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Abstract

This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on
a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The
motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the
high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or
not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection
conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian
properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function.
In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on
particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a
discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the
morphology of the QRS complexes.
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Introduction

One of the most relevant waveforms in the electrocardiogram

(ECG) is the QRS complex since it has been used in several

medical applications [1] such as noise cancelation [2], the

automated determination of the heart rate [3] or computer-based

arrhythmia monitoring [4]. The QRS ECG segment reflects the

electrical activity during ventricular contraction, thus the time of

its occurrence as well as its shape provide relevant diagnostic and

prognostic information in clinical practice [5–7].

In the past decades several approaches to QRS detection based

on different paradigms have been successfully proposed. Examples

of such approaches are based on the field of artificial neural

networks [8], genetic algorithms [9], wavelet transform [10] or

filter banks [11], analyses of signal parameters such as slope,

amplitude and width [12], as well as other heuristic [13] and non

linear transforms. Most QRS detectors have been developed

following a three-step structure [3], that is, a linear filter

suppressing noise and artifacts followed by a nonlinear transfor-

mation for signal enhancement. The output of these two stages is

then fed to a third decision rule stage for detection. The main

target of this paper is focused on the third stage, therefore the

proposed method could be used in combination with detectors

described in the literature which have been developed from ad hoc
reasoning and experimental insight.

Up to our knowledge the first approach based on maximum a
posteriori (MAP) estimation for QRS detection was proposed in

[14]. In the latter work a complex mathematical model in the time

domain was introduced to find several ECG parameters such as

amplitudes, widths or arrival times, which provide an appropriate

fit to that model using a pre-defined matched filter. As the authors

acknowledge, this method was computationally unfeasible [14],

thus additional simplifications and approximations on the MAP

estimation were needed to be introduced to reduce the compu-

tation time [15], but still the method could not be considered as a

real time approach, i.e. the estimation of arrival times are not

necessarily found in temporal order [15]. This problem can, of

course, be solved if the size of the observation window is reduced,

as shown in the experimental part of this paper where this method

is analyzed as a baseline. This is mainly motivated by the long-
term observation window of the model which assumes that the

observation vector contains an unknown number q of pulse-shaped

waveforms.

On the other hand, the asymptotic properties of the Discrete

Fourier Transform (DFT) coefficients [16] could be as well

analyzed in the definition of the signal model, that is they are
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defined as Gaussian variables. If these assumptions are considered

in context, an effective and real-time M-ary Likelihood Ratio Tests

(LRT) detector could be derived with a lower number of

parameters to be estimated, i.e. only the variances of the noise

and desired signal. In this sense, we showed recently [17] that

incorporating contextual information from preceding and suc-

ceeding samples, and multiple hypotheses in the LRT, reports

benefits for signal detection in other fields of research such as

speech processing or voice activity detection. This paper analyzes

this signal model together with other innovations, showing a novel

QRS detector that extends the number of hypotheses of the M-ary

LRT in a multiple observation window.

The rest of the manuscript is organized as follows. Section

shows a general description of the signal model and the detector

structure. Topics such as the definition of the M-ary LRT, the

partial and global hypotheses that are considered in the test, and a

revised maximum a posteriori (MAP) statistical test are presented

and discussed. Several examples are also discussed as well as the

influence of the model parameters in the detector performance.

Moreover, in this section a robust method for statistical parameter

estimation, i.e. the PSDs of the QRS and noise processes, is shown

based on the minimum mean-square error (MMSE) estimator

[16]. Section 0.0.1 analyzes the proposed detector together with

an approximate statistical LRT related to previous approaches in

speech recognition such as [17–19]. Section 0.0.1 is devoted to the

experimental framework including the discrimination analysis and

the QRS detection performance evaluation. All the experiments

are carried out on the MIT-BIH Arrhythmia standard Database

[20]. Finally, section 0.0.1 summarizes the conclusions of this

work.

Adaptive QRS detection based on MAP LRT

Signal Model
The ECG signal is modeled as a discrete-time stochastic process

[15]; typically, the observation signal for a real time QRS detector,

including at most q~1 pulse-shaped waveforms, is given by:

x(n)~
B:s(n{h)zu(n), H1

u(n), H0

�
for n~0, . . . ,N{1 ð1Þ

where s(n) is the QRS complex with known morphology (pulse-

shaped waveform), arrival time h, amplitude B and width DvN
which is corrupted by a stationary, white, Gaussian process u(n)

with variance s2
v . Furthermore, s(n) is considered to be composed

of two identical waveforms q(n), one of which is shifted T samples

in time and has opposite sign:

s(n)~q(n){q(n{T); 0ƒnƒD{1 ð2Þ

In addition, the temporal parameters of this model are

considered as discrete/continuous random variables with known

probability densities which are relevant for subsequent ECG

analysis [14,15]. Based on the observed signal x(n) the structure of

the MAP estimator is derived by maximizing the log-likelihood

function in [15], which depends on the previously defined

parameters and relies on the Gaussianity of the noise.

