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Abstract

Renormalization of massless Feynman amplitudes in x-space is reexamined here, using almost exclu-
sively real-variable methods. We compute a wealth of concrete examples by means of recursive extension 
of distributions. This allows us to show perturbative expansions for the four-point and two-point functions 
at several loop order. To deal with internal vertices, we expound and expand on convolution theory for log-
homogeneous distributions. The approach has much in common with differential renormalization as given 
by Freedman, Johnson and Latorre; but differs in important details.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The long-awaited publication of [1] has again brought to the fore renormalization of Feynman 
amplitudes in x-space. The method in that reference is distribution-theoretical, in the spirit of 
Epstein and Glaser [2]. That means cutoff- and counterterm-free. That infinities never be met is 
something devoutly to be wished, as regards the logical and mathematical status of quantum field 
theory [3].
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Twenty-odd years ago, an equally impressive paper [4] with the same general aim introduced 
to physicists a version of differential renormalization in x-space. From the beginning, it must 
have been obvious to the cognoscenti that this version and Epstein–Glaser renormalization were 
two sides of the same coin. The main aim of this article is to formalize this relation, to the 
advantage of x-space renormalization in general.

Both [1] and [4] grant pride of place to the massless Euclidean φ4
4 model, and it suits us to 

follow them in that. Namely, we show how to compute amputated diagrams which are proper 
(without cutlines), contributing to the four-point functions for this model, up to the fourth order 
in the coupling constant.

In [1] a recursive process to deal with “subdivergences” seeks to demonstrate the renormal-
ization process as a sequence of extensions of distributions. Since in the present paper we are 
concerned with the two-point and four-point functions needed to obtain the effective action, we 
furthermore need to integrate over internal vertices of the graphs. Indeed, in [4], internal vertices 
are integrated over, yielding convolution-like integrals. However, some bogus justifications for 
this essentially sound procedure are put forward there. Also, computations in [4] lack the natural 
algebraic rules set forth by one of us in [5,6]—that [1] also adopts and generalizes as the “causal 
factorization property” [1, Thm. 2.1].

For the Euclidean quantum amplitudes with which we deal in this paper, we borrow the lan-
guage of (divergent) subgraphs and cographs [7]. Let Γ (V, L) denote a graph one is working 
with: V is the set of its vertices and L the set of its internal lines. A subgraph γ ⊆ Γ is a set of 
vertices V(γ ) ⊆ V and the set of all lines in L joining any two elements of V(γ )—which is to 
say, a full subgraph in the usual mathematical parlance. Let γ be any of the subgraphs. A lode-
stone is the rule contained in the (rigorous as well as illuminating) treatment in [8, Sect. 11.2]. It 
is written:〈

R[Γ ], ϕ〉 = 〈
R[γ ], (Γ /γ )ϕ

〉
, (1.1)

where R[Γ ], R[γ ] and Γ/γ denote corresponding amplitudes, and ϕ is supported outside the 
singular points of Γ/γ .

As long as we need not integrate over internal vertices in Γ , this is all we require for the 
recursive treatment of the hierarchy of cographs in the diagrams. This rule implies the Euclidean 
version of the causal factorization property of [1], as will be thoroughly checked in the upcoming 
examples.

The treatment of diagrams with internal vertices calls for a convolution-like machine. Thus 
we streamline the framework of [4], and in passing we correct some minor mistakes there. While 
proceeding largely by way of example, along the way we tune up that machine by (invoking 
and/or) proving a few rigorous results.

The reader will notice how easy these computations in x-space are, once the right methods are 
found. The outcome, we expect, is a convincing case study for gathering the ways of [1] and [4]
together.

The plan of the paper is as follows. In Section 2 we lay out the basic renormalization pro-
cedure, for divergent graphs which are primitive (that is, without divergent subgraphs). The 
mathematical task is to extend a function or distribution defined away from the origin of Rd

to the whole of Rd . This is a simplification of a more general extension problem of distributions 
defined off a diagonal, calling on the translation invariance of the distributions involved.

In Section 3, adapting work by Horváth, and later by Ortner and Wagner, we adjust our 
convolution-like engine. Horváth’s results have not found their way into textbooks, and seem 
little known to physicists: it falls to us here to report on, and complete them, in some detail.
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The long Sections 4 and 5 deliver detailed and fully explicit calculations of concrete (tadpole-
part-free) graphs. The “integration by parts” method of [4] is put on a surer theoretical footing 
here by linking it to the successive extensions in [1] and the “locality” rule in [8]. In every case, 
differential renormalization yields the leading term; here we do find the correcting terms neces-
sary to fulfill the algebraic strictures in [1,5]. The dilation behavior of the renormalized graphs is 
examined. We trust that these two sections give a clear picture of the perturbative expansions for 
the four-point function G4(x1, x2, x3, x4).

In Section 6 we turn towards conceptual matters: the renormalization group (RG) and the 
β-function, leading to the “main theorem of renormalization” [9] and Bogoliubov’s recurrence 
relation at the level of the coupling constant in this context. These are briefly discussed in the 
concluding Section 7.

In Appendix A, we collect for easy reference explicit formulas for the distributional extensions 
in x-space employed throughout. Graphs contributing to the two-point function G2(x1, x2) are 
solved in Appendix B. Calculations of p-amplitudes are dealt with briefly in Appendix C.

The relation between our scheme and dimensional regularization in x-space was investigated 
in [5,6]—as “analytical prolongation”— and has recently been exhaustively researched [10,11]. 
Reasons of spacetime prevent us from going into that, for now; nor do we take up attending 
issues of the Hopf algebra approach to the combinatorics of renormalization [12].

2. Primitive extensions of distributions

The reader is supposed familiar with the basics of distribution theory; especially homogeneous 
distributions. Apart from this, the article is self-contained, in that extension of homogeneous dis-
tributions is performed from scratch. In that respect, outstanding work in the eighties by Estrada 
and Kanwal [13,14] has been very helpful to us.

Ref. [1] uses a complex-variable method for extension of homogeneous distributions, follow-
ing in the main [15]. Basically, this exploits that Riesz’s normalized radial powers on R

d , defined 
by

Rλ(r) := Ad(λ)rλ, where

Ad(λ) := 2

ΩdΓ (λ+d
2 )

and Ωd = Vol
(
S

d−1) = 2πd/2

Γ (d/2)
,

constitute an entire function of λ. There is much to be said in favor of such methods; the interested 
reader should consult also [16] and [17]. Nevertheless, we choose to recruit and popularize here 
real-variable methods. They are more in the spirit both of the original Epstein–Glaser procedure 
[2] and differential renormalization itself [4].

Let us call a homogeneous distribution T on Rd regular if it is smooth away from the origin; 
the smooth function on Rd \ {0} associated to it is homogeneous of the same degree. Homoge-
neous distributions of all kinds are tempered (see the discussion in Section 2.2), and thus possess 
Fourier transforms.

Consider first spaces of homogeneous distributions on the real half-line. The function r−1

defines a distribution on the space1 of Schwartz functions vanishing at the origin, rS(R+). It 
seems entirely natural to extend it to a functional on the whole space S(R+) by defining

1 It is not satisfactory for us to consider extensions merely from S(R+ \ {0}) to S(R+).
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r1
[
r−1] :=

(
log

r

l

)′
(2.1)

where l is a convenient scale. Note that log(r/ l) is a well defined distribution, and so is its 
distributional derivative. The difference between two versions of this recipe, with different scales, 
lies in the kernel of the map f �→ rf on distributions, i.e., it is a multiple of the delta function. 
Of course r1[r−1] is no longer homogeneous, since

r1
[
(λr)−1] = λ−1r1

[
r−1] + λ−1 logλδ(r). (2.2)

Now, for z not a negative integer, the property

rrz = rz+1 holds; and also (2.3)
d

dr

(
rz

) = zrz−1. (2.4)

For the homogeneous functions r−n with n = 2, 3, . . . which are not locally integrable, one might 
adopt the recipe:

r1
[
r−n

] := (−)n−1

(n − 1)!
(

log
r

l

)(n)

,

generalizing (2.4) by definition. This is differential renormalization on R
+ in a nutshell. That, 

however, loses property (2.3).
Thus we look for a recipe respecting (2.3) instead. Let f denote a smooth function on R+ \{0}

with f (r) = O(r−k−1) as r ↓ 0. Epstein and Glaser introduce a general subtraction projection 
Ww from S(R+) to the space of test functions vanishing at order k at the origin, whereby the 
whole k-jet of a test function ϕ on R

d at the origin

jk
0 (ϕ)(x) := ϕ(0) +

∑
|α|=1

xα

α! ϕ
(α)(0) + · · · +

∑
|α|=k

xα

α! ϕ
(α)(0)

is weighted by an infrared regulator w, satisfying w(0) = 1 and w(α)(0) = 0 for 1 ≤ |α| ≤ k:

Wwϕ(x) := ϕ(x) − w(x)jk
0 (ϕ)(x).

One may use instead [5,6] the simpler subtraction projection:

Pwϕ(x) := ϕ(x) − jk−1
0 (ϕ)(x) − w(x)

∑
|α|=k

xα

α! ϕ
(α)(0). (2.5)

Just w(0) = 1 is now required from w for the projection property Pw(Pwϕ) = Pwϕ to hold.
Define now the operations Ww and Pw on S ′(Rn) by duality:

〈Wwf,ϕ〉 := 〈f,Wwϕ〉 and likewise 〈Pwf,ϕ〉 := 〈f,Pwϕ〉.
On the half-line, by use of Lagrange’s expression for MacLaurin remainders, for k = 0 (logarith-
mic divergence) we arrive in a short step [5] at the dual integral formula:

Wwf (r) = Pwf (r) = − d

dr

[
r

1ˆ

0

dt

t2
f

(
r

t

)
w

(
r

t

)]
.

We choose (and always use henceforth) the simple regulator
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w(r) := θ(l − r), for some fixed l > 0, (2.6)

with θ being the Heaviside function. Actually, for k = 0 this yields the general result, since the 
difference between two extensions with acceptable dilation behavior is a multiple of the delta 
function. In the homogeneous case, one immediately recovers (2.1):

R1
[
r−1] := Pθ(l−·)

[
r−1] = −

[ 1ˆ

r/ l

dt

t

]′
=

(
log

r

l

)′
=: r1

[
r−1].

For any positive integer k,

Pwf (r) = (−)kk

[
rk

k!
1ˆ

0

(1 − t)k−1

tk+1
f

(
r

t

)(
1 − w

(
r

t

))
dt

](k)

+ (−)k+1(k + 1)

[
rk+1

(k + 1)!
1ˆ

0

(1 − t)k

tk+2
f

(
r

t

)
w

(
r

t

)
dt

](k+1)

(2.7)

which yields

R1
[
r−k−1] := Pθ(l−·)

[
r−k−1] = (−)k

k!
[(

log
r

l

)(k+1)

+ Hkδ
(k)(r)

]
. (2.8)

Here Hk is the k-th harmonic number:

Hk :=
k∑

j=1

(−)j+1

j

(
k

j

)
=

k∑
j=1

1

j
; and H0 := 0.

(See [18, p. 267] for the equality of the two sums.) Note that R1[r−k−1] �= Wθ(l−·)[r−k−1] for 
k > 0, as well as R1[r−k−1] �= r1[r−k−1].

One of us in [5] proved that:

• R1 coincides with (a straightforward generalization of) Hadamard’s finite part extension and 
the meromorphic continuation extension of [1,15–17].

• R1 (but not in general the Ww subtraction) fulfills the algebra property

rmR1
[
r−k−1] = R1

[
r−k+m−1],

extending (2.3) to the realm of renormalized distributions.2

2 The algebra property can be in contradiction with arbitrary “renormalization prescriptions” [19]; but this does not 
detract from its utility.
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2.1. Dimensional reduction

The task is now to extend radial-power distributions, that is, to compute 〈f (r), ϕ(x)〉, 
where f (r) denotes a scalar, radially symmetric distribution defined on R

d . We keep borrow-
ing from Estrada and Kanwal [13,14]. First sum over all angles, by defining

Πϕ(r) :=
ˆ

|ω|=1

ϕ(rω)dσ(ω).

The resulting function Πϕ is to be regarded either as defined on R
+, or as an even function on 

the whole real line. Its derivatives of odd order with respect to r at 0 vanish, and those of even 
order satisfy:

(Πϕ)(2l)(0) = Ωd,l�
lϕ(0) :=

( ˆ

|ω|=1

x2l
i

)
�lϕ(0) = 2Γ (l + 1

2 )π(d−1)/2

Γ (l + d
2 )

�lϕ(0).

With that in mind, one can write the dimensional reduction formula:〈
Rd

[
f (r)

]
, ϕ(x)

〉
Rd = 〈

R1
[
f (r)rd−1],Πϕ(r)

〉
R+ . (2.9)

The notation Rd [f (r)] for the renormalized object handily keeps track of the space dimension. 
The formula can be taken as a definition of Rd [f (r)], and so for radially symmetric distributions 
the simple R1 method, as well as Hadamard’s and meromorphic continuation on the real line, 
are lifted in tandem to higher dimensions by (2.9). As a bonus, the multiplicativity condition for 
radial functions is automatically preserved.

Keep also in mind, however, that Epstein–Glaser-type subtraction works in any number of 
dimensions. In particular, our modified Epstein–Glaser method for f (r) = O(r−k−d) leads to 
the integral form, generalizing (2.7),

Pwf (x) = (−)kk
∑
|α|=k

∂α

[
xα

α!
1ˆ

0

dt
(1 − t)k−1

tk+d
f

(
x

t

)(
1 − w

(
x

t

))]

+ (−)k+1(k + 1)
∑

|β|=k+1

∂β

[
xβ

β!
1ˆ

0

dt
(1 − t)k

tk+d+1
f

(
x

t

)
w

(
x

t

)]
; (2.10)

and, as it turns out, Pθ(l−·)f (r) = Rd [f (r)], when using the regulator (2.6). All this was clar-
ified in [5]. The operator ∂αxα = E + d , with E := xα∂α denoting the Euler operator, figures 
prominently there.

Note, moreover, when both the distribution f and the regulator w enjoy rotational symmetry, 
employing the MacLaurin–Lagrange expansion for ϕ and summation over the angles, the last 
displayed formula amounts to the computation:

〈
Pwf (r),ϕ(x)

〉 ≡ 〈
f (r),ϕ(x) − ϕ(0) − �ϕ(0)

2!d r2 − · · · − w(r)
Ωd,l�

lϕ(0)

(2l)!Ωd

r2l

〉
, (2.11)

up to the highest l such that 2l ≤ k. Rotational symmetry of extensions in general can be studied 
like Lorentz covariance was in [6, Sect. 4] and in [20, Sect. 3.3].
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We remark finally that the MacLaurin expansion for Πϕ is written

Πϕ(r) = 2d/2−1Γ (d/2)(r
√−�)1−d/2Jd/2−1(r

√−�)ϕ(0),

for Jα the Bessel function of the first kind and order α. This makes sense for complex α. That 
is the nub of dimensional regularization in position space, as found by Bollini and Giambiagi 
themselves [21]—with Euclidean signature, in the present case.

