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Abstract

Stora and coworkers refined the notion of divergent quantum amplitude, somewhat upsetting the standard 
power-counting recipe. This unexpectedly clears the way to new prototypes for free and interacting field 
theories of bosons of any mass and spin.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Exordium

One of us (JMG-B) learned of a flaw in the standard notion of “superficially divergent ampli-
tude” from the lips of Raymond Stora, quickly becoming aware of some of the vistas opened by 
his alternative notion during intense conversations at CERN in the winter of 2013. In fairness, the 
notion should be attributed as well to Nikolay M. Nikolov and Ivan Todorov, with whom Ray-
mond was working at the time on paper [1], wherein the matter is expounded in convincing detail. 
We shall refer to the new notion of convergent Feynman amplitude as the NST renormalization 
prescription.

We begin by a review of causal Riesz distributions as introduced in [2]. This prelude smooths 
the way for the new notion of divergent graph, valid for physical quantum fields (what “physical” 
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means will be declared in due course). This helps to open the door to the brave new world of 
string-local fields. Finally, in Section 6 we show that, although homogeneity of the amplitudes is 
lost, the concept in [1] makes perfect sense for massive theories.

2. Causal Riesz distributions and massless field amplitudes

Let us invoke in somewhat simplified form a meromorphic family of distributions on 
Minkowski space M4 studied in [2]:

G(x;α) := e−iπα�(−α)

4α+2π2�(α + 2)
(t2 − r2 − i0)α ≡ e−iπα�(−α)

4α+2π2�(α + 2)
(x2 − i0)α. (1)

The distribution (x2 − i0)α is well defined for −2 < �α < 0; it can be extended analytically to 
non-integer �α < −2 by repeated applications of �; so (x2 − i0)α can be regarded as mero-
morphic in α with (simple) poles at −2 − n for n = 0, 1, 2, . . . . These are canceled in (1) by the 
poles of �(α + 2). The extension prescription of analytic renormalization, obtained by discard-
ing the pole part in the Laurent expansion of (x2 − i0)α+ε , is therefore straightforward whenever 
�α > −2, i.e., there is a homogeneous extension. The relation

�G(x;α) = G(x;α − 1)

holds, just as for the ordinary Riesz distributions. This is clear from

�(x2 − i0)α = 4α(α + 1)(x2 − i0)α−1,

valid on the chosen domain, and then analytically extended. Note that iG(x; −1) = DF
0 (x), 

the Feynman propagator for massless scalars; so G(x; −l) for integer l ≥ 2 is proportional to 
�l−2δ(x). This is confirmed by a direct calculation of the residues at α = −2, −3, . . . .

The first aim of this paper is to investigate a generalization of all this for massless particles of 
higher (integer) helicity. The quantum Maxwell field can be built from the helicity ±1 massless 
unirreps of the Poincaré group, under the form:

Fμν(x) := i
∑

r

∫
dμ(p)

[
ei(px)

(
pμeν

r (p) − pνeμ
r (p)

)
a†
r (p)

− e−i(px)
(
pμeν

r (p)∗ − pνeμ
r (p)∗

)
ar(p)

]
, (2)

for appropriate creation operators a†
r (p) and polarization vectors eν

r (p). With gμν denoting the 
Minkowski metric with (+−−−) signature, routine computation establishes for the vacuum ex-
pectation value of the two-point time-ordered product [3]:

〈〈TFμν(x)Fρσ (x′)〉〉 := 〈0 | TFμν(x)Fρσ (x′) | 0〉
= (

gμρ ∂ν∂σ − gνρ ∂μ∂σ − gμσ ∂ν∂ρ + gνσ ∂μ∂ρ

)
DF

0 (x − x′)
=: fμν,ρσ (∂)DF

0 (x − x′) (3)

valid outside the diagonal x = x′. On the face of it, this expression seems logarithmically diver-
gent, since it homogeneously scales like x−4; the field itself scales like x−2.