Some of the drawbacks associated with the present model are:

the large amount of parameters to be tuned during the design and

test of the system; the noise is neither stationary nor ergodic, i.e.

the occurrence of noise is due to different waveforms such as P or

T waves, from myoelectric origin or transient artifacts; some

changes in the QRS morphology could arise from physiological

origin or technical problems being unlikely to be effectively

modeled by just an amplitude value; etc. Therefore, obtaining the

detector structure by maximizing the log-likelihood function as the

one in [15], requires the estimation of parameters that are

essentially time dependent since probability distributions could be

time-varying.

Due to the above-mentioned reasons another simpler statistical

model is used in this paper which is based on theoretical findings

in the Fourier analysis [21]. The Fourier expansion coefficients of

the observed signal are assumed to be statistically independent

Gaussian random variables:

DX (k)D*N(0,s(n)) ð3Þ

These coefficients are obtained by decomposing the signal into

overlapped frames each of size NwvN with a Sw-sample window

shift, where N is total number of samples of the signal, and by

computing the J-point windowed DFT spectral representation on

a frame by frame basis:

Xj(k)~
1

EwE

XNW {1

m~0

x(jSwzm)w(m)e
{j2pmk

J ; V k~0,:::,J{1 ð4Þ

where j denotes the frame index, w represents the window

(typically a Hamming window to reduce the correlation between

widely separated spectral components) and EwE is its norm. Thus,

DXj(k)D2 is a consistent estimation of the power spectral density

(PSD) of the signal.

In the Fourier domain the observation window can be rewritten

as:

Xj~
SjzVj , H1

Vj , H0

�
ð5Þ

Thus, once the window size Nw is selected, the channel can be

described as a vector sequence Xj that alternates between two

possible states, i.e. presence or absence of pulse-shaped waveforms

(q~1 and q~0 respectively). Assuming that the total number of

observations (i.e. frames) is t N{Nw

Sw
sz1~2Lz1 and the number

of signal observations is t NwzD
Sw

s~2Qz1, the partial observation

vectors can be reindexed and grouped into a global observation

matrix (from now on buffer):

X̂X~fXl{L, . . . ,Xl{Q, . . . ,Xl , . . . XlzQ, . . . ,XlzLg ð6Þ

The content of the buffer, assumed symmetric without loss of

generality, is shifted one position to the left in each step of the

algorithm so the new feature vector obtained after the analysis of

the current analysis window is inserted in the (2Lz1)-th position.

Based on this signal model the detector now can formulate a

binary decision about the presence or absence of the QRS

complex in the central frame stored in the central position (frame

Lz1) without loss of generality, using the L preceding observa-

tions X1,:::,XLf g and the L succeeding observations

XLz1,:::,X2Lz1f g: Consequently, any algorithm using this obser-
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vation model exhibits only an L-frame computational delay so that

the decision over the (Lz1)-th frame of the signal is only available

after the (2Lz1)-th frame has been analyzed.

Detector Structure based on MAP M-ary LRT
Given the signal model in equations 3 to 6, the probability for

each observation vector can be evaluated under binary hypothesis

testing as:

p(Xj Dhj)~

P
J{1

k~0

1
p(lV (k)zlS (k))

exp {
DXj (k)D2

(lS (k)zlV (k))

� �
; hj~1

P
J{1

k~0

1
plV (k)

exp {
DXj (k)D2

lV (k)

� �
; hj~0

8>>><
>>>:

ð7Þ

where hj~f0,1g is the partial hypothesis, that is, the presence

or absence of the QRS complex in the observation vector Xj ; and

lS(k) and lV (k) are the PSDs of the QRS and noise processes,

respectively, which are estimated using the Ephraim and Malah

minimum mean-square error (MMSE) estimator [16]. The

observation vectors Xj in the buffer X̂X are assumed to be

statistically independent, thus the conditional probability condi-

tioned on the global hypothesis h:fh1, . . . ,h2Lz1g, can be

calculated by

p(X̂XDh)~ P
2Lz1

j~1
p(Xj Dhj) ð8Þ

The independence approximation between observation frames

that is followed by many authors [15,22] is considered and

analyzed in a previous work [22]. Nevertheless the correction

introduced in the latter paper requires a very complex model for

the observation probabilities in the simplest case (jointly Gaussian

observation frames), and does not substantially alter the perfor-

mance of the detector, although the overlap between observation

frames introduces a significant correlation between them.

