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Abstract CUORE-0 is a cryogenic detector that uses an
array of tellurium dioxide bolometers to search for neutri-
noless double-beta decay of 130Te. We present the first data
analysis with 7.1 kg · y of total TeO2 exposure focusing on
background measurements and energy resolution. The back-
ground rates in the neutrinoless double-beta decay region
of interest (2.47 to 2.57 MeV) and in the α background-
dominated region (2.70 to 3.90 MeV) have been measured to
be 0.071 ± 0.011 and 0.019 ± 0.002 counts/(keV · kg · y),
respectively. The latter result represents a factor of 6 improve-
ment from a predecessor experiment, Cuoricino. The results
verify our understanding of the background sources in
CUORE-0, which is the basis of extrapolations to the full
CUORE detector. The obtained energy resolution (full width
at half maximum) in the region of interest is 5.7 keV. Based
on the measured background rate and energy resolution in the
region of interest, CUORE-0 half-life sensitivity is expected
to surpass the observed lower bound of Cuoricino with one
year of live time.

1 Introduction

Neutrinoless double-beta decay (0νDBD) is a hypothet-
ical lepton number violating process in which two neu-
trons in an atomic nucleus simultaneously decay to two
protons, two electrons, and no electron-antineutrinos:
(A, Z) →(A, Z + 2) + 2e−. Observation of 0νDBD would
establish the Majorana nature of the neutrino, i.e., that the
neutrino is its own antiparticle, and may provide insights
on the neutrino mass scale and mass hierarchy, depending
on 0νDBD rate or rate limit (cf. [1]). The experimental sig-
nature for 0νDBD is a peak at the 0νDBD Q-value in the
two-electron energy sum spectrum. Several recent experi-
ments have reported new limits on the 0νDBD half-life of
136Xe [2,3] and 76Ge [4]. For comparison between experi-
ments, half-life limits of different isotopes are usually con-
verted to limits on the effective Majorana mass. This conver-
sion, however, takes into account the phase space factors and
nuclear matrix elements, the latter of which introduce large
uncertainties from different model calculations [5–11]. The
current 0νDBD half-life limit for 130Te was set by Cuoricino
at 2.8 × 1024 y (90 % C.L.) [12].

CUORE-0 is a cryogenic detector that uses an array of
TeO2 bolometers to search for 0νDBD in the 130Te of the
bolometers themselves. 130Te is an attractive isotope for
a 0νDBD search because of its relatively high Q-value at
2528 keV [13–15] and its very high natural isotopic abun-
dance at 34.2 % [16]. Cryogenic bolometers measure energy
through a rise in the temperature of the detector and have

a e-mail: cuore-spokeperson@lngs.infn.it
b Deceased

energy resolutions comparable to high purity Ge detectors:
for CUORE-0 style bolometers, the energy resolution (full
width at half maximum, FWHM) is typically 0.2 % at the
0νDBD Q-value. 0νDBD data taking with CUORE-0 began
in March 2013.

CUORE-0 also serves as a technical prototype for CUORE
(Cryogenic Underground Observatory of Rare Events) [17],
which will consist of 19 towers identical to the single
CUORE-0 tower. CUORE-0 is the first tower produced on
the CUORE assembly line, and its successful commissioning
represents a major milestone towards CUORE. CUORE is in
the advanced stages of detector construction at the time of
this writing and is scheduled to begin data taking in 2015.

2 CUORE-0 detector

CUORE-0 is a single tower of 52 TeO2 crystal bolometers
operating at a typical base temperature of 13–15 mK in Hall
A of the Laboratori Nazionali del Gran Sasso (LNGS) under-
ground facility in Italy. As shown in Fig. 1a, the tower consists
of 13 planes of four 5×5×5 cm3 crystals, held securely inside
a copper frame by specially designed polytetrafluoroethylene
(PTFE) brackets. The copper frame serves as a thermal bath
to cool the crystals through the weak thermal coupling pro-
vided by PTFE. Each crystal weighs 750 g, which results
in a total detector mass of 39 kg and a total 130Te mass of
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Fig. 1 a CUORE-0 tower array rendering. The tower consists of 13
planes of 4 crystals, mounted in the frame made of copper. b Schematic
of a single CUORE-0 bolometer showing the thermistor (T), the heater
(H), and the weak thermal link (L) between TeO2 crystal and copper
thermal bath (not to scale). c An example of a bolometer signal with
the energy of approximately 2615 keV. The rise and fall times of this
signal are 0.04 s (defined as the time for the pulse amplitude to evolve
from 10 to 90 % of its maximum) and 0.26 s (90–30 % of maximum),
respectively

