
2016 216

Alexandra Ferrerón Labari

Exploiting Natural On-chip
Redundancy for Energy

Efficient Memory and
Computing

Departamento

Director/es

Informática e Ingeniería de Sistemas

Alastruey Benedé, Jesús
Suárez García, Darío

Director/es

Tesis Doctoral

Autor

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.



Departamento

Director/es

Director/es

Tesis Doctoral

Autor

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.



Departamento

Director/es

Alexandra Ferrerón Labari

EXPLOITING NATURAL ON-CHIP
REDUNDANCY FOR ENERGY

EFFICIENT MEMORY AND
COMPUTING

Director/es

Informática e Ingeniería de Sistemas

Alastruey Benedé, Jesús
Suárez García, Darío

Tesis Doctoral

Autor

2016

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.



Departamento

Director/es

Director/es

Tesis Doctoral

Autor

UNIVERSIDAD DE ZARAGOZA

© Universidad de Zaragoza
Servicio de Publicaciones

ISSN 2254-7606

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

Reconocimiento – NoComercial –
SinObraDerivada (by-nc-nd): No se
permite un uso comercial de la obra
original ni la generación de obras
derivadas.



E X P L O I T I N G N AT U R A L O N - C H I P R E D U N D A N C Y F O R E N E R G Y
E F F I C I E N T M E M O RY A N D C O M P U T I N G

Author:
alexandra ferrerón labari

Supervisors:
dr . jesús alastruey benedé

dr . darío suárez gracia

DISSERTATION
Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
in the Universidad de Zaragoza

Grupo de Arquitectura de Computadores
Departamento de Informática e Ingeniería de Sistemas

Instituto de Investigación en Ingeniería de Aragón
Universidad de Zaragoza

October, 2016



Alexandra Ferrerón Labari © October, 2016

Exploiting Natural On-chip Redundancy for Energy Efficient Memory and Computing



A B S T R A C T

Power density is currently the primary design constraint across most com-
puting segments and the main performance limiting factor. For years, indus-
try has kept power density constant, while increasing frequency, lowering
transistors supply (Vdd) and threshold (Vth) voltages. However, Vth scaling
has stopped because leakage current is exponentially related to it. Transis-
tor count and integration density keep doubling every process generation
(Moore’s Law), but the power budget caps the amount of hardware that can
be active at the same time, leading to dark silicon. With each new generation,
there are more resources available, but we cannot fully exploit their perfor-
mance potential. In the last years, different research trends have explored
how to cope with dark silicon and unlock the energy efficiency of the chips,
including Near-Threshold voltage Computing (NTC) and approximate com-
puting.

NTC aggressively lowers Vdd to values near Vth. This allows a substantial
reduction in power, as dynamic power scales quadratically with supply volt-
age. The resultant power reduction could be used to activate more chip re-
sources and potentially achieve performance improvements. Unfortunately,
Vdd scaling is limited by the tight functionality margins of on-chip SRAM
transistors. When scaling Vdd down to values near-threshold, manufacture-
induced parameter variations affect the functionality of SRAM cells, which
eventually become not reliable.

A large amount of emerging applications, on the other hand, features an
intrinsic error-resilience property, tolerating a certain amount of noise. In
this context, approximate computing takes advantage of this observation
and exploits the gap between the level of accuracy required by the appli-
cation and the level of accuracy given by the computation, providing that
reducing the accuracy translates into an energy gain. However, deciding
which instructions and data and which techniques are best suited for ap-
proximation still poses a major challenge.

This dissertation contributes in these two directions. First, it proposes a
new approach to mitigate the impact of SRAM failures due to parameter
variation for effective operation at ultra-low voltages. We identify two levels
of natural on-chip redundancy: cache level and content level. The first arises
because of the replication of blocks in multi-level cache hierarchies. We ex-
ploit this redundancy with a cache management policy that allocates blocks
to entries taking into account the nature of the cache entry and the use pat-
tern of the block. This policy obtains performance improvements between
2% and 34%, with respect to block disabling, a technique with similar com-
plexity, incurring no additional storage overhead. The latter (content level
redundancy) arises because of the redundancy of data in real world appli-
cations. We exploit this redundancy compressing cache blocks to fit them in
partially functional cache entries. At the cost of a slight overhead increase,
we can obtain performance within 2% of that obtained when the cache is
built with fault-free cells, even if more than 90% of the cache entries have at
least a faulty cell.

Then, we analyze how the intrinsic noise tolerance of emerging applica-
tions can be exploited to design an approximate Instruction Set Architec-
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ture (ISA). Exploiting the ISA redundancy, we explore a set of techniques to
approximate the execution of instructions across a set of emerging applica-
tions, pointing out the potential of reducing the complexity of the ISA, and
the trade-offs of the approach. In a proof-of-concept implementation, the
ISA is shrunk in two dimensions: Breadth (i.e., simplifying instructions) and
Depth (i.e., dropping instructions). This proof-of-concept shows that energy
can be reduced on average 20.6% at around 14.9% accuracy loss.
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Part I

P R E L I M I N A R I E S





1I N T R O D U C T I O N

It would appear that we have reached the limits of what it is possible to
achieve with computer technology, although one should be careful with such

statements, as they tend to sound pretty silly in 5 years.

John von Neumann, 1949

1.1 rationale

For the last 50 years, industry has enjoyed a long run of continuous technol-
ogy improvements fueled by Moore’s Law [114] and Dennard Scaling [46].
Scaling until 65 nm was rather straightforward, improving performance and
power, while providing, at the same time, economic benefits. With each new
generation, chips became smaller, more powerful, and cheaper to produce.
However, semiconductor design has gotten more complicated, and after 22

nm, double patterning [138], 3D transistors [47], or new substrate materials
such as FD-SOI [63] came into play, raising the production costs without
yielding obvious power or performance benefits. With high-volume manu-
facturing at 7 nm scheduled for 2018 to 2019—and still not a clear substitute
for CMOS—industry faces a complete paradigm shift: from designing for
performance, to designing to satisfy the thermal design power of the end
product.

Dennard Scaling Law has driven the semiconductors industry for the last
decades. It states that as transistors get smaller, their power density stays
constant, as both voltage and current scale down with length. In particular,
the performance of a transistor can improve while preserving its operational
characteristics if the parameters of a device (i.e., dimensions, voltages, and
doping concentration densities) are scaled by a dimensionless factor S (Ta-
ble 1.1). This technique is also called constant field scaling because as both
voltage and distance shrink, the electric fields remain the same.

Industry generally scales process generations with S =
√
2 (also called a

30% shrink). This way, the area of a transistor is reduced by a factor of 2.
A 30% shrink with Dennard scaling translates into a 40% improvement in
clock frequency, and it cuts power consumption per gate by a factor of 2.
This power decrease allows to integrate more transistors in accordance to
Moore’s Law, keeping the same power budget. Over the last four decades,
microprocessors featured size has improved more than two orders of mag-
nitude, transistor budgets have multiplied by more than five orders of mag-
nitude, and clock frequencies have multiplied more than three orders of
magnitude.

Unfortunately, CMOS scaling may be ultimately limited by leakage power.
Scaling supply voltage (Vdd) usually entails scaling the threshold voltage
(Vth) to keep performance1. But as Vth decreases, subtreshold leakage power

1 Vth is the minimum transistor’s gate-to-source voltage differential needed to create a conduct-
ing path between the source and drain terminal; the gate delay time decreases as the ratio
Vth/Vdd does.

3



4 introduction

increases exponentially [156]. In the post-Dennard regime, smaller devices
are more prone to leakage, and subtreshold leakage has changed from be-
ing negligible, to being a substantial fraction of the total power, reaching
the same magnitude as the circuit’s dynamic power [86]. Thus, Vdd and
Vth are no longer scaling parameters, rather they are set by the results of
a power optimization. Vdd and Vth have remained fairly constant (around
1 V and 300 mV, respectively) since the 65 nm node to limit leakage. In
addition to this, variability increases as transistor dimensions shrink, as de-
scribed by Pelgrom’s model: the variance on the threshold voltage, the cur-
rent factor, and the substrate factor are inversely proportional to the transis-
tor area [121]. With each new process generation the complexity increases,
reliability issues exacerbate, and new problems arise.

At the 65 nm node and beyond, scaling benefits, in terms of performance
and power, started to diminish, but the engineering costs keep escalating.
Scaling still provides a competitive advantage in a cutthroat industry, and
vendors have taken advantage of the extra transistors integrating several
processor cores on the chip in the form of homogeneous and heterogeneous
chip multiprocessors (CMPs). However, integrating more resources on-chip
does not mean that all the resources can be used simultaneously, because the
power budget caps the amount of hardware that can be active at the same
time. Hence, an exponentially increasing fraction of the chip area remains
underclocked or dark—hence the term dark silicon [53, 147].

Table 1.1 describes the differences between Dennard and post-Dennard
scaling. In the post-Dennard scaling era, for each new process generation,
the total chip utilization for a fixed power budget drops by S2, as a conse-
quence of non-scaling Vdd and Vth parameters. The effect is illustrated in
Figure 1.1, which shows ARM’s prediction on dark silicon (assuming no de-
sign mitigation) for the next process generations [165]. The shaded regions
on Figure 1.1 represent the percentage of dark silicon (i.e., transistors that
cannot be turned on) expected at different technology nodes, with respect
to a 28 nm reference process chip’s power budget. Dark silicon is predicted
to reach 80% of the chip’s silicon at the 5 nm process2. Real products are
likely to achieve better results through technology and design innovations,
but power consumption is clearly a severe design constraint.

5 nm
7 nm
10 nm
14 nm
20 nm

28 nm
(ref)

80%
75%
56%
45%
33%

 0%

Transistor Property Dennard Post-
Dennard

4 Quantity S2 S2

4 Frequency S S

4 Capacitance 1
S

1
S

V2dd & V2th
1

S2
1

4 Power =4QFCV2 1 S2

4Utilization = 1
Power 1

1

S2

Figure 1.1 & Table 1.1: Dark silicon percentage with no design mitigation ([165]) as
a consequence of post-Dennard scaling.

Improving system efficiency in the dark silicon era, without neglecting
performance improvements, has led designers toward heterogeneous solu-
tions [139]. These solutions include CMPs with multiple voltage domains [62,

2 Dark silicon should not be understood as "useless" silicon, but as silicon that it is not used all
the time or at its full frequency. For example, caches are dark silicon friendly: they contribute
to the performance of the system, consuming power only on special situations.



1.1 rationale 5

129], integrated graphics processing units (GPUs) [22, 45], heterogeneous
multi-cores with specialized accelerators [59], and intensive industry and
academia research in novel technologies, including novel memory struc-
tures [112] and 3D integration [71]. We can expect to see an increase in the
amount of resources dedicated to accelerators, and architectural changes
focus on exploiting the characteristics of the emerging applications, such
as approximate computing [113], accelerators for machine learning [97], or
processing in memory [99]. In this dissertation, we focus on two trends to
improve the energy efficiency of present and future systems: near-threshold
voltage computing and approximate computing.

A very effective way of reducing the on-chip power consumption is reduc-
ing the supply voltage. Reducing Vdd to values near the threshold voltage—
a technique known as Near-Threshold voltage Computing (NTC)—can decrease
energy per operation up to 10x, at the cost of slower devices [30, 49]. The re-
sulting power reduction could be used to activate more chip resources and
potentially achieve performance improvements. Unfortunately, one of the
main limitations of Vdd scaling is the tight margins of the on-chip Static
Random Access Memory (SRAM) cache transistors. Excessive parameter
variations in SRAM cells limit the voltage scaling of memory structures
to a minimum voltage, below which SRAM cells may not operate reliably,
and show a behavior consistent with a hard-fault. In this context, micro-
architectural techniques can alleviate the performance and energy degra-
dation that appears as a consequence of the reduction in the number of
functional cache entries. In particular, the organization of the memory hier-
archy on-chip and the applications running on the CMP themselves are a
natural source of redundancy, offering a great opportunity to counteracting
the performance degradation that appears as a result of the cache capac-
ity degradation. SRAM reliability at near-threshold voltages is the focus of
Part II of this dissertation, where we present micro-architectural techniques
to mitigate the impact of SRAM cell failure when running at voltages near
the threshold, based on exploiting the intrinsic redundancy of the memory
hierarchy and the applications.

At the same time, as semiconductor industry advances and circuits be-
come more sensitive to parameter variations and faults, it is highly en-
ergy inefficient to ensure fault-free computations. Fortunately, an increas-
ingly large number of emerging applications, which are commonly referred
as Recognition, Mining, and Synthesis (RMS), feature an intrinsic error-
resilience property [37]. These applications often process noisy inputs (e.g.,
from sensors), run iterative probabilistic algorithms, and they usually do
not require to compute a unique valid output, rather many outputs might
be "acceptable" or "precise enough" [35]. Thus, approximate computing has
drawn significant attention over the last years [113, 161]. The idea is to al-
low certain approximation or occasional violation of the specifications of a
given algorithm, exploiting the gap between the level of accuracy required
by the application and that provided by the computing system, potentially
unlocking large energy gains. The main obstacle for approximate comput-
ing is effectively selecting which parts of the application code and data can
be approximated [133]. Wrong decisions might lead to unacceptable results,
which need to be re-computed, diminishing any potential energy benefit,
or even worse, applications might crash or incur in security violations. Ap-
proximate computing is the focus of Part III of this dissertation, where we
explore the possibilities of approximating the Instruction Set Architecture
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(ISA) itself, and analyze the impact of several ISA-shrinkage techniques on
energy and accuracy.

1.2 objectives and dissertation overview

The overall goal of this dissertation is to explore new approaches to improve
the energy efficiency of future systems in the dark silicon era. We explore
sources of natural on-chip redundancy and take advantage of them in the
context of computing at voltages near the threshold and approximate com-
puting. The rest of this dissertation is organized as follows:

• Part II presents our micro-architectural proposals to mitigate the im-
pact of SRAM cell failures in last-level caches caused by process vari-
ations. It starts with an introduction to near-threshold voltage com-
puting, discussing the reliability issues associated with it and the re-
lated work in Chapter 2. Chapter 3 details our methodology. Part II
also includes two proposals, both based on taking advantage of the
natural redundancy of content in the cache hierarchy. Chapter 4 ex-
plores how to take advantage of the memory hierarchy organization
to minimize the performance loss in the presence of faulty cells, with
minimal changes in the coherence protocol, by means of an intelligent
cache management policy; Chapter 5 presents a novel approach based
on compressing cache blocks, so they fit into cache entries with faults.

• Part III explores approximation at the ISA level to improve the energy
efficiency of processors. As Part II, it begins with an introduction to
approximate computing in Chapter 6, where we discuss the reasons
of the increasing popularity of approximate computing and cover the
related work. The methodology is discussed in Chapter 7. We explore
the possibilities of approximating the ISA in several dimensions, e.g.,
simplifying instructions (Breadth) or even dropping them (Depth), and
present a proof-of-concept in Chapter 8.

• Part IV concludes and discusses future research lines in Chapter 9.

1.3 contributions

At the time this dissertation is being written, a large part of the work pre-
sented here has been published in peer-reviewed national and international
conferences and journals, or is currently under review process.

The main contributions of this dissertation are:

• Contributions on SRAM reliability at near-threshold voltages (Part II):

– Based on block disabling techniques [142], we introduce a low
complexity mechanism for inclusive cache hierarchies that per-
mits cache blocks to use the non-functional last-level cache (LLC)
data entries, by keeping operational the tag array. Thus, blocks
allocated to disabled entries can be present in the private caches.
We propose a fault-aware cache management policy that predicts
the usefulness of a block based on its use pattern, and guides
block allocation to faulty and non-faulty cache entries, accord-
ingly.
This work has been published in the 26th International Symposium
on Computer Architecture and High Performance Computing (October
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2014). An extended version of this work has been submitted to
IEEE Transactions on Parallel and Distributed Systems (submitted July
2016).

