2 9.00E+13 0 15100 [Alzueta y cols., 2001]

CH3+OH(+M) ⇋ CH3OH(+M) 
Low pressure limit: 

Troe parameters: 0.2105 83.5 5398 8370 
Enhanced third-body efficiencies: 

N2: 1.43; H2O: 8.58; CO2: 3; CO: 2; H2: 2 

6.30E+13 
1.89E+38 

0 
-6.3 

0 
3100 

[Alzueta y cols., 2001]

CH3OH+OH ⇋ CH2OH+H2O 5.30E+04 2.5 960 [Alzueta y cols., 2001]

CH3OH+OH ⇋ CH3O+H2O 1.32E+04 2.5 960 [Alzueta y cols., 2001]

CH3OH+O ⇋ CH2OH+OH 3.88E+05 2.5 3080 [Alzueta y cols., 2001]

CH3OH+H ⇋ CH2OH+H2 1.70E+07 2.1 4868 [Alzueta y cols., 2001]

CH3OH+H ⇋ CH3O+H2 4.24E+06 2.1 4868 [Alzueta y cols., 2001]

CH3OH+HO2 ⇋ CH2OH+H2O2 9.64E+10 0 12578 [Alzueta y cols., 2001]

CH2O+H(+M) ⇋ CH3O(+M) 
Low pressure limit: 

Troe parameters: 0.758 94 1555 4200 
Enhanced third-body efficiencies: 

N2: 1.43; H2O: 8.58; CO: 2; H2: 2; CO2: 3 

5.40E+11 
1.54E+30 

0.5 
-4.8 

2600 
5560 

[Alzueta y cols., 2001]

H+CH2O(+M) ⇋ CH2OH(+M) 
Low pressure limit: 

Troe parameters: 0.7187 103 1291 4160 
Enhanced third-body efficiencies: 

N2: 1.43; H2O: 8.58; CO: 2; H2: 2; CO2: 3 

5.40E+11 
9.1E+31 

0.5 
-4.8 

3600 
6530 

[Alzueta y cols., 2001]

CH3O+H ⇋ CH2O+H2 2.00E+13 0 0 [Alzueta y cols., 2001]

CH2OH+H ⇋ CH2O+H2 2.00E+13 0 0 [Alzueta y cols., 2001]

CH3O+OH ⇋ CH2O+H2O 1.00E+13 0 0 [Alzueta y cols., 2001]

CH2OH+OH ⇋ CH2O+H2O 1.00E+13 0 0 [Alzueta y cols., 2001]
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CH2OH+OH ⇋ CH2O+H2O 1.00E+13 0 0 [Alzueta y cols., 2001]

CH3O+O ⇋ CH2O+OH 1.00E+13 0 0 [Alzueta y cols., 2001]

CH2OH+O ⇋ CH2O+OH 1.00E+13 0 0 [Alzueta y cols., 2001]

CH3O+O2 ⇋ CH2O+HO2 6.30E+10 0 2600 [Alzueta y cols., 2001]

CH2OH+O2 ⇋ CH2O+HO2 
DUP 

1.57E+15 -1 0 [Alzueta y cols., 2001]

CH2OH+O2 ⇋ CH2O+HO2 
DUP 

7.23E+13 0 3577 [Alzueta y cols., 2001]

CH2+H ⇋ CH+H2 1.00E+18 -1.6 0 [Alzueta y cols., 2001]

CH2+OH ⇋ CH+H2O 1.13E+07 2 3000 [Alzueta y cols., 2001]

CH2+OH ⇋ CH2O+H 2.50E+13 0 0 [Alzueta y cols., 2001]

CH+O2 ⇋ HCO+O 3.30E+13 0 0 [Alzueta y cols., 2001]

CH+O ⇋ CO+H 5.70E+13 0 0 [Alzueta y cols., 2001]

CH+OH ⇋ HCO+H 3.00E+13 0 0 [Alzueta y cols., 2001]

CH+OH ⇋ C+H2O 4.00E+07 2 3000 [Alzueta y cols., 2001]

CH+CO2 ⇋ HCO+CO 3.40E+12 0 690 [Alzueta y cols., 2001]

CH+H ⇋ C+H2 1.50E+14 0 0 [Alzueta y cols., 2001]

CH+H2O ⇋ CH2O+H 5.72E+12 0 -751 [Alzueta y cols., 2001]

CH+CH2O ⇋ CH2CO+H 9.46E+13 0 -515 [Alzueta y cols., 2001]