123



Eur. Phys. J. C (2014) 74:2956 Page 3 of 7 2956

11 kg. Each crystal is instrumented with a single neutron
transmutation doped (NTD) germanium thermistor for the
signal readout (see Fig. 1b). The typical signal amplitude
�T/�E is 10 − 20 μK/MeV. Figure 1c shows an exam-
ple of a bolometer signal. Additionally, one silicon Joule
heater [18] is also glued to the crystal for the offline correc-
tion of thermal gain drift caused by temperature variation of
the individual bolometer.

We put significant effort into the selection and handling
of the detector materials with the objective of minimizing
the background contamination for CUORE-0. In collabora-
tion with the TeO2 crystal grower at the Shanghai Institute
of Ceramics, Chinese Academy of Sciences, we developed
a radiopurity control protocol [19] to limit bulk and surface
contaminations introduced in crystal production. Only mate-
rials certified for radiopurity were used to grow the crystals.
After production, the crystals were transported to LNGS at
sea level to minimize cosmogenic activation. Upon arrival
at LNGS, a few crystals from each batch were instrumented
as bolometers for characterization tests. For 238U (232Th)
decay chain, the measured bulk and surface contaminations
are less than 6.7 × 10−7 Bq/kg (8.4 × 10−7 Bq/kg) and
8.9 × 10−9 Bq/cm2 (2.0 × 10−9 Bq/cm2) at 90 % C.L.,
respectively [20]. Material screening of small parts, includ-
ing NTD thermistors and silicon heaters, indicates that their
radioactive content contributes to less than 10 % of the total
background in the 0νDBD region of interest (ROI).

Based on the experience of Cuoricino, we expect the most
significant background contributions to come from the tower
frame and the surrounding cylindrical thermal shield, both of
which are made from radiopure electrolytic tough pitch cop-
per [21]. Relative to Cuoricino, the total mass and surface
area of the tower frame of CUORE-0 was reduced by a fac-
tor of 2.3 and 1.8, respectively. Monte Carlo studies predict
a factor of 1.3 decrease in α background from the thermal
shield arriving at the crystals due to the change in the geom-
etry [22]. To further mitigate the surface contamination of
the copper structure, we tested three surface treatment tech-
niques [23] and chose a series of tumbling, electropolishing,
chemical etching, and magnetron plasma etching for the sur-
face treatment. The upper limit of the surface contamination
of the cleaned copper was measured in R&D bolometers to be
1.3×10−7 Bq/cm2 (90 % C.L.) for both 238U and 232Th [23].

The CUORE-0 detector assembly procedure was designed
to minimize the recontamination of clean components. Tower
assembly takes place in a dedicated class 1000 clean room
in Hall A of the LNGS underground facility. To minimize
exposure to radon (and radon progeny) in air, all steps of the
assembly were performed under nitrogen atmosphere inside
glove boxes [24]. All tools used inside the glove boxes, and
especially those that would physically touch the detector
components, were cleaned and certified for radiopurity. The
assembled tower was enclosed in a copper thermal shield and

mounted in the Cuoricino cryostat. To minimize exposure to
the environment during mounting to the cryostat, mounting
was performed in the Cuoricino clean room, and the tower
was kept under nitrogen flux for as long as possible.