2.2. Log-homogeneous distributions

We are interested in the amplitude R4[r−4], corresponding to the “fish” graph • • in the 
φ4

4 model. For clarity, it is useful to work in any dimension d ≥ 3. Note the following:

Rd

[
r−d

] = r−d+1
(

log
r

l

)′
= r−dE

(
log

r

l

)
= ∂α

(
xαr−d log

r

l

)
= −∂α∂α

(
r−d+2

d − 2
log

r

l
+ r−d+2

(d − 2)2

)
= − 1

d − 2

[
�

(
r−d+2 log

r

l

)
− Ωdδ(r)

]
. (2.12)

The last term appears because r−d+2/(−d + 2)Ωd is the fundamental solution for the Laplacian 
on R

d . An advantage of this form is that the corresponding momentum space amplitudes are 
easily computed—as will be exploited later: see Appendix C.

In calculation of graphs on R4 with subdivergences, extensions of r−4 logm(r/ l), with grow-
ing powers of logarithms, crop up again and again. It is best to grasp them all together. One can 
introduce different scales, but for simplicity we stick with just one scale. Dimensional reduction 
gives

Rd

[
r−d logm r

l

]
= 1

m + 1
r−d+1 d

dr

(
logm+1 r

l

)
(2.13)

for any m = 0, 1, 2, . . .
A distribution f on Rd is called log-homogeneous of bidegree (a, m) if

(E − a)m+1f = 0, but (E − a)mf �= 0. (2.14)

Here m is a nonnegative integer but a can be any complex number; the case m = 0 obviously 
corresponds to homogeneous distributions. For example, the distribution log r ∈ S ′(Rd) is log-
homogeneous of bidegree (0, 1). Essentially the same definition is found in [22, Sect. 4.1.6]. See 
also [16, Sect. I.4], [5, Sect. 2.4] and [1, Prop. 4.4], where the nomenclature used is “associate 
homogeneous of degree a and order m”.

Log-homogeneous distributions are tempered. Indeed, if f is homogeneous of bidegree (a, 0), 
then [23] one can find g0 ∈ D′(Sn−1) so that f (x) = rag0(ω) for x = rω ∈ R

d \ {0}. More 
generally, for f of bidegree (a, m), one can inductively construct g0, . . . , gm ∈ D′(Sn−1) such 
that f (rω) = ∑m

k=0 ra logm−k rgk(ω) for r > 0. It follows that f ∈ S ′(Rd).
A related issue is whether a log-homogeneous distribution on Rd \ {0} can be extended to one 

on R
d . As we shall immediately exemplify, this can always be achieved although the bidegree 

may change: if the bidegree off the origin is (a, m), that of the extension may be (a, n) with 
n ≥ m. For a general proof of that, showing also that rotational (or Lorentz) invariance may be 
kept in the extension, see Lemma 6 of [20].
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The dilation behavior of Rd [r−d ] is immediate from formula (2.12):

Rd

[
(λr)−d

] = ∂α

(
xα(λr)−d

(
log

r

l
+ logλ

))
= λ−dRd

[
r−d

] + λ−d logλΩdδ(r),

generalizing (2.2). Note that Ωd is simply minus the coefficient of log l. In infinitesimal terms,

ERd

[
r−d

] = −dRd

[
r−d

] + Ωdδ(r), so that Res
[
r−d

] := [E,Rd ](r−d
) = Ωdδ(r).

Hence Rd [r−d ] is log-homogeneous of bidegree (−d, 1). The functional Res coincides with the 
Wodzicki residue [24, Chap. 7.3]. It coincides as well with the “analytic residue” in [1].

For our own purposes (RG calculations), we prefer to invoke the logarithmic derivative of the 
amplitudes with respect to the length scale l:

∂

∂ log l
Rd

[
r−d

] = l
∂

∂l
Rd

[
r−d

] = −Ωdδ(r); (2.15)

which for primitive diagrams like the fish yields the residue yet again. As was shown in [5], 
this is actually a functional derivative with respect to the regulator w; and so it can be widely 
generalized.

Lemma 1. For d ≥ 3, m = 0, 1, 2, . . . and λ > 0, the following relation holds:

Rd

[
(λr)−d logm λr

l

]
=

m∑
k=0

λ−d logk λ

(
m

k

)
Rd

[
r−d logm−k r

l

]
+ λ−d logm+1 λ

Ωd

m + 1
δ(r). (2.16)

Therefore, Rd [r−d logm(r/ l)] is log-homogeneous of bidegree (−d, m + 1).

Proof. This is a direct verification:

Rd

[
(λr)−d logm λr

l

]
= λ−d

m + 1
∂α

(
xαr−d

(
log

r

l
+ logλ

)m+1)
= λ−d

m + 1

m+1∑
k=0

(
m + 1

k

)
logk λ∂α

(
xαr−d logm−k+1 r

l

)

=
m+1∑
k=0

λ−d logk λ
m!

k!(m − k + 1)!∂α

(
xαr−d logm−k+1 r

l

)

=
m∑

k=0

λ−d logk λ

(
m

k

)
Rd

[
r−d logm−k r

l

]
+ λ−d logm+1 λ

1

m + 1
∂α

(
xαr−d

)
,

and the result follows from the relation ∂α(xαr−d) = −�((d − 2)r−d+2) = Ωdδ(r). �
As an immediately corollary, we get the effect of the Euler operator, when m ≥ 1:

ERd

[
r−d logm r

]
= −dRd

[
r−d logm r

]
+ mRd

[
r−d logm−1 r

]
.

l l l
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On the other hand, an elementary calculation for r > 0 gives

E

[
r−d logm r

l

]
= r

d

dr

[
r−d logm r

l

]
= −dr−d logm r

l
+ mr−d logm−1 r

l
,

so that RdE[r−d logm(r/ l)] = ERd [r−d logm(r/ l)]; consequently, higher residues all vanish:

Res

[
r−d logm r

l

]
:= [E,Rd ]

(
r−d logm r

l

)
= 0 for m = 1,2,3, . . .

We summarize. First, by the same trick of (2.12),

Rd

[
r−d logm r

l

]
= E + d

m + 1

(
r−d logm+1 r

l

)
,

which makes obvious much of the above. This formula also shows that the aforementioned alge-
bra property applies to logarithms as well as polynomials:

log
r

l
Rd

[
r−d logm r

l

]
= Rd

[
r−d logm+1 r

l

]
.

Second, we can use this operator to amplify a well-known property of homogeneous distri-
butions: the Fourier transform Ff of a log-homogeneous distribution f ∈ S ′(Rd) of bidegree 
(a, m) is itself log-homogeneous of bidegree (−d −a, m). Indeed, since F(xα∂α) = −(∂αxα)F , 
i.e., FE = −(E + d)F as operators on S ′(Rd), the relations (2.14) are equivalent to

(E + d + a)m+1Ff = 0, but (E + d + a)mFf �= 0.

The Fourier transforms of the considered regular distributions are also regular [24, Chap. 7.3]. 
Moreover, F is an isomorphism of the indicated spaces [25].

Third, one can rewrite the result of Lemma 1 to show that it exhibits a representation of the 
dilation group. Indeed, on multiplying both sides of (2.16) by λd/m!, we obtain

λd

m!Rd

[
(λr)−d logm λr

l

]
=

m∑
k=0

logk λ

k!
1

(m − k)!Rd

[
r−d logm−k r

l

]
+ logm+1 λ

(m + 1)! Ωdδ(r).

This shows that the distributions 1
k!Rd [r−d logk(r/ l)], for k = 0, 1, . . ., plus the special case 

Ωdδ(r) for k = −1, form an eigenvector (with eigenvalue λd ) for a certain unipotent matrix 
exp(A logλ), yielding an action of the dilation group—this is just Proposition 3.2 of [1].

Fourth, the obvious relation

l
∂

∂l
Rd

[
r−d logm r

l

]
= −mRd

[
r−d logm−1 r

l

]
, for m ≥ 1, (2.17)

will be most useful in the sequel.
Fifth, formulas involving the Laplacian, like (2.12), do exist for all the log-homogeneous 

distributions (2.13), and thus for the graphs. We develop these formulas in Appendix A.

2.3. Here comes the sun

One of us introduced in [5, Sect. 4.2], on the basis of related expressions by Estrada and 
Kanwal [13,14], the powerful formula



J.M. Gracia-Bondía et al. / Nuclear Physics B 886 (2014) 824–869 833
�nRd

[
r−d−2m

] = (d + 2m + 2n − 2)!!
(d + 2m − 2)!!

(2m + 2n)!!
(2m)!! Rd

[
r−d−2m−2n

]
− Ωd,m

(2m)!
n∑

l=1

(4m + 4l + d − 2)

2(m + l)(2m + 2l + d − 2)
�n+mδ(r). (2.18)

The first term on the right hand side just corresponds to the naïve derivation formula. Once the 
case n = 1 is established, the general formula follows by a straightforward iteration, using the 
relation Ωd,m+1/Ωd,m = (2m + 1)/(2k + d). This provides explicit expressions for divergences 
higher than logarithmic.

Consider thus the case: d = 4, m = 0, n = 1, which yields

�R4
[
r−4] = 8R4

[
r−6] − 3π2

2
�δ(r).

Without further ado, we get the renormalization of the quadratically divergent “sunset” graph of 
the φ4

4 model:

• • which in x-space is primitive (subdivergence-free):

R4
[
r−6] = 1

8
�R4

[
r−4] + 3π2

16
�δ(r) = − 1

16
�2

(
r−2 log

r

l

)
+ 5π2

16
�δ(r). (2.19)

The same result can be retrieved directly from formula (2.10), see [5]. Its first term is log-
homogeneous of bidegree (−6, 1). It is worth noting here that in the paper by Freedman, Johnson 
and Latorre two different extensions [4, Eq. (A.1)] and [4, Eq. (2.8)] are given for this graph,

rFJL
[
r−6] = − 1

16
�2

(
r−2 log

r

l

)
, respectively

rFJL
[
r−6] = − 1

16
�2

(
r−2 log

r

l

)
− 16π2δ(r)

l2
.

The first one does not fulfill the algebra property, the second one moreover brings in an un-
welcome type of dependence on l. Note as well that rotational symmetry allows two arbitrary 
constants in the renormalization of this graph; the algebra property reduces the ambiguity to one.

The scale derivative gives

l
∂

∂l
R4

[
r−6] = −Ω4

8
�δ(r). (2.20)

The reader may renormalize straightforwardly from (2.18) the simplest vacuum graph of the 
model.

We compute the following commutation relations:

[�,E + d] = [�,E] = 2�; [
�,r2] = 2d + 4E; [

E, r2] = 2r2, (2.21)

valid for radial functions or distributions. This allows us to run an indirect check of (2.19), 
highlighting the algebra property:

r2R4
[
r−6] = 1

8
�

(
r−2) − R4

[
r−4] − 1

2
ER4

[
r−4] + 3π2

2
δ(r)

= −π2

2
δ(r) − R4

[
r−4] + 2R4

[
r−4] − π2δ(r) + 3π2

2
δ(r) = R4

[
r−4];

where we have used r2�δ(r) = 2dδ(r) and the third identity in (2.21).
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More generally, the distribution Rd[r−d−2k] is log-homogeneous of bidegree (−d − 2k, 1), 
since one finds [5] that

Rd

[
(λr)−d−2k

] = λ−d−2kRd

[
r−d−2k

] + λ−d−2k logλ
Ωd,k

k! �kδ. (2.22)

A few explicit expressions for R4[r−6 logm(r/ l)] terms, which we shall need later on, are given 
in Appendix A.

2.4. Trouble with the formulas for derivatives

We remind the reader that there are no extensions of r−k−1 for which the generalization of 
both requirements (2.3) and (2.4) hold simultaneously. One finds [14] that

rmr1
[
r−k−1] = r1

[
r−k+m−1] + [Hk−m − Hk]δ(k−m)(r).

This also means that differential renormalization in the sense of Freedman, Johnson and Latorre 
is inconsistent with dimensional reduction; which early on drew justified criticism [26] towards 
heuristic prescriptions on R

4 in [4], such as

rFJL
[
r−4] = −1

2
�

(
r−2 log

r

l

)
.

For instance, with a glance at (2.9) and (2.12), we immediately see that the implied renormal-
ization of r−1 on the half-line would be log′(r/ l) − 1

2δ(r), instead of log′(r/ l). This makes too 
much of a break with the rules of calculus.

In general, the distributional derivative of a natural extension of a singular function will not 
coincide with the natural extension of its derivative. An instructive discussion of this point is 
given in [27].

3. Convolution-like composition of distributions

The convolution of two integrable functions defined on a Euclidean space Rd is given by the 
well-known formula

f ∗ g(x) =
ˆ

f (y)g(x − y)dy,

the integral being taken over Rd . To convolve two distributions, one starts with the equivalent 
formula

〈f ∗ g,ϕ〉 :=
¨

f (x)g(y)ϕ(x + y)dx dy (3.1)

where ϕ ∈ D(Rd) here and always denotes a test function. The right hand side of (3.1) may be 
regarded as a duality formula:

〈f ∗ g,ϕ〉 := 〈
f ⊗ g,ϕ�

〉
, (3.2)

where ϕ�(x, y) := ϕ(x + y) and the pairing on the right hand side takes place over R2d .
Notice that ϕ� ∈ C∞(R2d) is smooth but no longer has compact support, so that (3.2) only 

makes sense for certain pairs of distributions f and g. If, say, one of the distributions f or g has 
compact support, then f ∗ g is well defined as a distribution by (3.2), and associativity formulas 
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like (f ∗ g) ∗ h = f ∗ (g ∗ h) are meaningful and valid if at least two of the three factors have 
compact support. Also if, for instance, a distribution is tempered, f ∈ S ′(Rd), then one can take 
g ∈ O′

c(R
d), the space of distributions “with rapid decrease at infinity”. This variant is dealt with 

in the standard references, see [28, p. 246] or [29, p. 423].
However, these decay conditions are not met in quantum field practice, so we must amplify 

the definition of convolution.
One can alternatively interpret the integral in (3.1) as pairing by duality the distribution 

f (x)g(y)ϕ(x + y) with the constant function 1:

〈f ∗ g,ϕ〉 := 〈
ϕ�(f ⊗ g),1

〉
. (3.3)

For that, one must determine conditions on f and g so that the pairing on the right hand side 
—again over R2d— makes sense.