– We provide the first analysis of requirements for compression
techniques for shared LLCs running at ultra-low or near-threshold
voltages. We propose the use of compression to improve cache uti-
lization at ultra-low voltages, with a low-complexity combination-
and remapping-free mechanism, maintaining the regular nature
of SRAM cells. We present and evaluate cache management poli-
cies that match compressed blocks with faulty cache entries.
This work has been published in IEEE Transactions on Computers,
Special Section on Defect and Fault Tolerance in VLSI and Nanotech-
nology Systems (March 2016).

• Contributions on approximate computing (Part III):

– We propose to reduce the complexity of the ISA by shrinking it in
two dimensions (Breadth and Depth) and approximate the execu-
tion of emerging RMS applications, exploiting the intrinsic noise
tolerance of their algorithms. We present a proof-of-concept im-
plementation and analyze the sensitivity of these applications to
Breadth and Depth ISA shrinkage.
This work has been developed in collaboration with the Altai
group of the University of Minnesota, and it has been submitted
to Design, Automation, and Test in Europe 2017 (submitted September
2016).
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• Google Anita Borg Memorial Scholarship3, including e7,000 donation.

• Travel and assistance grants: Grace Hopper Celebration (2015, ABI,
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ence (2014, U. Zaragoza), PACT Conference (2013, IEEE), ARCS Con-
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2F R O M D A R K T O D I M S I L I C O N :
C O M P U T I N G AT V O LTA G E S N E A R T H E T H R E S H O L D

One of the main obstacles to voltage scaling to values near the threshold is the mini-
mum voltage supply of the SRAM on-chip structures. At lower voltages, devices are
more sensitive to process variations, which impact circuit functionality, and even-
tually limit supply voltage reduction. SRAM cells are specially vulnerable because
they are aggressively sized to meet high density requirements. In this chapter, we
introduce near-threshold voltage computing and its challenges, including variabil-
ity on SRAM cells at low supply voltage. Then, we present our reference SRAM
reliability model and cover the related work.

2.1 introduction

Voltage scaling is one of the most effective ways to reduce the chip power
consumption, as dynamic power scales quadratically with voltage. Modern
chips implement Dynamic Voltage and Frequency Scaling (DVFS) schemes
to run at different predefined voltage points and frequencies, trading off
power consumption and performance, with a fixed (non-scaling) Vth [65].
However, concerns about robustness and performance set the lower bound
of supply voltage around 70% of the nominal Vdd in commercial applica-
tions. As a matter of fact, CMOS circuits operate at very low voltages, and
remain functional even at voltages below the threshold (Vdd < Vth)—this
is called subthreshold computing—, but due to the large performance loss,
their application is restricted to niche markets [85, 141, 154].

Figure 2.1 shows the energy per operation and delay when supply volt-
age scales down. By reducing Vdd from a nominal 1 V (Vnom in Figure 2.1)
to 400-500 mV (Vnth), we can obtain as much as 10x energy efficiency
gain without incurring in the exponential performance degradation of sub-
treshold computing (Vdd < 300 mV). This technique is referred to as Near-
Threshold voltage Computing (NTC) [49]. While reducing Vdd below Vth
reaches the minimum point of energy per operation, the consequent perfor-
mance degradation may be unacceptable for the vast majority of applica-
tions [23].

Researchers have looked at x86-based NTC implementations [67] and 3D
many-core ARM-based implementations [48], but several key challenges
have prevented the general adoption of NTC, namely: i) 10x loss in per-
formance due to the frequency degradation, ii) 5x increase in performance
variation due to parameter variations, and iii) five orders of magnitude in-
crease in functional failure rate of memory as well as increased logic failures.

To compensate for the performance loss, the power budget resulting from
scaling Vdd can be used to switch on more cores. Throughput applications,
such as graphics-like workloads with minimal emphasis on each thread,
or parallel applications, such as high-performance computing ones, are the
strongest matches for NTC. These applications can take advantage of a big
pool of cores, even if they run at slower frequencies. As power consumption
decreases more from operating at low Vdd than it increases from operating

11
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Figure 2.1: Energy per operation and delay with respect to supply voltage.

more cores in parallel, the result is still a power reduction [30]. Single-thread
performance could still be achieved with voltage/frequency boosting of a
low-power core, or by a high-performance core added to the system [122].

Parameter variations—the deviation of device parameters from their nom-
inal specifications—are already present at nominal Vdd [20]. The sources of
parameter variations include manufacturing-induced sources (process vari-
ations) and environmental ones (supply voltage and temperature). CMOS
gates are robust, and they generally work correctly when parameters vary
enormously. However, in the presence of parameter variations, chips have
regions that run at different speed and have different power consumption.
Designers usually account for parameter variations inserting conservative
margins or guardbands to cover against the worst-case variation, increasing
nominal voltage up to 20% [70]. This worst-case guided design incurs in
large performance and power losses, as the worst case might be far from the
nominal specifications, and the worst case condition can be severe, but in-
frequent [126]. At NTC the problem exacerbates, because the same amount
of variation causes larger changes in the device speed and power [106], and
relying on the worst-case operating margins is not practical, as frequency is
already low. Architectural and circuit solutions can provide variation toler-
ance and adaptivity [49, 78, 79].

Next, we cover the main causes of functional failure of on-chip memory
structures when running at near-threshold voltages.

2.2 process variations in sram cells

Static Random Access Memory (SRAM) is the most widely used form of
on-chip memory. They are faster than their dynamic counterparts (DRAM),
avoiding the periodic refresh phases, but require more area per bit. SRAMs
use a memory cell with internal feedback that retains its value as long as
a power is applied. A traditional 6T SRAM cell, such as the one shown in
Figure 2.2, consists of four transistors that form two cross-coupled inverters
(PL-NL and PR-NR), and two access transistors (AXL and AXR).
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Figure 2.2: 6T SRAM cell architecture.

A 6T SRAM cell is susceptible to five types of failures: read upset, during
read operation, the cell flips its content; read access, during read operation,
the time needed to produce a voltage difference between the two bitlines,
BL and BR, exceeds the period that the wordline, WL, stays high; write stabil-
ity, during write operation, even if the write duration is extended to infinity,
the cell cannot change its logic state; write timing, during write operation,
the cell is unable to change its logic state by the end of the designated
time duration; and hold, the value of the cell is flipped by excessive leakage
on the constituent transistors. To ensure both read stability and writability,
the transistors must satisfy ratio constraints. The stability and writability of
the cell are quantified by the hold margin, the read margin, and the write
margin, which are determined by the static noise margin of the cell in its
various modes of operation. The hold margin increases with Vdd and Vth;
read margin improves by increasing Vdd or Vth, or by reducing the WL
voltage relative to Vdd; the write margin improves as the access transistor
becomes stronger, the pull-up becomes weaker, or the wordline voltage in-
creases. Therefore, write and read improvements are conflicting with each
other.

SRAM structures are especially vulnerable to process variations [18], since
they are aggressively sized to meet high density requirements, and due
to the vast number of cells that comprise the on-chip memory structures,
which nowadays account for even more than half of the chip area [26]. Pro-
cess variations can be classified into inter-die and intra-die. Inter-die varia-
tions eventually cause performance differences across chips, and they can
be handled by adding enough margin and rejecting chips that do not meet
certain specifications. Intra-die variations are gaining importance as tech-
nology scales, because chips integrate millions or billions of transistors, and,
very likely, some of them will fail outside the specification corners. Intra-
die variation has a systematic and a random component. The systematic
component is typically caused by lithographic irregularities, mainly affect-
ing channel length. The random component is caused by varying dopant
fluctuations (Random Dopant Fluctuation or RDF), and it is the main cause
of Vth variation [146]. Specifically, Vth is determined by the number and
location of dopant atoms implanted in the transistor channel region. The
stochastic nature of ion implantation leads to different Vth values across
the chip.

The resultant threshold mismatch reduces the available cell noise margins,
creating a distribution of read, write, and hold margins across the SRAM
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structure, and some of the cells become unstable. An unstable cell flips dur-
ing a read operation, fails to switch during a write operation, or loses its
state during hold, causing a circuit behavior consistent with a hard fault.
Because the static noise margins depend on Vdd, SRAMs have a minimum
voltage at which they can reliably operate. This voltage is Vddmin and it
is typically of the order of 0.7–1.0 V in current technology nodes, when 6T
cells are employed, and presents an obstacle to continued voltage scaling.

Modern CMPs implement multi-level on-chip SRAM cache hierarchies,
usually composed of two or three cache levels, with different cell design
objectives, depending on the importance of performance and leakage. In
general, first-level caches occupy little area and their access time often deter-
mines the processor cycle time; circuit techniques such as larger 8T SRAM
cells [29] are utilized to minimize the impact of variation [91]. Last-level
caches (LLCs), on the other hand, have larger size and associativity, and
occupy a great percentage of the chip area; smaller and less leaky cells are
preferred to achieve more density, but the structure is more prone to errors
due to variability [18].

To allow circuit operation at lower Vdd, some commercial processors have
different voltages for logic and memory. For instance, Intel® Medfield oper-
ates the L2 cache at 1.05 V, while the CPU cores can scale down to 0.7 V [166].
Separate voltage domains complicate chip design [105], and scaling will
likely increase the differences between voltage domains for logic and mem-
ory, eventually increasing the number of voltage domains required, and
diminishing the power reduction benefit of operating chips at lower volt-
ages. Our objective is to reduce the supply voltage of the whole chip and
mitigate the impact of process variations on the SRAM cells of the large
on-chip cache structures (i.e., the LLC). We achieve this objective through
micro-architectural techniques, which take into account the organization of
the memory hierarchy within a CMP, and the nature of the applications run-
ning on them. We identify two levels of natural on-chip data redundancy:
cache level and content level. The first arises because of the natural repli-
cation of blocks in inclusive cache hierarchies, designed to exploit the tem-
poral locality of the data. The latter arises because of the redundancy of
data in real world applications. We exploit these two levels of redundancy
through fault-aware cache management policies, relying on the underlying
coherence protocol and replacement policy.

2.2.1 Reference SRAM Reliability Study

Many authors have extensively analyzed the robustness of SRAM cells un-
der the Vddmin range [3, 4, 24, 27, 32, 77, 83, 167]. Zhou et al. describe six 6T
SRAM cells of different sizes in 32 nm technology, and how their probabili-
ties of failure change with the voltage supply and the size of the constituent
transistors [170]. According to Zhou et al., at 0.5 V (our target near-threshold
voltage) the probability of failure (Pfail) of a standard SRAM cell ranges be-
tween 10

-3 and 10
-2. Larger cells have a lower probability of failure because

non-uniformities in channel doping average out with larger transistors, re-
sulting in more robust devices, but at the price of larger area, and higher
energy consumption. Table 2.1 describes the six SRAM cells of Zhou’s study
(C1, C2, C3, C4, C5, and C6) with their areas relative to the smallest cell (C1),
as well as the percentages of non-faulty entries of a cache implemented with
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the cells at 0.5 V, assuming 64-byte cache entries1. An entry is considered
faulty if it contains at least one defective bit. Failures are randomly dis-
tributed, but uniform within a given chip [2, 36], so they can be modeled
following the Bernouilli distribution with p = pfail. As Table 2.1 shows,
only 10% of the cache entries are non-faulty for the small C2 cell at our tar-
get voltage of 0.5 V. If the cache is implemented with the more robust C6

cells, the percentage of non-faulty cache entries rises to 60%, but at the cost
of a 41.1% increase in area (relative to C2) and the consequent increase in
leakage, which is not a viable option for a large structure such as the on-chip
LLC.

Table 2.1: Area relative to cell C1 and percentage of non-faulty 64-byte entries in a
cache operating at 0.5 V, for the six bit cells introduced in [170].

Cell type C1 C2 C3 C4 C5 C6

Relative area 1.00 1.12 1.23 1.35 1.46 1.58

% non-faulty 0.0 9.9 27.8 35.8 50.6 59.9

In this dissertation, we use Zhou’s study as SRAM reliability model to
test our proposals on a wide range of failure probabilities. We consider C2

to C6 operating at 0.5 V, as at such voltage, a cache built with C1 cells would
have all its capacity compromised.

2.3 related work

Solutions proposed to date to address the variability in SRAM cells at ultra-
low voltages can be arranged into two groups: circuit and micro-architectural
techniques.

2.3.1 Circuit Solutions

Circuit solutions include proactive methods that improve the bit cell charac-
teristics by increasing the SRAM cell size or adding assist/spare circuitry.

Larger transistors reduce Vth variability, since nonuniformities in channel
doping average out, and result in more robust devices with a lower probabil-
ity of failure [170]. Another approach to reducing variability is to add assist
read/write circuitry by increasing the number of transistors per SRAM cell.
Some examples are 8T [29], 10T [24], or Schmitt Trigger-based (ST) SRAM
cells [90]. Increasing the SRAM cell size or the number of transistors per cell
comes at the cost of significant increases in the SRAM area (lower density)
and in energy consumption. For example, the use of ST SRAM cells doubles
the area of the SRAM structure, which is not practical for large structures
such as on-chip LLCs.

Spare rows/columns can be used to replace faulty rows/columns and im-
prove yield [137], but this technique has obvious limitations in the amount
of faulty rows/columns it can handle, due to resource limitations, area scal-
ing rate, and design complexity. For example, Intel includes 2 bits per cache
entry to replace defective bits [26].

1 In this dissertation, we assume 64-byte cache entries without any loss of generality; all tech-
niques described here could be easily applied to other cache entry sizes.
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A different approach is to provide separate voltages for logic and mem-
ory [166], but separate voltage domains complicate chip design [92, 105].
Moreover, scaling will likely increase the differences between voltage do-
mains for logic and memory, which eventually increases the number of volt-
age domains required, and diminishes the potential benefit of operating
chips at low voltages.

2.3.2 Micro-architectural Solutions

From the micro-architectural perspective, excessive parametric variability
can cause circuit behavior consistent with a hard fault. Several runtime
methods have been proposed to mitigate its impact, including redundancy
through Error Correcting Codes (ECCs), disabling techniques, and the com-
bination of faulty resources to recreate functional ones.

ECCs are extensively employed to protect designs against soft errors, and
they have also been studied in ultra-low voltage contexts to protect against
hard errors [6, 39]. To store an ECC, the capacity of the cache must be ex-
tended or part of its effective capacity has to be sacrificed. ECCs are usually
optimized to minimize their storage requirements, at the cost of more com-
plex logic to detect and correct errors. Thus, correcting more than two errors
requires a high latency overhead or encodings with more check bits as de-
scribed in [39], where half of the cache capacity is dedicated to storing the
ECC. To reduce storage overhead, Chen et al. propose to store ECCs in the
unused fragments that appear as a result of compression [33]. Finally, it is
worth noting that the use of ECCs to protect against hard errors will jeopar-
dize resilience to soft errors.

A simple approach to mitigating hard faults is to disable faulty entries2

(cache entries with faulty bits, which cannot store a complete cache block)
[142]. This technique, called block disabling, is already implemented in mod-
ern processors to protect against hard faults [26, 44]. Block disabling has
been studied at ultra-low voltages because of its easy implementation and
low overhead (1 bit per entry sufficing). However, the large number of faults
at low operating voltages implies a large percentage reduction in cache ca-
pacity and associativity. For instance, for C2, although defective bits rep-
resent around 0.5% of the total, only 9.9% of the capacity is available (Ta-
ble 2.1). Lee et al. examine performance degradation by disabling cache
lines, sets, ways, ports, or the complete cache in a single processor environ-
ment [94]. To compensate for the associative loss, Ladas et al. propose the
implementation of a victim cache in combination with block disabling [93].