CH+C2H2 ⇋ C3H2+H 1.00E+14 0 0 [Alzueta y cols., 2001]

CH+CH2 ⇋ C2H2+H 4.00E+13 0 0 [Alzueta y cols., 2001]

CH+CH3 ⇋ C2H3+H 3.00E+13 0 0 [Alzueta y cols., 2001]

CH+CH4 ⇋ C2H4+H 6.00E+13 0 0 [Alzueta y cols., 2001]

C+O2 ⇋ CO+O 2.00E+13 0 0 [Alzueta y cols., 2001]

C+OH ⇋ CO+H 5.00E+13 0 0 [Alzueta y cols., 2001]

C+CH3 ⇋ C2H2+H 5.00E+13 0 0 [Alzueta y cols., 2001]

C+CH2 ⇋ C2H+H 5.00E+13 0 0 [Alzueta y cols., 2001]

CH2+CO2 ⇋ CH2O+CO 1.10E+11 0 1000 [Alzueta y cols., 2001]

CH2+O ⇋ CO+H+H 5.00E+13 0 0 [Alzueta y cols., 2001]

CH2+O ⇋ CO+H2 3.00E+13 0 0 [Alzueta y cols., 2001]

CH2+O2 ⇋ CO+H2O 2.20E+22 -3.3 2867 [Alzueta y cols., 2001]

CH2+O2 ⇋ CO2+H+H 3.29E+21 -3.3 2867 [Alzueta y cols., 2001]

CH2+O2 ⇋ CH2O+O 3.29E+21 -3.3 2867 [Alzueta y cols., 2001]

CH2+O2 ⇋ CO2+H2 2.63E+21 -3.3 2867 [Alzueta y cols., 2001]

CH2+O2 ⇋ CO+OH+H 1.64E+21 -3.3 2867 [Alzueta y cols., 2001]
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CH2+CH2⇋C2H2+H+H 4.00E+13 0 0 [Alzueta y cols., 2001] 

CH2+HCCO ⇋ C2H3+CO 3.00E+13 0 0 [Alzueta y cols., 2001] 

CH2+C2H2 ⇋ H2CCCH+H 1.20E+13 0 6600 [Alzueta y cols., 2001] 

CH2+CH4 ⇋ CH3+CH3 4.30E+12 0 10030 [Alzueta y cols., 2001] 

CH2O+OH ⇋ HCO+H2O 3.43E+09 1.2 -447 [Alzueta y cols., 2001] 

CH2O+H ⇋ HCO+H2 1.30E+08 1.6 2166 [Alzueta y cols., 2001] 

CH2O+M ⇋ HCO+H+M 
Enhanced third-body efficiencies: 

H2: 2; CO: 2 CO2: 3; H2O: 5 
3.31E+16 0 81000 [Alzueta y cols., 2001] 

CH2O+O ⇋ HCO+OH 1.80E+13 0 3080 [Alzueta y cols., 2001] 

CH2O+CH3 ⇋ HCO+CH4 7.80E-08 6.1 1967 [Alzueta y cols., 2001] 

CH2O+HO2 ⇋ HCO+H2O2 3.00E+12 0 13000 [Alzueta y cols., 2001] 

CH2O+O2 ⇋ HCO+HO2 6.00E+13 0 40660 [Alzueta y cols., 2001] 

HCO+OH ⇋ H2O+CO 1.00E+14 0 0 [Alzueta y cols., 2001] 

HCO+M ⇋ H+CO+M 
Enhanced third-body efficiencies: 

H2: 1.87; CO: 1.87; CH4: 2.81; CO2: 3; 
H2O: 5 

3.48E+17 -1 17010 [Alzueta y cols., 2001] 

HCO+H ⇋ CO+H2 1.19E+13 0.2 0 [Alzueta y cols., 2001] 

HCO+O ⇋ CO+OH 3.00E+13 0 0 [Alzueta y cols., 2001] 

HCO+O ⇋ CO2+H 3.00E+13 0 0 [Alzueta y cols., 2001] 

HCO+O2 ⇋ HO2+CO 7.58E+12 0 406 [Alzueta y cols., 2001] 

CO+O+M⇋CO2+M 
Enhanced third-body efficiencies: 

H2: 2; CO: 2 CO2: 3; H2O: 5 
6.17E+14 0 3000 [Alzueta y cols., 2001] 

CO+OH ⇋ CO2+H 1.51E+07 1.3 -758 [Alzueta y cols., 2001] 