For brevity, let us write x2 ≡ x2 − i0 hereinafter. In the Epstein–Glaser program [4], to renor-
malize a distribution like 〈 〈TFμν(x) Fρσ (x′)〉 〉 in position space is to find a suitable extension 
to the diagonal. “Suitable” means keeping the scaling behavior of the original distribution as 
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much as possible. It also means satisfying physically motivated and mathematically convenient 
requirements, in particular Lorentz covariance and other symmetries.

Using translation invariance, extension of a distribution f (x −x′) to the diagonal is equivalent 
to extending f (x), defined for x 	= 0, to the origin in Minkowski space. Then the distribution 
x2α ≡ (x2)α extends homogeneously for α > −2; and for integer α ≤ −2, its extensions can be 
determined by the complex-analytic methods in [1] or the real-variable methods in [5], adopted 
in [6]. Thus for instance the extensions of x−4 are given by:

R4[x−4] = −1

4
�

(
x−2 log

x2

�2

)
− iπ2 δ(x),

with a length scale �. This is log-homogeneous of bidegree (−4, 1) in the terminology of [6]. 
(The Euclidean version is R4[x−4] = − 1

4�(x−2 log(x2/�2)) +π2 δ(x); the two cases differ only 
in the coefficient of δ(x), arising from the fundamental solutions of the Laplacian, �(x−2) =
−4π2 δ(x) in R4; and of the d’Alembertian, �(x−2) = 4iπ2 δ(x) in M4.)

For two-point functions which are polynomials in x−2, these procedures go a long way. For 
the sunset graph in massless φ4

4 , demanding Lorentz invariance, one can show [6, Eq. (2.19)] that

R4[x−6] = − 1

32
�2

(
x−2 log

x2

�2

)
− 5iπ2

16
�δ(x),

whose second term incidentally differs from the one in [1, Eq. (5.29)] due to the precise usage of 
the multiplicativity property of [5].

One concludes that while unrenormalized two-point amplitudes are homogeneous functions 
for x 	= x′, they admit log-homogeneous extensions to the diagonal. The second index in the 
bidegree indicates the power of the logarithm, counting the number of successive extensions for 
distributions presenting subdivergences, in general: the sunset graph is quadratically divergent, 
but still primitive in this dispensation. The matter was treated in detail for many graphs of the 
massless φ4

4 theory in [6], albeit in the Euclidean signature; happily, only minor modifications are 
needed for the Minkowskian version. There has been a crop of relatively recent papers dealing 
with this kind of problem [1,6,7], reaching similar conclusions.

Things appear to be more complicated when the unrenormalized amplitude has an angular 
dependence, as in our present case (3). Since ∂μ∂ρ(x−2) = −2(gμρx2 −4xμxρ)x−6, we compute 
(for x 	= 0):(

gμρ ∂ν∂σ − gνρ ∂μ∂σ − gμσ ∂ν∂ρ + gνσ ∂μ∂ρ

)[x−2]
= −4

(
(gμρ gνσ − gνρ gμσ )x2 − 2(gμρ xνxσ − gνρ xμxσ − gμσ xνxρ + gνσ xμxρ)

)
x−6

=: hμν,ρσ (x) x−6, (4)

where each hμν,ρσ (x) is a homogeneous quadratic polynomial.
In fact, each of these polynomials is harmonic in the Minkowskian sense. To see that, it is 

enough to apply �(x2) = 8 and �(xμxν) = 2gμν to the quadratic polynomial in (4), to get

�hμν,ρσ (x) = −4(8 − 8)(gμρ gνσ − gνρ gμσ ) = 0.