Ghasemi et al. propose the use of heterogeneous cell sizes, so when operat-
ing at low voltages, ways or sets of small SRAM cells are deactivated if they
start to fail [56]. Khan et al. propose a mixed-cell memory design, where
a small portion of the cache is implemented with robust cells, which store
dirty cache blocks, and the remainder with non-robust cells [81]. They mod-
ify the replacement policy to guide the allocation of blocks based on the type
of request (load or store). Zhou et al. combine spare cells, heterogeneous cell
sizes, and ECCs into a hybrid design to improve on the effectiveness ob-
tained by any of the techniques applied alone [170].

2 In this dissertation we make the distinction between cache block and cache entry: block is the
transfer unit, the content per se; entry is the physical set of cells that store a block.
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Figure 2.3: Potential cache capacity that can be used by tracking faults at finer gran-
ularities for different SRAM cell sizes.

The granularity of the disabled storage might be finer, but at the cost of
a larger overhead. Cache entries can be divided into subentries of a given
size. A defective cell implies disabling just the subentry which it belongs
to, rather than the whole entry. Figure 2.3 shows for the six SRAM cells
from Zhou’s study, the potential cache capacity that can be used by tracking
faults at finer granularities (different subentry sizes). For example, a cache
implemented with cells C3-C6 could potentially use more than 80% of the
cache capacity by disabling 8-byte subentries.

Previous proposals take advantage of this observation. Word disabling
tracks defects at word-level granularity, and then combines two consecutive
cache entries into a single fault-free entry, halving both associativity and
capacity [157]. Abella et al. bypass faulty subentries rather than disabling
full cache lines, but this technique is suitable only for the first-level cache,
where accesses are word wide [1]. Palframan et al. follow a similar approach,
patching faulty words from other microprocessor structures, such as the
store queue or the miss status holding register [118].

More complex schemes couple faulty cache entries using a remapping
mechanism [12, 17, 88, 104]. They rely on the execution of a complex algo-
rithm to group collision-free cache entries from the same or different cache
banks, and on additional structures to store the mapping strategy. For ex-
ample, Archipelago divides the cache into autonomous islands, where one
entry is sacrificed to allocate data portions of other entries; they use a con-
figuration algorithm (based on minimum clique covering) to create the is-
lands [12]. The remapping mechanism adds a level of indirection to the
cache access (increasing its latency), and the combination of cache entries to
recreate a cache block adds complexity.

All of these combination or remapping strategies have a major inconve-
nience: to reconstruct cache blocks several cache accesses are needed, in-
creasing the energy consumption and/or the latency per block access. Un-
like the aforementioned proposals, an ideal fault-tolerant mechanism would
not compromise cache capacity, associativity, or latency.
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2.3.2.1 Cache Management Techniques

Our first main contribution relies on a smart insertion and replacement pol-
icy to handle faulty and non-faulty cache entries. In the context of ultra-low
voltages, Keramidas et al. use a PC-indexed spatial predictor to orchestrate
the replacement decisions among fully and partially usable entries in first-
level caches [80]. We base our allocation predictions in the reuse patterns,
which simplifies the hardware, and we do not consider the use of partially
faulty entries.

Regarding the implementation of our techniques, it is worth referring to
the work of Jaleel et al. [68]. In inclusive hierarchies, the private caches filter
the temporal locality and hot blocks (i.e., blocks being actively used by the
processor) are degraded in the replacement stack of the LLC to be eventu-
ally evicted. The authors address this problem by protecting blocks present
in the private caches and preventing their replacement in the LLC through
several techniques, including: sending hints to the LLC, identifying tempo-
ral locality via early invalidation, or querying the private caches about the
presence of blocks. We also protect private copies on all our replacement
policies using the coherence information and assuming non-silent evictions
of clean blocks.

Albericio et al. base the replacement decisions on the block reuse local-
ity [9]. They propose the Not-Recently Reused (NRR) algorithm, which pro-
tects blocks present in the private caches and blocks that have shown reuse
in the LLC. Their simple yet efficient implementation improves the perfor-
mance of more complex techniques such as RRIP [69]. We build our cache
management policy on top of this algorithm.

2.3.2.2 Compression Techniques

Our second main contribution relies on compressing cache blocks to fit into
the still available LLC capacity. This approach avoids complex cache block
remapping, and the combination of faulty cache entries to recreate fully
functional ones.

Several compression mechanisms have been proposed in the literature to
increase the effective storage capacity of all the on-chip cache levels, poten-
tially reducing misses and improving performance [8, 34, 51, 87, 119, 135,
162]. In general, these proposals seek to maximize the compression ratio
either to store more than one block in each cache entry, or to reduce the en-
ergy consumption of each LLC access. However, ultra-low voltage operation
sets different requirements for the compression scheme: most of the blocks
need to be compressed to fit into faulty entries, but the compression ratio
is relatively small. In an ideal case, where all blocks could be compressed
to fit into the available space, neither capacity nor associativity would de-
crease. Similar requirements may be observed in the context of Non-Volatile
Memories (NVM) to enlarge their durability [57, 160].

We combine the compression mechanism with a smart allocation/replace-
ment policy, which assigns cache blocks to faulty entries based on their
compressibility. Two recent studies have indicated the importance of taking
compression information into account for a replacement policy tailored to
on-chip caches implementing compression [14, 120]. Both studies are based
on the fact that several blocks are allocated to the same cache entry and,
therefore, prioritizing the replacement of large blocks might allow the al-
location of several smaller blocks to the same space. In ultra-low voltage
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operation, the compression ratio must be taken into account in the replace-
ment decision as well, but in order to even out the pressure on the entries
of a cache set.





3E X P E R I M E N TA L F R A M E W O R K

This chapter presents the experimental framework used during Part II of the dis-
sertation, including the modeled system, the experimental set-up, and the metrics
to quantify the impact of the proposed techniques. Specific details might change for
the evaluation of some of the ideas of this dissertation. In that case, those details are
properly explained when required.

3.1 overview of the modeled system

Our baseline system consists on a tiled chip multiprocessor (CMP), with
an inclusive two-level cache hierarchy, where the second level or last-level
cache (LLC) is shared and distributed among the processor cores. Tiles are
interconnected by means of a two dimensional mesh, in a similar way as
Phytium’s Mars [76]. Each tile has a processor core with a private first level
cache (L1) split in instructions and data, and a bank of the shared LLC,
both connected to the router (Figure 3.1). The cache write policies are write-
back and write-allocate. LLC banks are interleaved by cache line address,
and inclusion is enforced at the LLC; i.e., when a cache line is inserted
in L1, it is also inserted in the LLC, and when a line is evicted from the
LLC, it is replaced from the private levels, too. Two memory controllers are
distributed on the edges of the chip. Table 3.1 shows the parameters of the
baseline processor, memory hierarchy, and interconnection network. During
the next chapters, when necessary, we will detail the parameters that differ
from the baseline configuration system.

DRAM 
Main memory

CORE

L1I L1D

LLC
tag&data

Dir

R

MC

CMP

predictor, ALUs, control, ...

Figure 3.1: Tiled CMP with 8 processors.

At lower voltages near to the threshold voltage, frequency degrades about
5 to 10x [49]. We assume a frequency of 1 GHz at 0.5 V, our target Vdd. Note
that the DRAM module voltage is not scaled as the rest of the system. Thus,
the relative speed of main memory with respect to the chip gets faster as
the voltage decreases. This model is consistent with prior work [12, 157].

Our baseline coherence protocol relies on a full-map directory with MESI
states (Modified, Exclusive, Shared, and Invalid). We use explicit eviction
notification of both shared and exclusively owned blocks. L1 caches are
built with robust SRAM cells and, therefore, they can run at lower voltages
without suffering from parameter variations, while LLC banks are built with
conventional 6T SRAM cells, so they are sensitive to failures [91].

21
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Table 3.1: Main characteristics of the modeled CMP system.

Cores 8, Ultrasparc III Plus, in-order, 1 instr/cycle, single-threaded
1 GHz at Vdd 0.5 V

Coherence
Protocol

MESI, directory-based full-map dist. among LLC cache banks

Consistency Sequential

L1 cache Private, 64 KB data and inst. caches, 4-way, 64 B block size, LRU
2-cycle hit access time

LLC cache Shared, 1 bank/tile, 1 MB/bank, 16-way, 64 B block size, pseudo-LRUa

Inclusive, interleaved by line address
8-cycle hit access time (4-cycle tag access)

Memory 2 memory controllers, distributed on the edges of the chip
Double Data Rate (DDR3 1333 MHz), 2 channels, 8 Gb/channel
8 banks, 8 KB page size, open page policy
Raw access time 50 cyclesb

NoC Mesh, 2 Virt. Networks (VN): requests and replies
16-byte flit size, 2-stage routers, 1-cycle latency hop

a Chapter 4 assumes NRU [145], while Chapter 5 assumes LRU; in both cases, the baseline
replacement policy protects the private copies of the blocks [68].

b When the CMP runs at 1 GHz/0.5 Vdd.

3.2 simulation framework

Regarding our experimental set-up, we use Simics, a multiprocessor full-
system simulator, running the Solaris 10 operating system [102]. To model a
detailed and cycle-accurate on-chip memory hierarchy and interconnection
network, we use the ruby plugin from GEMS Multifacet’s multiprocessor
simulator toolset [107]. During this dissertation, we enlarge the ruby mod-
ule to faithfully model our different proposals. In order to get a detailed
performance and energy DDR3 DRAM model, we incorporated DRAMSim2

into our simulation infrastructure [128]. To get timing, area, and energy con-
sumption we use McPAT framework [95] for the on-chip components, and
DRAMSim2 for the DRAM module.

3.3 workloads and methodology

We consider two sets of multiprocessor workloads exhibiting different kinds
of parallelism. On the one hand, multiprogrammed workloads are a com-
bination of several sequential programs of different nature and behavior
running at the same time in the system; i.e., there are as many indepen-
dent tasks as processor cores. These workloads are representative of, for
example, desktop systems running different applications or servers running
different user requests. We use the 29 programs from the SPEC CPU 2006

benchmark suite [61]. SPEC CPU 2006 is an industry-standardized, CPU-
intensive benchmark suite, stressing a system’s processor, memory subsys-
tem, and compiler. It contains two suites that focus on two different types
of compute intensive performance: the CINT2006 (integer) suite measures
compute-intensive integer performance, and the CFP2006 (floating point)
suite measures compute-intensive floating point performance.
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On the other hand, parallel workloads are shared-memory applications;
i.e., one task is divided along the available processor cores. Parallel applica-
tions are mainstream in today’s CMPs. We use applications from the PAR-
SEC benchmark suite [19]. The PARSEC suite focuses on emerging work-
loads and was designed to contain a diverse selection of applications that is
representative of next-generation shared-memory programs for CMPs.

Next, we present the selected workloads and methodology in depth.

3.3.1 Multiprogrammed Workloads

To select the appropriate number of workloads, we use a set of 100 work-
loads built as random combinations of the 29 SPEC CPU 2006 programs,
with no special distinction between integer and floating point. The applica-
tions appear from 16 to 35 times, the average number of occurrences is 27.6,
with a standard deviation of 4.5.

In order to locate the end of the initialization phase, all the SPEC binaries
with the reference inputs were run until completion with hardware counters
enabled. To ensure that no application was in its initialization phase, each
multiprogrammed mixed was run for as many instructions as the longest
initialization phase, and a checkpoint was created at that point. From that
point, we run cycle-accurate simulations including 300 million cycles warm-
up of the memory hierarchy and 700 million cycles of statistics collection.

To reduce the experimental workload, highly loaded with the Monte Carlo
simulations discussed in the following sections, we compute the minimum
number of mixes needed to obtain statistically representative results. Fol-
lowing statistical sampling [153], and assuming a confidence interval of
(1− α) = 0.95 and error tolerance ε = 5%, we can compute the minimum
number of mixes n as:

n >
(z ∗ Vx

ε

)2
(3.1)

where z is the 100[1− α
2 ] percentile of the standard normal distribution,

and Vx is the coefficient of variation of the population. As Vx of the entire
population is not available, we use sample V̂x. Our initial sample size is
n = 100 (mixes). We obtain the coefficient of variation V̂x = 0.10901, based
on the total number of instructions executed for each mix. As z = 1.96, the
minimum number of mixes is n > 18.26.

Thus, we select 20 workloads built as random combinations of the SPEC
CPU 2006 programs. Each application appears on average 5.5 with a stan-
dard deviation of 2.5.

To evaluate the behavior of multiprogrammed workloads for the different
proposals, we use LLC Misses Per Kilo Instruction (MPKI) and speedup.
Speedup for a given mix is computed as in Equation 3.2, where IPCAi is
the number of executed instructions per cycle of program i when it runs
in system A, and IPCBasei is the number of executed instructions per cycle
when it runs in the Base system (baseline). Note that as we always run a
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fixed number of cycles, this is equivalent to using the number of instructions
executed.

Speedup = n

√√√√ n∏
i=1

IPCAi
IPCBasei

(3.2)

As the different mixes are run for equal parts on the baseline system, as
well as on the different configurations, the arithmetic mean of individual
speedups is used when summarizing results for all the workloads [72].

3.3.2 Parallel Workloads

We use a selection of shared-memory parallel applications from PARSEC
with a significant memory footprint when using the sim-large input (i.e.,
MPKILLC > 1 in the baseline system, Table 3.2).

Table 3.2: LLC MPKI for parallel workloads (baseline system).

canneal ferret streamcluster vips

MPKILLC 4.26 1.59 1.00 1.19

Parallel applications should run until completion in order to compare the
performance of different design alternatives. However, in our applications,
no OS activity appeared when parallel applications were run, and the ra-
tio of load of work among the different threads was practically constant
between simulations. Thus, following the same approach as [10], we use
sampling, and the same way than for multiprogrammed workloads, we run
300 million cycles of warm-up of memory structures once the parallel phase
has started, and then collect statistics for 700 million execution cycles.

The speedup is computed as in Eq. 3.3, where IAi is the number of exe-
cuted instructions of thread i when it runs in system A, and IBasei is the
number of executed instructions when it runs in the Base system.

Speedup =

∑n
i=1 I

A
i∑n

i=1 I
Base
i

(3.3)

3.4 sram failure model

Random intra-die variations are modeled as random variables and used as
inputs to determine the failure probability or Pfail of a given SRAM cell.
We can assume that failures are randomly distributed, but uniform within
a given chip [2, 36]. Thus, we create fault maps with different distribution
of failures for each Pfail point. We follow Zhou et al. study, described in
Chapter 2, and modeled five configurations (C2-C6) with 6T SRAM cells of
different sizes (i.e., Pfail points) [170]. To create the fault maps for each con-
figuration, we compute the faultiness of each memory cell randomly and
independently of other cells, obtaining configurations with similar number
of faults, but different locations, and run Monte Carlo simulations as fol-
lows.
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For each design point, we run N configurations (fault maps) and compute
the sample mean (X̄). The accuracy of the sample mean will improve as we
increase the number of samples (number of fault maps or N), but if we
set the number of samples too large, we will do unnecessary computation
without gaining meaningful accuracy.

To obtain representative results, we follow the methodology summarized
below. Our target error is ε = 5% with a confidence level (1−α) = 0.95.

Step 1. We set an initial value of samples N and collect results to compute
the sample mean X̄ and the sample variance of a selected metric S2

according to equation 3.41.

Step 2. Given the confidence level (1−α) = 0.95 and error tolerance ε = 5%,
we check if equation 3.5a is satisfied2. If so, we claim that the stop-
ping criteria has been achieved and stop the simulation. Otherwise,
we increase the number of samples N′ according to equation 3.5b,
and repeat from Step 1.

X̄ =
x0 + x1 + · · ·+ xN−1

N
(3.4a)

S2 =

∑N−1
i=0 (xi − X̄)

2

N− 1
(3.4b)

(
t[N−1,α2 ]

× S
N× X̄

)2
6 ε (3.5a)

N′ >

(
t[N−1,α2 ]

× S
ε× X̄

)2
(3.5b)

Note that we could use different metrics in Step 1 to compute the sample
mean and sample variance to check if we have reached our target error.
Nevertheless, as we are interested in comparing throughput by means of
speedups, we also consider speedup to compute the error.