CO+O2 ⇋ CO2+O 2.53E+12 0 47688 [Alzueta y cols., 2001] 

HO2+CO ⇋ CO2+OH 5.80E+13 0 22934 [Alzueta y cols., 2001] 

C2H6+CH3 ⇋ C2H5+CH4 5.50E-01 4 8300 [Alzueta y cols., 2001] 

C2H6+H ⇋ C2H5+H2 5.40E+02 3.5 5210 [Alzueta y cols., 2001] 

C2H6+O ⇋ C2H5+OH 3.00E+07 2 5115 [Alzueta y cols., 2001] 

C2H6+OH ⇋ C2H5+H2O 7.23E+06 2 864 [Alzueta y cols., 2001] 

C2H6+O2 ⇋ C2H5+HO2 5.00E+13 0 55000 [Alzueta y cols., 2001] 

C2H6+HO2 ⇋ C2H5+H2O2 1.30E+13 0 20460 [Alzueta y cols., 2001] 

C2H4+H ⇋ C2H3+H2 5.42E+14 0 14902 [Alzueta y cols., 2001] 

C2H4+O ⇋ CH3+HCO 8.10E+06 1.9 180 [Alzueta y cols., 2001] 

C2H4+O ⇋ CH2HCO+H 4.70E+06 1.9 180 [Alzueta y cols., 2001] 
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C2H4+O ⇋ CH2CO+H2 6.80E+05 1.9 180 [Alzueta y cols., 2001] 

C2H4+OH ⇋ C2H3+H2O 2.02E+13 0 5955 [Alzueta y cols., 2001] 

C2H4+O2 ⇋ CH2HCO+OH 2.00E+08 1.5 39000 [Alzueta y cols., 2001] 

C2H4+HO2 ⇋ CH3HCO+OH 2.20E+12 0 17200 [Alzueta y cols., 2001] 

C2H4+CH3 ⇋ C2H3+CH4 5.00E+11 0 15000 [Alzueta y cols., 2001] 

CH2+CH3 ⇋ C2H4+H 4.00E+13 0 0 [Alzueta y cols., 2001] 

C2H4+H(+M) ⇋ C2H5(+M) 
Low pressure limit: 

Troe parameters: 0.5  95 95 200 
Enhanced third-body efficiencies: 

H2: 2; CO: 2 CO2: 3; H2O: 5 

1.08E+12 
1.112E+34 

0.5 
-5.0 

1822 
4448 

[Alzueta y cols., 2001] 

C2H5+H ⇋ CH3+CH3 4.89E+12 0.3 0 [Alzueta y cols., 2001] 

H+C2H5(+M) ⇋ C2H6(+M) 
Low pressure limit: 

Troe parameters: 0.8422 125 2219 6882 
Enhanced third-body efficiencies: 

H2: 2; CO: 2 CO2: 3; H2O: 5 

5.20E+17 
2.0E+41 

-1 
-7.08 

1580 
6685 

[Alzueta y cols., 2001] 

C2H5+O2 ⇋ C2H4+HO2 1.00E+10 0 -2190 [Alzueta y cols., 2001] 

C2H5+O ⇋ CH3+CH2O 4.20E+13 0 0 [Alzueta y cols., 2001] 

C2H5+O ⇋ CH3HCO+H 5.30E+13 0 0 [Alzueta y cols., 2001] 

C2H5+O ⇋ C2H4+OH 3.00E+13 0 0 [Alzueta y cols., 2001] 

C2H5+OH ⇋ C2H4+H2O 2.40E+13 0 0 [Alzueta y cols., 2001] 

C2H5+HCO ⇋ C2H6+CO 1.20E+14 0 0 [Alzueta y cols., 2001] 

C2H5+CH2O ⇋ C2H6+HCO 5.50E+03 2.8 5860 [Alzueta y cols., 2001] 

C2H5+CH3 ⇋ C2H4+CH4 1.10E+12 0 0 [Alzueta y cols., 2001] 

C2H5+C2H5 ⇋ C2H6+C2H4 1.50E+12 0 0 [Alzueta y cols., 2001] 

C2H2+O ⇋ CH2+CO 6.10E+06 2 1900 [Alzueta y cols., 2001] 

C2H2+O ⇋ HCCO+H 1.43E+07 2 1900 [Alzueta y cols., 2001] 

H2+C2H ⇋ C2H2+H 4.09E+05 2.4 864.3 [Alzueta y cols., 2001] 

