000057834 001__ 57834
000057834 005__ 20241108104650.0
000057834 0247_ $$2doi$$a10.1103/PhysRevE.90.052904
000057834 0248_ $$2sideral$$a88516
000057834 037__ $$aART-2014-88516
000057834 041__ $$aeng
000057834 100__ $$aHermoso de Mendoza, Ignacio
000057834 245__ $$aSynchronization in a semiclassical Kuramoto model
000057834 260__ $$c2014
000057834 5060_ $$aAccess copy available to the general public$$fUnrestricted
000057834 5203_ $$aSynchronization is a ubiquitous phenomenon occurring in social, biological, and technological systems when the internal rythms of their constituents are adapted to be in unison as a result of their coupling. This natural tendency towards dynamical consensus has spurred a large body of theoretical and experimental research in recent decades. The Kuramoto model constitutes the most studied and paradigmatic framework in which to study synchronization. In particular, it shows how synchronization appears as a phase transition from a dynamically disordered state at some critical value for the coupling strength between the interacting units. The critical properties of the synchronization transition of this model have been widely studied and many variants of its formulations have been considered to address different physical realizations. However, the Kuramoto model has been studied only within the domain of classical dynamics, thus neglecting its applications for the study of quantum synchronization phenomena. Based on a system-bath approach and within the Feynman path-integral formalism, we derive equations for the Kuramoto model by taking into account the first quantum fluctuations. We also analyze its critical properties, the main result being the derivation of the value for the synchronization onset. This critical coupling increases its value as quantumness increases, as a consequence of the possibility of tunneling that quantum fluctuations provide.
000057834 536__ $$9info:eu-repo/grantAgreement/ES/DGA/FENOL-GROUP$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2011-14539-E$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2011-25167$$9info:eu-repo/grantAgreement/ES/MINECO/FIS2012-38266-C02-01
000057834 540__ $$9info:eu-repo/semantics/closedAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000057834 590__ $$a2.288$$b2014
000057834 591__ $$aPHYSICS, MATHEMATICAL$$b5 / 54 = 0.093$$c2014$$dQ1$$eT1
000057834 591__ $$aPHYSICS, FLUIDS & PLASMAS$$b9 / 31 = 0.29$$c2014$$dQ2$$eT1
000057834 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000057834 700__ $$aPachón, Leonardo A
000057834 700__ $$aGómez-Gardeñes, Jesús
000057834 700__ $$0(orcid)0000-0003-4478-1948$$aZueco Lainez, David$$uUniversidad de Zaragoza
000057834 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000057834 773__ $$g90, 5 (2014), 052904 [12 pp]$$pPhys. rev., E Stat. nonlinear soft matter phys.$$tPhysical Review E - Statistical, Nonlinear, and Soft Matter Physics$$x1539-3755
000057834 8564_ $$s922968$$uhttps://zaguan.unizar.es/record/57834/files/texto_completo.pdf$$yVersión publicada
000057834 8564_ $$s132198$$uhttps://zaguan.unizar.es/record/57834/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000057834 909CO $$ooai:zaguan.unizar.es:57834$$particulos$$pdriver
000057834 951__ $$a2024-11-08-10:44:42
000057834 980__ $$aARTICLE