Let H0 and H1 be the set (or the matrices) of hypotheses (or

states) h which define the absence or presence of the QRS complex

in the buffer, respectively, and follow the selection criteria:

H1~ h[H : hj~1,Vj[Br½Lz1�5K
� �

H0~ h[H : Aj[Br½Lz1�5K = hj~0
� � ð9Þ

where Br(Lz1) stands for the closed ball of radius r centered at

Lz1 in the space of integers K. Thus, the presence or absence of

the QRS complex depends on the partial hypotheses formulated

on the central frames of the buffer. Taking into account this

definition, the joint probabilities p(X̂X,H1) and p(X̂X,H0) can be

obtained by:

p(X̂X,H0)~
X
h[H0

p(X̂X,h)~
X
h[H0

p(h)p(X̂XDh) ð10Þ

p(X̂X,H1)~
X
h[H1

p(X̂X,h)~
X
h[H1

p(h)p(X̂XDh) ð11Þ

where p(h) is the a-priori probability of hypothesis h (see

Appendix S1 for the calculation of these probabilities). As readily

shown from (10) the maximization of the likelihood function

avoids the estimation of the pdf for several parameters related to

the desired signal features (amplitude, width, etc.) [14] or the

parameter selection to define a subset of matched filters that better

maximize this function [15]. However, it requires to estimate the a
priori probability of the states, that can be easily measured

analyzing an ECG template (see section 0.0.1 and Appendix S1).

Finally, in order to detect the QRS complex, the MAP optimum

criterion is defined to be an M-ary LRT (with M~2Lz1) as

follows:

C:
p(X̂XDH1)

p(X̂XDH0)
~

p(X̂X,H1)

p(X̂X,H0)
~

P
h[H1

p(h) P
M

j~1
p(Xj Dhj)

P
h[H0

p(h) P
M

j~1
p(Xj Dhj)

H1

v
>

H0

g ð12Þ

where the decision threshold g is used to tune the operating

point of the detector. Thus, the largest conditional probability is

selected by computing the weighted probability of the states

defined in (9). If (12) is approximated by taking the maximum log

value of the hypotheses, a revised statistical test can be defined in

matrix form removing the summation symbols as:

log C�~max(H1B1z(J1{H1)B0zP1){

max(H0B1z(J0{H0)B0zP0)

H1

v
>

H0

g
ð13Þ

where Hk is the K|M row-wise matrix of states h,

Bk:½log p(X1Dh1), log p(X2Dh2), :::, log p(XM DhM )�T, Jk is the

K|M matrix of ones and Pk:½log (p(h1)), . . . , log (p(hK ))�T ,

hj[Hk is the column vector of the logarithmic a priori probabilities

of the hypotheses in Hk. The value K depends on how the

selection criteria in (9) are defined.

Examples. For L~Q~1 and B0½Lz1�, i.e. a ball with radius

r~0, for the selection criteria (only the central frame defines the

hypothesis), the 22Lz1|2Lz1~8|3 H matrix is defined as:

H~
H0

H1

� �
8|3

where H0 and H1 are given by:

H0~

0 0 0

0 0 1

1 0 0

1 0 1

2
6664

3
7775

4|3

; H1~

0 1 0

0 1 1

1 1 0

1 1 1

2
6664

3
7775

4|3

In this case only the central hypothesis defines the presence or

the absence of the QRS complex. The selection criteria could be

modified in order to be more conservative in the detection of the

QRS complex by selecting B1½Lz1� (a ball with radius r~1),

then:
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H1~ 1 1 1½ �1|3

and H0 is a 7|3 matrix defined by the rest of states which lie

out of the ball.

Estimation of Statistical Parameters
In a real time QRS detector the processing to be performed on

the incoming signal x(n) is divided into two phases: i) delimitation

of the observation window that should not exceed the size of the
ECG signal period, i.e. it should not include two QRS complexes;

ii) estimation of the model parameters in (7), i.e.

lS(k):EfDS(k)D2g and lV (k):EfDV (k)D2g. Unlike other ap-

proaches we use the same detector structure with the same

parameter values for both estimations.

Noise Spectrum Estimation. An initial model for the noise

spectrum should be determined from the incoming signal. To this

purpose fiducial points are computed for a few initial periods of the

ECG signal following the procedure described in [23]. Once the

isoelectric line is determined the noise spectrum Vj(k) is backward

computed from these knots and smoothed by averaging [16].

Moreover the noise spectrum is then updated, in a similar fashion

of the recursive averaging method proposed in [16], during the

non-QRS periods (determined by the detector) by means of a 1st

order IIR filter on the smoothed spectrum:

Vj(k)~luVj{1(k)z(1{lu)Xj(k) ð14Þ

where lu~0:98.

QRS Spectrum Estimation. The clean QRS spectrum is

estimated by combining smoothing, spectral subtraction and

conventional two-stage mel-warped Wiener filter design [24].

The latter attempts to remove additive noise throughout two

filtering stages: the first stage coarsely reduces noise and whitens

residual noise; the second stage removes any residual noise.