Actually, these hμν,ρσ form a basis for the vector space of quadratic harmonic polynomials 
on M

4. Due to (skew)symmetry under the exchanges μ ↔ ν and ρ ↔ σ , and symmetry under 
(μ, ν) ↔ (ρ, σ) and (μ, ν) ↔ (σ, ρ), there are 9 linearly independent hμν,ρσ ; whereas the har-
monic homogeneous polynomials of degree k on M

4 (or on R4, for that matter) form a space of 
dimension (k + 1)2 [8, Sect. 9.3].
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3. The NST renormalization prescription

The task then becomes to extend to the origin functions of the form x2α Hk(x), where Hk

is a homogeneous polynomial of degree k that is also (Minkowskian) harmonic. There are two 
reasons to hope that the “radial” extensions of [1,6] may prove equal to the task. The first is the 
off-origin calculation:

�(x2α Hk(x)) = �(x2α)Hk(x) + 2∂μ(x2α) ∂μ(Hk(x)) + x2α �(Hk(x))

= 4α(α + 1)x2α−2Hk(x) + 4αx2α−2xμ ∂μ(Hk(x))

= 4α(α + k + 1)x2α−2Hk(x), (5)

where we have used harmonicity: �Hk = 0, and homogeneity: xμ ∂μHk = kHk . These relations 
show that the family of x2αHk(x) also act like the causal Riesz distributions (1); a suitable 
normalization is

G(x;α, k) := e−iπα�(−α)

4α+2π2 �(α + k + 2)
x2αHk(x);

and from (5) we get at once:

�G(x;α, k) = G(x;α − 1, k). (6)

The extension prescription of analytic renormalization now tells us that there is a homogeneous
extension whenever α > −k − 2. In particular, the case of interest (4) has α = −3 and k = 2. 
Since −3 > −4, the naïve power-counting recipe is overridden: the time-ordered product (3)
does extend homogeneously to the origin, the result being none other than:

〈〈TFμν(x)Fρσ (x′)〉〉 = i

4π2
fμν,ρσ (∂)

1

(x − x′)2 − i0
,

as many a physicist, taking a cue from the commutation relations [9, Aufgabe 7.5], would have 
written at the outset. In other words, the apparent singularity was removable; according to the 
lore of renormalization of massless amplitudes, truly renormalization has not taken place.

The general criterion [1, Corl. 5.4] is: a two-point unrenormalized Feynman amplitude in 
Minkowski space of the form hk(x)/(x2 ± i0)s for x 	= 0 has an homogeneous extension if and 
only if its “degree of harmonicity” k is greater than the “degree of divergence” 2s − k − 4.

Furthermore, in this case the homogeneous extension is unique if we impose Lorentz covari-
ance. This needs to be properly understood. Once a homogeneous extension of x2αHk(x) has 
been found, any other such extension can differ from it only by a distribution P(∂) δ(x) supported 
at the origin, where P(x) is a homogeneous polynomial of degree 2(−α) − k − 4, the superficial 
degree of divergence. In our example, this degree is 0, so P(x) would be a constant. However, 
Hk(x) is not constant: indeed, it transforms under a representation of the Lorentz group on the 
space of harmonic homogeneous polynomials of degree k, and P(x) must transform likewise. 
The upshot is that P(x) must be at least divisible by such a harmonic homogeneous polyno-
mial, so that degP ≥ k. Thus, again the condition k > 2(−α) − k − 4 [in the example: 2 > 0] 
is enough to ensure that the Lorentz-covariant extension of x2αHk(x) is unique. In fine: the off-
diagonal function (3) extends to a Lorentz-covariant time-ordered product, without ambiguity. 
Equivalently, one can argue in the spirit of the on-shell extension of amplitudes by Bahns and 
Wrochna [10]: the decisive fact is that the differential equation (6) is extended to the origin, too.
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4. The prescription for higher helicities . . .

Similarly to the above, there is a free quantum field Rαβρτ (x), the linearized Riemann tensor, 
corresponding to helicity-2 particles and transforming as a rank 4 tensor, with the symmetry 
properties:

Rαβκτ (x) = −Rβακτ (x) = −Rαβτκ(x) = Rκταβ(x).