Consider the space B0(R
d) of smooth functions on R

d that vanish at infinity together with 
all their derivatives. Its dual space B′

0(R
d) is the space of integrable distributions. (The notation 

follows [29]; the space of integrable distributions is called D′
L1(R

d) by Schwartz [28].) The 
dual space of B′

0(R
d) itself is larger than B0(R

d): it is B′′
0(Rd) ≡ B(Rd), the space of smooth 

functions all of whose derivatives are merely bounded on R
d .

It is known [29, Sect. 4.5] that a distribution f is integrable if and only if it can be written as 
f = ∑

α ∂αμα , a finite sum of derivatives of finite measures μα . A particularly useful class of 
integrable distributions are those of the form f = h + k where h has compact support and k is a 
function which is integrable (in the usual sense) and vanishes on the support of h.

Definition. Two distributions f, g ∈ D′(Rd) are called convolvable if ϕ�(f ⊗ g) ∈ B′
0(R

2d) for 
any ϕ ∈D(Rd).

Since 1 ∈ B(R2d), the right hand side of (3.3) then makes sense as the evaluation of a (sepa-
rately continuous) bilinear form; and hence it defines f ∗ g ∈ D′(Rd).

This definition of convolvability was introduced in [30] by Horváth, under the name “condi-
tion (Γ )”; and he showed there that it subsumes previous convolvability conditions, such as the 
aforementioned one between S ′(Rd) and O′

c(R
d). It is known that B′

0(R
d) is an (associative) 

convolution algebra: such a result already appears in [28] and the proof has been adapted to the 
above notion of convolvability by Ortner and Wagner [31, Prop. 9].

Now, how can one tell when two given (say, log-homogeneous) distributions are convolvable 
or not? Consider, for instance, the log-homogeneous distribution Rd[r−4] on R

4, defined in the 
previous section. It yields the renormalization of the “fish” graph in the massless φ4

4 model; and 
its convolution with itself amounts to the correct definition of a chain (articulated, one-vertex 
reducible) diagram, the “spectacles” or “bikini” graph • • • . The following result allows 
us to attack the calculation of several graphs in the next section.

Proposition 2. The convolution of log-homogeneous distributions

Rd

[
rλ logm r

l

]
∗ Rd

[
rμ logk r

l

]
(3.4)

is well defined whenever �(λ + μ) < −d , for any m, k = 0, 1, 2, . . .
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Proof. The convolution algebra property takes care of the case where λ < −d and μ < −d . The 
weaker condition �(λ + μ) < −d allows us to incorporate also the borderline cases λ = −d , 
which we shall need.

Consider first the case where m = k = 0. Theorem 3 in [32] shows that a distribution f
on R

d is convolvable with Rd[rμ] if (1 + r2)�μ/2f lies in B′
0(R

d); this uses our earlier remark 
that Rd [rμ] coincides with the meromorphic continuation extension of the function rμ. This 
sufficient condition on f is guaranteed in turn if f = f0 + f1 where f0 has compact support and 
f1 is locally integrable with |f1(x)| ≤ C|x|�μ for large |x|.

The last statement is not obvious; the crucial lemma of [32] shows that integrability follows 
from the boundedness of the following functions:

hs,c,p(y) :=
ˆ

Ac

|x|s∂p
y

((
1 + |y|2)−s/2)

dx, where Ac = {
x : |x| ≥ 1, |x + y| ≤ c

}
,

which holds for any real s, any c > 0 and derivatives ∂p
y of all orders. Consequently, in the 

previous argument, Rd [rμ] itself may be replaced by any distribution g of the form g = g0 + g1
where g0 has compact support and g1 is locally integrable with |g1(x)| ≤ C|x|�μ for large |x|.

In particular, taking f = Rd [rλ] and letting f0 be its restriction to a ball centred at the origin, 
it follows that Rd [rλ] and Rd [rμ] are convolvable whenever r�λ(1 + r2)�μ/2 is integrable for 
r ≥ 1, which is true if �(λ + μ) < −d .

For the general case, a similar decomposition may be applied to both convolution factors. 
Subtracting off their restrictions to balls centred at the origin, we can bound the remainders thus:

r�λ logm r

l
≤ rα, r�μ logk r

l
≤ rβ, for all r ≥ r0.

Since �(λ + μ) < −d , we can still choose α, β so that α + β < −d if r0 is large enough. The 
convolvability then follows from integrability of (1 + r2)(α+β)/2 over r ≥ r0. �

The actual calculation of Rd[r−d ] ∗ Rd [r−d ] was performed by Wagner in [33], by a simple 
meromorphic continuation argument. In dimensions d ≥ 3, and for scale l = 1, the result is:

Rd

[
r−d

] ∗ Rd

[
r−d

] = 2ΩdRd

[
r−d log r

] + Ω2
d

4

(
ψ ′(d/2) − π2

6

)
δ(r), (3.5)

with ψ denoting the digamma function. By the same token, convolutions of (renormalized) loga-
rithmically divergent graphs, and in particular chain graphs of any length, are rigorously defined 
and computable in massless φ4

4 theory in x-space. We shall perform a few of these convolutions 
later on.

The calculation may be transferred to p-space. Now—contrary to an implied assertion 
in [4]—the product of two tempered distributions is not defined in general. Even so, in the present 
case, the product of the Fourier transforms may be defined as the Fourier transform of the convo-
lution of their preimages in x-space, under the same condition �(λ + μ) < −d . In Appendix C, 
we calculate these regular p-space representatives for d = 4.

To conclude: maybe because the relevant information [17,30–34] is scattered in several differ-
ent languages, the powerful mathematical framework for this, by Horváth, Ortner and Wagner, 
appears to be little known. So we felt justified in giving a detailed treatment here.

In the computation of graphs of the massless φ4
4 model up to fourth order, one moreover 

finds slightly more complicated convolution-like integrals. They will be tackled here by easy 
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generalizations of Horváth’s theory of convolution. We do not claim that every infrared problem 
lurking in higher-order graphs can be solved by these methods.

4. Graphs

The renormalization of multiloop graphs may be accomplished in position space with the 
tools developed in Sections 2 and 3. For a model gφ4/4! scalar field theory on R

4—widely used, 
e.g., in the theory of critical exponents [35,36]—we perform here the detailed comparison of 
Epstein–Glaser renormalization with the differential renormalization approach, which was the 
subject of extensive calculation in [4].

We go about this as follows: first we compute the graphs of the second and third order in the 
coupling constant for the (one-particle irreducible) four-point function (respectively correspond-
ing to one and two loops), seemingly by brute force. Along the way we find the scale derivatives 
for these graphs. Next, we exhibit the perturbation expansion up to that order.

After that, we solve the more involved graphs of the fourth order in the coupling constant, 
corresponding to three loops, for the four-point function. We trust that the procedure to construct 
the perturbation expansion up to fourth order is by then clear.

In Appendix B, we perform similar calculations for the two-point function, up to the same 
order in the coupling.

There are three groups of Feynman diagrams involved in the four-point function:{
• • , • • • , • • • • , • •• •

, • ••
•

}
;

{ • •

•
, • • •

•
,

• •
•

• , • •
•

•

}
;

{
•

• •

•
,

•
• •

•
}

; (4.1)

depending on the external leg configurations.
We begin with the one-loop fish graph. Since the Euclidean “propagator” is given by 

(−4π2)−1r−2, its bare amplitude is of the form:

g2

(4π2)2

[
δ(x1 − x2)(x2 − x3)

−4δ(x3 − x4) + δ(x1 − x3)(x3 − x4)
−4δ(x4 − x2)

+ δ(x1 − x4)(x4 − x2)
−4δ(x2 − x3)

]
.

We write three terms because there are three topologically distinct configurations of the vertices. 
Moreover, one must divide their contribution by the “symmetry factor”, which counts the order 
of the permutation group of the lines, with the vertices fixed. Here this number is equal to 2. This 
gives a total weight of 3/2 for the fish graph in the perturbation expansion. In this paper we do 
not use these variations, so we simply compute the weights of all the graphs we deal with by the 
direct method in [35, Chap. 14].

Let us moreover leave aside weights and (4π2)−1 factors until the moment when we sum the 
perturbation expansions. Taking advantage of translation invariance to label the vertices as:
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0 x
• •

we are left with just our old acquaintance R4[r−4], with r = |x|.
In what follows, we write x2 = xαxα for x ∈R

4, x4 = (x2)2 and so on; all integrals are taken 
over R4.

4.1. A third-order graph by convolution

The next simplest case is the “bikini” graph, which can be labelled thus, with u denoting the 
internal vertex:

0 u x
• • •

The rules of quantum mechanics prescribe integration over the internal vertices in x-space. From 
the unrenormalized amplitudeˆ

1

u4

1

(x − u)4
du

(which looks formally like a convolution, though the factors are not actually convolvable) we 
obtain, on replacing these factors by their extensions, the renormalized versionˆ

R4
[
u−4]R4

[
(x − u)−4]du, (4.2)

a bona fide convolution, since, as shown in the previous section, R4[r−4] is convolvable with 
itself. Specializing (3.5) to d = 4 and using ψ ′(2) − π2/6 = −1, one may conclude that

• • • = 4π2R4

[
x−4 log

|x|
l

]
− π4δ(x). (4.3)

This looks like a log-homogeneous amplitude of bidegree (−4, 2). More precisely, in the three 
difference variables, say x1 − x2, x2 − x3, x3 − x4, with the obvious relabeling of the indices, it 
is quasi-log-homogeneous of bidegree (−4, 0; −4, 2; −4, 0).

A peek at Eq. (A.4) now shows that the coefficient of log2 l in the result (4.3) is equal to 4π4. 
Here we observe that “predicting” the coefficients of logk l for k > 1 is fairly easy. With the 
help of [37], which determines the primitive elements in bialgebras of graphs,3 a method recom-
mended by Kreimer [38] was applied in [39]. To wit, primitive elements should have vanishing
coefficients of logk l for k > 1. In the present case, the bikini graph minus the square of the fish 
is primitive, and so for the coefficient of log2 l the value Ω2

4 , equal to the obtained 4π4, was 
predicted.

For later use, we obtain the scale derivative:

l
∂

∂l

( • • • ) = −4π2 • • , (4.4)

directly from (2.17) and (4.3).

3 Actually that reference deals with the bialgebra of rooted trees, but cela fait rien à l’affaire.
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4.2. A third-order ladder graph: the winecup

Next comes the winecup or ice-cream ladder graph, with vertices labelled as follows:

0 y

x

• •

•

We denote it 
. .
. (x, y) for future use. The corresponding bare amplitude is given by

f (x, y) = 1

x2(x − y)2y4
.

Consider a “partially regularized” version of it, for which the known formulas yield:

R8
[
x−2(x − y)−2y−4]

= −1

2
x−2(x − y)−2�

(
y−2 log

|y|
l

)
+ π2x−4δ(y). (4.5)

The last expression indeed makes sense for all (x, y) �= (0, 0). To proceed, we largely follow [4],4

which invokes Green’s integration-by-parts formula,

(�B)A = (�A)B + ∂β(A∂βB − B∂βA), (4.6)

that will be rigorously justified soon, in the present context. Thus

−1

2
x−2(x − y)−2�y

(
y−2 log

|y|
l

)
= −1

2
x−2y−2 log

|y|
l

�y

(
(x − y)−2) + 1

2
x−2∂β

y Lβ(y;x − y)

= 2π2x−4 log
|x|
l

δ(x − y) + 1

2
x−2∂β

y Lβ(y;x − y),

where

Lβ(y;x − y) := y−2 log
|y|
l

∂
y
β

(
(x − y)−2) − (x − y)−2∂

y
β

(
y−2 log

|y|
l

)
(4.7)

deserves a name, since it is going to reappear often. The presence of the δ(x − y) factor is 
rewarding. Now it is evident that renormalized forms of x−4 and x−4 log |x| should be used. The 
only treatment required by the last term is that the derivative be understood in the distributional 
sense. Thus, in the end, we have computed:

4 Since R4[y−4]x−2(x − y)−2 is undefined only at the origin, the procedure (2.10) assuredly works, giving rise to 
alternative expressions, very much like the ones proposed by Smirnov and Zav’yalov some time ago [40]. This was the 
path taken in [39]. We find those, however, somewhat unwieldy.
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. .
. (x, y) = R8

[
x−2(x − y)−2y−4]

= 2π2R4

[
x−4 log

|x|
l

]
δ(x − y) + π2R4

[
x−4]δ(y)

+ 1

2
x−2∂β

y Lβ(y;x − y). (4.8)

We now carefully justify Eq. (4.6) for this case. Under the hypothesis ϕ(0, 0) = 0, substitute 
A(y) = (x − y)−2 and B(y) = y−2 log(|y|/l) there, and compute:〈

x−2�

(
y−2 log

|y|
l

)
, (x − y)−2ϕ(x, y)

〉
=

〈
x−2y−2 log

|y|
l

,�y

(
(x − y)−2ϕ(x, y)

)〉
=

〈
x−2y−2 log

|y|
l

�y

(
(x − y)−2), ϕ(x, y)

〉
+ 2

〈
x−2y−2 log

|y|
l

∂
y
β

(
(x − y)−2), ∂β

y ϕ(x, y)

〉
−

〈
x−2∂

y
β

(
(x − y)−2y−2 log

|y|
l

)
, ∂β

y ϕ(x, y)

〉
=

〈
x−2y−2 log

|y|
l

�y

(
(x − y)−2), ϕ(x, y)

〉
+

〈
x−2y−2 log

|y|
l

∂
y
β

(
(x − y)−2), ∂β

y ϕ(x, y)

〉
−

〈
x−2(x − y)−2∂

y
β

(
y−2 log

|y|
l

)
, ∂β

y ϕ(x, y)

〉
=

〈
x−2y−2 log

|y|
l

�y

(
(x − y)−2), ϕ(x, y)

〉
−

〈
x−2∂

y
β

(
y−2 log

|y|
l

∂β
y

(
(x − y)−2) − (x − y)−2∂β

y

(
y−2 log

|y|
l

))
, ϕ(x, y)

〉
.

Observe again that the coefficient of log2 l was foreordained: the two-vertex tree minus half of 
the square of the one-vertex tree (here the fish) is primitive, and so for the numerical coefficient 
of log2 l in (4.8) we were bound to obtain 1

2Ω2
4 = 2π4, which is correct: see (A.4).