Sj(k)~lsS’j{1(k)z(1{ls):max(Xj(k){Vj(k),0) ð15Þ

where ls~0:99. Then the Wiener filter Hj(k) is designed as:

Hj(k)~
gj(k)

1zgj(k)
; where gj(k)~max

Sj(k)

Vj(k)
,gmin

� 	
: ð16Þ

where gmin is selected so that the filter yields a minimum

attenuation of 20 dB. Finally the clean QRS spectrum is computed

as:

S’j(k)~Hj(k)Xj(k) ð17Þ

This Wiener filter design process is repeated twice [24]. With

these operations we derive the ML estimators of the k-th signal

spectral component variance (lS(k),lV (k)) in the j-th analysis

frame which have been successfully used in other fields such as

speech enhancement [16].

The use of the adaptation presented in equation (15) similar to

the one in equation (14) allows that the spectrum models can not

be affected during failure detection segments, i.e. l*1.

This kind of adaptations have been successfully applied in other

fields such as voice activity detection in speech recognition [20]

where the samples rates and spectral width of the signal of interest

are higher than the ones in ECG signal processing.

Analysis of the proposed QRS detector

In this section several aspects of the proposed algorithm are

described and analyzed. In particular, we derive an approximation

of the M-ary LRT of equation 13 to validate its usability to

discriminate QRS frames from noise frames. Moreover, the

application on several examples of the analyzed database [20] and

the estimation of the a-priori probabilities are presented for further

analysis.

A-priori probabilities of the states
The a-priori probabilities of the states p(h) that are necessary to

evaluate equation 13, can be calculated in terms of the probability

of QRS segments (w~K=F , where K is the total number of QRS

blocks, i.e. heartbeats in the signal and F the total number of

observation frames) and the a priori probability of QRS frames

(r~S=F where S is the total number of QRS frames) as shown in

the appendix. These probabilities can be experimentally assessed

by the use of manually segmented ECG databases where the

proportions for the different ECG segments are available. In this

paper an ECG template is used to estimate these probabilities

based on the standard test waveforms specified in ANSI/AAMI

EC13:1992 [25]. Following this recommendation a synthesized

ECG signal was generated [26] with the following parameters:

N ECG sampling frequency: Fs~360 Hz.

N Heart rate mean: 60 bpm.

N LF/HF ratio: 0.5.

N Number of heartbeats: 256 with standard deviation 1 bpm.

obtaining the values w~0:0028 and r~0:0907 (see figure 1).

These probabilities could, of course, be better adjusted using a real

manually-segmented ECG record, however the model is perform-

ing well enough with these approximate values as it is later shown

in the experimental part.

Approximate log M-ary LRT estimation
For a simplification of (13) a particular transition is analyzed (see

figure 2). This corresponds to a situation in which M{V (being V

the number of noise samples) observations in the buffer of size

M~2Lz1 are QRS frames from a total of 2Qz1 QRS frames.

The most probable hypotheses in H0 and H1, denoted by

h0~fh1,0, . . . ,hM,0g and h1~fh1,1, . . . ,hM,1g respectively, are

evaluated by taking the max logarithms in (12):

log C�~log p(h1)z
XM
j~1

log p(Xj jhj,1){

log p(h0){
XM
j~1

log p(Xj jhj,0)

H1

v
>

H0

log g
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or equivalently for g~1:

log C�~
XM
j~1

log p(Xj Dhj,1){
XM
j~1

log p(Xj Dhj,0)

H1

v
>

H0

log
ph0

ph1
ð18Þ

Removing the partial states of h1 and h0 in common that is

hj,1~hj,0 it leads to:

log C�~log P
V

j~Lz1{r

p(Xj D1)

p(Xj D0)

H1

v
>

H0

log
p(h0)

p(h1)
ð19Þ

By defining the subset V of indexes where j is evaluated

(subframe ½Lz1{r,V � which appears shaded in light gray in

figure 2(b)) and substituting equation (7) in the previous equation,

the decision rule is finally defined as

Figure 1. ECG synthetic signal generated for the calculation of a priori probabilities [26]. Note HB: heartbeats.
doi:10.1371/journal.pone.0110629.g001

Figure 2. Hypothesis considered for the derivation of the approximate M-ary LRT and its expected value. Left: Example of ECG
segment (blue line) and its observation window composed of QRS (red line) and noise (black line) frames (M = 5 and r = 1). Right: The most probable
hypotheses in H0 and H1 for a transition as shown in left figure.
doi:10.1371/journal.pone.0110629.g002
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log C�~
X
j[V

XJ{1

k~0

ck,jjk,j

1zjk,j

{log (1zjk,j)

� 	 H1

v
>

H0

log
p(h0)

p(h1)
ð20Þ

where jk,j:
lS(k)

lV (k)
is the a-priori SNR for the k-th band and

ck,j:
DXj(k)D2

lV (k)
denotes the a-posteriori SNR for the k-th band at

the j-th frame of the buffer [27]. In addition, a scaled (normalized

in length) decision rule independent of V and J:

log C�~
1

J(V{Lzr{1)