H+C2H2(+M) ⇋ C2H3(+M) 
Low pressure limit: 

Troe parameters: 0.5 675 675 
Enhanced third-body efficiencies: 

H2: 2; CO: 2 CO2: 3; H2O: 5 

3.64E+10 
2.254E+40 

1.1 
-7.27 

2640 
6577 

[Alzueta y cols., 2001] 

C2H3+H ⇋ C2H2+H2 4.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+O ⇋ CH2CO+H 3.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+O2 ⇋ CH2O+HCO 4.58E+16 -1.39 1015 [Alzueta y cols., 2001] 

C2H3+O2 ⇋ CH2HCO+O 3.00E+11 -0.29 10.73 [Alzueta y cols., 2001] 
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C2H3+O2 ⇋ C2H2+HO2 1.34E+6 1.61 -383.5 [Alzueta y cols., 2001] 

C2H3+OH ⇋ C2H2+H2O 2.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+CH2 ⇋ C3H4+H 3.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+C2H ⇋ C2H2+C2H2 3.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+C2H ⇋ H2CCCCH+H 3.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+CH3 ⇋ C2H2+CH4 2.10E+13 0 0 [Alzueta y cols., 2001] 

C2H3+CH2O ⇋ C2H4+HCO 5.40E+03 2.8 5860 [Alzueta y cols., 2001] 

C2H3+HCO ⇋ C2H4+CO 9.00E+13 0 0 [Alzueta y cols., 2001] 

C2H3+C2H3 ⇋ CH2CHCCH2+H 9.00E+12 0 0 [Alzueta y cols., 2001] 

C2H3+C2H3 ⇋ H2CCCH+CH3 1.80E+13 0 0 [Alzueta y cols., 2001] 

C2H3+C2H3 ⇋ C2H4+C2H2 6.30E+13 0 0 [Alzueta y cols., 2001] 

C2H3+CH ⇋ CH2+C2H2 5.00E+13 0 0 [Alzueta y cols., 2001] 

OH+C2H2 ⇋ C2H+H2O 3.37E+07 2 14000 [Alzueta y cols., 2001] 

OH+C2H2 ⇋ HCCOH+H 5.04E+05 2.3 13500 [Alzueta y cols., 2001] 

OH+C2H2 ⇋ CH2CO+H 2.18E-04 4.5 -1000 [Alzueta y cols., 2001] 

OH+C2H2 ⇋ CH3+CO 4.83E-04 4 -2000 [Alzueta y cols., 2001] 

OH+C2H2(+M) ⇋ C2H2OH(+M) 
Low pressure limit: 

Enhanced third-body efficiencies: 
H2: 2; CO: 2 CO2: 3; H2O: 5 

1.52E+08 
1.81E+23 

1.7 
-2.0 

1000 
0 

[Alzueta y cols., 2001] 

H2S+M ⇋ S+H2+M 
Enhanced third-body efficiencies: 

N2: 1.5; CO2 = 2.5; SO2: 10; H2O: 10 
1.60E+24 -2.6 89100 [Alzueta y cols., 2001] 

H2S+H ⇋ SH+H2 1.20E+07 2.1 700 [Alzueta y cols., 2001] 

H2S+O ⇋ SH+OH 7.50E+07 1.8 2900 [Alzueta y cols., 2001] 

H2S+OH ⇋ SH+H2O 2.70E+12 0 0 [Alzueta y cols., 2001] 

H2S+S ⇋ SH+SH 8.30E+13 0 7400 [Alzueta y cols., 2001] 

H2S+S ⇋ HS2+H 2.00E+13 0 7400 [Alzueta y cols., 2001] 

S+H2 ⇋ SH+H 1.40E+14 0 19300 [Alzueta y cols., 2001] 

SH+O ⇋ H+3SO 1.00E+14 0 0 [Alzueta y cols., 2001] 

SH+OH ⇋ S+H2O 1.00E+13 0 0 [Alzueta y cols., 2001] 

SH+HO2 ⇋ HSO+OH 1.00E+12 0 0 [Alzueta y cols., 2001] 

SH+O2 ⇋ HSO+O 1.90E+13 0 17925 [Alzueta y cols., 2001] 

S+OH ⇋ H+3SO 4.00E+13 0 0 [Alzueta y cols., 2001] 

S+O2 ⇋ 3SO+O 5.20E+06 1.8 -1200 [Alzueta y cols., 2001] 

