000057832 001__ 57832
000057832 005__ 20200221144337.0
000057832 0247_ $$2doi$$a10.1103/PhysRevB.94.155447
000057832 0248_ $$2sideral$$a96972
000057832 037__ $$aART-2016-96972
000057832 041__ $$aeng
000057832 100__ $$aAbd El-Fattah, Z.M.
000057832 245__ $$aFormation of the BiAg2 surface alloy on lattice-mismatched interfaces
000057832 260__ $$c2016
000057832 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057832 5203_ $$aWe report on the growth of a monolayer-thick BiAg2 surface alloy on thin Ag films grown on Pt(111) and Cu(111). Using low energy electron diffraction (LEED), angle resolved photoemission spectroscopy (ARPES), and scanning tunneling microscopy (STM) we show that the surface structure of the 13 ML Bi/x-ML Ag/Pt(111) system (x=2) is strongly affected by the annealing temperature required to form the alloy. As judged from the characteristic (3×3)R30 LEED pattern, the BiAg2 alloy is partially formed at room temperature. A gentle, gradual increase in the annealing temperatures successively results in the formation of a pure BiAg2 phase, a combination of that phase with a (2×2) superstructure, and finally the pure (2×2) phase, which persists at higher annealing temperatures. These results complement recent work reporting the (2×2) as a predominant phase, and attributing the absence of BiAg2 alloy to the strained Ag/Pt interface. Likewise, we show that the growth of the BiAg2 alloy on similarly lattice-mismatched 1 and 2 ML Ag-Cu(111) interfaces also requires a low annealing temperature, whilst higher temperatures result in BiAg2 clustering and the formation of a BiCu2 alloy. The demonstration that the BiAg2 alloy can be formed on thin Ag films on different substrates presenting a strained interface has the prospect of serving as bases for technologically relevant systems, such as Rashba alloys interfaced with magnetic and semiconductor substrates.
000057832 536__ $$9info:eu-repo/grantAgreement/ES/ERC/CSIC-201560I02$$9info:eu-repo/grantAgreement/ES/MINECO/MAT2013-46593-C6-4-P
000057832 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000057832 590__ $$a3.836$$b2016
000057832 591__ $$aPHYSICS, CONDENSED MATTER$$b18 / 67 = 0.269$$c2016$$dQ2$$eT1
000057832 592__ $$a2.339$$b2016
000057832 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ1
000057832 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000057832 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000057832 700__ $$aLutz, P.
000057832 700__ $$aPiquero-Zulaica, I.
000057832 700__ $$0(orcid)0000-0003-2698-2543$$aLobo-Checa, J.
000057832 700__ $$aSchiller, F.
000057832 700__ $$aBentmann, H.
000057832 700__ $$aOrtega, J.E.
000057832 700__ $$aReinert, F.
000057832 773__ $$g94, 15 (2016), 155447 [6 pp]$$pPhys. Rev. B, Condens. matter mater. phys.$$tPhysical Review B. Condensed Matter and Materials Physics$$x1098-0121
000057832 8564_ $$s1746779$$uhttps://zaguan.unizar.es/record/57832/files/texto_completo.pdf$$yVersión publicada
000057832 8564_ $$s127323$$uhttps://zaguan.unizar.es/record/57832/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000057832 909CO $$ooai:zaguan.unizar.es:57832$$particulos$$pdriver
000057832 951__ $$a2020-02-21-13:47:53
000057832 980__ $$aARTICLE