For the sake of clarity, we avoid plotting error bars in the different results
graphs of this dissertation, providing that all the results are within the error
and confidence levels here described.

1 Note that we use (N− 1) to compute the unbiased S2 (Bessel’s correction).
2 t[N−1,α2 ] is obtained from the t-distribution function with N− 1 degrees of freedom.
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This chapter presents a cache management policy to enable efficient last-level cache
(LLC) operation at low or near-threshold voltages. We base our proposal on block
disabling, a micro-architectural technique that tolerates faults by deactivating faulty
cache entries. Block disabling’s main drawback is that, given the random component
of SRAM cell faults, both cache associativity and capacity rapidly degrade as the
number of defective cells increases. We take advantage of the on-chip coherence
and replacement mechanisms to enhance block disabling performance, without any
additional cost. For that, we exploit the natural redundancy of multi-level inclusive
cache hierarchies and extend the LLC with a fault-aware cache management policy,
which maps blocks with a higher probability of being used to operative cache entries.
Our evaluation shows that this fault-aware management can reduce MPKI by up
to 37.3% for multiprogrammed workloads, and by 54.2% for parallel ones, with
respect to block disabling. This translates into performance enhancements of up to
13% and 34.6% for multiprogrammed and parallel workloads, respectively.

4.1 introduction

Modern chip multi-processors (CMPs) include several cache levels to re-
duce the gap between the speed of the processor and the access latency to
the main memory. On-chip caches are usually built with SRAM cells, which
are sensitive to process variations, specially when operating at low or near-
threshold voltages [18]. First-level caches are usually private, occupy little
area, and their access time often determines the processor cycle time. Com-
mercial processors, such as the Intel Nehalem family, use robust 8T SRAM
cells to build reliable first-level caches, since it represents an affordable over-
head [91]. On the contrary, LLCs are usually shared and have larger size
and associativity, accounting for much of the die area [26]. Thus, minimum-
geometry 6T cells are preferred to achieve higher density, with the conse-
quent higher sensitivity to failures.

Block disabling is a simple micro-architectural technique that disables a
cache entry when a defective bit is found [142]. Its main disadvantage is
that due to the random distribution of defective cells at low voltages, the
capacity of the cache is rapidly compromised. In this chapter, we propose
a new approach to mitigate the impact of SRAM failures in LLCs based
on block disabling, relying on the underlying structures already present in
CMPs. We identify a natural source of on-chip data redundancy that arises
because of the replication of blocks in inclusive multi-level cache hierarchies
and exploit this redundancy through a smart fault-aware cache management
policy.

Our fault-aware cache management policy is able to decrease the LLC
MPKI up to 37.3%, with respect to block disabling, which translates into
speedup improvements between 2% and 13% for multiprogrammed work-
loads. For parallel workloads, the MPKI improvement ranges between 5%
and 54.2%, with respect to block disabling, for the different SRAM cells
considered, improving performance up to 34.6%.

27



28 exploiting redundancy at cache level

The rest of this chapter is organized as follows. Section 4.2 comments on
block disabling and its impact on large cache structures. In Section 4.3, we
present how to take advantage of the coherence infrastructure to operate
at low Vdd. Section 4.4 introduces a fault-aware cache management policy
for LLC operating at low voltages. Section 4.5 presents our evaluation. Sec-
tion 4.6 discusses the system impact, and Section 4.7 concludes.

4.2 impact of block disabling on large shared caches at low

voltages

A simple approach to tolerate hard faults is disabling faulty resources. Block
disabling (BD) deactivates resources at block (cache entry) granularity: when
a fault is detected at a given cache entry, that entry is marked as defective
and it can no longer store a cache block [142]. This technique is implemented
in modern processors to bear hard faults [26].

BD has also been studied for operation at low voltages because of its easy
implementation and low overhead [93]. From the implementation perspec-
tive, only one bit per entry suffices to mark the entry as faulty. Its main
drawback is that the amount of capacity dramatically falls when the prob-
ability of failure increases, as shown in Table 2.1. Although the total count
of faulty cells in the cache is less than 1%, the effective cache capacity is
strongly affected because of the random distribution of faulty cells. BD re-
sults in caches with variable associativity per set, determined by the number
and distribution of faults in the cache.

The interaction between BD and the cache organization of the system also
plays an important role. Modern commercial processors, such as the Intel
Core™ i7, implement inclusive hierarchies to ease the coherence manage-
ment. Inclusive hierarchies require that all the blocks cached in the private
levels are stored in the shared LLC, too. The directory information is embed-
ded in the LLC; i.e., each block is augmented with sharing state and a bit
vector to represent the current sharers. To enforce inclusion, when a block
is evicted from the LLC, explicit back-invalidations are required to remove
the copies of the private cache blocks, if present (inclusion victims) [16].

Inclusive hierarchies perform poorly when the aggregated size of the pri-
vate caches is similar to the size of the LLC [68]. BD exacerbates the problem
because of the substantial associativity and capacity degradation in the LLC.
Figure 4.1 shows the available associativity of a 16-way set associative cache
bank with 64-byte blocks, when built with cells C6-C1 (Table 2.1) operating
a 0.5 V. The number of faulty ways per set follows a binomial distribution
B(n,p), where n is the associativity, and p denotes the failure probability
of a cache entry. Figure 4.1 shows how the associativity degrades as more
faulty cells appear on the cache structure. On average, 50% of the ways are
faulty if the cache is built with C5 cells, and this percentage rises to 85%
when using C2 cells; for C1, 100% of the cache entries are faulty at 0.5 V
and, therefore, we will not consider it in our study. The associativity loss
directly translates into a significant increase in the number of inclusion vic-
tims. For instance, the number of invalidations in a cache built with C3 cells
is 10x larger than in a cache implemented with fault-free SRAM cells.

This last evidence suggests that inclusive hierarchies are not well suited
for systems that implement BD in presence of a significant number of faults.
However, from the coherence management perspective, only directory inclu-
sion is required: blocks present in the private levels have to be tracked only
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Figure 4.1: Available associativity of a 16-way set associative block disabling cache
(64-byte block) made up of cells C6-C1 operating at 0.5 V.

in the shared level tag array, without the need of having a replica in the
data array [16]. This observation is the basis for the techniques we propose
in this chapter.

Note on Figure 4.1 that, when using cell types C3 and C2, 0.6% and 18.9%
of the sets have no operative ways, respectively. To be able to offer a com-
plete comparison with BD, we assume that at least one of the ways in each
set is non-faulty, although the techniques we present in this chapter do not
have this requirement, and the LLC could operate even when all the ways
of a set are faulty.

4.3 exploiting inclusive hierarchies to enable low voltage

operation : bdot

The BD scheme simply assumes one extra bit per entry to identify faulty
cache entries in the data array (one or more faulty cells). Faulty data entries
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are excluded from tag search and replacement, involving a net reduction
in associativity, and the consequent increase in inclusion victims. However,
from the coherence management perspective, tracking blocks in the shared
level tag array suffices to enforce directory inclusion. This is the basis for
the first technique that we call Block Disabling with Operational Tags (BDOT).

Assuming a two level inclusive hierarchy, to keep directory inclusion, we
turn on the tags of faulty entries in the LLC, including them in the regular
actions of search and replacement. The tag of a faulty entry, if valid, tracks
a cache block that might be present in the private caches, but that cannot be
stored in the shared cache. Enabling the tags of the faulty entries restores
the associativity of the shared cache as seen by the first-level private caches,
removing the increase in the number of inclusion victims caused by the
associativity loss.

In this situation, two kinds of LLC entries have to be distinguished: tag-
only (T ), where the associated data entry is faulty and only the tag is stored,
and tag-data (D), where the associated data entry is non-faulty and both tag
and data are stored. From the implementation perspective, still one resilient
bit suffices to indicate whether the entry is faulty or not. The coherence
protocol needs to be adapted to this new situation, where a T entry only
stores the block tag and directory state. Whenever a request to a block stored
in a T entry arrives to the LLC bank, the request needs to be sent to the next
level (in this case, off-chip) to recover the block, and the same occurs with
dirty blocks, which need to be written back to memory after being evicted
from a private cache.

To fully exploit this scheme, no failures should occur in the cells of the tag
array. This can be accomplished, for example, by using robust cells (e.g., in-
creasing the number of transistors per cell) or increasing the strength of the
ECC. Tags occupy very little area in comparison to the data array (around 6%
for our configuration, see Table 3.1), and increasing the cell size by 33% (as-
suming 8T SRAM cells [29]) will end up increasing the total area of a cache
bank by 2%. Since using sophisticated ECC could increase the access latency
to the tag array, and using resilient tag cells involves little overhead, we will
resort to the latter. This approach is also consistent with prior work [12,
157]. Besides, many of today’s CPUs use different cell types for tag and data
arrays [81].

4.3.1 BDOT Limitations

BDOT, as described above, has two potential limitations, both related to the
allocation of blocks to faulty entries.

First, BDOT always forwards requests to blocks allocated to faulty entries
to the off-chip memory. However, a block allocated to a faulty entry might
be present on-chip, if it is being used by a private cache (L1). This situation
is common in parallel workloads, which share data and instructions. In this
case, the directory information can be used to orchestrate the cooperation
among L1 caches. An L1 request to a shared block mapped to a T entry is
forwarded to one of the sharers of the block (another L1). That L1 will serve
the block through a cache-to-cache transfer.

Cache-to-cache transfers are already implemented in the baseline coher-
ence protocol for exclusively owned blocks. Thus, no additional hardware is
required and a slight modification of the directory protocol suffices to trig-
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ger a shared block transfer. So from now on, we assume that BDOT includes
this feature.

The second limitation comes from allocating blocks to LLC entries with-
out taking into account their T or D nature. Unfortunately, this blind allo-
cation can leave heavily reused blocks stuck to faulty entries. Indeed, if a
particular block of the LLC is required repeatedly from an L1 cache (i.e., the
block shows reuse), any replacement algorithm will tend to protect it, re-
ducing its eviction chances. Thus, if a block with reuse is initially allocated
to a T entry, unless replicated in other cores, all L1 cache misses will be
forwarded off-chip by the LLC.

In the next section, we introduce a specific allocation and reallocation
policy for BDOT caches that differentiates between T and D entries.

4.4 fault-aware cache management policy for bdot caches

Conventional cache management policies assume that every cache entry can
store a block, while BDOT breaks this assumption: each set in an N-way set
associative cache contains T entries that store only tag, and D entries that
store tag and data. With the main goal in mind of improving the overall LLC
performance under BDOT, this section introduces a fault-aware cache man-
agement policy that takes into account the distinct nature of T andD entries,
and the reuse pattern of the reference stream. In particular, we propose to
meet the following two goals:

1. Try to allocate blocks that are most likely to be used in the future to D
entries.

2. Try to maximize the on-chip contents by giving more priority (higher
chances to be allocated to D entries) to blocks that are not present in
private cache levels.

Prior work has shown that reuse is a very effective predictor of the use-
fulness of a given block in the LLC [9, 31]. Reuse locality can be described
as follows: lines accessed at least twice tend to be reused many times in
the near future, and recently reused lines are more useful than those reused
earlier [9]. Thus, regarding our first goal, we exploit reuse locality to predict
which blocks should be allocated to D entries. With respect to our second
goal, a request to a block allocated to a T entry and present in L1 can be ser-
viced through a cache-to-cache transaction, whilst if the block is not present
in L1, the request will be always forwarded to the off-chip memory, penaliz-
ing the time and energy of the access. Therefore, it is preferable to dedicate
D entries to blocks not available on the L1 caches.

These goals may be added to any management policy. In this work, we
will build on top of a state-of-the-art reuse-based replacement algorithm:
Not-Recently Reused (NRR) [9]. Next, we describe the baseline replacement
in some depth and then, we make it aware of the existence of faulty entries.

4.4.1 Baseline NRR Replacement Algorithm

The NRR algorithm requires four states per LLC block, as depicted in Fig-
ure 4.2. When a block not present in the LLC is requested by the processor
(1st use: L1 request), it is stored in the L1 and the LLC (to enforce inclu-
sion), being its state in LLC NR-C (Non-Reused, Cached). When the block is
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Figure 4.2: Reuse and inclusion states for a block in LLC. NR, R, C, and NC rep-
resent: Non-Reused, Reused, Cached (in L1), and Non-Cached (in L1),
respectively. Replacement and coherence transitions are not shown.

evicted from the private cache (L1 eviction), its LLC state changes to NR-NC

(Non-Reused, Non-Cached). On a new request (2nd use: L1 request), a copy
of the block is stored again in L1, and its LLC state is R-C (Reused, Cached).
At this point, the block has shown reuse in the LLC and, very likely, it will
be reused many times in the near future. Finally, when the block is evicted
again from the L1, the state becomes R-NC (Reused, Non-Cached). Subse-
quent requests and evictions switch between the R-NC and R-C states.

Having LLC blocks classified this way, the replacement policy can exploit
L1 temporal locality and LLC reuse. In an inclusive hierarchy, the replace-
ment of a block in the LLC forces the invalidation of its copies in the private
caches, if any, which usually implies a performance degradation, as long
as blocks in L1 are being actively used [68]. Therefore, the highest priority
(protection) is given to blocks stored in private caches. As a secondary ob-
jective, the highest priority is given to blocks that have shown reuse in the
LLC. Hence, NRR selects victims in the following order: NR-NC, R-NC, NR-C,
R-C. Reuse recency is taken into account by resetting the reuse bit, when all
the non-cached blocks are marked as reused (transition from R-NC to NR-NC).
This way, more recently reused blocks become more protected.

The implementation of NRR only requires one reuse bit per block. The
protection of private copies can be implemented in different ways [68], but
a simple solution uses the presence bit-vector of the coherence directory,
assuming non-silent tag evictions of clean blocks.

4.4.2 Reused-based and Fault-aware Management for BDOT Caches

Seeking to guarantee that valuable blocks remain in the LLC, we devise a
fault-aware management policy by distinguishing between T and D entries.
One option is to promote blocks by reallocating them from T to D entries,
if needed, to improve the overall cache performance. The design choices in-
clude where the promoted data comes from and which victim is chosen as a
target of the consequent demotion. At the same time, we want to continue
exploiting reuse in the simple and efficient way offered by an NRR-like re-
placement algorithm, which is unaware of faulty entries. Thus, our goal is to
design a comprehensive cache management policy, merging reuse exploita-
tion and faulty entries management. Below, we elaborate on the two key
mechanisms, namely block insertion/replacement and block promotion/de-
motion.
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Figure 4.3: Insertion and promotion actions for a fault-aware cache management pol-
icy: example with a 4-way cache set with two faulty cache entries. Lower-
case and capital letters indicate tag and data, respectively.

4.4.2.1 Insertion and Replacement of Blocks

On a first insertion (LLC miss), an incoming block has not shown reuse,
so allocating it to a T entry seems a reasonable idea. Figure 4.3a shows an
example of a cache block to be inserted in a 4-way cache set with two T
entries (those storing q and r tags) and two D entries (those storing p and
s tags and the corresponding P and S data). A victim is selected among the
blocks allocated to T entries. The baseline replacement dictates which one
among those blocks (Q and R) is selected for replacement. This is equivalent
to predict that the incoming block X is not going to be reused. In case the
reuse pattern of the block is mispredicted, block X should be reallocated to
a D entry, to reduce its access time and transfer energy in future L1 misses.
This would be solved using the promotion mechanism we detail in the next
subsection.

Dealing with first insertions this way is very simple but has a clear incon-
venience, related to the distribution of T and D entries, with respect to the
percentage of reused and non-reused blocks. For example, if the number of
T entries is small, the insertion policy would incur in a lot of pressure on
the scarce T entries. Blocks would be unavoidably forced to leave the LLC
before having enough time to show a reuse pattern, even though there are
many available D entries. In an extreme case, when all the entries in a set
are D type, this cache management policy could not be implemented. Solv-
ing this issue is not easy. We devised some adaptive mechanism in which
some D entries are used as T . However, finding an optimal number of T
entries is difficult, and it highly depends on the workload. After carrying
out some experiments (not shown in Section 4.5, for the sake of brevity), the
performance returns were limited given the required complexity.