One analogously finds for this:

〈〈TRαβκτ (x)Rρσλγ (x′)〉〉 =
∑

±Gβτ,σγ ∂α∂κ∂ρ∂λ DF
0 (x − x′) + 15 similar terms

=: 16π8

3
hαβκτ,ρσλγ (x)DF

0 (x − x′)5; (7)

where Gβτ,σγ := 1
8

(
gβσ gτγ + gβγ gτσ − gβτ gσγ

)
and the “similar terms” are obtained by per-

muting the indices under exchange of (α, β, ρ, σ) with (κ, τ, λ, γ ), (τ, κ, λ, γ ), (κ, τ, γ, λ) and 
(τ, κ, γ, λ) respectively; the signs are those that respect the aforementioned symmetries.1 There-
fore, hαβκτ,ρσλγ (x) = ∑±Gβτ,σγ qακρλ(x) is likewise a sum of 16 quartic harmonic polynomi-
als, coming from ∂α∂κ∂ρ∂λ[x−2] =: qακρλ(x) x−10 by direct calculation, such as:

qακρλ(x) := 48xαxκxρxλ + (
gακgρλ + gαλgκρ + gαρgκλ

)
x4

− 6
(
gακxρxλ + gαρxκxλ + gαλxκxρ + gκρxαxλ + gκλxαxρ + gρλxαxκ

)
x2.

The harmonic property �qακρλ(x) = 0 is easily checked directly, using:

�(x4) = 24x2, �(xρxλx
2) = 2gρλx

2 + 16xρxλ ,

�(xαxκxρxλ) = 2gακxρxλ + 5 similar terms.

Just as before, these hαβκτ,ρσλγ constitute a basis of the 25-dimensional space of quartic 
homogeneous harmonic polynomials on M

4. Indeed, taking into account the 20 independent 
components of Rαβρτ (x) and the four mentioned symmetries of the cross-indexes, the number of 
independent h•-polynomials in this case is (20)2/24 = 25.

Now, on the face of it there is a quadratic divergence here – the field scales like x−3. However, 
since 4 > 10 − 4 − 4, by the same token as above, the finer NST criterion shows that the vacuum 
expectation value of the time-ordered 2-point function for the R-tensor field is a convergent
amplitude.

How to generalize to higher integer helicities should be clear now: among the free point-local 
fields for helicity h there are two tensor fields with apparently optimal ultraviolet behavior in rel-
ative terms, namely, they scale like x−h−1: the field strength Fμ1ν1,...,μhνh

of rank 2h, symmetric 
under exchange of any of the pairs (μi, νi) ↔ (μj , νj ) and skewsymmetric under exchange in-
side the pairs; and its potential Aμ1,...,μh

of rank h, which is totally symmetric [27,12]. The 
quantum fields associated to the representation (h, 0) ⊕ (0, h) are “physical” in that their classi-
cal counterparts are measurable.

“Apparently” we say, because in fact 〈 〈TFμ1ν1,...,μhνh
Fα1β1,...,αhβh

〉 〉 is a convergent amplitude, 
as we have seen for h = 1, 2. Whereas the 2-point function for the potentials carries a problematic 
existence, due to gauge freedom (or slavery) and the impossibility, starting with the photon, for 
Aμ1,...,μh

to live on Hilbert space.

1 The expression for Gβτ,σγ appears in the graviton propagator, see for instance [11, Eq. 1.77].
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5. . . . and its consequence: a gauge-free world?

By abandoning point-localization, it is feasible to construct A-fields for any boson particle 
that share in the good ultraviolet properties of the field strengths. This fact has been known for 
over ten years now [13,14], and has the potentiality to drastically change the game of perturbative 
quantum field theory.