CUORE-0 uses for the first time flexible printed circuit
board (PCB) cables and in situ wire bonding for electrical
wiring of the tower. This is one of the major upgrades that
significantly improved the robustness of bolometer readout
wiring compared to the Cuoricino design. A set of flexible
PCB cables with copper traces [25,26] was attached to the
copper frame from the bottom plane to the top. The lower
ends of the PCB copper traces were bonded to the metal con-
tact pads of the thermistors and heaters using 25 μm diameter
gold wires. The upper ends of the PCB cables were con-
nected through another custom-made flexible PCB at the
10 mK plate to a set of Manganin twisted pair flat ribbon
cables running un-interrupted to the feedthroughs on the top
plate of the cryostat. Overall, only 3 bolometers (6 %) are not
fully functional from the loss of 1 thermistor and 2 heaters.
The two heater-less bolometers can be used in non-standard
analysis without thermal gain correction in the future.

CUORE-0 is operated in the same cryostat, uses the same
external lead and borated-polyethylene neutron shielding,
and is enclosed in the same Faraday cage that was used for
Cuoricino [12,27]. The front-end electronics [28–30] and
data acquisition hardware are also identical to those used in
Cuoricino. We implemented a new automated bias voltage
scanning algorithm to locate the optimal working point that
maximizes the signal-to-noise ratio (SNR). The bolometer
signals are amplified and then filtered with six-pole Bessel
low-pass filters. Subsequently, signals are digitized by two
32-channel National Instruments PXI analog-to-digital con-
verters with a 125 S/s sampling rate, 18-bit resolution, and
21 V full scale. All samples are stored continuously on disk.
Afterwards, in almost real-time, a constant fraction analysis
trigger identifies triggered pulses with 626 sampling points
(5.008 s), including a pre-trigger segment of 125 samples.
Each bolometer has an independent trigger threshold, rang-
ing from 50 to 100 keV. In addition to the signal triggers,
each bolometer is pulsed periodically at 300 s intervals with
a fixed and known energy through the heater. These “pulser”
events are used to monitor and correct the gain of the bolome-
ters [31]. Finally, a baseline trigger identifies a baseline pulse
every 200 s to provide snapshots of the detector working tem-
peratures and noise spectra.

CUORE-0 data are grouped into “data sets”. Each data
set consists of a set of initial calibration runs, a series of
physics runs, and a set of final calibration runs. Calibration
data refers to the sum of all calibration runs, while back-
ground data refers to the sum of all physics runs to search
for 0νDBD. During calibrations, the detector is irradiated
using two thoriated tungsten wires, each with a 232Th activ-
ity of 50 Bq. The wires are inserted into two vertical tubes on
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opposite sides of the tower that run between the outer vac-
uum chamber and the external lead shielding. We calibrate
each channel using γ rays from daughter nuclei of 232Th in
the energy range from 511 to 2615 keV. The signal rates on
each bolometer for the calibration and background data are
60–70 and 0.5–1.0 mHz, respectively.

3 CUORE-0 performance and background

The CUORE-0 data reported in this article was collected
between March and September 2013, with interruptions for
dilution refrigerator maintenance. To account for temporary
degraded performances on each individual bolometer due to
large baseline excursions or elevated noise levels, we reject
low-quality data intervals on a channel-by-channel basis.
Consequently, the total exposure is obtained by summing
the individual exposures of each bolometer. The accumu-
lated TeO2 exposure on 49 fully active channels is 7.1 kg · y
for a 130Te isotopic exposure of 2.0 kg · y, excluding all low-
quality data intervals.

CUORE-0 data analysis follows the same procedure as
was used for Cuoricino [12]. This includes amplitude eval-
uation, gain correction, energy calibration, and time coin-
cidence analysis among the bolometers. Pulse amplitude is
evaluated by first maximizing the SNR with an optimum fil-
ter. Fourier components of each pulse are weighted at each
frequency by the expected SNR, which is calculated for each
channel with an average pulse of 2615 keV γ rays and the
average power spectra of the noise events. For the gain correc-
tion of each bolometer, the amplitudes of pulser events are fit
against their baseline voltages to determine the gain depen-
dence on temperature, and this temperature dependence is
backed out for each signal pulse. For the energy calibration,
we use a third order polynomial fit in the energy range from
0 to 3.9 MeV since the relationship between energy and sta-
bilized amplitude is found to be slightly nonlinear. The devi-
ation from a linear fit is less than 10 keV at the 2615 keV
peak. If any two or more crystals register signal pulses within
100 ms of each other, the events are tagged as coincidence
events. These are mostly attributed to backgrounds such as
Compton-scattered γ rays or α decays on the surface of two
adjacent crystals.