With the right promotion mechanism to reallocate blocks from T to D
entries and vice versa, we realized that the baseline NRR replacement it-
self suffices to achieve our initial goals. This is supported by the protection
of reused blocks that guides the baseline replacement. Reused blocks are
likely to be reallocated to D entries once they have shown reuse, so protect-
ing them in the replacement algorithm (lower chances of eviction) naturally
selects blocks in T entries as replacement victims. Hence, the initial inser-
tion does not necessarily have to consider the nature of the entry, and our
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implementation only relies on the baseline replacement policy to select the
victim block.

4.4.2.2 Promotion and Demotion of Blocks

A blind allocation of blocks to cache entries may result in valuable blocks
(i.e., those with reuse) being initially allocated to T entries, and vice versa.
However, this undesirable situation can be tracked on the fly through the
reuse footprint, and reverted by swapping the T entry with a D entry: when
a block allocated to a T entry shows reuse, we will promote it to a D entry.
Promotion involves a complementary demotion of the block stored in the
selected D entry.

To select which block is demoted, we also rely on reuse and L1 presence
information. Reused blocks should be kept in the LLC, but contrarily to
the baseline replacement, block demotion does not involve an LLC tag eviction.
Furthermore, if the block is present in L1, losing the content in the LLC is
not critical, because there is at least one on-chip copy of the block, which
can be supplied by a cache-to-cache transaction. Thus, to maximize the on-
chip contents, the demotion algorithm will select the victim block among
those present in L1. Among the blocks in L1, non-reused ones should have
priority to be demoted.

Note that the promotion of a block can be performed in two different
moments: at reuse detection (i.e., second L1 request to a block stored in
a T entry) or after the second eviction from L1 (i.e., eviction after reuse).
Performing the promotion after the second request from L1 duplicates the
content, as a copy of the block is stored in a private cache, too, whilst per-
forming the promotion after the L1 eviction meets the goal of maximizing
the on-chip content. Thus, we resort to the latter and trigger promotions
only after L1 evictions, being necessary non-silent block data evictions.

The promotion/demotion is illustrated in Figure 4.3b. When block R, which
is stored in a T entry, is evicted from the L1 cache and selected for promotion
(i.e., its reuse bit is set), we select a victim among the demotion candidates
(P and S in Figure 4.3b). Once the victim is selected (P in our example), we
swap the cache contents in three steps: 1 discard the data entry P, writing
back its content to memory, if dirty; 2 swap p and r tags; and 3 copy the
data (R) in the available D entry, which was occupied by the demoted block
(P).

4.4.2.3 Summary and Implementation

Figure 4.4 illustrates the implementation of the aforementioned ideas. The
states of the baseline replacement shown in Figure 4.2 are now superstates
split into T and D states. The initial allocation of blocks (1st use: L1 request in
Figure 4.4) does not take into account the nature of the entry, and it solely
depends on the victim selection arising from reuse and L1 presence; i.e., it
only depends on the baseline replacement algorithm. After insertion, blocks
will move along NR-C, NR-NC, R-C, and R-NC superstates as they would do in
a cache without considering faulty entries.

To guarantee that highly valuable blocks—those showing reuse—remain
in the LLC, the policy reallocates them from T to D entries when they are
evicted from the L1 and reside in a faulty LLC entry: state R-C-T. After L1
eviction, blocks in R-C-T trigger a promotion action, which results into the
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Figure 4.4: Reuse and inclusion states for a block in LLC with BDOT.

transition to R-NC-D state and reallocation to a D entry, with the consequent
demotion of another block within the set to a T entry. A block being de-
moted can be in any of the superstates; according to the victim selection
algorithm, we demote first blocks that are present in the private levels, in
order to maximize the available content on the on-chip hierarchy. As a sec-
ondary objective, the policy attempts to first demote blocks without reuse.
In particular, it selects blocks in the following order: NR-C-D, R-C-D, NR-NC-D,
and R-NC-D.

This reuse-based, fault-aware policy adds no extra storage overhead to the
baseline reuse-based replacement, as only the bit indicating reuse and the
presence bit vector are needed to orchestrate the replacement and promotion
decisions. Besides, swapping blocks only requires some extra control logic
to perform the following actions: first, the logic reads the demoted victim
and inserts the promoted block, same as for a conventional block insertion,
and, then, it writes back the tag of the demoted block. Promoting blocks
after L1 eviction implies non-silent eviction of data blocks. This overhead
does not affect latency, as L1 replacements are not in the critical path, and
has a negligible impact on the energy consumption.

The fault-aware cache management technique here presented could be im-
plemented on top of other replacement algorithms (such as LRU or NRU).
We decided to rely on NRR because of its simple, yet efficient implementa-
tion, and because it fits the general principles behind our ideas. Finally, and
regarding the reallocation from T to D entries and vice versa, other policies
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are also possible. For example, instead of relying on the reuse information
of the blocks, a future use predictor [159] could be utilized to decide which
blocks should be allocated to D entries, or a dead block predictor [82] could
be used to indicate which blocks may be demoted to T entries, but these
solutions add complexity to the cache logic as well as require more storage
overhead.

4.5 evaluation

This section evaluates the effectiveness of the proposed BDOT management
technique for LLC caches in terms of MPKI. Later on, Section 4.6 analyzes
the impact on system performance, area, and energy.

To assess the effectiveness of our proposals, we include several additional
configurations. First, as an upper bound in performance, a robust cache
built with unrealistically robust cells (Robust); i.e., cells that operate at ultra-
low voltages with neither failures nor power or area overhead, which cor-
responds to a perfect unattainable solution. Then, we also include block
disabling (BD), as our proposal emerges from it. Finally, we add results for
word disabling (WD) [157]. Word disabling is a more complex technique that
combines consecutive faulty cache entries to recreate fully functional ones,
at the cost of reducing the cache capacity. Section 4.5.3 presents a qualitative
discussion of other techniques versus our proposals.

In summary, we consider the following configurations:

• Robust: reference system; the LLC is built with unrealistically robust
cells. All data are presented with respect to this system.

• BD: system implementing block disabling, as presented in Section 4.2,
with NRU replacement.

• BDOT-NRU: system implementing block disabling with operational
tags, as presented in Section 4.3, with NRU replacement.

• BDOT-NRR: system implementing BDOT with NRR replacement, as
presented in Section 4.4.1.

• BDOT-NRR-FA: system implementing BDOT with fault-aware NRR re-
placement, as presented in Section 4.4.2.

• WD: system implementing word disabling with NRU replacement [157].

As in the case of NRR, the NRU implementation also includes private
copy protection. Our detailed results include multiprogrammed workloads
(the 20 SPEC CPU 2006 mixes) and parallel workloads (the 4 selected PAR-
SEC applications), for the five cell types considered (C6, C5, C4, C3, and
C2).

4.5.1 Multiprogrammed Workloads

Figure 4.5a shows the LLC MPKI results for the multiprogrammed work-
loads.

BD is a valid solution for a cache with few defective entries, like one built
with C6 cells, where the average MPKI penalization is 23.9%. However, this
penalization increases rapidly with the number of faulty entries, reaching
136% for C2. Using the tags of the defective LLC entries to keep the coher-
ence state of blocks stored in L1 allows BDOT-NRU to reduce the MPKI
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increase with respect to BD for C2, but it does not offer any advantage (the
MPKI increases) for the rest of the cells.

To differentiate and quantify the benefit of a reuse-based replacement
and our fault-aware cache management policy, we first implement NRR on
top of BDOT (BDOT-NRR), without taking into account the nature of cache
entries (faulty or non-faulty). This naive implementation offers a slight im-
provement with respect to BDOT-NRU for all cell types, but it is still worse
than BD, except for C2, as in the case of BDOT-NRU. The rationale of this
behavior is the blind allocation of blocks to entries, without taking into ac-
count if the entry can store only the tag (T ) or both the tag and the data (D).
Allocating a block that shows reuse to a T entry implies that all the requests
to that block are forwarded to the next level (in this case, off-chip). Besides,
due to the reused-based policy, this block will remain in the defective entry
of the LLC, protected by the replacement algorithm. However, blocks with
reuse allocated to D entries are also protected from replacement, and that
explains why the relative differences between BDOT-NRR and BDOT-NRU
are larger when using larger cells (i.e., with less faults, like C6 and C5).

BDOT-NRR-FA addresses this issue, adding the information of defective
entries to the cache management policy. The penalization in terms of MPKI
decreases with respect to BD by 14.6%, 15.1%, 16%, 18.3%, and 37.3% for
cells C6, C5, C4, C3, and C2, respectively. If we compare BDOT-NRR-FA
with BDOT-NRR, the MPKI decreases over 20%, irrespective of the cell type,
demonstrating the goodness of the design.

Regarding WD, although there are significant differences in terms of the
number of defective entries among the cell types considered (Table 2.1), the
MPKI for the different configurations is almost constant. Two reasons ex-
plain this behavior: i) a single defective cell forces the entry to be classified
as faulty, and ii) the number of defective cells per entry is usually small
(three on average for the smallest cell, C2, as we show in Chapter 5) and,
therefore, very often blocks are successfully stored by combining two con-
secutive entries. Thus, the average number of ways per set in our system
when implementing WD is 8 across the different cell configurations. In com-
parison with BD, WD obtains better results when the average number of
defective entries is greater than half, which is the case of cells C4, C3, and
C2, as shown in Table 2.1. BDOT-NRR-FA lowers the MPKI with respect to
WD by 20%, 16.1%, 8.5%, and 3.4%, for C6, C5, C4, and C3, respectively. WD
only beats BDOT-NRR-FA in caches with a high number of defective cells
(C2, where on average 90% of the entries are faulty). However, BDOT-NRR-
FA requires no additional overhead, whilst WD requires additional storage
and logic to reconstruct blocks.

4.5.2 Parallel Workloads

Figure 4.5b shows the relative LLC MPKI for the parallel workloads, with re-
spect to the baseline. As with multiprogrammed workloads, BDOT-NRR-FA
has a lower average MPKI than BD and non fault-aware implementations
of BDOT. In particular, BDOT-NRR-FA improves MPKI with respect to BD
by 5%, 5%, 9.6%, 19.2%, and 54.2% on average for C6, C5, C4, C3, and C2,
respectively. Comparing with the multiprogrammed workloads, the relative
MPKI numbers shown in Figure 4.5b are larger, moving away from the Ro-
bust system to a greater extent for all cell types, even for the winning alter-
natives (WD and DBOT-NRR-FA). But it is worth noting that the absolute
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Figure 4.5: Normalized MPKI (average) with respect to Robust for the different pro-
posals and cell types.

MPKI values for the parallel applications considered are low (Chapter 3),
which makes the relative increases appear more substantial.

Digging into the results shows some interesting observations. Figure 4.6
shows the LLC MPKI analysis per application for the different cell types.
BD is better than plain BDOTs (BDOT-NRU, BDOT-NRR) in C6-C3 cells (C3

in streamcluster is an exception), while in cell C2 the trend clearly reverses.
On the contrary, BDOT-NRR-FA is better than BD in most cases, being vips

the only exception (cells C6-C3), and giving very noticeable reductions in
the smallest cell C2. For vips, BDOT-NRR-FA only beats BD in C2 because
its image processing algorithm shows very little reuse with a small working
set. In such non-demanding environment, BD can store the vips working
set.

Finally, the costly WD shows a similar tendency than with multipro-
grammed workloads, with a regular performance independently of the cell
type. In this case, BDOT-NRR-FA beats WD when using C6 or C5, but it
cannot reach WD performance for C4, C3, and C2, where MPKI increases
by 5.5%, 12.4%, and 33.3%, respectively.

4.5.3 Comparison with Prior Work

Our proposal is orthogonal to the use of ECC to provide more functional en-
tries (or any other technique that increases the number of functional entries),
as it adapts seamlessly to the amount of functional and non-functional data
entries in the cache.

Regarding block disabling improvements, Ladas et al. implement a victim
cache to compensate for the BD associativity loss [93]. Our approach also
relies on BD, but contrary to their work, it does not require any additional
structure.

Several cache management techniques have been proposed in the context
of caches built with heterogeneous cell sizes [56, 81]. As opposed to these
techniques, we do not rely on the existence of robust ways and we guide
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Figure 4.6: Per-application normalized MPKI (PARSEC) with respect to Robust for
the different proposals and cell types.

the allocation of blocks to faulty or operational LLC entries based on their
reuse. Keramidas et al. use a PC-indexed spatial predictor to orchestrate the
replacement decisions among fully and partially usable entries in first-level
caches [80]. We base our allocation predictions in the reuse patterns, which
simplifies the hardware, and we do not consider the use of partially faulty
entries.

Complex re-mapping mechanisms such as [12, 88, 104] add a level of in-
direction to the cache access (increasing its latency), and the combination
of cache entries to recreate a cache block adds complexity. Besides, several
cache accesses are needed to obtain a fault-free cache block, increasing the
energy consumption and/or the block access latency. We do not add any
additional structure or re-mapping mechanism, only minor changes to the
coherence protocol and replacement policy. We focus our detailed compari-
son on word disabling [157] as a representative technique of this group.
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Figure 4.7: Normalized speedup (average) with respect to Robust for the different
proposals and cell types.

4.6 system impact

This section analyzes the impact of our proposals on the system in terms
of performance (instructions per cycle or IPC), area, and energy consump-
tion. As in the previous section, we present results relative to the Robust
configuration and compare against the BD and WD mechanisms.

4.6.1 Performance

Figure 4.7 shows the performance relative to Robust for both multipro-
grammed and parallel workloads.

For multiprogrammed workloads (Figure 4.7a), performance follows the
same trend as MPKI, being BDOT-NRR-FA the best design alternative ex-
cept for C2, where WD outperforms BDOT-NRR-FA by 2.2%. In particular,
BDOT-NRR-FA shows a performance degradation with respect to the refer-
ence Robust system of 1.3%, 2%, 3.4%, 4.3%, and 6.9% for C6, C5, C4, C3,
and C2, respectively, or, in other words, a performance improvement with
respect to BD of 2%, 2.2%, 2.7%, 3.6%, and 13.1%.

As in the case of multiprogrammed workloads, the speedup of parallel
applications (Figure 4.7b) also follows the same trend as MPKI results, with
a notable exception. For C3, BDOT-NRU and BDOT-NRR perform slightly
better than BD on average, while in Figure 4.5b, the average MPKI of these
techniques was larger than BD. As we already mentioned, the LLC MPKI
of the parallel applications in the baseline system is small (Chapter 3), and
small MPKI increases with respect to this system appear relatively large in
Figure 4.5b. Nevertheless, for C3, streamcluster has a dramatic speedup
degradation with BD. This is due to the large number of back invalidations
to L1 blocks to force directory inclusion (inclusion victims). Namely, in this
application, the number of invalidations to L1 blocks decreases 20x when
implementing BDOT. The MPKI numbers are similar, but the number of in-
structions executed highly differ. For this application, we observe a perfor-
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mance improvement of 6.1% when using BDOT-NRU (6.2% for BDOT-NRR),
with respect to BD.

On average, BDOT-NRR-FA shows a similar performance than BD for C6

and C5, where the performance degradation with respect to the reference
system is 2.2% and 2.9%, respectively, and improves its performance by 1.8%,
7.1%, and 34.6% for C4, C3, and C2, respectively. BDOT-NRR-FA and WD
have similar performance (within 1%), except for C2, where WD achieves a
3.1% performance increase.

In summary, BDOT-NRR-FA is an excellent choice for caches with differ-
ent number of defective entries, as it reaches the performance of more com-
plex fault-tolerant techniques without adding any extra storage overhead to
the cache.