SH+SH ⇋ S2+H2 1.00E+12 0 0 [Alzueta y cols., 2001] 
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SH+S ⇋ S2+H 3.00E+13 0 0 [Alzueta y cols., 2001] 

S2+M ⇋ S+S+M 4.80E+13 0 77000 [Alzueta y cols., 2001] 

S2+H+M ⇋ HS2+M 1.00E+16 0 0 [Alzueta y cols., 2001] 

S2+O ⇋ 3SO+S 1.00E+13 0 0 [Alzueta y cols., 2001] 

HS2+H ⇋ S2+H2 1.20E+07 2.1 700 [Alzueta y cols., 2001] 

HS2+O ⇋ S2+OH 7.50E+07 1.8 2900 [Alzueta y cols., 2001] 

HS2+OH ⇋ S2+H2O 2.70E+12 0 0 [Alzueta y cols., 2001] 

HS2+H+M ⇋ H2S2+M 1.00E+16 0 0 [Alzueta y cols., 2001] 

H2S2+H ⇋ HS2+H2 1.20E+07 2.1 700 [Alzueta y cols., 2001] 

H2S2+O ⇋ HS2+OH 7.50E+07 1.8 2900 [Alzueta y cols., 2001] 

H2S2+OH ⇋ HS2+H2O 2.70E+12 0 0 [Alzueta y cols., 2001] 

H2S2+S ⇋ HS2+SH 2.00E+13 0 7400 [Alzueta y cols., 2001] 

SO3+H ⇋ HOSO+O 2.50E+05 2.9 50300 [Alzueta y cols., 2001] 

SO3+H ⇋ SO2+OH 8.40E+09 1.22 3319 [Hindiyarti y cols., 2007] 

SO3+O ⇋ SO2+O2 2.80E+04 2.57 29212 [Hindiyarti y cols., 2007] 

SO3+OH ⇋ SO2+HO2 4.80E+04 2.46 27225 [Hindiyarti y cols., 2007] 

SO3+3SO ⇋ SO2+SO2 7.60E+03 2.4 2980 [Glarborg y cols., 2005] 

SO2+O(+M) ⇋ SO3(+M) 
Low pressure limit: 

Troe parameters: 0.442 316 7442 
Enhanced third-body efficiencies: 

N2: 0; CO2 = 2.5; SO2: 10; H2O: 10 

3.70E+11 
2.4E+27 

0 
-3.6 

1689 
5186 

[Naidoo y cols., 2005] 

SO2+O(+N2) ⇋ SO3(+N2) 
Low pressure limit: 

Troe parameters: 0.43 371 7442 

3.70E+11 
2.9E+28 

0 
-3.58 

1689 
5206 [Yilmaz y cols., 2006] 

SO2+H(+M) ⇋ HSO2(+M) 
Low pressure limit: Troe parameters: 

0.390 167 2191 
Enhanced third-body efficiencies: 

CO2 = 2.5; SO2: 10; H2O: 10 

5.31E+08 
1.41E+31 

1.59 
-5.19 

2472 
4513 

[Blitz y cols., 2006] 

SO2+H(+M) ⇋ HOSO(+M) 
Low pressure limit: 

Troe parameters: 0.283 272 3995 
Enhanced third-body efficiencies: 

CO2 = 2.5; SO2: 10; H2O: 10 

2.37E+08 
1.85E+37 

1.63 
-6.14 

7339 
11075 

[Blitz y cols., 2006] 

SO2+H(+M) ⇋ OH+3SO(+M) 
Low pressure limit: 

Troe parameters: 0.283 272 3995 
Enhanced third-body efficiencies: 

CO2 = 2.5; SO2: 10; H2O: 10 

9.19E+25 
1.35E+23 

2.77 
-2.3 

20850 
30965 

[Blitz y cols., 2006] 
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SO2+OH(+M) ⇋ HOSO2(+M) 
Low pressure limit: 

Troe parameters: 1.0 1E-30 412 
Enhanced third-body efficiencies: 

CO2 = 2.5; SO2: 5; H2O: 5 

5.70E+12 
1.7E+27 

-0.27 
-4.09 

0 
0 

[Blitz y cols., 2003] 

SO2+OH ⇋ HOSO+O 3.90E+08 1.9 76000 [Alzueta y cols., 2001] 

SO2+S ⇋ 3SO+3SO 6.00E-16 8.2 9600 [Murakami  y cols., 2003] 