The event selection criteria can be categorized as follows:
basic data quality, pile-up, pulse shape, and anti-coincidence.
The basic data quality cut rejects events within low-quality
data intervals, as mentioned in the beginning of the section.
The pile-up cut requires that only one pulse exists in a 7.1 s
window around the measured trigger time (see Fig. 1c). Due
to the relatively long rise and decay times of a pulse and neg-
ligible pulse shape dependence on energy at energies above
1 MeV, the pulse shape of the possible 130Te 0νDBD signal
is expected to be similar to that obtained from the 2615 keV

γ -ray peaks. Therefore, the pulse shape cut requires that the
signal shape is comparable to that obtained from the average
pulse recorded with 2615 keV γ -ray events, and that the pre-
trigger baseline slope is smaller than 0.1 mV/Sample. The
anti-coincidence cut requires that no other pulse in coinci-
dence is recorded in the entire tower.

We evaluate the selection efficiency mainly using the
2615 keV γ -ray peak since it offers sufficient statistics at
the energy closest to the ROI. However, since the 2615 keV
γ -ray events occasionally occur in coincidence with other
physical events, the efficiency of anti-coincidence cut was
evaluated using the 1461 keV γ rays from 40K decay, which
are truly individual events. The selection efficiency was aver-
aged over all active channels. The efficiency was obtained by
first evaluating the slowly varying background rate under the
peak by counting the number of events in the energy regions
between 3 and 15σ above and below the peak. The back-
ground rate was then subtracted from the peak rate which
was measured by counting the number of events within ±3σ

of the peak. The result was cross-checked by fitting the com-
bined peak and background region (±15σ ) with a Gaussian
plus linear function. The difference between the two methods
was integrated as the systematic uncertainty of the selection
efficiency. The obtained efficiency is 92.9 ± 1.8 %, which
is the efficiency of all cuts other than the anti-coincidence
cut, obtained from the 2615 keV γ -ray peak, multiplied by
the efficiency of the anti-coincidence cut, obtained from the
1461 keV peak after applying all other cuts, as described
above. Since we are considering only single crystal events,
we must include the confinement efficiency, i.e. the prob-
ability that both 0νDBD electrons are contained inside the
single crystal. This probability has been estimated by sim-
ulation to be 87.4 ± 1.1 % [12]. Taking into account the
99.00 ± 0.01 % signal trigger efficiency, which is evaluated
on pulser events, the total 0νDBD detection efficiency of
CUORE-0 is 80.4 ± 1.9 %. This result is compatible with
the value obtained from Cuoricino, which was found to be
82.8 ± 1.1 % [12].

The top panel in Fig. 2 shows the energy spectrum
obtained using the 232Th calibration source. The spectrum
is the sum of all 49 fully functional channels. The his-
togram in the bottom panel shows the background spectrum
of CUORE-0 for the analysis presented. The presence of
the pronounced γ -ray peaks from 214Bi decay, a daughter
nucleus of 222Rn, is attributed to the inclusion of data taken
without the nitrogen gas purge in the Faraday cage around
the dilution refrigerator. The nitrogen purge effectively sup-
presses 214Bi γ -ray intensities by more than a factor of 5.
The energy resolution in the ROI is defined as the FWHM
of 2615 keV γ -ray peak, determined by a fit to the summed
background spectrum of all fully functional channels. The
median resolution of the individual channels in the calibra-
tion data is 6.0 keV, with a mean of 6.8 keV and a root mean
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Fig. 2 CUORE-0 calibration (top panel) and background spectrum
(bottom panel) over the data taking period presented in this work. γ -ray
peaks from known radioactive sources in the background spectrum are
labeled as follows: (1) e+e− annihilation; (2) 214Bi; (3) 40K; (4) 208Tl;
(5) 60Co; and (6) 228Ac

square deviation of 2.1 keV. The relatively larger mean and
root mean square deviation are attributed to a few underper-
forming channels. The energy resolution of calibration data
slightly deteriorates due to accidental coincidence events and
a higher overall noise level compared to background data.