4.6.2 Area and Energy

Larger SRAM cells have lower probability of failure, but at the cost of an
increase in area and power consumption. Even the largest cell considered
by Zhou’s study (C6), which increases the area by 41.1% relative to C2, is
far from reaching fully functional performance: 40.1% of the cache entries
are faulty at 0.5 V (Table 2.1).

Our fault-aware mechanism has a minimal impact in area. Only two extra
bits suffice to implement BDOT-NRR-FA: one bit marks entries as defective
(as BD), and the other one stores the replacement policy (i.e., NRR) informa-
tion. Thus, no extra storage overhead is added to the BD system.

Minimizing area helps to reduce energy in LLC. Signals travel smaller dis-
tances requiring less dynamic power for switching, and, most importantly,
small cells consume less static power. To estimate the sub-threshold current,
Isub, causing the static consumption, we assume that Isub is directly pro-
portional to transistor width of the cells considered, and estimate it with
respect to C2 [170]. For the unrealistically robust cell, we assume that its
dimensions equal C2, but with a zero probability of failure. Energy con-
sumption also includes the dynamic overhead of LLC block swaps and L1

clean data eviction required by the fault-aware BDOT policy. Finally, we
account for both the on-chip power and the off-chip DRAM power.

Figure 4.8 shows the energy per instruction (EPI) for all the systems and
cell types considered, both for multiprogrammed (Figure 4.8a) and parallel
(Figure 4.8b) workloads, with respect to a system implemented with robust
cells at 0.5 V, distinguishing between on-chip and off-chip consumption.

For BD, the 2.4×MPKI increment of C2 escalates the off-chip DRAM traf-
fic, and in turn, significantly increases off-chip DRAM EPI for both multi-
programmed and parallel workloads. On average, BDOT-NRR-FA decreases
the overall EPI with respect to BD by 5.4%, 5.8%, 6.8%, 8.2%, and 20.4% for
C6, C5, C4, C3, and C2, respectively, for the multiprogrammed workloads.
In the case of parallel workloads, the EPI of BDOT-NRR-FA is within 2% of
BD for C6, C5, and C4, and it decreases by 7.4% and 26.8% for C3 and C2,
respectively.

Regarding WD, the results show the same trend as performance: BDOT-
NRR-FA EPI results improve by 7.5%, 9.8%, 7%, and 4%, for C6, C5, C4, and
C3, respectively, when considering multiprogrammed workloads, while for
parallel workloads the EPI values of both techniques are very similar for C6
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Figure 4.8: Normalized EPI (average) with respect to the unrealistically robust cell
for the different proposals.
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Figure 4.9: Normalized EPI (average) with respect to word disabling, when imple-
menting fine-grained block power gating.

and C5, but BDOT-NRR-FA cannot reach the efficiency of WD for the rest
of the cell configurations.

The energy results shown above do not consider any block power gating
technique [123]. Assuming a more aggressive approach, where fine-grained
block power gating is affordable [58], the benefits of BD-based techniques in
terms of power and energy will improve, as faulty entries do not consume
static power during operation. Applying this technique, the EPI of BDOT-
NRR-FA would decrease by 6.2%, 6.7%, 7.2%, 6.3%, and 5.5% for C6, C5, C4,
C3, and C2, respectively, for the multiprogrammed workloads, with respect
to the EPI values of Figure 4.8. The same tendency is observed in the parallel
workloads results.

Figure 4.9 compares the EPI values of BD and BDOT-NRR-FA when im-
plementing block power gating with respect to WD. We observe that for
multiprogrammed workloads all the cell configurations achieve significant
improvements in terms of EPI with respect to WD, and only the C2 con-
figuration in the case of parallel workloads is not able to reach the WD
efficiency.
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4.7 summary and conclusions

Voltage reduction has been the primary driver to reduce power during last
decades, but ultra-deep submicron technologies have suddenly stop this
trend because of leakage and stability reasons. At lower voltages, manufac-
turing induced parameter variations make SRAM cells unstable, requiring
a minimum voltage to operate reliably. SRAM cell failures can be tolerated
by deactivating faulty cache entries. This technique is called block disabling
(BD) and requires only one bit per tag. Unfortunately, as the number of de-
fective entries increases, so does performance degradation, and the energy
saved from decreasing Vdd does not pay off the extra energy of the addi-
tional main memory accesses.

The reduction in associativity and capacity experienced by inclusive LLCs
extended with BD has two specific drawbacks in multicore systems. First,
the number of inclusion victims in private L1 caches increases. Second, the
MPKI figures also grow, increasing LLC miss latency and main memory
energy consumption.

To cope with the first problem we propose Block Disabling with Oper-
ational Tags (BDOT), which uses robust cells to implement the LLC tag
array. BDOT enables some cache blocks to be only in private levels by sim-
ply tracking their tags (T entries), and extends to clean blocks the existing
cache-to-cache coherence service. Thus, with regard to inclusion victims, the
LLC associativity is fully restored. BDOT requires a light extra control, and
it adds no storage overhead to BD. Any replacement algorithm may work
with BDOT, and we have tested NRU and NRR, two low-cost state of the art
proposals for LLCs.

After the last copy L1 eviction of a block tracked by a T entry, a future
reference to this block will involve an off-chip access, even if we know that
reuse chances are high. So we tackle the second problem from the key ob-
servation that we can preserve the cached on-chip contents by exchanging
the valuable, just evicted T entry block (promotion), with an L1-present D
entry block (demotion). Furthermore, if all blocks allocated to D entries lack
L1 copies, we can still resort to demotion, losing effective on-chip capacity,
assuming that an incoming L1 block showing reuse (second L1 replacement)
is more valuable than any older block allocated to a D entry. We have imple-
mented these ideas in BDOT-NRR-FA, the fault-aware version of BDOT that
selects for demotion a D entry victim block that has a backup copy in L1

(first criteria), and has not shown reuse in the LLC (second criteria). Com-
pared to a BDOT LLC using NRR replacement, BDOT-NRR-FA improves
performance and energy with no area overhead, because the required bits
per block, namely presence vector, operative entry, and reuse are required,
respectively, by coherence mechanism, BD, and conventional replacement.

We tested our proposals against a large range of multiprogrammed and
parallel workloads under different Pfail situations. Our best proposal, BDOT-
NRR-FA, beats BD, reducing MPKI up to 37.3% and 54.2% for multipro-
grammed and parallel workloads, respectively. Those improvements trans-
late into performance improvements of 13% and 34.6%, respectively. Regard-
ing EPI, our proposal decreases it between 5.4% and 20.4% for multipro-
grammed, and between 2% and 26.8% for parallel workloads. The larger
savings come from LLCs with more faulty cells, making our proposal very
suitable to operate multicore LLCs at low voltages for current and future
technology nodes.
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This chapter presents Concertina, an efficient and fault-tolerant last-level cache
(LLC) that operates with unreliable SRAM cells at ultra-low voltages. Based on
the observation that for many applications the LLC contains large amounts of null
data, Concertina compresses cache blocks so that they can be allocated to cache en-
tries with faulty cells. To distribute blocks among cache entries with different num-
ber of defective cells, Concertina also implements a compression- and fault-aware
cache management policy that reduces the LLC miss rate and, consequently, the
main memory accesses. Concertina reaches the performance of an ideal system im-
plementing a LLC that does not suffer from parameter variations with a modest
storage overhead. Specifically, performance degrades by less than 2%, even when
using small SRAM cells, which implies over 90% of cache entries having defective
cells, and this represents a notable improvement on previously proposed techniques.

5.1 introduction

Concertina is an efficient and fault-tolerant LLC that operates with unreli-
able SRAM cells at ultra-low voltages. Unlike previous architectural schemes,
Concertina enables all the cache entries, even the faulty ones. Our key idea
is to compress cache blocks, in order that they fit within the functional ele-
ments of faulty entries. Since not all cache blocks can be evenly compressed
and not all faulty entries can store the same amount of information, it is not
possible to use existing cache management policies based on the premise
that a block can be stored in any entry of a set. To address this issue, we
study different insertion/replacement policies that are aware of the nature
of both the incoming block (degree of compression) and the corresponding
cache set entries (number of defective cells).

Compression has been proposed in related literature as a promising tech-
nique to increase the effective on-chip cache capacity [8, 34, 119, 162], or to
reduce the energy consumption of the cache [33, 87], but to the best of our
knowledge, it has not been explored as a way to enhance tolerance to cache
faults in the context of ultra-low voltage operation. This application sets dif-
ferent requirements for the compression scheme. On the one hand, the prob-
ability of failure of a cache entry is high for conventional SRAM cells, and
hence a large fraction of cache blocks have to be compressed. On the other
hand, low compression ratios are good enough to recover a faulty cache
entry, as the probability of having a high number of faulty cells in a given
entry is very low. This latter observation, which is in line with the analysis
of other authors [7], is also crucial to our proposal. Concertina implements
null subblock compression, a fast, simple, and efficient scheme that takes
advantage of the large amount of runs of zeroes present in the LLC blocks.
Null subblock compression in combination with a smart compression- and
fault-aware replacement policy results in performance within 2% of that of
a system that implements the LLC with ideal defect-free cells.

The rest of this chapter is organized as follows. Section 5.2 explores com-
pression requirements at ultra-low voltages and introduces our proposed

45
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Figure 5.1: Distribution of faulty subentries for different subentry and cell sizes.

compression scheme. Section 5.3 presents the Concertina architecture. Sec-
tion 5.4 presents the evaluation of our proposal. Section 5.5 discusses the
system impact of Concertina, and Section 5.6 outlines our conclusions.

5.2 compression for caches operating at low voltages

Data compression is a powerful technique for storing data in less space than
originally required. In general terms, a compression mechanism seeks to be
fast, especially at the decompression stage (decompression latency is on the
critical path, while compression is done during replacement); and simple
(the hardware and energy overhead should not overcome the benefit of the
compression); as well as effective in saving storage capacity.

Compression is also an attractive idea for caches operating at ultra-low
voltages because entries with defective bits could store compressed blocks,
reducing the negative impact on capacity and associativity. To the best of
our knowledge, this is the first time compression has been proposed for
improving cache reliability at ultra-low voltages.

In this section, we first analyze the requirements imposed by near-threshold
voltage operation for a compression scheme. Then, we present a simple yet
effective compression scheme able to allocate most blocks to faulty cache
entries.

5.2.1 Compression Scheme Requirements for Caches Operating at Low Voltages

State-of-the-art compression techniques aiming to increase the effective cache
capacity focus on maximizing the compression ratio (uncompressed block
size divided by compressed block size) rather than coverage (fraction of
compressed blocks) [32, 119, 162]. In contrast, at ultra-low voltages, the main
goal is to enable all the cache capacity. Hence, there are special requirements
for a compression scheme related to its coverage and compression ratio, ac-
cording to our parameters of interest, the cell and cache subentry sizes:
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Coverage. The fraction of cache blocks that have to be compressed depends
on the probability of cell failure. As faulty cells are spread across the cache
structure, when the probability of cell failure increases (as cell size de-
creases), more blocks need to be compressed. Table 2.1 shows that, for the
cell sizes considered, high coverage is required, ranging from 40.1% (C6) to
100% (C1).

Compression ratio. For a block to be stored in a faulty cache entry, its size has
to be less than or equal to the available space at the cache entry (the size of
its fault-free subentries). Otherwise, the matching is not possible. Due to the
random component of the SRAM cell failures, some entries have more faulty
subentries than others. Hence, the required compression ratio varies across
entries. Assuming that we can track faults at different granularities (distinct
subentry sizes), Figure 5.1 shows the distribution of defective subentries
(from zero to four or more) for cells C2 to C6.

Irrespective of cell size, when the subentry size is reduced, the average
number of faulty subentries per entry increases, as a subentry with multiple
defective cells may spread across several smaller faulty subentries. However,
as Figure 5.1 shows, even for the smallest subentry size (1-byte, 64 suben-
tries) and the smallest cell considered (C2), only 7.6% of the cache entries
have more than four faulty subentries. This fraction drops to 1% for the
C3. Moreover, even with more faulty subentries, the disabled cache capacity
drastically decreases when the subentry size is reduced (Figure 2.3).

Table 5.1 shows the compression ratio required to store a block in a cache
entry for a range of defective subentries and subentry sizes. The compres-
sion ratio drops with decreasing subentry sizes. For instance, a 1.06 com-
pression ratio suffices to allocate a block into a faulty cache entry with four
faulty 1-byte subentries.

Summarizing, the main requirement of the compression scheme for caches
operating at ultra-low voltages is a high coverage, while the required compres-
sion ratio is very small. In the rest of this chapter, we focus on cells C2, C3,
and C4, as they are the most discouraging scenario (highest Pfail).

Table 5.1: Compression ratio required to store a 64-byte block in a cache entry with
several faulty subentries of different sizes.

Subentry size (bytes) Compression ratio

Faulty subentries

1 2 3 4

32 2.00 ∞a NA NA

16 1.33 2.00 4.00 ∞a

8 1.14 1.33 1.60 2.00

4 1.06 1.14 1.23 1.33

2 1.03 1.06 1.10 1.14

1 1.02 1.03 1.05 1.06

a A cache entry with two faulty 32-byte subentries or four faulty 16-byte subentries
has no available space.
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Figure 5.2: Average percentage of LLC blocks that have at least one null subblock for
different granularities (SPEC CPU 2006).

5.2.2 Exploiting Zero Redundancy to Compress Cache Blocks

Content redundancy is prevalent among real-world applications. For exam-
ple, zero is by far the most frequent value in data memory pages: It is used
to initialize memory values, and to represent null pointers or false Boolean
values, among others. Many compression schemes are based on compress-
ing zeros or treating them as a special case [51, 119, 152, 162].

Exploiting zero redundancy can lead to a simple compression technique.
We can compress aligned null subblocks1 (subblocks whose content is all
zeros) to effectively reduce the size of the original block. Compressing and
decompressing null subblocks can be performed with low-complexity hard-
ware: we just need to keep track of the locations of the null subblocks within
a given block, and properly shift the non-null contents. This mechanism will
be effective only if applications maintain a significant degree of compress-
ibility during their execution. Hence, in this section we analyze the com-
pressibility potential (number of null subblocks) of our target applications,
and how it varies over the course of their execution.

To characterize null subblock occurrences in our applications, we con-
ducted the following experiment. We ran the 29 SPEC CPU 2006 programs
for one billion cycles (see Chapter 3 for methodology details) and inspected
the contents of the LLC every one million cycles. Each application ran alone
in the system, making use of the whole shared LLC (8 MB). Then we counted
up the number of blocks that had at least one null subblock for different sub-
block sizes (from 64 to 1 byte).

Figure 5.2 shows the average percentage of blocks stored in the LLC that
contain at least one null subblock of a given size. Notice that large null
subblocks include several occurrences of smaller null subblocks (e.g., one
null 64-byte subblock is equivalent to two null 32-byte subblocks). Different
workloads show distinct behavior regarding subblock sizes and the amount

1 The same way we divide a cache entry into subentries, we divide a cache block into subblocks.
Aligned subblocks simplify the design of the compression and decompression logic.
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of null subblocks. While some workloads such as GemsFDTD and cactusADM

show a significant percentage of blocks that have large null subblocks (64

bytes), most of them show a noticeable increase in the amount of null sub-
blocks when reducing the subblock size. On average, downsizing subblock
sizes from 8 bytes to 1 increases the average fraction of compressible blocks
from 54.4% to 82.2%. A large set of benchmarks (including gcc, povray,
sjeng, and gobmk, among others) reach almost 100% coverage when con-
sidering 1-byte subblocks. Regarding the temporal evolution of blocks, we
checked that the percentage of compressible blocks is also maintained over
the course of the execution of the applications, especially when considering
small subblock sizes.

The conclusions extracted from our study are encouraging: not only can
a significant percentage of blocks be compressed (high coverage), but also
this percentage remains steady during program execution. This reinforces
our belief that a null subblock compression mechanism, designed to be fast
and simple, will also result in an effective technique to enable reliable LLC
operation at ultra-low voltages.