We turn to the scale derivative for the winecup. Prima facie it yields:

l
∂

∂l

. .
. (x, y) = −2π2R4

[
x−4]δ(x − y) − 2π4δ(x)δ(y)

+ 2π2x−4δ(x − y) − 2π2x−4δ(y). (4.9)

The difference between the third and fourth terms above is a well-defined distribution, sinceˆ
ϕ(x, x) − ϕ(x,0)

x4
d4x

converges for any test function ϕ. We may reinterpret the x−4 in (4.9) as R4[x−4], since the 
corresponding difference is still the same unique extension. So the scale derivative becomes
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−2π2R4
[
x−4]δ(x − y) − 2π4δ(x)δ(y) + 2π2R4

[
x−4]δ(x − y) − 2π2R4

[
x−4]δ(y)

= −2π2 • • (x)δ(y) − 2π4δ(x)δ(y). (4.10)

Let us now reflect on what we have just done, in order to set forth our methods. Understanding 
and fulfillment of the fundamental equation (1.1) is essential. The winecup graph exemplifies it 
well. There formula (4.5) expresses R[γ ] for V(γ ) = {0, y}. The cograph Γ/γ is a fish:

0 = y x• •

Now, the test function ϕ in (1.1) is assumed to vanish on the thin diagonal x = y = 0. Then (1.1)
simply means〈

R8
[
x−2(x − y)−2y−4], ϕ(x, y)

〉 = 〈
R8

[
x−2(x − y)−2y−4], ϕ(x, y)

〉
= 〈

R4
[
y−4], x−2(x − y)−2ϕ(x, y)

〉
when ϕ(0, 0) = 0; and this is all we need to ask.5

As we shall see next, similar procedures obeying the fundamental formula (1.1), canvassing 
help from Section 3 when necessary, allow one to compute all the fourth-order contributions to 
the four-vertex function. It will become clear that the scale derivative is related to the hierarchy 
of cographs.

4.3. Empirical remarks on the main theorem of renormalization

For the four-point function G4, we are able to consider already the contributions at orders g, 
g2, g3. From now on we adopt a standard redefinition of the coupling constant:

ḡ = g

16π2
,

which eliminates many π factors. Thus, for the first-order contribution, introducing a global 
minus sign as a matter of convention:

G4
(1)(x1, x2, x3, x4; ḡ) ≡ G4

. (x1, x2, x3, x4) = 16π2ḡδ(x1 − x2)δ(x2 − x3)δ(x3 − x4).

Contributions of graphs of different orders to the four-point function come with alternating 
signs [35, Chap. 13]. Thus the fish diagram contribution G4

. . is given by

G4
. . (x1, x2, x3, x4; ḡ; l) = − g2

32π4

(
δ(x1 − x2)R4

[
(x2 − x3)

−4; l]δ(x3 − x4)

+ 2 permutations
)

= −8ḡ2(δ(x1 − x2)R4
[
(x2 − x3)

−4; l]δ(x3 − x4)

+ δ(x1 − x3)R4
[
(x3 − x4)

−4; l]δ(x4 − x2)

+ δ(x1 − x4)R4
[
(x4 − x2)

−4; l]δ(x2 − x3)
)
.

5 As also noted in [41, Remark 6.1], our use of renormalized expressions for divergent subgraphs avoids appeal to the 
forest formula entirely.
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The practical rule to go from the scale derivatives of the graphs as we have calculated them to 
their actual contributions to the four-point function is simple: multiply the coefficient of the scale 
derivative by −ḡ/π2 raised to a power equal to the difference in the number of vertices, and also 
by the relative weight, for the diagrams in question.

A key point here, harking back to (2.15) and recalling that the fish has weight 3
2 , is that

l
∂

∂l
G4

. . = 3ḡG4
. . (4.11)

If we now define the second-order approximation G4
(2) := G4

. + G4
. . , we find that

G4
(2)(x1, x2, x3, x4; ḡ; l) − G4

(2)

(
x1, x2, x3, x4; ḡ; l′)

= 48π2ḡ2 log
l

l′
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4).

This of course means that

G4
(2)(x1, x2, x3, x4; ḡ; l) = G4

(2)

(
x1, x2, x3, x4;Gll′

(2)(ḡ); l′),
where G

ll′
(2)(ḡ) = ḡ + 3 log

l

l′
ḡ2 + O

(
ḡ3).

The bikini graph has a weight of 3/4 in the perturbation expansion. We obtain

G4
. . . (x1, x2, x3, x4; ḡ; l)

= 16ḡ3δ(x1 − x2)

(
R4

[
(x2 − x3)

−4 log
|x2 − x3|

l

]
− π2

4
δ(x2 − x3)

)
δ(x3 − x4)

+ 2 permutations.

Here the two permutations have the same structure as those of the fish graph. Therefore,

l
∂

∂l
G4

. . . = 2ḡG4
. . , (4.12)

coming from (4.4) when all factors have been taken into account, according to the rule explained 
above.

In the third-order approximation,

G4
(3) := G4

. + G4
. . + G4

. . . + G4
. .
.

,

we examine first the difference

G4
. . . (x1, x2, x3, x4; ḡ; l) − G4

. . .
(
x1, x2, x3, x4; ḡ; l′).

From (A.4) one sees that

R4

[
r−4 log

r

l

]
− R4

[
r−4 log

r

l′

]
= π2(log2 l − log2 l′

)
δ(r) − log

l

l′
R4

[
r−4;1

]
,

so the difference may be rewritten as

48ḡ3π2(log2 l − log2 l′
)
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

− 16ḡ3 log
l (

δ(x1 − x2)R4
[
(x2 − x3)

−4;1
]
δ(x3 − x4) + 2 permutations

)
. (4.13)
l′



J.M. Gracia-Bondía et al. / Nuclear Physics B 886 (2014) 824–869 843
The winecup graph enters with weight 3 in the perturbation expansion. In detail:

G(4)
. .
.

(x1, x2, x3, x4; ḡ; l) = 16ḡ3δ(x1 − x2)

(
R4

[
(x2 − x4)

−4 log
|x2 − x4|

l

]
δ(x2 − x3)

+ 1

2
R4

[
(x2 − x4)

−4; l]δ(x3 − x4)

+ (x2 − x4)
−2

4π2
∂β
x3

(
(x3 − x4)

−2 log
|x3 − x4|

l
∂β
x3

(x2 − x3)
−2

− (x2 − x3)
−2∂β

x3

(
(x3 − x4)

−2 log
|x3 − x4|

l

))
+ R4

[
(x2 − x3)

−4 log
|x2 − x3|

l

]
δ(x2 − x4)

+ 1

2
R4

[
(x2 − x3)

−4; l]δ(x3 − x4)

+ (x2 − x3)
−2

4π2
∂β
x4

(
(x3 − x4)

−2 log
|x3 − x4|

l
∂β
x4

(x2 − x4)
−2

− (x2 − x4)
−2∂β

x4

(
(x3 − x4)

−2 log
|x3 − x4|

l

)))
+ 2 permutations of each. (4.14)

The scale derivative can be obtained either from (4.10) by applying the conversion rule, or now 
directly from (4.14):

l
∂

∂l
G4

. .
.

= 4ḡG4
. . − 6ḡ2G4

. . (4.15)

The difference between the winecup expansion (4.14) at two scales has several contributions. 
From the R4[r−4 log(r/ l)] terms we collect

−16ḡ3 log
l

l′
(
δ(x1 − x2)R4

[
(x2 − x4)

−4;1
]
δ(x2 − x3)

+ δ(x1 − x2)R4
[
(x2 − x3)

−4;1
]
δ(x2 − x4)

)
,

plus its two permutations. None of those is of the same type as those coming from (4.13). Nev-
ertheless, from the divergence part of (4.14) we recover

16ḡ3 log
l

l′
(
δ(x1 − x2)R4

[
(x2 − x4)

−4;1
]
δ(x2 − x3)

)
,

and similar terms, cancelling all of the previous terms. The divergence part also produces terms 
like the second line of (4.13), with a doubled coefficient. The remaining summand 8ḡ3δ(x1 −
x2)R4[(x2 − x4)

−4; l]δ(x3 − x4), and its permutations, generate

−96π2ḡ3 log
l

l′
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4).

Putting together all the contributions up to third order, we arrive at
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G4
(3)(x1, x2, x3, x4; ḡ; l) − G4

(3)

(
x1, x2, x3, x4; ḡ; l′)

= 48π2ḡ2 log
l

l′
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

− 144ḡ3 log
l

l′
(
δ(x1 − x2)R4

[
(x2 − x4)

−4;1
]
δ(x2 − x3)

)
− 96π2ḡ3 log

l

l′
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

+ 144ḡ3π2(log2 l − log2 l′
)
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4).

Now, we look for a coefficient α in

G
ll′
(3)(ḡ) = ḡ + 3 log

l

l′
ḡ2 + αḡ3 + O

(
ḡ4),

such that

G4
(3)(x1, x2, x3, x4; ḡ; l) = G4

(3)

(
x1, x2, x3, x4;Gll′

(3)(ḡ); l′) + O
(
ḡ4). (4.16)

We see that the term in ḡ2 does not need revisiting. Of course, general theory ensures that. Next,

G4
(3)

(
x1, x2, x3, x4;Gll′

(3)(ḡ); l′)
= G4

(3)(x1, x2, x3, x4; ḡ; l) + 16π2αḡ3δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

− 144ḡ3π2(log2 l − log2 l′
)
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

+ 96π2ḡ3 log
l

l′
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4) + O

(
ḡ4).

Therefore, the relation (4.16) is verified by taking

G
ll′
(3)(ḡ) = ḡ + 3 log

l

l′
ḡ2 +

(
9
(
log2 l − log2 l′

) − 6 log
l

l′

)
ḡ3 + O

(
ḡ4).

At this very humble level, this illustrates the Popineau–Stora “main theorem of renormaliza-
tion” [9]—as applied to the effective action. To wit, there exists a formal power series G(ḡ), 
tangent to the identity, that effects the change between any two renormalization recipes.6 Actu-
ally, there is more to the theorem than was allowed in [9]. One can write

G4
(n)(x1, x2, x3, x4; ḡ; l) = G4

(n)

(
x1, x2, x3, x4;Gll′

(N−1)(ḡ); l′) + O
(
ḡn+1),

for any n ≤ N − 1. Here G
ll′
(N−1) need only be taken up to order n. Let

G
ll′
(N−1)(ḡ) = ḡ + Hll′

2 (ḡ) + Hll′
3 (ḡ) + · · · + Hll′

N−1(ḡ) =: ḡ + Hll′
(N−1)(ḡ).

Here each Hll′
n comes from a distribution with support on the corresponding thin diagonal exclu-

sively. Then

G
ll′
(N) = G

ll′
(N−1) + Hll′

(N)

(
G

ll′
(N−1)

)
,

6 When one allows ḡ to become a test function g(x), that series is local in the coordinates, although it may depend on 
the derivatives of g(x).
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where only terms up to order N in the last expansion need be taken. One may let N ↑ ∞, 
obtaining the “tautological” identity

G
ll′ = id + H

(
G

ll′)
.

This is what Stora understands by the Bogoliubov recursion relation for the coupling constant—
apparently a deeper fact than the Bogoliubov recursion for the graphs [42,43].

For future reference, we report here the weight factors of the graphs contributing to G4 at 
order g4. For the sets:{

• • • • , • •• •
, • ••

•

}
;

{
• • •

•
, • •

•

•
,

• •
•

•
}

;

{
•

• •

•
,

•
• •

•
}

,

these numbers are respectively given by { 3
8 , 12 , 34 }; { 3

2 , 32 , 6}; {1, 32 }.

5. More graphs

In this section, we consider each one of the eight graphs with four vertices required to compute 
the four-point function. We discuss first the three graphs with two external vertices, then those 
three with three external vertices, and finally those two with four external vertices. The last of 
these do not require convolution-like operations.

5.1. The trikini

The “trikini” is a fourth-order, three-loop chain graph, that is a convolution cube. The quickest 
method is to pass to multiplication in p-space, using (C.4) from Appendix C:

• • • • = (
R4

[
x−4])∗3

= 12π4R4

[
x−4 log2 |x|

l

]
− 3π4R4

[
r−4] + (

4ζ(3) − 2
)
π6δ(x). (5.1)

In general, the amplitude of a chain graph with (n + 1) vertices in p-space is given by

π2n

(
1 − 2 log

|p|
Λ

)n

(5.2)

where Λ = 2e−γ / l. The result is readily transferable to x-space, using the formulas of Ap-
pendix C to invert the Fourier transforms.

We note that with the differential renormalization method of [4] only (2 log(|p|/Λ))n is com-
puted. The problem is compounded by a mistake in their Fourier transform formula, whose origin 
is dealt with in the appendix.
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We easily compute as usual the scale derivative:

l
∂

∂l
• • • • = −6π2 • • • , translating into

l
∂

∂l
G4

. . . . = 3ḡG4
. . . ,

since the weight of the • • • • graph is half the weight of the • • • graph. 
In general, the scale derivative of the contribution to G4 of a chain graph with n bubbles equals 
nḡ times that of the graph with (n − 1) bubbles. Indeed, it follows at once from (2.15) or alter-
natively from (5.2) that

l
∂

∂l

(
R4

[
x−4])∗n = −2nπ2(R4

[
x−4])∗(n−1)

,

and the aforementioned practical rule gives the result for the contributions to G4.

5.2. The stye

The “partially renormalized” amplitude for the stye diagram, labelled as follows:

0 x

v w

• •
• •

is of the form

x−2
¨

R12
[
v−2(v − w)−6(w − x)−2]dv dw

= x−2
¨

R12
[
v−2u−6(v − u − x)−2]dudv.

Notice that this is a nested convolution; the inner integral is of the form R4[r−6] ∗ r−2, which 
exists by the theory of Section 3. On account of (2.19), the integral becomes

− 1

16
x−2

¨
v−2(v − u − x)−2

(
�2

(
u−2 log

|u|
l

)
− 5π2�δ(u)

)
dv du.

On integrating by parts with (4.6) and dropping total derivatives in the integrals over internal 
vertices, we then obtain

π2

4
x−2

¨
v−2

(
�

(
u−2 log

|u|
l

)
− 5π2δ(u)

)
δ(v − u − x)dv du

= π2

4
x−2

ˆ
(u + x)−2

(
�

(
u−2 log

|u|
l

)
− 5π2δ(u)

)
du

= −π4x−2
ˆ

u−2 log
|u|
l

δ(u + x)du − 5π4

4
x−4 = −π4x−4 log

|x|
l

− 5π4

4
x−4.

The fully renormalized amplitude for the stye graph is then simply given by

• •• • = −π4R4

[
x−4 log

|x|] − 5π4

R4
[
x−4].
l 4
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Therefore

l
∂

∂l
• •• • = π4 • • + 5π6

2
• , translating into

l
∂

∂l
G4

. .. . = 1

3
ḡ2G4

. . − 5

4
ḡ3G4

. .