When compared to Cuoricino, one new noise contribu-
tion is correlated microphonic noise on multiple channels
introduced by the new flexible PCB wiring. The vibration
of one PCB cable might introduce common-mode noise in
all the channels on that cable, which is apparent in the low-
frequency part of the signal band and degrades the energy
resolution. However, even with the correlated noise in play,
the energy resolution of 5.7 keV (FWHM) is better, on aver-
age, than that of Cuoricino. Furthermore, we have on-going
studies seeking to improve the energy resolution by regress-
ing the correlated noise out of the bolometer signals [32].

As of this writing, we have kept the 0νDBD region
blinded. Our blinding procedure is a form of data salting,
where we randomly exchange a blinded fraction of events
within ±10 keV of the 2615 keV γ -ray peak with events
within±10 keV of the 0νDBD Q-value. The exchange proba-
bility varies between 1 and 3 % and is randomized run by run.
Since the number of 2615 keV γ -ray events is much larger
than that of possible 0νDBD events, the blinding algorithm
produces an artificial peak around the 0νDBD Q-value and
blinds the real 0νDBD rate of 130Te. This method of blinding
the data preserves the integrity of the possible 0νDBD events
while maintaining the spectral characteristics with measured
energy resolution and introducing no discontinuities in the
spectrum.

The background rate in the ROI is evaluated using the
blinded spectrum in the energy range 2470–2570 keV. This
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Fig. 3 Blinded energy spectrum and 0νDBD global fit in the region
of interest. The unbinned maximum-likelihood fit is shown in solid
red line. The dotted blue line illustrates the peak from 60Co and
the linear background only to highlight the difference between
salted 0νDBD peak and background. The flat background from the
fit is 0.071 ± 0.011 counts/(keV · kg · y). 60Co peak position, salted
peak position, and rate are 2506.8 ± 1.1 keV, 2528.4 ± 1.0 keV, and
1.3 ± 0.5 counts/(keV · kg · y), respectively

region includes the 60Co sum-peak at 2506 keV and the salted
peak at the 0νDBD Q-value, as shown in Fig. 3. We use
an unbinned maximum-likelihood fit to estimate the back-
ground rate in the ROI. The likelihood function consists of
the sum of a 60Co Gaussian peak, a salted 0νDBD Gaus-
sian peak, and a flat background. In the fit, the mean of the
60Co peak is initialized to 2506 keV and the mean of the
salted 0νDBD peak at 2528 keV. The FWHM of both peaks
is fixed to the detector resolution at 5.7 keV. As shown in
Fig. 3, the fit reveals that the overall background rate in the
ROI is 0.071 ± 0.011 (stat) counts/(keV · kg · y). For com-
parison, the background rate of the Cuoricino crystals with
the same dimension is 0.153 ± 0.006 counts/(keV · kg · y).
Systematic uncertainties arising from background shape are
studied by comparing a constant and a linear background
models, and are found to be less than 3 %. The systematic
contribution from the uncertainty in energy calibration is less
than 1 %.

The two major sources of background in the ROI are
degraded α particles from surface contamination on the
detector components and γ rays that originate from the
cryostat. Degraded α particles with a decay energy of 4
to 8 MeV may deposit part of their energy in the 0νDBD
ROI. These α events form a continuous energy spectrum
extending from their decay energy to well below 0νDBD
region. The α background rate in the ROI is estimated by
counting events in the “α flat continuum region”, which
is defined to be from 2.7 to 3.9 MeV (excluding the 190Pt
peak region from 3.1 to 3.4 MeV). This energy range is
above almost all naturally occurring γ rays, in particular
the 2615 keV γ rays from 208Tl decay. Figure 4 shows
the background energy spectrum of CUORE-0 (shaded red)
and Cuoricino (black). The measured rate for CUORE-0 is
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0.019 ± 0.002 counts/(keV · kg · y), which improves on the
Cuoricino result (0.110 ± 0.001 counts/(keV · kg · y)) by a
factor of 6.