SO2+CO ⇋ 3SO+CO2 1.90E+13 0 65900 [Bacskay y cols., 2005] 

SO2*+M ⇋ SO2+M 1.30E+14 0 3600 [Alzueta y cols., 2001] 

SO2*+SO2 ⇋ SO3+3SO 2.60E+12 0 2430 [Alzueta y cols., 2001] 
3SO+M ⇋ S+O+M 4.00E+14 0 107000 [Alzueta y cols., 2001] 

HSO+M ⇋ 3SO+H+M 
Enhanced third-body efficiencies: 

N2: 1.5; CO2 = 2.5; SO2: 10; H2O: 10 
5.00E+15 0 0 [Alzueta y cols., 2001] 

3SO+OH(+M) ⇋ HOSO(+M) 
Low pressure limit: 

Enhanced third-body efficiencies: 
N2: 1.5; CO2 = 2.5; SO2: 10; H2O: 10; 

1.60E+12 
9.5E+27 

0.5 
-3.48 

-400 
970 

[Alzueta y cols., 2001] 

3SO+O(+M) ⇋ SO2(+M) 
Low pressure limit: 

Troe parameters: 0.55 1E-30 1E+30 
Enhanced third-body efficiencies: 

N2: 1.5; CO2 = 2.5; SO2: 10; H2O: 10 

3.20E+13 
1.2E+21 

0 
-1.54 

0 
0 

[Alzueta y cols., 2001] 

3SO+O2 ⇋ SO2+O 7.60E+03 2.37 2970 [Alzueta y cols., 2001] 
3SO+HO2 ⇋ SO2+OH 3.70E+03 2.4 7660 [Rasmussen y cols. 2007] 

3SO+CO ⇋ CO2+S 5.10E+13 0 53400 [Bacskay y cols., 2005] 
1SO+M ⇋ 3SO+M 1.00E+13 0 0 [Rasmussen y cols. 2007] 
1SO+O2 ⇋ SO2+O 1.00E+13 0 0 [Rasmussen y cols. 2007] 

HSO+H ⇋ HSOH 2.50E+20 -3.1 920 [Alzueta y cols., 2001] 

HSO+H ⇋ SH+OH 4.90E+19 -1.9 1560 [Alzueta y cols., 2001] 

HSO+H ⇋ S+H2O 1.60E+09 1.4 -340 [Alzueta y cols., 2001] 

HSO+H ⇋ H2SO 1.80E+17 -2.5 50 [Alzueta y cols., 2001] 

HSO+H ⇋ H2S+O 1.10E+06 1 10400 [Alzueta y cols., 2001] 

HSO+H ⇋ 3SO+H2 1.00E+13 0 0 [Alzueta y cols., 2001] 

HSO+O+M ⇋ HSO2+M 1.10E+19 -1.7 -50 [Alzueta y cols., 2001] 

HSO+O ⇋ SO2+H 4.50E+14 -0.4 0 [Alzueta y cols., 2001] 

HSO+O+M ⇋ HOSO+M 6.90E+19 -1.6 1590 [Alzueta y cols., 2001] 

HSO+O ⇋ O+HOS 4.80E+08 1 5340 [Alzueta y cols., 2001] 
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HSO+O ⇋ OH+3SO 1.40E+13 0.1 300 [Alzueta y cols., 2001] 

HSO+OH ⇋ HOSHO 5.20E+28 -5.4 3170 [Alzueta y cols., 2001] 

HSO+OH ⇋ HOSO+H 5.30E+07 1.6 3750 [Alzueta y cols., 2001] 

HSO+OH ⇋ 3SO+H2O 1.70E+09 1 470 [Alzueta y cols., 2001] 

HSO+O2 ⇋ SO2+OH 1.00E+12 0 10000 [Alzueta y cols., 2001] 

HSOH ⇋ SH+OH 2.80E+39 -8.8 75200 [Alzueta y cols., 2001] 

HSOH ⇋ S+H2O 5.80E+29 -5.6 54500 [Alzueta y cols., 2001] 

HSOH ⇋ H2S+O 9.80E+16 -3.4 86500 [Alzueta y cols., 2001] 

H2SO ⇋ H2S+O 4.90E+28 -6.7 71700 [Alzueta y cols., 2001] 

HOSO(+M) ⇋ HSO2(+M) 
Low pressure limit: 

Troe parameters: 0.4 0.1E-30 1E+30 
Enhanced third-body efficiencies: 