5.3. The cat’s eye

The “cat’s eye” graph, which we label as follows:

0 x

u

v

• •
•

•

is sometimes counted as an “overlapping divergence” in p-space. But for renormalization on 
configuration space, this problem is more apparent than real: “the external points can be kept 
separated until the regularization of subdivergences is accomplished” [4, Sect. 3.3]. For the same 
reasons, when dealing with this graph we find it unnecessary to bring in partitions of unity for 
overlapping divergences [11, Example 4.16].

There are two internal vertices; its “bare” amplitude is of the form

f (x) =
¨

u−2v−2(u − x)−2(v − x)−2(u − v)−4 dudv.

A first natural rewriting is

f (x)
R�−→ −1

2

¨
u−2v−2(u − x)−2(v − x)−2�u

(
(u − v)−2 log

|u − v|
l

)
dudv

+ π2
¨

u−2v−2(u − x)−2(v − x)−2δ(u − v)dudv.

From now on, we shall use the notation 
R�−→ to denote a single step in a sequence of one of more 

partial renormalizations, by replacements r−d−2m logk(r/ l) 
R�−→Rd [r−d−2m logk(r/ l)]. That is 

not yet R4[f (x)], since there are other untreated subdivergences in the diagram. The second term 
in this expression, however, is just the bikini convolution integral, which becomes

π2
ˆ

v−4(v − x)−4 dv
R�−→ 4π4R4

[
x−4 log

|x|
l

]
− π6δ(x).

The first term can be simplified by an integration by parts, to get

2π2x−2
ˆ

(v − x)−2v−4 log
|v|
l

dv + 2π2x−2
ˆ

v−2(v − x)−4 log
|v − x|

l
dv

−
¨

v−2(v − x)−2∂β
u

(
u−2)∂u

β

(
(u − x)−2)(u − v)−2 log

|u − v|
l

dudv. (5.3)

The first two of these integrals are equal. To deal with the v ∼ 0 region, we proceed as before:
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4π2x−2
ˆ

(v − x)−2v−4 log
|v|
l

dv

R�−→−π2x−2
ˆ

(v − x)−2
(

�

(
v−2 log2 |v|

l

)
+ �

(
v−2 log

|v|
l

)
− 2π2δ(v)

)
dv

R�−→4π4R4

[
x−4 log2 |x|

l

]
+ 4π4R4

[
x−4 log

|x|
l

]
+ 2π4R4

[
x−4].

The third term in (5.3) is only divergent overall, at x = 0. After rescaling the integrand by 
u �→ |x|s, v �→ |x|t , and setting x = |x|ω, this term takes the form

−c1π
4x−4 log

|x|
l

− c2π
4x−4,

where

c1 = 1

π4

¨
t−2(t − ω)−2∂β

s

(
s−2)∂s

β

(
(s − ω)−2)(s − t)−2 ds dt = 4,

c2 = 1

π4

¨
t−2(t − ω)−2∂β

s

(
s−2)∂s

β

(
(s − ω)−2)(s − t)−2 log

|s − t |
l

ds dt = 4.

These are computed straightforwardly, if tediously, by use of Gegenbauer polynomials [4]. Thus, 
this third term yields

−4π4R4

[
x−4 log

|x|
l

]
− 4π4R4

[
x−4].

Putting it all together, we arrive at

• ••
• = 4π4R4

[
x−4 log2 |x|

l

]
+ 4π4R4

[
x−4 log

|x|
l

]
− 2π4R4

[
x−4] − π6δ(x).

With that, we obtain

l
∂

∂l
• ••

• = −8π4R4

[
x−4 log

|x|
l

]
− 4π4R4

[
x−4] + 4π6δ(x)

= −2π2 • • • − 4π4 • • + 2π6δ(x); translating into

l
∂

∂l
G4

. ..
.

= 2ḡG4
. . . − 2ḡ2G4

. . − 3

2
ḡ3G4

. .

5.4. The duncecap

Consider next the “duncecap”, which contains a bikini subgraph:

0
u

y

x

• • •

•

The unrenormalized amplitude is given by

f (x, y) = x−2(x − y)−2(y−4)∗2
.



J.M. Gracia-Bondía et al. / Nuclear Physics B 886 (2014) 824–869 849
Once again, we may partially regularize this, using (4.3), to get

R8
[
x−2(x − y)−2(y−4)∗2] = π2x−2(x − y)−2

(
4R4

[
y−4 log

|y|
l

]
− π2δ(y)

)
,

which is well defined for (x, y) �= (0, 0). We want to apply the integration by parts formula (4.6)
here, and we invoke (A.4) for the purpose:

R8
[
x−2(x − y)−2(y−4)∗2] = −π2x−2(x − y)−2�

(
y−2 log2 |y|

l

)
− π2x−2(x − y)−2�

(
y−2 log

|y|
l

)
+ π4x−4δ(y),

which leads easily to the renormalized version:

R8
[
x−2(x − y)−2(y−4)∗2] = 4π4R4

[
x−4 log2 |x|

l
+ x−4 log

|x|
l

]
δ(x − y)

+ π4R4
[
x−4]δ(y)

+ π2x−2∂β
y

(
Lβ(y;x − y) + Mβ(y;x − y)

)
,

where we call upon (4.7) and a companion formula:

Mβ(y;x − y) := y−2 log2 |y|
l

∂
y
β

(
(x − y)−2) − (x − y)−2∂

y
β

(
y−2 log2 |y|

l

)
. (5.4)

The Green formula (4.6) easily yields

l
∂

∂l

[
∂β
y Lβ(y;x − y)

] = 4π2x−2(δ(x − y) − δ(y)
)
,

and clearly l ∂
∂l

[∂β
y Mβ(y; x −y)] = −2∂

β
y Lβ(y; x −y). From this, we obtain for the scale deriva-

tive, in the same way as for the winecup:

l
∂

∂l • • •

•
= −8π4R4

[
x−4 log

|x|
l

]
δ(x − y) − 4π4R4

[
x−4]δ(x − y) − 2π6δ(x)δ(y)

+ 4π4R
[
x−4]δ(x − y) − 4π4R

[
x−4]δ(y) − 2π2x−2∂β

y Lβ(y;x − y)

= −4π2 . .
. (x, y) − 2π6δ(x)δ(y);

yielding, after the usual manipulation,

l
∂

∂l
G4

. . .
. = 2ḡG4

. .
.

+ 3ḡ3G4
. .

5.5. The kite

The kite graph has the following structure, showing an internal winecup:
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u
x

y

0

• •

•

•

The labelling is that recommended by [4].
One may anticipate the coefficients of logarithmic degrees 3 and 2 in the final result, by invok-

ing again [37], particularly its Section 4.2, and [38,39]. We focus on the third-degree coefficients. 
Notice that the kite is a rooted-tree graph, actually a “stick”, with the fish as unique “decoration”. 
Subtracting from it the disconnected juxtaposition of the winecup and the fish graph, and adding 
one third of the product of three fishes, one obtains a primitive graph in the cocommutative bial-
gebra of sticks. For this combination the dilation coefficient of log3 l must vanish. We obtain then 
for this graph the coefficient 2π4 × 2π2 − 8π6/3 = 4π6/3.

Starting from the bare amplitude

f (x, y) = y−2(x − y)−2
ˆ

u−2(u − y)−2(u − x)−4 du,

partial renormalization gives

f (x, y)
R�−→y−2(x − y)−2

ˆ
u−2(u − y)−2R4

[
(u − x)−4]du

= −1

2
y−2(x − y)−2

ˆ
u−2(u − y)−2�x

(
(x − u)−2 log

|x − u|
l

)
du

+ π2x−2y−2(x − y)−4.

The second summand is a winecup: namely, the cograph obtained on contracting the u–x fish. It 
contributes

π2x−2y−2R4
[
(x − y)−4] = −π2

2
x−2y−2�y

(
(x − y)−2 log

|x − y|
l

)
+ π4x−4δ(x − y)

= 2π4x−4 log
|x|
l

δ(y) + π4x−4δ(x − y)

− π2

2
x−2∂β

y Lβ(x − y;y)

R�−→2π4R4

[
x−4 log

|x|
l

]
δ(y) + π4R4

[
x−4]δ(x − y)

− π2

2
x−2∂β

y Lβ(x − y;y). (5.5)

There remains the term − 1
2y−2(x−y)−2�x

´
u−2(u −y)−2(x−u)−2 log |x−u|

l
du. Following 

a suggestion of [4], we may write

log
|x − u|

l
= log

|x − u|
|y − u| + log

|y − u|
l

. (5.6)

The second summand above contributes
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−1

2
y−2(x − y)−2

ˆ
u−2(u − y)−2�x

(
(x − u)−2) log

|y − u|
l

du

= 2π2x−2y−2(x − y)−4 log
|x − y|

l

R�−→−π2

2
x−2y−2�x

(
(x − y)−2 log2 |x − y|

l
+ (x − y)−2 log

|x − y|
l

)
+ π4x−4δ(x − y)

= 2π4
(

y−4 log2 |y|
l

+ y−4 log
|y|
l

)
δ(x) + π4x−4δ(x − y)

− π2

2
y−2∂β

x

(
Lβ(x − y;x) + Mβ(x − y;x)

)
R�−→2π4R4

[
y−4 log2 |y|

l
+ y−4 log

|y|
l

]
δ(x) + π4R4

[
x−4]δ(x − y)

− π2

2
y−2∂β

x

(
Lβ(x − y;x) + Mβ(x − y;x)

)
. (5.7)

It helps to introduce the integral:
ˆ

u−2(x − u)−2(y − u)−2 log
|x − u|
|y − u| du = 1

2
log

|x|
|y|

ˆ
u−2(x − u)−2(y − u)−2 du

=: 1

2
log

|x|
|y|K(x,y).

The first equality above is obtained by easy symmetry arguments. Thus the remaining term of 
the partially renormalized expression for the kite is of the form

−1

4
y−2(x − y)−2�x

(
K(x,y) log

|x|
|y|

)
.

Integration by parts once more expands this to

π2y−2K(x,y) log
|x|
|y|δ(x − y)

+ 1

4
y−2∂β

x

(
∂x
β

(
(x − y)−2)K(x,y) log

|x|
|y| − (x − y)−2∂x

β

(
K(x,y) log

|x|
|y|

))
.

The first term vanishes since K(x, y) log(|x|/|y|) is skewsymmetric; and only the total derivative 
part remains.

Combining this total derivative with the other contributions (5.5) and (5.7), we arrive at the 
renormalized amplitude for the kite:

• •
•

• = 2π4R4

[
y−4 log2 |y|

l

]
δ(x) + 2π4R4

[
y−4 log

|y|
l

]
δ(x)

+ 2π4R4

[
x−4 log

|x|
l

]
δ(y)

+ 2π4R4
[
x−4]δ(x − y) − π2

x−2∂β
y Lβ(x − y;y)
2
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− π2

2
y−2∂β

x

(
Lβ(x − y;x) + Mβ(x − y;x)

)
+ 1

4
∂β
x

(
y−2∂x

β

(
(x − y)−2)K(x,y) log

|x|
|y|

− y−2(x − y)−2∂x
β

(
K(x,y) log

|x|
|y|

))
.

Note now, using (A.5), that the coefficient −π4/3 of y−2 log3(|y|/l) agrees with our expectation. 
To wit, −4π2 × (−π4/3) = 4π6/3.

The scale derivative of the kite now follows readily; note that the last line in the above display 
for the amplitude will not contribute. We obtain

l
∂

∂l

( . .
..

) = −4π4R4

[
y−4 log

|y|
l

]
δ(x) − 2π4R4

[
y−4]δ(x) − 2π4R4

[
x−4]δ(y)

− 4π6δ(x)δ(y) − 2π4R4
[
x−4](δ(x − y) − δ(y)

)
− 2π4R4

[
y−4](δ(x − y) − δ(x)

) + π2y−2∂β
x Lβ(x − y;x)

= −4π4R4

[
y−4 log

|y|
l

]
δ(x) − 4π4R4

[
y−4]δ(x − y) − 4π6δ(x)δ(y)

− π2y−2∂β
x Lβ(y − x;x)

= −2π2 . .
. (y, y − x) − 2π4 . . (x)δ(x − y) − 4π6δ(x)δ(y).

(The first cograph on the right hand side has a different labelling of the vertices from that of 
Section 4.2.) We end up with

l
∂

∂l
G4

. .
..

= 4ḡG4
. .
.

− 8ḡ2G2
. . + 24ḡ3G4

. .

To derive an explicit expression for K(x, y), note first that K(tx, ty) = t−2K(x, y), so we can 
assume for now that |y| = 1. Writing x = rω, u = sσ , y = η in polar form, we can expand the 
integrand in Gegenbauer polynomials. For instance, in the region s < r < 1 of the (r, s) positive 
quadrant, we get

(y − u)−2 =
∞∑

n=0

snC1
n(η · σ); (x − u)−2 = 1

r2

∞∑
m=0

sm

rm
C1

m(σ · ω).

Following [44], we take advantage of the underlying conformal symmetry to introduce a complex 
variable z determined by

|z| = r = |x| and (y − x)2 = 1 − 2rη · ω + r2 = |1 − z|2.
The Gegenbauer orthogonality relations and the formula C1

m(cos θ) = sin(m + 1)θ/ sin θ show 
that ˆ

S3

C1
n(η · σ)C1

m(σ · ω)d3σ = Ω4δmn

n + 1
C1

n(η · ω) = 2π2δmn

n + 1
C1

n

(
z + z̄

2|z|
)

= 2π2δmn

n

zn+1 − z̄n+1

.

(n + 1)|z| z − z̄
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In the given (r, s)-region, each such term is multiplied by r−n−2
´ r

0 s2n+1ds = |z|n/2(n + 1), 
yielding a contribution to K(x, y) of

π2

z − z̄

∞∑
n=0

zn+1 − z̄n+1

(n + 1)2
= π2

z − z̄

(
L2(z) −L2(z̄)

)
,

where L2(ζ ) = ∑∞
m=1 ζ n/n2 is the Euler dilogarithm.

Similar expressions are found for the other regions of the positive quadrant: see [44] for more 
detail. The full result, always assuming that |y| = 1, is

K(x,y) = π2

z − z̄

(
2L2(z) − 2L2(z̄) + log |z|2 log

1 − z

1 − z̄

)
,

which turns out to be a single-valued complex function, the so-called Bloch–Wigner diloga-
rithm [45]. For general |y|, this yields the expression of [4] for K(x, y):

π2

2i
√

x2y2 − (x · y)2

(
2L2

(
(x · y)2 + i

√
x2y2 − (x · y)2

y2

)

− 2L2

(
(x · y)2 − i

√
x2y2 − (x · y)2

y2

)
+ log

x2

y2
log

y2 − (x · y)2 − i
√

x2y2 − (x · y)2

y2 − (x · y)2 + i
√

x2y2 − (x · y)2

)
.