X
j[V

XJ{1

k~0

ck,jjk,j

1zjk,j

{log (1zjk,j)

� 	
ð21Þ

is preferred, where V{Lzr{1 is the cardinality of V. This

statistical test can be understood as an average of the decision

criterion over the selected frames present in the buffer. Finally,

from (24) the expected value can be computed:

Eflog C�g~ 1

J(V{Lzr{1)

X
j[V

XJ{1

k~0

Efck,jgjk,j

1zjk,j

{log (1zjk,j)

� 	 ð22Þ

By using

Efck,jg~
(1zjk,j) ; M{VwV

1 ; M{VvV

�
ð23Þ

and assuming stationary white noise and signal models (the

SNRs are constant for all the frequency bands k) it yields:

Eflog C�g~
j{log (1zj) ; M{VwV
j

1zj {log (1zj) ; M{VvV

 
ð24Þ

As shown in Figure 3 under this naive approximation based on

a Gaussian process the proposed M-LRT may effectively

discriminate between QRS and noise frames for a wide range of

SNRs during step transitions in the observation window.

Additional improvements
A significant improvement will now be discussed by the use of

additional parameters in the maximization of the probability log-

function in a similar fashion of the models proposed in previous

MAP detectors. In particular, we consider L as an independent

discrete random variable with uniform pdf p(L) in the interval

½L1,L2�, where L1,L2 are positive integers. With this innovation

the maximization in (13) can be rewritten as:

log C�~ max
h[H1,L1vLvL2

(hT B1zhh
T

B0zP1){

max
h[H0,L1vLvL2

(hT B1zh
T

B0zP0)

H1

v
>

H0

g

ð25Þ

Figure 3. Expected value for the M-ary LRT vs the a priori SNR in the detection of a step change.
doi:10.1371/journal.pone.0110629.g003
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where �hh is the logical complement of h. The benefit of the

present modification consists in adjusting the window size of the

observation interval to the most probable hypotheses. The

calculation of this modification is not time consuming for model

orders L~0, . . . ,L2, where L2 is the target model order, since

they are required for the computation of the overall log function

and can be evaluated recursively [19]. Let ‘j,L:log C� be the

M~2Lz1-order log-probability function at jth frame as shown

in Eq. 13, then the recursion in the model order can be evaluated

as:

‘j,L~‘j,L{1zcjzLzcj{L ð26Þ

where cj~max(h1b1z�hh1b0zp1){max(h0b1z�hh0b0zp0),

bk~log p(Xj Dk) and pk~log (p(hk)); the recursion in time can

be evaluated as:

‘jz1,L~‘j,LzcjzLz1{cj{L ð27Þ

Evaluation on real ECG segments
Figure 4 shows two examples of the database [20] and the

results of the proposed QRS detector with the same proportion

between the length of the window and the length of the overlap

()25%). The selection of the size of the window influences the

performance of any detector since it controls the amount of

information processed in the test. Typically the QRS complex lasts

for about tQRS~70{110 ms, thus a suitable selection for the

observation window is N~tQRS
:Fs*40 samples.

On the other hand, the selection criteria are analyzed in

figure 5. The decision function of the detector is plotted for r = 0

and r = 1 radii, where the benefits of the restrictive conditions

imposed in (9) for r = 1 are highlighted. Under these conditions the

detector removes possible false alarms that occur in peaked T

segments. Using r = 1 and an overlap of 30 samples is a suitable

choice taking into account the duration of the QRS segment (,40

samples). Therefore, this configuration will be used in the

experimental part.

Experiments and Results Discussion

The proposed detector was mainly evaluated in terms of the

ability to discriminate between QRS and non-QRS periods at

different noise scenarios and SNR levels. All the methods

including the matched filter MAP detector as well as the proposed

M-ary LRT were evaluated under the same conditions, that is, the

same amount of information is available for the segment

assessment. In our method the noise reduction method based on

the Ephraim and Malah estimator [16] was used for estimating the

a priori SNR, and an adaptive threshold update enables the

effective tuning of the operating point for the wide range of SNR

conditions.

The MIT-BIH database
Several standard ECG databases are available for the evaluation

of software QRS detection algorithms [3]. The application of our

MAP method on any of these well-annotated and validated

databases provides reproducible and comparable results. In

addition, these databases satisfy the above-mentioned conditions

under which the method should be tested on, that is, they should

contain a large number of selected signals representative for the

large variety of ECGs, SNRs, as well as signals that are rarely

observed but clinically important.

One of these databases is the MIT-BIH database [20], provided

by MIT and Boston’s Beth Israel Hospital, which consists of ten

databases for various test purposes; i.e., the Arrhythmia Database,

the Noise Stress Test Database, the Ventricular Tachyarrhythmia

Database from Creighton University Cardiac Center, the ST

Change Database, the Malignant Ventricular Arrhythmia Data-

base, etc. The first three MIT-BIH databases are required by the

ANSI for testing ambulatory ECG devices.