SO2: 10; CO2 = 2.5; H2O: 10 

1.00E+09 
1.7E+35 

1.03 
-5.64 

50000 
55400 

[Alzueta y cols., 2001] 

HOSO+M ⇋ O+HOS+M 2.50E+30 -4.8 119000 [Alzueta y cols., 2001] 

HOSO+O2 ⇋ SO2+HO2 9.60E+01 2.36 -10130 [Rasmussen y cols. 2007] 

HOSO+H ⇋ 1SO+H2O 2.40E+14 0 0 [Hu y cols., 2004] 

HOSO+H ⇋ SO2+H2 1.80E+07 1.72 -1286 [Hu y cols., 2004] 

HOSO+OH ⇋ SO2+H2O 1.00E+12 0 0 [Alzueta y cols., 2001] 

HSO2+OH ⇋ SO2+H2O 1.00E+13 0 0 [Alzueta y cols., 2001] 

HSO2+H ⇋ SO2+H2 5.00E+12 0.5 -262 [Hu y cols., 2004] 

HSO2+O2 ⇋ HO2+SO2 1.10E+03 3.2 -235 [Rasmussen y cols. 2007] 

HOSO2 ⇋ HOSO+O 5.40E+18 -2.3 106300 [Alzueta y cols., 2001] 

HOSO2 ⇋ SO3+H 1.40E+18 -2.9 54900 [Alzueta y cols., 2001] 

HOSO2+H ⇋ SO2+H2O 1.00E+12 0 0 [Alzueta y cols., 2001] 

HOSO2+O ⇋ SO3+OH 5.00E+12 0 0 [Alzueta y cols., 2001] 

HOSO2+OH ⇋ SO3+H2O 1.00E+12 0 0 [Alzueta y cols., 2001] 

HOSO2+O2 ⇋ HO2+SO3 7.80E+11 0 656 [Atkinson y cols., 2004] 

HOSHO ⇋ HOSO+H 6.40E+30 -5.9 73800 [Alzueta y cols., 2001] 

HOSHO ⇋ 3SO+H2O 1.20E+24 -3.6 59500 [Alzueta y cols., 2001] 

HOSHO+H ⇋ HOSO+H2 1.00E+12 0 0 [Alzueta y cols., 2001] 

HOSHO+O ⇋ HOSO+OH 5.00E+12 0 0 [Alzueta y cols., 2001] 

HOSHO+OH ⇋ HOSO+H2O 1.00E+12 0 0 [Alzueta y cols., 2001] 
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Anexo H. COMPARACIÓN ENTRE DATOS TEÓRICOS Y 

EXPERIMENTALES 

 

H.1. Experimentos con distintas estequiometrías, en atmósfera de CO2 

y de N2 

 

 Las Figuras H.1, H.2 y H.3 muestran la comparación entre los resultados 

experimentales y las predicciones del modelo con perfiles de temperatura de la 

oxidación de CO en dilución de CO2 y de N2, con distintas estequiometrías Se observa 

que el modelo se ajusta de manera bastante precisa a los datos experimentales 

registrados, por lo que se confirma la tendencia. 
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Figura H.1. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en atmósfera de CO2, con distintas estequiometrías. 

Experimentos C-4, D-3, C-5 y D-4. 
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Figura H.2. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en atmósfera de N2, con distintas estequiometrías. 

Experimentos A-1, B-1, A-2 y B-2. 
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Figura H.3. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en atmósfera de N2, con distintas estequiometrías. 

Experimentos A-3, B-3, A-4 y B-4. 
 

 

H.2. Experimentos con distintas [CO2], en condiciones reductoras y 

oxidantes 

 

 La Figura H.4 muestra la comparación entre los resultados experimentales y las 

predicciones del modelo con perfiles de temperatura de la oxidación de CO en 

condiciones reductoras y con distintas concentraciones de CO2. Se observa que el 

modelo se ajusta de manera precisa a los datos experimentales y confirma la tendencia. 
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Figura H.4. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones reductoras (λ=0,7), con distintas 

concentraciones de CO2. Experimentos A-1, B-1, C-2 y D-1. 
 

 La Figura H.5 muestra la comparación en condiciones oxidantes con distintas 

concentraciones de CO2. Al igual que en la figura anterior se observa que el modelo se 

ajusta de manera precisa a los datos experimentales y confirma la tendencia. 
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Figura H.5. Comparación entre los resultados experimentales y de las predicciones del modelo con 

perfiles de temperatura, de la oxidación de CO en condiciones oxidantes (λ=2), con distintas 
concentraciones de CO2. Experimentos A-3, B-3, E-5, E-7, E-6, E-8, C-4 y D-3. 