The field strengths remain pointlike. To keep notations simple, here we just exhibit a (lightlike) 
string-local potential field for the photon:

Aμ(x, l) :=
∞∫

0

dt Fμν(x + t l) lν ,

with l = (l0, l) a null vector. The definition depends only on the ray of l, which is a point of the 
celestial sphere S

2, or the light front uniquely associated to it.
A comment is in order here. Previous formulations of string-local fields were based on mod-

ular localization theory, which naturally suggests the use of spacelike strings [15]. However, in 
interacting models this leads to almost intractable complications at third order of perturbation 
theory. For purely massive models, there is a huge advantage in employing null strings, since 
then the field is actually a well-behaved function on the l-variable, not just a distribution like 
in the spacelike case. In models containing massless particles, use of null strings generates a 
sui generis ultraviolet-infrared problem, which needs to be and can be dealt with by appropriate 
recipes. Note that all null directions are on the same footing: each one carries its own cyclic 
subspace, and these are shuffled around by the Lorentz transformations – see right below.

The operator-valued distribution A “lives” on the same Fock space as F , and its main proper-
ties are the following:

� Transversality: 
(
l A(x, l)

) = 0.
� Pointlike differential: ∂μAν(x, l) − ∂νAμ(x, l) = Fμν(x).
� Covariance: let U denote the lifting (or “second quantization”) of Wigner’s unirrep of the 

Poincaré group on the one-particle states. Then

U(a,�)Aμ(x, l)U†(a,�) = Aν(�x + a,�l)�ν
μ = (�−1)μνA

ν(�x + a,�l).

� Locality: [Aμ(x, l), Aν(x
′, l′)] = 0 when the strings x + t l and x′ + t ′l′ are causally disjoint.

The very concept of gauge disappears, since this potential vector, with all the good properties, 
is uniquely defined. The formalism appears more exotic than the usual one, in that a new variable 
is invoked. “The choice of what kind of field describes an observed particle is really a matter of 
choice: try what type of field describes best the observed data” [16]. It is however more mundane, 
in that it allows us to remain in physical Hilbert spaces: the ghosts can depart, since there is need 
for them no longer.

Of course, the string “ought not to be seen”, and the program becomes to demonstrate whether, 
and how, this simple criterion is enough to determine interaction vertices and govern perturbative 
renormalization of string-local models of so-called (Abelian and non-Abelian) gauge interac-
tions [17] from the Lie algebra structure, down to every relevant detail [18,19]. This includes 
models with massive intermediate vector bosons – see the following section.

The above construction works in a parallel way for all the other integer-helicity cases, like 
linear gravity, which now are gauge-free, and seen to possess the same ultraviolet properties as 
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scalar particles.2 What we realize is that the construction of string-local fields [13,14] rests on 
the bedrock of a never-ambiguous time-ordered product of the field strengths.

6. Massive field amplitudes

With a suitable change of the polarization vielbeins eν
r , the very formula (2) describes a 

skewsymmetric quantum field for massive spin 1 particles [3]. In the massive case, Eq. (3) holds 
as well. A small miracle is involved here, since

Fμν(x) = ∂μBν(x) − ∂νBμ(x),

where B denotes the Proca field, and for it, outside the diagonal x = x ′:

〈〈TBμ(x)Bν(x
′)〉〉 = i(gμν + ∂μ∂ν/m2)DF (x − x′),

with just DF denoting the massive scalar Feynman propagator. Thus one would expect fourth-
order derivatives (a quadratic divergence) in 〈 〈TFF ′〉 〉. But they all cancel, so the 2-point time-
ordered function off the diagonal x = x′ looks exactly like the one in (3):

〈〈TFμν(x)Fρσ (x′)〉〉 = (
gμρ ∂ν∂σ − gνρ ∂μ∂σ − gμσ ∂ν∂ρ + gνσ ∂μ∂ρ

)
DF (x − x′), (8)

but with the massive propagator replacing the massless one.
That still looks logarithmically divergent. However, since the ultraviolet properties in both 

cases are the same, most physicists would conclude without hesitation that the formula makes 
sense and extends 〈 〈TFμν(x) Fρσ (x′)〉 〉 to the diagonal. We cite Todorov in this context: “Intro-
ducing . . . masses in the analysis of small distance behavior seems to be just adding technical 
details to the general picture” [21].

The conclusion is correct, and can be substantiated in at least two rather different ways.