The experiments in this paper focus on the Arrhythmia

Database which contains 48 half-hour excerpts of two-channel

ambulatory ECG recordings, obtained from 47 subjects studied

between 1975 and 1979. The recordings were digitized at 360

samples per second per channel with 11-bit resolution over a 10

mV range where several cardiologists independently annotated

each record [20], altogether there are about 116137 QRS

complexes. While some records contain clear R-peaks and few

artifacts (e.g., records 100-107), for some records the detection of

QRS complexes is very difficult due to abnormal shapes, noise and

artifacts (e.g., records 108 and 207) as shown in figure 6. Note the

different decision range for both detectors and the benefits of the

proposed QRS decision (Fourier domain versus time domain).

Performance Measures
The usage of software QRS detection algorithms in medical

devices requires the evaluation of the detection performance on

standard databases. According to [28], essentially two parameters

should be used to evaluate the algorithms; that is,

S~
TP

TPzFN

; PL~
TP

TPzFP

ð28Þ

where S denotes the sensitivity, PL the positive likelihood, TP

the number of true positive detections, FN the number of false

negatives, and FP the number of false positives.

Using these measures two MAP decision methods are evaluated

on the standard MIT-BIH database in order to get comparable

and reproducible results. The former is based on a real time

implementation of the matched-filter proposed in [14]. This

approach is applied to an observation window comparable with

the one used by the other QRS MAP detector (delimitation of the

observation interval), thus the method is converted into a real time

detector provided that the application of the original approach to

the MIT-BIH records is computationally unfeasible. The latter

approach is the M-ary LRT-based detector proposed in this paper.

Furthermore, we are focussing our attention in the decision rule

stage, that is, the methods based on MAP decision, since they

mean a general framework and could be used in conjunction with

other approaches such as linear filtering, non-linear transforma-

tions or heuristics based procedures for the same detection

problem.

The model parameters are selected with values Nw~f40,100g
and Sw~f10,25g samples, respectively. The order of the model is

selected to be L~f1,2,3g, therefore the size of the observation

interval is f70,175g up to f110,275g samples. Note that the

typical P-QRS-T interval duration is about 530 ms (,190 samples

at 360 Hz) thus the last value is clearly out of this bound. The

matched filter used as the baseline method is defined in the time

domain as a perfect replica of a QRS template using a synthesized

ECG signal. Thus, the classical method has been design under the

more favorable conditions by using a time-reversed template of the

waveform. The maximization of the log function is carried out on
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the arrival time h among all possible values in the observation

window.

The results of this comparison are shown in table 1, where the S
and the PL of the proposed and the baseline methods at the

operation point are shown. This table summarizes the average hit-

rates for all the noises and SNR conditions present in the database

of the previously analyzed methods. It is clearly shown that, while

the revised method yields similar QRS detection accuracy when

compared to the matched filter based detector [14] at low model

order, it exhibits an improved accuracy in detecting QRS periods

when the order is increased, i.e M = 7. The improvements are

especially important for poor SNRs and the presence of artifacts or

abnormal QRS shapes as shown in figure 6. By using the other

combination in the delimitation of the observation interval, i.e.

Nw~f100g and Sw~f25g we obtain similar results to those

explained before, that is, increasing the model order provides an

increase in the detection performance except when M = 9 since the

observation interval does not fulfill the assumptions held in section

0.0.1, i.e. it contains 325 samples (,900 ms) thus two QRS

complexes may be included in it. As a conclusion it is shown that

the M-ary LRT method yields a significant improvement in S, and

in PL when the model order is greater than three M.3 and

provides similar results as the trade-off between those measures

when compared to the baseline. Moreover, from this analysis the

proposed detector scheme for M = 5 achieves the best compromise

among the different detectors tested. It yields good results in

detecting QRS and non-QRS periods and exhibits a very slow

performance degradation at unfavorable noise conditions in QRS

detection.

However, this analysis could be biased because it may depend

on the number of pairs S, PL used to compute the averages and

standard deviation, the non-uniform location of these pairs, etc.

Receiver Operating Characteristic Curves
The receiving operating characteristic (ROC) curves have

shown to be very effective for the evaluation of any kind of

detector [3,14,15]. They actually test the robustness of the system

Figure 4. Patient 101 of the MIT-BIH arrhythmia database [20] sampled with Fs~360Hz. In both cases a 25% overlap between observation
windows is selected. The M-ary LRT test is performed with M = 3, order L = 1. Left: With the selected size of the window (N = 100) the decision is
considering the T segment as the QRS complex (conservative decision). Right: The selected size of the window (N = 40) produces a better separation
between ECG segments.
doi:10.1371/journal.pone.0110629.g004

Figure 5. Patient 101 of the MIT-BIH arrhythmia database [20] sampled with Fs~360Hz. In both cases a 25% overlap between observation
windows is selected. The M-ary LRT test is performed with M = 5, order L = 2. Left: r = 0. Right: r = 1 Note how the false alarm in in the last T segment is
removed.
doi:10.1371/journal.pone.0110629.g005
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by showing the tradeoff between the error probabilities of QRS

segments and non-QRS detection as the threshold varies and

completely describe the detector error rate. However the

performance of the detector depends on the background SNR

and therefore, the ROC curves are obtained by averaging the

performance of the detector on every single record. Thus, the

average should be computed under the same conditions and the

ROC curves should be displayed on several conditions, i.e. SNR,

type of noises etc. in order to provide a fair comparison.