5.6. The shark

Last of its class, we consider the shark graph, which has the structure of a convolution of two 
renormalized diagrams:

x u

0

y

• •
•

•

One-vertex reducible diagrams of this type do not require overall renormalization: once the con-
volution is effected, the task is over. However, the matter is not as simple as implied in [4, 
Sect. 3.3]: “Since each factor in the convolution has a finite Fourier transform, so does the full 
result”. Of course not: rather, it is in view of our Proposition 2 that the convolution product makes 
sense.

For the winecup subgraph, (4.8) gives:

R8
[
u−2(u − y)−2y−4] = 2π2R4

[
u−4 log

|u|
l

]
δ(u − y)

+ π2R4
[
u−4]δ(y) + 1

2
u−2∂β

y Lβ(y;u − y).

The fish subgraph is just R4[(x − u)−4].
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Several contributions are immediately computable. First, a (well-defined) product of distribu-
tions,

2π2
ˆ

R4

[
u−4 log

|u|
l

]
R4

[
(x − u)−4]δ(u − y)du

= 2π2R4

[
y−4 log

|y|
l

]
R4

[
(x − y)−4].

Next, the straightforward convolution,

π2δ(y)

ˆ
R4

[
u−4]R4

[
(x − u)−4]du = 4π4R4

[
x−4 log

|x|
l

]
δ(y) − π6δ(x)δ(y).

Thirdly, using R4[(x − u)−4] = − 1
2�((x − u)−2 log(|x − u|/l)) + π2δ(x − u), we extract

π2

2

ˆ
u−2∂β

y Lβ(y;u − y)δ(x − u)du = π2

2
x−2∂β

y Lβ(y;x − y).

Lastly, we have to add the term

−1

4
∂β
y �x

ˆ
u−2Lβ(y;u − y)(x − u)−2 log

|x − u|
l

du.

Using (5.6) once more to expand log(|x − u|/l), this can be rewritten in terms of K(x, y) as 
defined in the previous case; but this is hardly worthwhile.

For the scale derivative, we look first at l ∂
∂l

´ 1
2u−2∂

β
y Lβ(y; u −y)R4[(x −u)−4] du, yielding:

−π2
ˆ

u−2∂β
y Lβ(y;u − y)δ(x − u)du

+ 2π2
ˆ (

R4
[
u−4]δ(u − y) − R4

[
u−4]δ(y)

)
R4

[
(x − u)−4]du

= −π2x−2∂β
y Lβ(y;x − y) + 2π2R4

[
y−4]R4

[
(x − y)−4] − 2π2 . . . (x)δ(y).

Therefore,

l
∂

∂l

(
. .

.

.
) = −2π2R4

[
y−4]R4

[
(x − y)−4]

− 4π4R4

[
x−4 log

|x|
l

]
δ(x − y) − 4π4R4

[
x−4]δ(y)

− π2x−2∂β
y Lβ(y;x − y) + 2π2R4

[
y−4]R4

[
(x − y)−4]

− 2π2 . . . (x)δ(y)

= −2π2 . .
. (x, y) − 2π2 . . . (x)δ(y) − 2π4 . . (x)δ(y).

This translates into:

l
∂

∂l
G4

. .
.
.

= ḡG4
. .
.

+ 4ḡG4
. . . − 2ḡ2G4

. . .
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5.7. The tetrahedron diagram

The tetrahedron graph is primitive and already understood [5]. We report the results. On la-
belling the vertices thus:

0

y

z

x

•

•
•

•

we arrive at

•
• •

•
= (E + 12)

[
x−2y−2z−2(x − y)−2(y − z)−2(x − z)−2 log

|(x, y, z)|
l

]
;

with E + 12 = ∂x
αxα + ∂

y
βyβ + ∂z

ρzρ;

l
∂

∂l •
• •

•
= −12π6ζ(3) • , leading to l

∂

∂l
G4

. . .
. = 12ḡ3ζ(3)G4

. .

Notice that the scale derivative for this graph, coincident with the residue for this case, is numer-
ically large.

5.8. The roll

The unrenormalized amplitude for the roll diagram, with vertices labelled as follows:

0

x y

z
•

• •

•

is of the form

f (x, y, z) = (x − y)−2x−4z−2(y − z)−4.

Before plunging into the calculation, this very interesting graph without internal vertices 
prompts a couple of comments. It exemplifies well the “causal factorization property”. Con-
sider the relevant partition {0, x}, {z, y} of its set of vertices. Partial renormalization adapted to 
it will yield a valid distribution outside the diagonals 0 = z, x = y. Formula (1.1) here means:〈

R[Γ ], ϕ〉 = 〈
R[γ1 � γ2],

(
Γ/(γ1 � γ2)

)
ϕ
〉 = 〈

R[γ1]R[γ2],
(
Γ/(γ1 � γ2)

)
ϕ
〉
,
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for ϕ vanishing on those diagonals; where the rule for disconnected graphs, also found in [8, 
Sect. 11.2]:

R[γ1 � γ2] = R[γ1]R[γ2],
holds; and

Γ/(γ1 � γ2) =
(

0 = x z = y• •
)

.

Second, one may anticipate the coefficients of logarithmic degrees 3 and 2 in the final result, 
by using again [37] and [38]. Note that the roll is a rooted-tree graph with the fish as unique 
“decoration”; subtracting from it the juxtaposition of the winecup and the fish graph, and adding 
one sixth of the product of three fishes, one obtains a primitive graph in the bialgebra of rooted 
trees. For this combination the coefficient of log3 l must vanish. We obtain for such a graph 
2π4 × 2π2 − 8π6/6 = 8π6/3.

Partial renormalization leads at once to

R12
[
f (x, y, z)

] = (x − y)−2R4
[
x−4]z−2R4

[
(y − z)−4]

= 1

4

(
(x − y)−2�

(
x−2 log

|x|
l

)
− 2π2y−2δ(x)

)
×

(
z−2�z

(
(y − z)−2 log

|y − z|
l

)
− 2π2y−2δ(y − z)

)
. (5.8)

The expression (5.8) is a sum of four terms. Three of these yield, respectively:

π4y−4δ(x)δ(y − z)
R�−→π4R4

[
y−4]δ(x)δ(y − z);

−π2

2
y−2(x − y)−2�

(
x−2 log

|x|
l

)
δ(y − z)

R�−→2π4R4

[
x−4 log

|x|
l

]
δ(x − y)δ(x − z) + π2

2
y−2∂α

x Lα(x;y − x)δ(y − z);

−π2

2
y−2z−2�z

(
(y − z)−2 log

|y − z|
l

)
δ(x)

R�−→2π4R4

[
y−4 log

|y|
l

]
δ(x)δ(z) + π2

2
y−2∂β

z Lβ(y − z; z)δ(x).

The remaining contribution from (5.8), after integrating by parts twice with (4.6), yields

4π4x−4 log2 |x|
l

δ(x − y)δ(z) + π2y−2 log
|y|
l

∂α
x Lα(x;y − x)δ(z)

+ π2y−2 log
|y|
l

∂β
z Lβ(y − z; z)δ(x − y) + 1

4
∂α
x Lα(x;y − x)∂β

z Lβ(y − z; z).
Only the first of these terms requires renormalization:

4π4x−4 log2 |x|
δ(x − y)δ(z)

R�−→4π4R4

[
x−4 log2 |x|]

δ(x − y)δ(z).

l l
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Summing up, we arrive at

•
• •

• = 4π4R4

[
y−4 log2 |y|

l

]
δ(x − y)δ(z)

+ 2π4R4

[
y−4 log

|y|
l

](
δ(x)δ(z) + δ(x − y)δ(x − z)

)
+ π4R4

[
y−4]δ(x)δ(y − z) + (total derivative terms). (5.9)

A peek at (A.5) confirms that the coefficient for log3 l in this expression is

−2π4

3
× (−4π2) = 8π6

3
,

as predicted by Kreimer’s argument.
For the scale derivative of the roll amplitude, the first three terms in (5.9) contribute

−8π4R4

[
y−4 log

|y|
l

]
δ(x − y)δ(z) − 2π4R4

[
y−4](δ(x)δ(z) + δ(x − y)δ(y − z)

)
− 2π6δ(x)δ(y)δ(z),

while the other (total derivative) terms contribute

−4π4R4
[
y−4]δ(x)δ(y − z) + 2π4R4

[
y−4](δ(x)δ(z) + δ(x − y)δ(x − z)

)
+ 8π4R4

[
y−4 log

|y|
l

]
δ(x − y)δ(z)

− 4π4R4

[
y−4 log

|y|
l

](
δ(x)δ(z) + δ(x − y)δ(y − z)

)
− π2y−2∂α

x Lα(x;y − x)δ(y − z) − π2y−2∂β
z Lβ(y − z; z)δ(x).

Putting them together, we arrive at

l
∂

∂l

•
• •

• = −4π4R4

[
y−4 log

|y|
l

](
δ(x)δ(z) + δ(x − y)δ(y − z)

)
− 4π4R4

[
y−4]δ(x)δ(y − z) − 2π6δ(x)δ(y)δ(z)

− π2y−2∂α
x Lα(x;y − x)δ(y − z) − π2y−2∂β

z Lβ(y − z; z)δ(x)

= −2π2 . .
. (y, x)δ(y − z) − 2π2 . .

. (y, y − z)δ(x) − 2π6 • .

Taking into account the weight factors, we then conclude that

l
∂

∂l
G4

.

. .
. = 2ḡG4

. .
.

+ 3ḡ3G4
. .

6. The renormalization group γ - and β-functions

Enter the Callan–Symanzik differential equations with zero mass:
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[
∂

∂ log l
− β(ḡ)

∂

∂ḡ
+ 2γ (ḡ)

]
G2(x1, x2) = 0 and (6.1)[

∂

∂ log l
− β(ḡ)

∂

∂ḡ
+ 4γ (ḡ)

]
G4(x1, x2, x3, x4) = 0. (6.2)

Here G2 starts at order ḡ0 and G4 at order ḡ. The scale derivative in both cases starts at order ḡ2. 
(The detailed calculations for the two-point function G2 and its scale derivative are outlined in 
Appendix B.) Therefore we may assume that:

β(ḡ) = ḡ2β1 + ḡ3β2 + ḡ4β3 + · · · ; γ (ḡ) = ḡ2γ2 + ḡ3γ3 + ḡ4γ4 + · · · ; (6.3)

where γ does not contribute to (6.2) at the first significant order, and similarly for β and (6.1); and 
we try to compute then the γi and βi . Following [4], our labelling of the expansion coefficients 
differs for the β and γ functions.

Order by order, we find:

ḡ2 : l
∂

∂l
G4

. . = β1ḡ
2 ∂

∂ḡ
G4

. ; l
∂

∂l
G2

. . = −2γ2ḡ
2G2

.
;

ḡ3 : l
∂

∂l

[
G4

. . . + G4
. .
.

]
= (β2 − 4γ2)ḡ

3 ∂

∂ḡ
G4

. + β1ḡ
2 ∂

∂ḡ
G4

. . ; (6.4)

l
∂

∂l
G2

. . .
= β1ḡ

2 ∂

∂ḡ
G2

. . − 2γ3ḡ
2G2

.
; (6.5)

ḡ4 : l
∂

∂l

[
G4

. . . . + G4
. .. . + G4

. ..
.

+ G4

. . .
.

+ G4

. .
.
.

+ G4
. .
..

+ G4

. . .
. + G4

.

. .
.

]

= (β3 − 4γ3)ḡ
4 ∂

∂ḡ
G4

. + (β2 − 2γ2)ḡ
3 ∂

∂ḡ
G4

. .

+ β1ḡ
2 ∂

∂ḡ
G4

. . . + β1ḡ
2 ∂

∂ḡ
G4

. .
.

; (6.6)

l
∂

∂l

[
G2

. . . .
+ G2

. . . .
+ G2

. ..
.

+ G2
. . . .

]

= β1ḡ
2 ∂

∂ḡ
G2

. . .
+ β2ḡ

3 ∂

∂ḡ
G2

. . − 2γ2ḡ
2G2

. . − 2γ4ḡ
4G2

.
.

The first equality above, in view of (4.11), yields β1 = 3. This is the standard result. Off the 
same line, with the help of (B.6), we read γ2 = 1/12. This is also the standard result.

Then, on consulting (4.12) and (4.15), equality (6.4) is seen to yield:

6ḡG4
. . − 6ḡ2G4

. = 6ḡG4
. . +

(
β2 − 1

3

)
ḡ2G4

. ;

that is, β2 = −17/3. This is the standard result. Note the automatic cancellation of the terms 
in G4

. . .
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We need the value of γ3 in order to compute β3. Now, from (6.5) we observe that

6ḡG2
. . = 6ḡG2

. . + 2γ3ḡ
2�δ;

so that γ3 = 0 obtains, at variance with both [4] and [35] (differing between them); but in agree-
ment with [26].

We turn to the computation of β3, noting beforehand that knowledge of γ4 is not necessary 
for it. First we check the automatic cancellation of the terms in G4

. . in (6.7):(
1

3
− 2 − 2 − 8

)
ḡ2G4

. . = 2

(
−17

3
− 1

6

)
ḡ2G4

. . ;

as well as in G4
. . . and G4

. .
.

:

(3 + 2 + 4)ḡG4
. . . = 9ḡG4

. . . ;
(2 + 4 + 1 + 2)ḡG4

. .
.

= 9ḡG4
. .
.

;

which of course vouches for the soundness of our method. We should also notice that, since 
the chain graphs do not yield G4

. terms, they contribute nothing to the renormalization group 
functions. The same is true of the shark graph.

Thus we read off β3 from the terms in G4
. on the left hand-side of (6.7), with the result:

β3 = 109

4
+ 12ζ(3),

numerically intermediate between the results in [4] and [35]. The discrepancy with the former 
is due to different results for the G4

. terms in the stye, cat’s eye, duncecap and roll graphs; 
for any others our scale derivatives reproduce the results in the seminal paper on differential 
renormalization. This number has, at any rate, no fundamental significance; in fact β3 and all 
subsequent coefficients of the β-function can be made to vanish in an appropriate renormalization 
scheme.

7. Conclusion

We reckon to have shown that, with a small amount of ingenuity, plus eventual recourse to 
Gegenbauer polynomial techniques and polylogarithms, renormalization of (proper) “divergent” 
graphs in coordinate space by Epstein–Glaser methods is quite feasible.