 

 

H.3. Experimentos con distintas concentraciones de SO2 

 

 En la Figura H.6 se muestra la comparación entre los resultados experimentales 

y las predicciones del modelo con perfiles de temperatura de la oxidación de CO en 

condiciones estequiométricas y con distintas concentraciones de SO2. 

 

 Se observa que el modelo se ajusta de manera bastante precisa a los datos 

experimentales registrados según el modelo con perfiles de temperatura, aunque sobre 

todo en los experimentos que se realizan con una mayor concentración de SO2, 

presentando el mejor ajuste el caso en el que esta es de 10.000 ppm. El modelo confirma 

la tendencia experimental. 

 

 



Anexo H. Comparación entre datos teóricos y experimentales 
 

 109

0 pmm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

500 ppm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

 

1.000 ppm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

1.500 ppm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

 

2.500 ppm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

5.000 ppm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

 

10.000 ppm SO2

0

0,2

0,4

0,6

0,8

1

1,2

500 700 900 1100 1300 1500
T [ºC]

C
O

/C
O

o

CO exp CO sim

 
 

Figura H.6. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones estequiométricas (λ=1), con distintas 

concentraciones de SO2. Experimentos D-2, H-1, C-3, H-2, H-3, H-4 Y H-5. 
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H.4. Experimentos con distintas concentraciones de CO 

 

 En la Figura H.7 se muestra la comparación entre los resultados experimentales 

y las predicciones del modelo con perfiles de temperatura de la oxidación de CO en 

condiciones estequiométricas y con distintas concentraciones de CO. Se observa que el 

modelo se ajusta de manera bastante precisa a los datos experimentales registrados 

según el modelo con perfiles de temperatura y confirma la tendencia experimental. 
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Figura H.7. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones estequiométricas (λ=1), con distintas 

concentraciones de CO. Experimentos I-2, J-2, C-3, D-2, I-3 y J-3. 
 

 

H.5. Experimentos con diferentes concentraciones de NO 

 

 La comparación entre experimentos y simulación para la oxidación de CO en 

condiciones estequiométricas (λ=1) con distintas concentraciones de NO y en 

presencia/ausencia de SO2 se muestra en la Figura H.8. Se observa que el modelo se 

ajusta de manera precisa a los datos experimentales registrados según el modelo con 
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perfiles de temperatura, sobre todo en los experimentos que se realizan sin SO2, aunque 

la oxidación de CO empieza a menores temperaturas en los datos experimentales pero 

siguiendo la misma tendencia que en simulación. 
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Figura H.8. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones estequiométricas (λ=1), con distintas 

concentraciones de NO. Experimentos: F-1, G-1, F-2, G-2, F-3, G-3, F-4, G-4, F-5 y F-5. 
 

 La comparación entre experimentos y simulación para la oxidación de CO en 

condiciones reductoras (λ=0,7) con distintas concentraciones de NO y en presencia de 

SO2 se muestra en la Figura H.9. 
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 Se observa que el modelo se ajusta de manera precisa a los datos experimentales 

registrados según el modelo con perfiles de temperatura, sobre todo en los experimentos 

que se realizan sin SO2, aunque la oxidación de CO empieza a menores temperaturas en 

los datos experimentales pero siguiendo la misma tendencia que en simulación. 
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Figura H.9. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones reductoras (λ=0,7), con distintas 

concentraciones de NO en presencia de SO2. Experimentos: K-1, K-2, K-3 y K-4. 
 

 Por último, en la Figura H.10 se muestra la comparación entre los resultados 

experimentales y las predicciones del modelo con perfiles de temperatura de la 

oxidación de CO en condiciones estequiométricas y con distintas concentraciones de 

SO2 en presencia de NO. 

 

 Se observa que el modelo se ajusta de manera bastante precisa a los datos 

experimentales registrados según el modelo con perfiles de temperatura y confirma la 

tendencia experimental. 
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Figura H.10. Comparación entre los resultados experimentales y de las predicciones del modelo con 
perfiles de temperatura, de la oxidación de CO en condiciones estequiométricas (λ=1), con distintas 

concentraciones de SO2 y en presencia de NO. Experimentos: L-1, L-2, L-3 y L-4. 
 

 

 

 

 



 

 

 

 

 