Nevertheless, figure 7 shows the Pl versus the false alarm rate

(FAR0~1{S) for all the records of the MIT-BIH database under

several noise conditions. Additionally, to help the interpretation of

the results, table 2 shows the Area Under Curve (AUC) for the

ROC curves in figure 7. The proposed method yields better results

than the previous MAP method for M = 7 and similar results for

other detector configurations. The improvements of all MAP

detectors are provided by the robustness of the decision rule of

these statistical methods that are developed with a suitable design.

Complete QRS performance study
For the above-mentioned reasons many papers evaluate the

proposed detectors on standard or non-standard databases [3], by

limiting their study to the inclusion of a tape-by-tape performance

list. One example of a standard database is the MIT-BIH database

[29] where several examples of ECG signals and noises are

collected and become a real challenge. Another option is to collect

own databases [14,15], the so-called non standard databases, with

controlled noise conditions which allow to fairly evaluate the

performance of the proposed systems. In order to allow for

comparisons, our approach is tested against a free-access standard

database [20]. As in previous sections, the comparison is focused

on the decision rule stage using the matched-filter based detector

as a baseline framework.

Table 3 shows the same analysis as in [29]. The proposed

detector produces FN~3072 false negative detections and

FP~2158 false positive detections for a sensitivity of S~98:07
percent and a positive likelihood of PL~97:27 percent. This

includes all episodes of ventricular flutter and other difficult

segments that occur on several tapes, i.e. 207. The results for the

matched filter are similar to the ones obtained by our method, i.e.

over the 112646 beats the baseline detector produces 3910 false

positives and 2749 false negatives for a S~96:56 and a

PL~97:56. The positive false alarms that occurred were most

often caused by the existence of tall and peaked T waves. This is

due to their spectral properties that differ so little from those of the

QRS complex. The negative false alarms were most often caused

by the wrong adaptation of the noise model preceded by a frame

where a QRS detection failure occurred. Again, it is worth

mentioning that the detectors do not include any other linear

filtering or nonlinear transformation stages that of course could

improve the performance of both detectors.

The QRS decision rule is formulated over a sliding window

consisting of 2L+1 observation feature vectors around the frame ‘
for which the decision is being made. This strategy, known as long

term information provides very good results using several

approaches for detection [30], however it imposes an m-frame

delay on the algorithm that, for several applications including

QRS detection, is not a serious implementation obstacle. As an

Figure 6. ECG signal in green line (record 108 containing several abnormal shapes, noise and artifacts). Left: MAP decision in red line
based on M( = 3)-ary LRT. Right: A real time implementation of the matched filter-based method [15].
doi:10.1371/journal.pone.0110629.g006

Table 1. Operation points for the MAP based QRS detectors. Average and deviation of S and PL (Nw~40, Sw~10).

ŜS sS P̂PL sPL

1-ary LRT 0.9386 0.0852 0.9105 0.1201

3-ary LRT 0.9418 0.0769 0.9458 0.0816

5-ary LRT 0.9700 0.0432 0.9141 0.1035

7-ary LRT 0.9761 0.0625 0.8936 0.1075

matched filter 0.9567 0.0596 0.8915 0.1458

doi:10.1371/journal.pone.0110629.t001
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example for the case L~5, Nw~40 and Sw~10 and Fs~360Hz,

the delay of the algorithm is d~1=2:½(50z40)=360�*0:12s.

Conclusions

The use of a M-ary statistical LRT based approach to QRS

detection was analyzed in this paper. The method uses a M-ary

LRT defined over a multiple observation window in the Fourier

domain and, additionally, it reduces the complexity of the signal

model proposed in previous approaches. We proposed an

alternative model based on the independent Gaussian properties

of the DFT coefficients which simplifies the MAP probability

function. One of its main strengths is that the observation interval

is modeled as a discontinuous transmission discrete-time stochastic

process which avoids the inclusion of parameters that usually

constraint the morphology of the QRS complexes. Furthermore,

other methods require the estimation of parameters that are

essentially time dependent. On the contrary, in the proposed

method, the only parameters that need to be estimated are the

variances of the noise and the desired signal. Another important

fact is that, unlike other approaches, we use the same detector

structure with the same parameter values in all the phases of the

algorithm.