As the perturbation order grows, this often demands integration over the internal vertices. We 
have proved here the basic proposition underpinning this latter technique, and provided quite a 
few examples. We trust that, all along, the logical advantage of distribution-theoretic methods 
for the recursive treatment of divergences shines through.

The Popineau–Stora theorem was mentioned in Section 4.3. A refinement of this theo-

rem [42,43] provides an expression for G
ll′

(ḡ) of the form

G
ll′

(ḡ) = ḡ + H
(
G

ll′
(ḡ)

)
,

where the series H is made up of successive contributions at each perturbation step, always 
supported exclusively on the corresponding main diagonal. We expect to take up in a future 
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paper this interesting combinatorial aspect of the procedure; at any rate, our methods guarantee 
that no combinatorial difficulties worth mentioning appear.

The attentive reader will not have failed to notice the connection between the apparently 
mysterious cancellations signaled in the previous section and those in Section 4.3. Those can-
cellations look to be just an infinitesimal aspect of the Popineau–Stora theorem. Here we have 
done no more than to illustrate the workings of that theorem and the Callan–Symanzik equations 
in the Epstein–Glaser paradigm. A proper derivation of those equations within the distribution-
theoretic approach is also left for the future.

7.1. The roads not taken

We have taken some pains to point out the shortcomings of differential renormalization; how-
ever, in keeping with its spirit, our approach to proper cograph parts is unabashedly “low-tech”: 
some of the standard tools of renormalization in x-space are not used.

• Even for dealing with overlapping divergences, we have had no recourse to partitions of 
unity.

• We do not use here meromorphic continuation: we wanted to illustrate the fact that real-
variable methods à la Epstein and Glaser are enough to deal with the problems at hand. This 
is of course a net loss in practice, since the analytic continuation tools [15–17] borrowed in 
[1,10,11] are quite powerful, although not always available. The wisest course is to employ 
both real- and complex-variable methods.

• The calculus of wave front sets was not required.
• Steinmann’s scaling degree for distributions was never invoked. There is no point in using 

it for massless diagrams [43], for which the log-homogeneous classification is finer: all dis-
tributions of bidegree (a, m) have the same scaling degree irrespectively of the value of m. 
Recent work [41] adapts the latter classification to the case of massive particles, casting 
doubt on the future usefulness of the scaling degree in quantum field theory. Even for gen-
eral distributions, Meyer’s concept of weakly homogeneous distributions, exploited in [47], 
appears more seductive.
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Appendix A. Formulas for extensions of distributions in x-space

Recall the definition of Rd[r−d logm(r/ l)]: from (2.13) we immediately obtain
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Rd

[
r−d logm r

l

]
= 1

m + 1
∂α

(
xαr−d logm+1 r

l

)

=
m+1∑
k=0

cm+1,k�

(
r−d+2 logk r

l

)
(A.1)

for suitable constants cm+1,k . These are computed as follows.

Lemma 3. For any m = 0, 1, 2, . . . ,

Rd

[
r−d logm r

l

]
= −

m+1∑
k=1

m!
k! (d − 2)−m+k−2�

(
r−d+2 logk r

l

)
+ m!

(d − 2)m+1
Ωdδ(r);

and in particular,

R4

[
r−4 logm r

l

]
= −

m+1∑
k=1

m!
k!

1

2m−k+2
�

(
r−2 logk r

l

)
+ m!

2m
π2δ(r). (A.2)

Proof. Taking derivatives, we get

∂α

(
r−d+2 logk r

l

)
= xαr−d

(
(2 − d) logk r

l
+ k logk−1 r

l

)
.

The coefficients cm+1,k are determined by the defining relation

xαr−d logm+1 r

l
= (m + 1)

m+1∑
k=0

cm+1,k∂α

(
r−d+2 logk r

l

)
;

so we get the recurrence, for k ≤ m:

(k + 1)cm+1,k+1 − (d − 2)cm+1,k = 0.

Clearly cm+1,m+1 = −1/(d − 2)(m + 1). Thus cm+1,m = −1/(d − 2)2. The remaining cm+1,k

terms follow at once. The last summand is cm+1,0�(r−d+2) = m!(d − 2)−m−1Ωdδ(r). �
We expand out the cases m = 0, 1, 2 of d = 4 for ready reference:

R4
[
r−4] = −1

2
�

(
r−2 log

r

l

)
+ π2δ(r). (A.3)

R4

[
r−4 log

r

l

]
= −1

4
�

(
r−2 log2 r

l

)
− 1

4
�

(
r−2 log

r

l

)
+ π2

2
δ(r); (A.4)

R4

[
r−4 log2 r

l

]
= −1

6
�

(
r−2 log3 r

l

)
− 1

4
�

(
r−2 log2 r

l

)
− 1

4
�

(
r−2 log

r

l

)
+ π2

2
δ(r). (A.5)

Explicit expressions for log-homogeneous distributions of higher bidegrees could in principle 
be computed from (2.10) and (2.11). We have already met R4[r−6] in (2.19). We also need:
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R4

[
r−6 log

r

l

]
= 1

8
�R4

[
r−4 log

r

l

]
+ 3

32
�R4

[
r−4] + 7π2

64
�δ(r), (A.6)

R4

[
r−6 log2 r

l

]
= 1

8
�R4

[
r−4 log2 r

l

]
+ 3

16
�R4

[
r−4 log

r

l

]
+ 7

64
�R4

[
r−4] + 15π2

128
�δ(r);

l
∂

∂l
R4

[
r−6 logm r

l

]
= −mR4

[
r−6 logm−1 r

l

]
for m ≥ 1. (A.7)

The last equation follows from (2.17) and the algebra property. It is worth mentioning that an 
expression equivalent to (A.6) was obtained by Jones on extending r−6 log r by meromorphic 
continuation: see Eq. (34) on page 255 of [48]. The one on the following line appears to be new.

The reader might wish to run the algebra checks:

r2R4

[
r−6 logm r

l

]
= R4

[
r−4 logm r

l

]
.

Appendix B. On the two-point function

The free Green function Gfree(x1, x2) is the same as the Euclidean “propagator” but for the 
sign:

1

4π2(x1 − x2)2
,

Perturbatively, the corrected or dressed propagator is:

G(x1 − x2) = Gfree(x1 − x2) +
¨

Gfree(x1 − xa)Σ(xa − xb)Gfree(xb − x2)

+
˘

Gfree(x1 − x2)Σ(x1 − xb)Gfree(xb − xc)Σ(xc − xd)

× Gfree(xd − x2) + · · ·
Here Σ is the proper (one-particle irreducible) self-energy. The solution of the above convolution 
equation is given by the convolution inverse

(Gfree − Σ)∗−1(x) =: G2(x);
this is what we call the two-point function. Thus in first approximation G2(x) is given by(

1

4π2x2

)∗−1

= −�δ(x).

We gather:

• At order ḡ0 the two-point function is simply given by −�δ(x) ≡ G2
.

.

• The sunset graph comprises the first correction, at order ḡ2, already computed in (2.19).

• The unique third-order graph for the two-point function • • • is partially renor-
malized as

R8
[
x−2(x−4)∗2] = π2x−2

(
4R4

[
x−4 log

|x|] − π2δ(x)

)
.

l
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The homogeneous distribution x−2δ(x) is renormalized by the standard formula (2.11), 
yielding 1

8�δ(x); note that the algebra rule is fulfilled. Thus from (3.5),

• • • = R4
[
x−2(x−4)∗2] = 4π2R4

[
x−6 log

|x|
l

]
− π4

8
�δ(x),

with scale derivative − 4π2 • • . (B.1)

Here and for subsequent graphs, the reader can consult (A.6) for totally explicit forms in 
terms of Laplacians.

• There are four fourth-order graphs for the two-point function. A very simple one, of the 

chain type, is • • • • whose renormalized form we write from (5.1) at once,

R4
[
x−2(x−4)∗3] = 12π4R4

[
x−6 log2 |x|

l

]
− 3π4R4

[
x−6] + 2ζ(3) − 1

4
π6�δ(x),

with scale derivative − 6π2 • • • . (B.2)

• Next we consider the saturn graph. Analogously, the ground work was already done for the 
stye diagram, and we may write at once:

R4

[
• • • •

]
= −π4R4

[
x−6 log

|x|
l

]
− 5π4

4
R4

[
x−6],

with scale derivative π4 • • + 5π6

16
�δ. (B.3)

• The roach graph • ••
•

has the bare form x−2 • ••
• , renormalized at once by

4π4R4

[
x−6 log2 |x|

l

]
+ 4π4R4

[
x−6 log

|x|
l

]
− 2π4R4

[
x−6] − π6

8
�δ(x),

with l
∂

∂l
• ••

•
= −2π2 • • • − 4π4 • • + π6

4
�δ. (B.4)

The simplicity of our treatment for this graph stands in stark contrast with the “combinatorial 
monstrosity of the forest formula” [46], patent in [11, Example 3.2].

• Finally, there is the snail graph • • • • whose amplitude is of the bare form

f (x) =
¨

dudv

u4(v − u)2(x − u)2v2(x − v)4
.

We omit the (lengthy) detailed calculation of its renormalized form.
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For the set:{
• , • • , • • • , • • • • ,

• • • • , • ••
•

, • • • •
}
,

the weights are respectively given by {1, 16 , 14 , 18 , 1
12 , 14 , 14 }.

Up to three loops, with r = |x1 − x2|, the two-point function G2(x1, x2) is of the form:

−�δ(r) − 1

6

(16π2ḡ)2

(4π2)3
• • + 1

4

(16π2ḡ)3

(4π2)5 • • • + O
(
ḡ4)

= −�δ(r) − 2ḡ2

3π2
R4

[
r−6] +

(
4ḡ3

π2
R4

[
r−6 log

r

l

]
− ḡ3

8
�δ(r)

)
+ O

(
ḡ4)

=: G2
.

+ G2
. . + G2

. . .
+ O

(
ḡ4). (B.5)

We see that the practical rule to go from the calculated scale derivatives of the graphs to their 
contributions to the two-point function is as before: multiply the coefficient of the scale derivative 
by −ḡ/π2 raised to a power equal to the difference in the number of vertices, and also by the 
relative weight, for each diagram in question. An exception is the case of the sunset graph, which, 
on account of (B.5) and (2.20), fulfills:

l
∂

∂l
G2

. . = − ḡ2

6
G2

.
. (B.6)

The tableau of scale derivatives for the two-point function, on account of (B.1), (B.2), (B.3)
and (B.6), is as follows.

l
∂

∂l
G2

. . .
= 6ḡG2

. . .

l
∂

∂l
G2

. . . .
= 3ḡG2

. . .
.

l
∂

∂l
G2

. . . .
= 1

2
ḡ2G2

. . − 5

192
ḡ4G2

.
.

l
∂

∂l
G2

. ..
.

= 2ḡG2
. . .

− 6ḡ2G2
. . .

Appendix C. Radial extensions in p-space and momentum amplitudes

C.1. Fourier transforms

Let now F denote the Fourier transformation on S ′(Rd), with a standard convention

Fϕ(p) =
ˆ

e−ip·xϕ(x) dx, so that, e.g., F
[
e−r2/2] = (2π)d/2e−p2/2.

A standard calculation [16] gives
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F
[
rλ

] = 2λ+dπd/2 Γ ( 1
2 (λ + d))

Γ (− 1
2λ)

|p|−d−λ,

valid for −d < �λ < 0, where both sides are locally integrable functions. In particular, F[r−2] =
4π2p−2 when d = 4.

The Fourier transforms of the radial distributions Rd[r−d logm(r/ l)] are found as follows. 
Since F(δ) = 1 and F(�h) = −p2Fh, it is enough to compute F[r−d+2 logk(r/ l)] for k ≤ m, 
on account of Lemma 3. For simplicity, we do it here only for d = 4.

Lemma 4. Write Λ := 2/leγ , where γ is Euler’s constant. Then, for d = 4, we get

F
[
r−2 logk r

l

]
= 4π2

k∑
j=0

(−)kCjkp
−2 logj |p|

Λ
;

F
[
�

(
r−2 logk r

l

)]
= 4π2

k∑
j=0

(−)k+1Cjk logj |p|
Λ

, (C.1)

for suitable nonnegative constants Cjk .

Proof. If |t | < 1, we obtain

F
[
r−2(r/ l)2t

] = 4π2

p2

Γ (1 + t)

Γ (1 − t)

(
l|p|

2

)−2t

.

Then the known Taylor series expansion [49, Thm. 10.6.1], valid for |t | < 1:

logΓ (1 + t) = −γ t +
∞∑

k=2

(−)k
ζ(k)

k
tk (C.2)

suggests rewriting the previous equality as

F
[
r−2(r/ l)2t

] = 4π2

p2

( |p|
Λ

)−2t

e2γ t Γ (1 + t)

Γ (1 − t)

= 4π2

p2
exp

{
−2t log

|p|
Λ

− 2
∞∑

m=1

ζ(2m + 1)

2m + 1
t2m+1

}
. (C.3)

Differentiation at t = 0 then yields F[r−2] = 4π2p−2, already noted, as well as

F
[
r−2 log

r

l

]
= −4π2p−2 log

|p|
Λ

,

F
[
r−2 log2 r

l

]
= 4π2p−2 log2 |p|

Λ
,

F
[
r−2 log3 r

l

]
= −4π2p−2

(
log3 |p|

Λ
+ 1

2
ζ(3)

)
, (C.4)

F
[
r−2 log4 r

l

]
= 4π2p−2

(
log4 |p|

Λ
+ 2ζ(3) log

|p|
Λ

)
,

F
[
r−2 log5 r

]
= −4π2p−2

(
log5 |p| + 5ζ(3) log2 |p| + 3

ζ(5)

)
,

l Λ Λ 2



866 J.M. Gracia-Bondía et al. / Nuclear Physics B 886 (2014) 824–869
and so on, using the Faà di Bruno formula. The corresponding formula to (C.4) in [4] is in error. 
In [26] the correct value does appear. �

Conversely, the first few renormalized log-homogeneous distributions of Section 2.2 have the 
following Fourier transforms in S ′(R4):

FR4
[
r−4] = −2π2 log

|p|
Λ

+ π2,

FR4

[
r−4 log

r

l

]
= π2 log2 |p|

Λ
− π2 log

|p|
Λ

+ π2

2
,

FR4

[
r−4 log2 r

l

]
= −2π2

3
log3 |p|

Λ
+ π2 log2 |p|

Λ
− π2 log

|p|
Λ

+ π2
(

1

2
− ζ(3)

3

)
,

FR4

[
r−4 log3 r

l

]
= π2

2
log4 |p|

Λ
− π2 log3 |p|

Λ
+ 3π2

2
log2 |p|

Λ

− π2
(

3

2
− ζ(3)

)
log

|p|
Λ

+ π2
(

3

4
− ζ(3)

2

)
.