5.3 concertina architecture

This section presents Concertina, our proposal to enable effective ultra-low
voltage LLC operation by tolerating SRAM failures caused by process varia-
tions. Concertina implements null subblock compression and subblock rear-
rangement to enable otherwise non-usable cache entries when operating at
voltages near the Vth. Concertina also incorporates a replacement policy to
manage cache entries of different sizes, which may only contain compressed
blocks. We first present the detailed implementation of Concertina. Then, we
consider in detail the design of its replacement policy.

5.3.1 Operation and Component Description

Concertina consists of a conventional LLC plus the required logic to manage
full blocks in faulty LLC entries (see Figure 5.3). To insert a block, either a
refill from the main memory or a writeback from a lower cache level, Con-
certina performs two steps. First, it detects the location of its null subblocks
if any. Then, it jointly uses this compressibility information and the location
of defects in the corresponding cache entry to rearrange the non-null sub-
blocks and store them in the functional subentries. To supply a block to a
lower cache level or to evict a block, Concertina reconstructs the original
block, rearranging the compressed block according to its metadata, which
describes the location of null subblocks and defective subentries, and rein-
troduces the corresponding null subblocks.

To track the number and location of the defective subentries for each cache
entry, and the number and location of null subblocks for each allocated
block, Concertina uses two bit maps. Each map has as many elements as the
number of subentries/subblocks considered; e.g., for a 64-byte block and
a 16-byte subblock, the size of each map would be four bits. Each bit indi-
cates whether the corresponding subentry is faulty (0) or not (1) for the fault
map, FM, or if the subblock is compressed (0) or not (1) for the compression
map, CM. For the sake of simplicity, we assume that the subentry and sub-
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Figure 5.3: Concertina design overview. Shaded boxes indicate added components.

block sizes are the same. Later, in the evaluation section we present a more
efficient implementation based on pointers for the two tracking structures.

The fault information, FM, comes from a characterization test (such as a
built-in self-test, BIST) that can be executed at boot up time or during the
first transition to the low-voltage mode [7, 12, 28, 157]. We consider that
the number and location of faulty cells do not change during workload
execution. The information about null subblocks, CM, is generated with a
null subblock detector, and changes continuously during program execution.
Section 5.4.3 discusses the implementation of these two components.

5.3.1.1 Fault and Compression Metadata Sizing

In terms of cell failures, finer granularities require lower compression ratios
to allocate a block to a faulty cache entry. In terms of compression, smaller
subblock sizes offer more compression coverage. However, finer granular-
ities imply larger FM and CM sizes, which impacts area and power over-
heads.

We analyze this trade-off between performance and overhead varying the
subblock size in our experiments. Using 16-byte or larger subblocks would
cover less than one third of the cache blocks (see Figure 5.2), and, therefore,
we will not consider these sizes.

5.3.1.2 Subblock Compression and Rearrangement Logic

In this section, we will use an example (Figure 5.4) to explain the subblock
compression and rearrangement logic for a cache entry divided into four
subentries (Figure 5.5). The goal of this circuit is to match non-null sub-
blocks with non-faulty subentries. Let us suppose that an incoming block
with one null subblock has to be inserted at a cache entry with one faulty
subentry. The null subblock detector, implemented with logic that performs
an OR operation on each of the subblocks, generates the CM for the incom-
ing block, indicating the location of null subblocks. The FM indicates the
location of the faulty subentries of the given cache entry.
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Figure 5.4: Example of compressible block to be stored at a faulty cache entry.
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Figure 5.5: Implementation of the compression and rearrangement stage for a 64-
byte block (512 bits) and a 16-byte subblock (128 bits).

First, the CM and the FM are processed to assign increasing identifiers
to each of the non-null subblocks and for each of the non-faulty subentries,
respectively. Thereby, compression and fault vectors of identifiers (CI and FI)
are generated. As shown in the dotted boxes in Figure 5.5, this processing
consists of adding the corresponding bits of the CM and FM, always using
a zero for the first bit. In the general case, the bit width of each CI and FI
entry is log2(N), N being the number of subentries (subblocks) in a cache
entry (block).

Next, each non-null subblock will be assigned to the non-faulty subentry
whose generated indexes match. A crossbar-like logic controlled by CM, CI,
FM, and FI vectors implements this matching (see Figure 5.5). The incoming
block and the CM and CI vectors are input, on the left, and the FM and FI
vectors, on the top. A crosspoint is activated only if both of its corresponding
CM and FM bits are set; i.e., non-null subblock and non-faulty subentry, and
if both CI and FI indexes are equal. This activation logic requires N2 com-
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parators of log2(N) bits, and N2 tri-state buffers. For example, a 4-subentry
cache requires 16 comparators of 2 bits. When the subentry size decreases
(finer granularity), both the number of the comparators and the size of their
inputs increase (cache entries with 8 subentries require 64 comparators of 3

bits, etc.), but overall, the overhead is still low.

A similar logic is used to reconstruct a compressed cache block. Decom-
pression is on the critical path, but Concertina’s decompression stage is fully
parallel and, due to its simple logic, we estimate that it can be performed in
one extra cycle.

5.3.1.3 Writeback Handling

A common problem for cache compression mechanisms is handling write-
backs. Compression techniques aiming to increase the effective cache capac-
ity have internal fragmentation issues, because several blocks are stored in a
single cache entry. Thus, blocks might need to be shifted properly before in-
sertion [8, 119]. This issue can be overcome by using sparse super-block tags
and a skewed associative mapping [135]. Nevertheless, Concertina does not
have this problem, as only one block is stored per cache entry. On a write-
back event, the block is compressed again. If it fits in its cache entry, the
entry is updated; if it does not fit, the block is written back to memory. On
average, we found that less than 2% of the writeback blocks are evicted
because they do not fit in the same cache entry after writeback.

5.3.2 Replacement Policy for Concertina

Existing cache management policies rely on the assumption that a block
can be stored in any entry of a cache set. However, caches with faulty cells
have entries with a variable number of defective subentries, which can store
only blocks that are compressed at least to a certain size. To overcome these
stricter size requirements, Concertina implements a compression- and fault-
aware replacement policy that takes advantage of the various degrees of
compression that a block might have, and is able to evenly distribute all
the blocks (both compressed and uncompressed) across the available cache
capacity (both defective and non-defective entries). In the rest of this section,
we will assume a baseline Least-Recently Used (LRU) replacement policy
to simplify our explanations. Nevertheless, the algorithms described herein
could work with other replacement scheme.

We present two replacement policies: Best-Fit LRU and Fit LRU. The first
tries to find a precise match between cache entries and blocks in terms of
the number of faulty subentries and the number of compressible subblocks.
That is, once the block is compressed, the replacement algorithm searches
for a victim among the entries whose effective size (number of non-faulty
subentries) matches the size of the compressed block. The latter builds upon
the first, but relaxes the matching condition, searching among all the cache
entries where the block fits.

Let Xi be the group of blocks with i null subblocks of a given size, and
Ej the group of entries with j faulty subentries of the same size, 0 6 i, j 6 n,
where n = entry size

subentry size (e.g., n = 4 for 64-byte cache entries and 16-byte
subentries, as we might find entries with 0, 1, . . . , 4 faults). Therefore, a block
x ∈ Xi can be allocated to an entry e ∈ Ej if and only if j 6 i, but it cannot be
allocated if j > i. This premise is key for our replacement strategies.
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A straightforward fault- and compression-aware allocation policy would
try first to pair blocks and entries of the same index group, i.e., allocate
blocks of type Xi to entries of type Ei. In the event that there is no entry of
type Ei, it searches for entries of type Ej, j < i, until it finds a non-empty
group. If the selected group has several entries, i.e., several entries have the
same number of faulty subentries, the LRU information is used to select a
victim among them. We call this the Best-Fit LRU policy, because it allocates
blocks to the entries that best fit the size of the compressed block.

The Best-Fit LRU policy assumes that the distribution of blocks and en-
tries of a given index group is well-balanced, but as we saw in Table 2.1 and
in Figures 5.1 and 5.2, different cells and different workloads have differ-
ent characteristics. For example, roughly 80% of the blocks in wrf contain
64 null bytes (Xn), while the majority of cache entries have between 0 and
4 faults, irrespective of the cell type. To compensate for the uneven distri-
bution between entries and blocks, we can follow a different strategy and
allocate a block Xi to any entry Ej where it fits, i.e., j 6 i. In this case, the
victim block is selected using the LRU information about all the entries that
belong to the Ej groups. We call this second policy Fit LRU, because it allo-
cates blocks to entries where they fit, even if the allocating entry is not the
best fit for a given block.

Note that both replacement policies make use of all the cache entries and
allocate every block to the LLC. For instance, in the case where the per-
centage of non-compressible blocks (X0) is higher than the percentage of
non-faulty entries, blocks that cannot be compressed fight for non-faulty en-
tries and, therefore, the pressure on the non-faulty entries is greater than the
pressure on the faulty ones. In other words, although all the cache entries
are utilized, in this example, the probability of a block of being replaced in a
certain temporal interval is higher for blocks allocated to non-faulty entries
than for blocks allocated to faulty ones.

It might be the case that a given block cannot be stored in its cache set,
because the block size is larger than any of the available entries (e.g., a block
cannot be compressed and all the entries have at least one faulty subentry).
To overcome this potential problem, we do as follows. When the block ar-
rives to the LLC from main memory, it is sent to the L1 cache as usual,
but the coherence state of the block in the LLC specifies that the content
of the block in the LLC is not valid. Future requests to that block cannot
be satisfied by the LLC, and they will be forwarded to the L1 cache. This
functionality already exists in the coherence protocol to forward exclusively
owned blocks. After the L1 replacement, if the block still does not fit in the
LLC entry, it is written back to memory.

Certainly, more complex policies are feasible. It could be expected that
starting from the distribution of blocks and entries observed and adjusting
the allocation of blocks according to the frequency of each block type would
lead to more promising trade-offs. Unfortunately, after thoroughly evalu-
ating such a strategy, we obtained similar results to those obtained with
the Fit LRU policy, the latter being much simpler and with lower storage
requirements.
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5.3.2.1 Replacement Policy Implementation

Both Best-Fit and Fit LRU replacement algorithms must be able to select the
LRU element among a subset of the blocks in a cache set. Two hardware
modules implement these actions:

• Definition of the subset of candidate blocks: the null subblock detector gen-
erates the CM of the incoming block. A hardware bit-counter com-
putes the number of zeros in the CM. This value (CMcount) is the
number of null subblocks in the incoming block, and is used to classify
the block into a given index-group Xi. Likewise, a group of hardware
bit-counters compute the number of zeros in the FM for all the cache
entries in the cache set, and the result is a vector, FMcount, whose
elements indicate the number of faulty subentries in each cache en-
try. These values (FMcountk ) are used to classify the entries into Ej
groups. The comparison between each FMcountk and CMcount gen-
erates a bit vector that represents the subset of candidate blocks to
replace according to the fit criteria (Best-Fit or Fit).

• LRU selection in the subset: our mechanism maintains the LRU order
among all the elements in a cache set. The replacement algorithm ap-
plies the LRU selection logic to the subset of candidate blocks [73].

5.4 evaluation

In this section, we present the evaluation results for Concertina. We first ana-
lyze the different design options for Concertina in terms of LLC MPKI. Then
we explore a new implementation that reduces the storage requirements and
evaluate the Concertina overhead. Finally, we compare our proposal with
prior work.

5.4.1 Replacement Policy

Here we explore the impact on the LLC MPKI of the replacement policies
proposed in the previous section: Best-Fit LRU and Fit LRU, with respect
to an unrealistically robust cell (Robust); i.e., a cell operating at an ultra-low
voltage but with no failures and no power or area penalization.

Figure 5.6 shows the increase in LLC MPKI with respect to the unrealisti-
cally robust cell for both strategies and different subentry/subblock sizes (8,
4, 2, and 1 byte), for cells C4, C3, and C2. The Best-Fit LRU strategy needs
an even balance between the distribution of blocks Xi and entries Ei. How-
ever, as the distribution is usually not balanced, this replacement strategy
fails to exploit the full potential of Concertina. The observed trend is that
the smaller the subentry size, the poorer the performance. This happens
because there are more non-empty block groups (Xi) than non-empty en-
try groups (Ej). For example, considering 1-byte subblocks, there are 65 Xi
groups, most of them likely to be non-empty, while due to the small number
of faults per cache entry (Figure 5.1), the number of non-empty groups Ej
will be around 5 (E0...4), which increases the pressure on the Ej groups with
the higher number of faulty subentries (E3 and E4).

If we focus on the Fit LRU replacement strategy, Figure 5.6 reinforces the
intuition that the smaller the subentry/subblock size, the smaller the in-
crease in MPKI. The best configuration is 1-byte subblock size, irrespective
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Figure 5.6: LLC MPKI relative to an unrealistically robust cell, for the different re-
placement alternatives and subblock sizes.

of the cell size, because we recover more capacity and fit a larger number
of compressed blocks in faulty entries (compression coverage increases). In
comparison with the unrealistically robust cell, there is no MPKI increase
when using C4 or C3 cells, and the number of MPKI increases only by 3%
when C2 cells are used. However, for the smaller subblock sizes, the over-
head is intolerable in terms of area: the bit map for implementing 1-byte
subblock size requires 128 bits (64 bits for the CM and 64 bits for the FM),
which corresponds to 25% of the 64-byte cache entry. In the next subsection,
we explore alternatives to significantly reduce storage overhead with a small
impact on performance. From now on, we assume the Fit LRU policy.

5.4.2 Reducing Concertina Storage Requirements: Implementation with Pointers

The fault and compression metadata (FM and CM) can be encoded in several
ways. As stated before, even for the smallest subentry size and the smallest
cell, only 7.6% of the cache entries have more than four faulty subentries,
which leads us to propose a new implementation based on pointers. For the
sake of brevity, we only detail the implementation for the FM, but the same
applies to the CM.

Instead of using a bit map, we could use four pointers to identify faulty
subentries. Entries with more faults than pointers are disabled, because
there is not enough space available to store the required fault information,
reducing fault coverage. However, as the storage requirements are still high,
we also consider implementations with three and two pointers.

Let us consider an example with 8-byte subentry size and three pointers,
each of three bits. Specifically, the three pointers 000-011-101 are equivalent
to the bit map 11010110. Although the maximum number of pointers is
fixed per cache entry, not all of them are always valid (an entry may have
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fewer faulty subentries than the three available pointers). To overcome this
issue, we can store redundant pointers: the pointers 000-011-011 are equiv-
alent to the bit map 11110110, which represents a cache entry with only
two faulty (0) subentries. One extra bit is needed to distinguish between
an entry with one fault—000-000-000-(1)—and a non-faulty entry—000-000-
000-(0). Finally, another bit indicates whether the entry has more faults than
the number of available pointers. Thus, the storage required by this pointer-
based implementation (fault and compression metadata) is:
2× (number of pointers)× log2(number of subblocks) + 2 bits per cache
entry.

Table 5.2 compares the storage and fault coverage values of both ap-
proaches (bit maps and pointers). We can conclude that using three to four
pointers per cache entry offers a good trade-off between storage overhead
and fault coverage. For C4 and C3, three pointers would suffice to cover
more than 96% of the cache entries. Conversely, due to the higher probabil-
ity of SRAM cell failure, C2 would require four pointers per cache entry for
a fault coverage of at least 92%. If we seek a lower overhead implementation,
two pointers would cover around 90% of cache entries for C4 and C3, but
the coverage would drop to 60% for C2.

In terms of the design of the compression/decompression and rearrange-
ment mechanism, the pointer proposal only affects the processing of the FM
and CM. After recovering the pointer information from the corresponding
metadata structure, a small set of decoders can transform these pointers
to bit maps, leaving the compression/decompression, rearrangement, and
replacement logic unaffected.