The γ -ray background in the ROI is predominantly
Compton-scattered 2615 keV γ rays originating from 208Tl
in the cryostat. Since CUORE-0 is hosted in the same cryo-
stat as was used for Cuoricino, the γ -ray background is
expected to be similar. The γ -ray background is estimated
as the difference between overall background in the ROI and
the degraded α background in the continuum. The measured
γ -ray backgrounds of CUORE-0 and Cuoricino are indeed
compatible [12], consistent with the hypothesis that the back-
ground in the ROI is composed of γ rays from the cryostat
and degraded α particles.

4 Projected sensitivity of CUORE-0

Using the measured background rate and energy resolution
of the 2615 keV γ -ray peak, we obtain the CUORE-0 sensi-
titvity with the approach outlined in [33]. With the excellent
energy resolution, we construct a single-bin counting exper-
iment with a 5.7 keV bin centered at the 0νDBD Q-value.
The sensitivity is obtained by comparing the expected num-
ber of signal events with Poissonian fluctuations from the
expected background rate in this bin. Figure 5 shows the
90 % C.L. sensitivity of CUORE-0. With one year of live
time, or 11 kg · y isotope exposure, CUORE-0 is expected
to surpass the 130Te 0νDBD half-life sensitivity achieved by
Cuoricino, 2.8 × 1024 y.

5 Summary and outlook

We present the energy resolution and background measure-
ments of CUORE-0 detector from the 7.1 kg · y exposure
accumulated up to September 2013. The measured 5.7 keV
FWHM in the 0νDBD ROI represents a slight improvement
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Fig. 5 Sensitivity of CUORE-0 with the measured background rate in
the ROI of 0.071 counts/(keV · kg · y) and energy resolution of 5.7 keV
FWHM. The CUORE-0 sensitivity is expected to surpass that of Cuori-
cino with 1 year of live time

over Cuoricino and validates the CUORE-0 wiring scheme
and assembly procedure. The background rates have been
measured to be 0.071 ± 0.011 counts/(keV · kg · y) in the
ROI and 0.019 ± 0.002 counts/(keV · kg · y) in the α contin-
uum region. These results are a factor of 2 and 6 improvement
compared to Cuoricino, due to more rigorous copper surface
treatment, improved crystal production and treatment proto-
cols, and more stringent assembly procedures in the clean
environment. The CUORE-0 sensitivity is expected to sur-
pass that of Cuoricino with one year of live time.

As a technical prototype for CUORE, CUORE-0 demon-
strates the feasibility of instrumenting an ultra-pure ton-scale
bolometer array with 988 channels. By enhancing the proce-
dure of the on-going CUORE assembly, we have improved
assembly success rate to close to 100 %, which is a cru-
cial achievement for large arrays such as CUORE. We have
started implementing the noise decorrelation algorithms into
the CUORE-0/CUORE data analysis package, with the aim
of further improving energy resolution. CUORE-0 recon-
firms the effectiveness of the copper cleaning technique
and clean assembly procedure developed for CUORE. Com-
pared to CUORE-0, the larger array of CUORE affords more
powerful time coincidence analysis and more effective self-
shielding from external backgrounds, particularly those orig-
inating from the copper thermal shields or cryostat. With this
stronger background rejection and the already demonstrated
reduction of surface contamination, the CUORE background
goal of 0.01 counts/(keV · kg · y) is expected to be within
reach. The projected half-life sensitivity to 130Te 0νDBD is
9.5×1025 y (90 % C.L.) with 5 years of live time [33], reach-
ing an effective Majorana neutrino mass sensitivity of 0.05
to 0.13 eV [5–11,34].
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