The quadratically divergent graphs for the two-point function required here possess the trans-
forms:

FR4
[
r−6] = π2

4
p2 log

|p|
Λ

− 5π2

16
p2,

FR4

[
r−6 log

r

l

]
= −π2

8
p2 log2 |p|

Λ
+ 5π2

16
p2 log

|p|
Λ

− 17π2

64
p2;

FR4

[
r−6 log2 r

l

]
= π2

12
p2 log3 |p|

Λ
− 5π2

16
p2 log2 |p|

Λ

+ 17π2

32
p2 log

|p|
Λ

− π2
(

49

128
− ζ(3)

24

)
p2, (C.5)

in view of (2.19) and (A.6). The first identity here gives the sunset graph in momentum space. 
The second one gives essentially the “goggles” graph (B.1) of Appendix B.

It follows by induction from (2.18) that FR4[r−4−2m] is a linear combination of p2m and 
p2m log(|p|/Λ). It can be written as

FR4
[
r−4−2m

] = 1

4mm!(m + 1)!
(

amp2m log
|p|
Λ

+ bmp2m

)
.

On Fourier-transforming the case d = 4, n = 1 of (2.18), one finds the recurrence relation

−p2
(

amp2m log
|p|
Λ

+ bmp2m

)
= am+1p

2m+2 log
|p|
Λ

+
(

bm+1 + (−)m
(2m + 3)π2

(m + 1)(m + 2)

)
p2m+2.

Thus am = (−)ma0 = (−)m−12π2 and bm+1 + bm = (−)mπ2(1/(m + 1) + 1/(m + 2)). Since 
b0 = π2, that yields bm = (−)mπ2(Hm + Hm+1). We recover a result already found in [5]:
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FR4
[
r−4−2m

] = (−)m−1π2

4mm!(m + 1)!
(

2p2m log
|p|
Λ

− (Hm + Hm+1)p
2m

)
.

Analogous formulas for FRd [r−d−2m] can be derived from (2.18) in the same way.

C.2. On the amplitudes in p-space

It is now straightforward to perform the conversion to momentum space graph by graph; 
but the details are hardly worthwhile for us, since our renormalization scheme and consequent 
treatments of the RG and the β-function for the model do not require that conversion.

C.2.1. Two-point amplitudes in p-space
The free Green function has Fourier transform

(2π)4 δ(p1 + p2)

p2
=: (2π)4δ(p1 + p2)Gfree

(|p|),
where |p| := |p1| = |p2| corresponds to the difference variable on x-space. There is a series of 
corrections to the free propagator:

G
(|p|) = 1

p2
+ 1

p2
Σ

(|p|) 1

p2
+ 1

p2
Σ

(|p|) 1

p2
Σ

(|p|) 1

p2
+ · · ·

Just as on x-space, the above equation is solved by

G
(|p|) = (

p2 − Σ
(|p|))−1

.

What we call the momentum-space proper two-point function G2(|p|) is G(|p|)−1 = p2 −
Σ(|p|); this is the Fourier transform of G2(r), by the definition of the latter.

One can now obtain from the list (C.5) of Fourier transforms of quadratically divergent graphs, 
together with Eqs. (2.19) and (B.1)–(B.4), the corrections to the propagator associated to these 
graphs in momentum space. We omit this trivial conversion; taking account of different conven-
tions, this coincides in a few cases with results in [26]. It is remarkable that the Apéry constant 
ζ(3) disappears in the computation of the chain graph . . . . .

We should nevertheless indicate that at order four there is a non-proper contribution to the 
propagator, by the double sunset, which, omitting the (4π2)−1 factors and amputated reads:

F
[

• • • •
]

= −p2
(

π2

4
log

|p|
Λ

− 5π2

16

)2

= −p2 π4

16

(
log2 |p|

Λ
− 5

2
log

|p|
Λ

+ 25

16

)
,

implying • • • • = π2

2
R4

[
x−6 log

|x|
l

]
− 9π4

256
�δ(x).

This non-proper graph has a weight equal to 1/36.

C.2.2. Four-point amplitudes in p-space
The graphs in momentum space relevant for the four-point function are more complicated. We 

just exemplify for the fish graph. Still omitting the permutations of the vertices, the amplitude in 
x-space is of the form
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G . . (x1, x2, x3, x4) = g2

(4π2)2

[
δ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

− 1

2π2
δ(x1 − x2)�

(
(x2 − x3)

−2 log
|x2 − x3|

l

)
δ(x3 − x4)

]
= g2

(4π2)2

[
δ(ξ1)δ(ξ2)δ(ξ3) − 1

2π2
δ(ξ1)�

(
ξ−2

2 log
|ξ2|
l

)
δ(ξ3)

]
=: Ĝ . . (ξ1, ξ2, ξ3);

where we have introduced the difference variables ξ1 = x1 − x2, ξ2 = x2 − x3, ξ3 = x3 − x4. The 
reduced Fourier transform Ĝ . . (p1, p2, p3), defined by

Ĝ . . (p1,p2,p3) :=
ˆ

Ĝ . . (ξ1, ξ2, ξ3)

× exp
[−i

(
p1ξ1 + (p1 + p2)ξ2 + (p1 + p2 + p3)ξ3

)]
dξ1 dξ2 dξ3

yields G . . (p1, p2, p3, p4) = (2π)4δ(p1 + p2 + p3 + p4)Ĝ . . (p1, p2, p3), where G . . is 
the ordinary Fourier transform, defined by:

G . . (p1,p2,p3,p4) :=
ˆ

G . . (x1, x2, x3, x4)

× exp
[−i(p1x1 + · · · + p4x4)

]
dx1 dx2 dx3 dx4.

This is general for functions of the difference variables. In our present case, we obtain

G . . (p1,p2,p3,p4) = g2δ(p1 + · · · + p4)

[
1 − 2 log

|p1 + p2|
Λ

]
= g2δ(p1 + · · · + p4)

[
1 − 2 log

|p3 + p4|
Λ

]
.

References

[1] N.M. Nikolov, R. Stora, I. Todorov, Rev. Math. Phys. 26 (2014) 1430002.
[2] H. Epstein, V. Glaser, Ann. Inst. Henri Poincaré A 19 (1973) 211.
[3] R.C. Helling, arXiv:1201.2714.
[4] D.Z. Freedman, K. Johnson, J.I. Latorre, Nucl. Phys. B 371 (1992) 352.
[5] J.M. Gracia-Bondía, Math. Phys. Anal. Geom. 6 (2003) 59.
[6] S. Lazzarini, J.M. Gracia-Bondía, J. Math. Phys. 44 (2003) 3863.
[7] G. Lang, A. Lesniewski, Commun. Math. Phys. 91 (1983) 505.
[8] A.N. Kuznetsov, F.V. Tkachov, V.V. Vlasov, Techniques of distributions in perturbative quantum field theory I, 

arXiv:hep-th/9612037.
[9] G. Popineau, R. Stora, A pedagogical remark on the main theorem of perturbative renormalization theory, 1982, 

unpublished preprint, CPT & LAPP-TH.
[10] K.J. Keller, Dimensional regularization in position space, and a forest formula for Epstein–Glaser renormalization, 

arXiv:1006.2148.
[11] M. Dütsch, K. Fredenhagen, K.J. Keller, K. Rejzner, Dimensional regularization in position space, and a forest 

formula for Epstein–Glaser renormalization, arXiv:1311.5424.
[12] D. Kreimer, Adv. Theor. Math. Phys. 2 (1998) 303.
[13] R. Estrada, R.P. Kanwal, Proc. R. Soc. Lond. Ser. A 401 (1985) 281.
[14] R. Estrada, R.P. Kanwal, J. Math. Anal. Appl. 141 (1989) 195.
[15] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1990.
[16] I.M. Gelfand, G.E. Shilov, Generalized Functions I, Academic Press, New York, 1964.

http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4E696B6F6C6F7653543133s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4570737465696E473733s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib48656C6C696E673132s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib46726565646D616E4A4C3932s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4361726D65s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib42657474696E61s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4C616E674C3833s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4B757A6E6574736F7654563936s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4B757A6E6574736F7654563936s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4B656C6C65723130s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4B656C6C65723130s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib44756574736368464B523133s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib44756574736368464B523133s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4B7265696D65723938s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib457374726164614B3835s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib457374726164614B3839s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F726D616E6465723930s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib47656C66616E64533634s1


J.M. Gracia-Bondía et al. / Nuclear Physics B 886 (2014) 824–869 869
[17] J. Horváth, Rev. Colomb. Math. 8 (1974) 47.
[18] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison–Wesley, Reading, MA, 1989.
[19] S. Falk, Regularisierung und Renormierung in der Quantenfeldtheorie. Resultate aus dem Vergleich konsistenter 

und praktikabler Methoden, Ph.D. dissertation, Mainz, 2005.
[20] S. Hollands, Rev. Math. Phys. 20 (2008) 1033.
[21] C.G. Bollini, J.J. Giambiagi, Phys. Rev. D 53 (1996) 5761.
[22] S. Scott, Traces and Determinants of Pseudodifferential Operators, Oxford University Press, Oxford, 2010.
[23] R. Estrada, Private communication.
[24] J.M. Gracia-Bondía, J.C. Várilly, H. Figueroa, Elements of Noncommutative Geometry, Birkhäuser, Boston, 2001.
[25] N. Ortner, P. Wagner, Distribution-Valued Analytic Functions, Edition SWK, Hamburg, 2013.
[26] O. Schnetz, J. Math. Phys. 38 (1997) 738.
[27] R. Estrada, S.A. Fulling, J. Phys. A 35 (2002) 3079.
[28] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.
[29] J. Horváth, Topological Vector Spaces and Distributions, Addison–Wesley, Reading, MA, 1966.
[30] J. Horváth, Bull. Sci. Math. 98 (1974) 183.
[31] N. Ortner, P. Wagner, Bull. Pol. Acad. Sci., Math. 37 (1989) 579.
[32] J. Horváth, Appl. Anal. 7 (1978) 171.
[33] P. Wagner, Math. Ann. 276 (1987) 467.
[34] J. Horváth, N. Ortner, P. Wagner, J. Math. Anal. Appl. 123 (1987) 429.
[35] H. Kleinert, V. Schulte-Frohlinde, Critical Properties of φ4-Theories, World Scientific, Singapore, 2001.
[36] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Oxford University Press, Oxford, 2002.
[37] C. Chryssomalakos, H. Quevedo, M. Rosenbaum, J.D. Vergara, Commun. Math. Phys. 225 (2002) 465.
[38] D. Kreimer, Talks at Abdus Salam ICTP, Trieste, March 27, 2001, Mathematical Sciences Research Institute, Berke-

ley, April 25, 2001, and Crafoord Symposium, Swedish Academy of Sciences, Stockholm, September 25, 2001.
[39] H. Gutiérrez-Garro, Renormalización en teoría de campos usando distribuciones, M.Sc. thesis, Universidad de Costa 

Rica, 2006.
[40] O.I. Zav’yalov, V.A. Smirnov, Theor. Math. Phys. 96 (1993) 974.
[41] M. Dütsch, The scaling and mass expansion, arXiv:1401.1670, Ann. Henri Poincaré (2014), http://dx.doi.org/10.

1007/s00023-014-0324-6, in press.
[42] R. Stora, Causalité et groupes de renormalisation perturbatifs, in: T. Boudjedaa, A. Makhlouf, R. Stora (Eds.), 

Théorie Quantique Des Champs: Méthodes et Applications, Hermann, Paris, 2008.
[43] R. Stora, Private communications.
[44] I. Todorov, Polylogarithms and multizeta values in massless Feynman amplitudes, 2014, IHÉS preprint 

IHES/P/14/10.
[45] D. Zagier, The dilogarithm function, in: P. Cartier, B. Julia, P. Moussa, P. Vanhove (Eds.), Frontiers in Number 

Theory, Physics, and Geometry II, Springer, Berlin, 2007, pp. 3–65.
[46] F.V. Tkachov, Distribution-theoretic methods in quantum field theory, arXiv:hep-th/9911236.
[47] N.V. Dang, Renormalization of quantum field theory on curved space–times, a causal approach, arXiv:1312.5674.
[48] D.S. Jones, The Theory of Generalised Functions, Cambridge University Press, Cambridge, 1982.
[49] G. Boros, V.H. Moll, Irresistible Integrals, Cambridge University Press, Cambridge, 2004.

http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F7276617468436F6C3734s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib47726168616D4B503839s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib46616C6B3035s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib46616C6B3035s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F6C6C616E64733038s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib426F6C6C696E69473936s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib53636F74743130s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib506F6C61726973s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4F72746E6572573133s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib5363686E65747A3937s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib45737472616461463032s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib536368776172747A3636s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F72766174683636s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F72766174683734s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4F72746E6572573839s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F72766174683738s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib5761676E65723837s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib486F72766174684F573837s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4B6C65696E65727453463031s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib5A696E6E4A757374696E3032s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4368727973736F6D616C616B6F735152563032s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib48656964794D53633036s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib48656964794D53633036s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib5A617679616C6F76533933s1
http://dx.doi.org/10.1007/s00023-014-0324-6
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib53746F72613038s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib53746F72613038s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib5A61676965723037s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib5A61676965723037s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib546B6163686F763939s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib44616E673133s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib4A6F6E65733832s1
http://refhub.elsevier.com/S0550-3213(14)00237-5/bib426F726F734D3034s1
http://dx.doi.org/10.1007/s00023-014-0324-6

	Improved Epstein-Glaser renormalization in x-space versus differential renormalization
	1 Introduction
	2 Primitive extensions of distributions
	2.1 Dimensional reduction
	2.2 Log-homogeneous distributions
	2.3 Here comes the sun
	2.4 Trouble with the formulas for derivatives

	3 Convolution-like composition of distributions
	4 Graphs
	4.1 A third-order graph by convolution
	4.2 A third-order ladder graph: the winecup
	4.3 Empirical remarks on the main theorem of renormalization

	5 More graphs
	5.1 The trikini
	5.2 The stye
	5.3 The cat's eye
	5.4 The duncecap
	5.5 The kite
	5.6 The shark
	5.7 The tetrahedron diagram
	5.8 The roll

	6 The renormalization group γ- and β-functions
	7 Conclusion
	7.1 The roads not taken

	Acknowledgements
	AppendixA Formulas for extensions of distributions in x-space
	AppendixB On the two-point function
	AppendixC Radial extensions in p-space and momentum amplitudes
	C.1 Fourier transforms
	C.2 On the amplitudes in p-space
	C.2.1 Two-point amplitudes in p-space
	C.2.2 Four-point amplitudes in p-space


	References