� We recall the expansion of DF in the vicinity of m = 0:

DF (x) = DF
0 (x) + m2[f1(m

2x2) log(−m2(x2 − i0)) + f2(m
2x2)

]
, (9)

where f1, f2 are analytic. In [22, Sect. 6], it is shown that the basic postulate of Epstein–
Glaser renormalization, to wit, that the renormalized amplitudes scale like the unrenormal-
ized ones, up to logarithmic corrections, can be strengthened, in that these corrections – 
albeit necessarily introducing a new mass scale – do not change the dependence on m in (9); 
so (8) extends to the diagonal without further ado.

� A method in the spirit of the present paper is as follows [23].3

We can modify G(x; α) in (1) by extracting the finite part of �(−α)x2α for α = 0, 1, 2, . . . . 
This is equivalent to renormalizing the convolution powers of the massless Feynman propa-
gator; these are all primitives, which means that only the first power of the logarithm appears 
in:

2 It appears tempting to redo some of the graviton-scattering calculations in [20], performed in the framework of 
unimodular gravity, using the A(x, l)-field companion of the linearized Riemann tensor.

3 This is actually the same paper as [2], but in the published version the pertinent section was withdrawn, because the 
referee could not make head or tail of it.
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F(x;α) := G(x;α) for α 	= 0,1, . . . ;

F(x;n) := e−iπn x2n

4n+2π2 n!(n + 1)!
(

log
m2x2

4
− ψ(n + 2) − ψ(n + 1) − iπ

)
,

for n = 0,1, . . . ; where ψ is the digamma function.

Note the choice m = 1/l here.

Now �F(x; α) = F(x; α − 1) holds without restriction [24], so in fact we may write

F(x;α) = −i�−1−αDF
0 (x),

for all α ∈ C, and we have a perfect generalization of Riesz theory. Moreover, the series ∑∞
n=−1 m2n+2F(x, n) solves the massive Klein–Gordon equation with the convolution unit as 

source [25,26]:

∞∑
n=−1

m2n+2F(x,n) = −im
K1(m

√−x2 )

4π2
√−x2

= DF (x).

So let us define, for Hk homogeneous harmonic of order k:

F(x;α, k) = G(x;α, k) for α 	= 0,1, . . . ;
F(x;n, k) := Hk(x)

e−iπn x2n

4n+2π2 n!(n + k + 1)!
(

log
m2x2

4
− ψ(n + 2) − ψ(n + 1) − iπ

)
.

Finally, it is clear that the formula

〈〈TFμν(x)Fρσ (x′)〉〉 = fμν,ρσ (∂)DF (x − x′),

valid for x 	= x′, extends to the diagonal without further renormalization being necessary.
What about higher spins? Following [27], we compute the expected value of the time-ordered 

product of the linearized Riemann tensor for massive gravitons, with a result identical to (7), 
except that instead of Gβτ,σγ as in Sect. 4, one finds 1

8

(
gβσ gτγ +gβγ gτσ − 2

3gβτ gσγ

)
.4 This dif-

ference between the massive and the massless cases is immaterial for harmonicity since, as we re-
marked earlier, the polynomials qακρλ are already harmonic. Therefore 〈 〈TRαβκτ (x) Rρσλγ (x′)〉 〉
extends to the diagonal, without further ado.

We conjecture that our conclusions extend to all the massive Fμ1ν1,...,μhνh
-fields.

7. Conclusion

Two small miracles do not a big miracle make. Nevertheless, it is surprising and gratify-
ing that, against appearances, for massive or massless particles of respectively integer spin or 
helicity j , the quantum fields associated to the representation (j, 0) ⊕ (0, j) enjoy the same 
optimal UV properties. These are inherited by the string-local true tensor fields Aμ1,...,μh

(x, l)
constructed from them.5

4 A similar expression with the 2
3 coefficient appears in the massive graviton propagator given in [28, Sect. 1.5].

5 As we were readying this paper for publication, we were made aware of the article [29]. It also seeks to transfer 
results from massless to massive models, in a direction different from ours.
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