After the description and derivation of the proposed algorithm,

we presented a simplification in order to demonstrate the ability of

the M-LRT to effectively discriminate between QRS and noise

frames for a wide range of SNRs during step transitions in the

observation window. Moreover, we preliminarily discussed the

derivation of a potential improvement to the proposed algorithm

which includes the window size of the observation in the

maximization so it is adjusted to the most probable hypotheses.

Future work will be oriented to study the performance of such

configuration.

Regarding the performance of the proposed algorithm, we fairly

compared it to a real implementation of the classical matched filter

method. To allow for future comparison of our method, we tested

Figure 7. Zoom on the ROC curves by averaging all the tapes in the database. Results using the same observation interval are plotted for
the two MAP strategies. The dependence of the operation point ĝg on the noise level affects the performance of all detectors.
doi:10.1371/journal.pone.0110629.g007

Table 2. Area Under Curve (AUC) of the ROC curves obtained by averaging all the tapes in the database.

Complete curve Zoomed region

MF order 1 0.7490 0.7355

MF order 2 0.7668 0.7270

MF order 3 0.7726 0.7916

MF order 4 0.7584 0.7836

M = 3 LRT 0.8299 0.8593

M = 5 LRT 0.8524 0.8707

M = 7 LRT 0.7916 0.8033

doi:10.1371/journal.pone.0110629.t002

Real Time QRS Detection Based on M-ary LRT on DFT Coefficients

PLOS ONE | www.plosone.org 10 October 2014 | Volume 9 | Issue 10 | e110629



Table 3. Results of real time evaluation with the M([1,3,5,7,9])-ary LRT Detector (Nw~40, Sw~10).

Tape Total (beats) FP FN Failed detection (FpzFN ) Failed detection (%(FpzFN )=Total)

100 2274 0 2 2 0.087951

101 1874 4 6 10 0.53362

102 2192 0 5 5 0.2281

103 2091 0 8 8 0.38259

104 2311 49 121 170 7.3561

105 2691 132 120 252 9.3645

106 2098 32 94 126 6.0057

107 2140 9 30 39 1.8224

108 1824 154 50 204 11.1842

109 2535 0 3 3 0.11834

111 2133 17 5 22 1.0314

112 2550 1 13 14 0.54902

113 1796 6 2 8 0.44543

114 1890 12 18 30 1.5873

115 1962 2 7 9 0.45872

116 2421 8 29 37 1.5283

117 1539 6 3 9 0.5848

118 2301 0 25 25 1.0865

119 2094 7 108 115 5.4919

121 1876 7 11 18 0.95949

122 2479 1 1 2 0.080678

123 1519 0 1 1 0.065833

124 1634 1 15 16 0.97919

200 2792 138 204 342 12.2493

201 2039 74 66 140 6.8661

202 2146 5 21 26 1.2116

203 3108 321 252 573 18.4363

204 2672 22 18 40 1.497

205 2385 122 449 571 23.9413

207 3040 47 108 155 5.0987

208 3052 14 42 56 1.8349

209 2685 33 36 69 2.5698

210 2763 21 14 35 1.2667

212 3294 8 49 57 1.7304

213 2297 21 36 57 2.4815

214 3400 10 41 51 1.5

215 2280 28 106 134 5.8772

217 2312 5 160 165 7.1367

219 2068 0 20 20 0.96712

220 2462 24 31 55 2.234

221 2634 192 265 457 17.35

222 2643 91 43 134 5.07

223 2141 149 101 250 11.6768

228 2466 10 209 219 8.8808

230 2011 250 10 260 12.9289

231 1816 117 20 137 7.5441

232 3152 7 84 91 2.8871

233 2764 1 10 11 0.39797

TOTAL 112646 2158 3072 5230 4.6429

doi:10.1371/journal.pone.0110629.t003
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our method over the standard and publicly available MIT-BIH

database, which includes different QRS morphologies, types of

noise and SNRs.

It is also important to remark that since the goal of the paper

was to propose a new algorithm for the decision stage, the

analyzed detectors did not include any other linear filtering or

nonlinear transformation stage that could have improved their

overall performance. Moreover the classical method used as a

baseline required the selection of a perfect time-reversed desired

waveform to effectively perform in QRS detection, among a large

number of parameters [14]. On the other hand, by defining a

suitable observation interval, the proposed detector provided

similar detection rates but under easier parameter tuning

conditions.

We showed that, while the revised method yields similar QRS

detection accuracy when compared to the matched filter based

detector at a low model order, it exhibits an improved accuracy in

detecting QRS periods when the order is increased to M = 7. The

improvements of the proposed method are especially important for

poor SNRs and the presence of artifacts or abnormal QRS shapes.

Furthermore, it was shown that the M-ary LRT method yields a

significant improvement in both the sensitivity (S) and the positive

likelihood (PL) when the model order is greater than M = 3.

Among the different tested configurations, the proposed detector

scheme for M = 5 achieves the best compromise between S and

PL.
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