The drawback of the pointer-based approach is that all entries with more
faults than the number of available pointers have to be disabled. Neverthe-
less, these entries can store whole null blocks with neither extra complexity
nor storage overhead, enabling 100% of the LLC capacity. The bit used to
mark that the entry has more faults than the available number of pointers
now indicates that the cache entry, if valid, contains a null block (all zeros).

5.4.2.1 Pointer-based Implementation Evaluation

Figure 5.7 shows the LLC MPKI increase for cells C4, C3, and C2 . Results
are showed for different granularities (8, 4, 2, and 1 byte) and for both imple-
mentations: map and pointers (considering 2, 3, and 4 pointers per entry).
For simplicity, we will follow a subentry-size implementation name convention,
e.g., 1B 3Ptrs refers to subentry size of 1 byte, implemented using 3 pointers.
We will only consider design choices that reduce the storage requirements,
because in terms of performance, the implementation based on maps will
always be preferable.

We find that pointers are consistently a good alternative to bit maps. We
obtain results within 1-2% of those obtained with bit maps for cells C4 and
C3 and greatly reduce the storage requirements (e.g., from 64 to 32 bits for
the 2B 3Ptrs configuration). In the case of C2, the high percentage of defec-
tive cells compels Concertina to use 1-byte subblocks. In this context, the
pointer-based approach significantly reduces the implementation overhead,
from 128 bits to 50, 38, and 26 bits, at the cost of MPKI increases of 5%, 11%,
and 26% for 4, 3, and 2 pointers, respectively.
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Figure 5.7: LLC MPKI for C4, C3, and C2 cells, and the different compression alter-
natives and subblock sizes.

5.4.3 Concertina Overhead

Concertina’s main overhead is the storage of the FM and CM metadata. We
saw that the use of pointers greatly reduces the storage requirements with
respect to bit maps. Here we evaluate the impact in terms of latency, area,
and energy of the added storage for the pointer-based implementation. We
consider the configurations with the best performance results: 1-byte 4-, 3-,
and 2-pointer configurations. To quantify these costs we use CACTI [95].

Assuming the cache organization of Table 3.1 and 40 bits of physical ad-
dress in a 64-bit architecture, a data array entry has 512 bits, while a tag array
entry has 39 bits: 21-bit tag identifier, 14 bits for coherence information (5-bit
coherence state, 8-bit presence vector, and 1 dirty bit), and 4 bits for the re-
placement related information (LRU implementation of log2(associativity)
bits per cache entry). Concertina adds 50, 38, and 26 bits per cache entry for
4, 3, and 2 pointers, respectively. Although the increase in storage require-
ments with respect to the tag array is significant, the impact is small with
respect to the whole LLC structure. Table 5.3 summarizes the overheads for
4, 3, and 2 pointers in terms of area, latency, and leakage with respect to the
whole baseline cache structure. We also show the dynamic energy consump-
tion for a cache read access to a non-faulty entry, and a cache read access
to a faulty entry. However, static energy dominates the overall consumption
of the LLC, even more when operating at voltages near Vth [79]. Hence, the
observed variations in the dynamic energy have no significant impact on
the total consumption of the system.

The FM and CM can be organized in different ways, and these offer dif-
ferent trade-offs. As a first approach, both FM and CM are integrated into
the tag array. For 3 pointers, area and leakage increase 5.4% and 5.9%, re-
spectively, with respect to the baseline cache structure. After a tag hit, the
logic for decompression can be pre-charged with the metadata. On every
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tag access, we are reading extra information that is only useful in case of
a cache hit, which translates to an increase in the tag array latency of 14%,
10%, and 7% for 4, 3, and 2 pointers, respectively. If there is not enough
slack available, this design would increase the tag array latency, penalizing
every cache access. Nevertheless, a one cycle latency increase in the tag ar-
ray access would have a minor impact in the overall performance (less than
0.2% performance drop).

An alternative design stores the FM and CM in separate SRAM struc-
tures. In this case, a bit in the tag array indicates if the entry is faulty and,
therefore, the FM and CM must be accessed. The metadata is now only ac-
cessed in case of a tag hit to a faulty entry. The decompression logic can still
be pre-charged before the data block is available, because the access to the
metadata arrays is faster than the access to the data array. For 3 pointers,
area and leakage increase 0.8% and 0.3%, respectively, compared to the first
approach. At the cost of slight area and static power penalties, the separate
design avoids the extra latency to access the tag array. Besides, storing the
metadata in separate arrays makes it easier to power gate the structures in
high-voltage/high-frequency modes, minimizing the impact on power and
energy consumption.

In both designs, the power overhead is negligible compared to the reduc-
tion in both static and dynamic power obtained by working at ultra-low or
near-threshold voltages (dynamic and static power scale quadratically and
linearly with supply voltage, respectively), while the area overhead is neg-
ligible compared to the area savings obtained by using smaller SRAM cell
transistors.

Table 5.3: FM and CM overheads with respect to the cache structure.

Configuration Area Latency Leakage
Read Energy a

(access/access-faulty)

Baseline 1.000 1.000 1.000 1.000/NA

FM and CM integrated in tag array

1B 4Ptrs 1.071 1.041 1.078 1.035/1.035

1B 3Ptrs 1.054 1.030 1.059 1.027/1.027

1B 2Ptrs 1.038 1.020 1.041 1.019/1.019

FM and CM separate structures

1B 4Ptrs 1.082 1.000 1.081 1.000/1.066

1B 3Ptrs 1.063 1.000 1.062 1.000/1.051

1B 2Ptrs 1.044 1.000 1.044 1.000/1.036

a With respect to a read access in the baseline configuration.

Regarding the compression/decompression logic, and with the 1B 3Ptrs
configuration, we could take advantage of the restriction in the number of
subblock shifts: 3 pointers mean that a given subblock can move a maximum
of three positions to the right or three positions to the left.

Thus, the original matrix of comparators becomes a band matrix with 7

elements per row, and a 7:1 multiplexer can substitute each column of tri-
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state buffers. The corresponding logic could be implemented with 436 6-bit
comparators and 512 7:1 multiplexers, which roughly translates to 8 K logic
gates. This overhead is insignificant, in comparison with the total LLC size:
it represents approximately 0.01% of the data array of the on-chip LLC (i.e.,
without accounting for the tag array and the decoder logic). Since cache
memories normally have zero slack, we assume an extra cycle in the read
operation to decompress the cache blocks. Compression latency is hidden,
as it occurs during the cache block allocation.

5.4.4 Comparison with Prior Work

Regarding the compression mechanism, at ultra-low voltage operation, our
objective is to maximize compression coverage rather than compression ra-
tio. State-of-the-art techniques aiming to increase the LLC capacity seek to
maximize compression ratio, e.g., B∆I has an average compression ratio of
1.5 for the SPEC CPU 2006 benchmarks, but its coverage is around 40% [119].
Any compression technique aiming to maximize coverage could be used,
but we opted to use null subblock compression in Concertina given its sim-
plicity and effectiveness.

Regarding the replacement algorithm, recent studies on cache block com-
pression have underlined the importance of taking into account compression
information for the replacement decision [14, 120]. These studies are based
on the fact that several blocks are allocated to the same cache entry, while in
the case of Concertina only one block is stored per cache entry. Thus, evict-
ing a block with a given compression ratio does not directly translate into
an increase in the number of blocks stored at the LLC.

ECCs are orthogonal to the Concertina design, and they should be imple-
mented as well to protect against soft errors. Although ECCs have also been
proposed to correct and detect hard errors, they require either large storage
overhead or complex detection and correction logic. For example, by using
orthogonal Latin square codes as in [39], the decoding latency would be
comparable to Concertina, but at the cost of storing 138 check bits to correct
3 errors, while the 1B 3Ptrs implementation has a storage overhead of just
38 bits.

Combining techniques such as [12, 88, 104] require complex algorithms to
find collision-free cache entries across all the cache structure, and the storage
of all the remapping strategy. Moreover, schemes that distribute blocks into
several entries need to access two or more entries to recover a single block,
with the corresponding latency and energy penalty.

We focus our detailed comparison on two techniques: block disabling
(BD) [142] and word disabling (WD) [157]. Block disabling is implemented
in modern processors operating at nominal voltages, and some authors ad-
vocate its use at lower voltages [93]; word disabling is similar to ours in
complexity. Figure 5.7 shows the increase in MPKI for these techniques with
respect to the unrealistically robust cell. We see that, irrespective cell size,
Concertina always results in lower LLC MPKI values than both the other
techniques. In fact, for C4 and C3, the implementation with least area over-
head (8B Map) produces fewer MPKI than WD. In the case of C2, the 8B
Map implementation fails to reach the performance of WD, but the 1-byte
implementations greatly improve on WD results.
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Figure 5.8: Performance relative to Robust for cells C4, C3, and C2, and the different
compression alternatives and subentry/subblock sizes.

5.5 system impact

This section analyzes the impact of Concertina on the system in terms of per-
formance (instructions per cycle or IPC), area, and power consumption. We
compare Concertina with the unrealistically Robust and the fault-tolerant
mechanisms block and word disabling.

5.5.1 Performance

Figure 5.8 shows the performance relative to Robust for the two Concertina
implementation alternatives (bit maps and pointers), and cells C4, C3, and
C2. This confirms the 1B Map as the best design approach in terms of per-
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Figure 5.10: System power consumption relative to Robust.

formance, achieving the same performance as an unrealistically robust cell
for C4 and C3, and a minimal 0.5% degradation for C2. For C4 and C3, the
pointer approaches have a performance within 1% of that of the bit maps,
while it degrades up to 1%, 2%, and 3% for C2 when using 4, 3, and 2

pointers, respectively.

Performance follows the same trends as LLC MPKI regarding BD and WD.
WD has uniform performance across all cell sizes because there are usually
fewer than four faults per cache entry, and hence it succeeds in combining
consecutive entries to store a complete cache block. On average, it degrades
performance approximately 5% with respect to the robust non-faulty cell.
BD impairs performance by 25% for C2 when the available cache capacity is
scarce, and most of the LLC accesses become misses.

Concertina performance results are also consistent across all the programs
considered. Figure 5.9 shows the distribution of IPC per application for the
1B 3Ptrs implementation (cell C3), with respect to the robust cell. For each
application we show a boxplot with the minimum, first quartile, median,
third quartile, and maximum of the distribution. Most applications show
minimal performance degradation with respect to the robust cell: in the
worst cases, the median represents a 1% performance degradation. In some
cases, performance improves slightly, since applications with more compres-
sion potential (more blocks that can be compressed), such as omnetpp or mcf,
have higher chances of finding an available entry where a block fits.

5.5.2 Area and Power

Larger SRAM cells have lower probability of failure, but at the cost of an
increase in area and power consumption. Even with small cells (C2), Con-
certina provides performance comparable with an ideal cell. Even the largest
cell considered by Zhou’s study (C6), which increases the area by 41.1% rel-
ative to C2, does not accomplish fully functional performance: 40.1% of the
cache entries are faulty at 0.5 V (Table 2.1). In comparison to this increase,
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the extra area required by Concertina (6.3% for the 1B 3Ptrs implementa-
tion) is a reasonable overhead, largely compensated for by its performance
results.

Regarding power, our design focuses on the LLC, a structure where static
energy dominates the overall consumption. Therefore, we estimate that the
use of larger cells mainly affects the static energy of the LLC. Isub increases
with transistor width, and hence, based on the transistor widths of the cells
considered [170], we estimate the increase in Isub relative to C2. We assume
that the unrealistically robust cell has the same dimensions as C2, but with
a null probability of failure. We also add the dynamic and static overhead
of the metadata computed in Section 5.4.3, assuming the separate design.
Finally, we account for both the on-chip power and the power of the off-
chip DRAM module.

Figure 5.10 shows the power consumption for Concertina’s 1B 3Ptrs imple-
mentation, WD, and BD, with each of the cell sizes considered (C4, C3, and
C2). Concertina is always the best option, very close to the ideal configura-
tion in the case of C2. Concertina and WD follow a similar trend, the power
consumption decreasing when downsizing the cell size. For BD, when the
LLC is implemented using C2 cells, the large increase in off-chip DRAM
traffic translates to a significant power consumption increase in the overall
system.

The above results confirm Concertina to be an attractive LLC cache de-
sign to operate at ultra-low voltages, as it exhibits performance and power
requirements comparable to a robust cell with a null probability of failure,
even with a limited fault-free fraction of the LLC (9.9% when using C2 cells).

5.6 conclusions

Scaling supply voltage presents a significant challenge to improving proces-
sor performance, especially for SRAM cell transistors used in cache memo-
ries. Lower voltages reduce cell reliability, which effectively reduces cache
capacity and, therefore, performance.

Existing micro-architectural approaches to increasing cache reliability fo-
cus on enabling and combining the valid cells, thereby reducing the avail-
able cache capacity. For programs with large footprints and/or working sets,
the extent of performance degradation is substantial. We depart from these
approaches and propose Concertina, an LLC that compresses cache blocks
to reduce their size in order that they can fit into entries with non-functional
cells. Concertina ensures the use of 100% of the LLC capacity through a low
overhead insertion/replacement policy that combines block compressibility
and fault awareness to enable smart allocation of blocks to cache entries.

We explore three implementations with cells that trade off area and power
for reliability, namely C4, C3, and C2. Concertina’s 1B Map design exhibits
a negligible MPKI increase relative to a defect-free LLC for C4 and C3 cells,
and just a 3% MPKI degradation for the C2 implementation, but at the cost
of large storage overhead. A lower-overhead design based on pointers (the
1B 3Ptrs configuration) greatly reduces Concertina storage requirements,
with a minimal performance degradation of less than 1% for cells C4 and
C3, and 2% for C2, with respect to the unrealistic defect-free LLC.
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Emerging application domains such as Recognition, Mining, and Synthesis (RMS)
rely on iterative, often probabilistic algorithms for processing massive yet noisy
input data sets. Due to their nature, these applications can intrinsically tolerate
certain error in their computations. Furthermore, these applications do not usually
have a unique or golden valid output, and different outputs might be acceptable
or precise enough. Approximate computing deliberately introduces "acceptable er-
rors" into the computing process, with the objective of obtaining significant energy
gains, within a restricted accuracy loss in the outputs. In this chapter, we provide
a general overview of the approximate computing paradigm and some of its main
contributions.

6.1 introduction

The advances in computation and technology are changing the way we look
into the world. We use computations in our daily life, and bring powerful
devices in our pockets, wrists, clothes, or even inside our body. We increas-
ingly rely on computers for our daily tasks, and it has been estimated that
by 2020 the Internet of Things (IoT) will grow to 26 billion installed units1.

A large percentage of these emerging applications interact with the phys-
ical world, process large amount of data obtained from noisy sources, such
as sensors, and provide results which do not need to be 100% accurate. For
example, video encoders take advantage of the fact that the human eye will
not notice bits of missing information to drop frames and reduce the size
of video files. A picture sent via WhatsApp is lossy compressed from several
MBs to several KBs, trading-off quality (accuracy) for fast communication
(and hence, energy). Internet is in a continuous change, with content added
and deleted every second, including text, pictures, and video. Google search
processes on average 40,000 queries a second (over 3.5 billion searches per
day2); the answers to these queries are not unique, and many results are
admissible for the same question. Applications with iterative refinement
algorithms can run several intermediate computations with less precision
without losing accuracy on the final result.

In this context, where the amount of information to process keeps grow-
ing, it is essential to improve the energy efficiency of these emerging work-
loads [35]. Fortunately, these applications usually tolerate a certain amount
of noise, featuring an intrinsic error-resilience property [37]. Their intrin-
sic redundancy comes from their inputs, often noisy and redundant (e.g.,
sensors), and their computation patterns, often stochastic in nature. Further-
more, these applications outputs do not need to be unique or "golden", or
they can tolerate a certain amount of error due to, for instance, perceptual
limitations.

1 http://www.gartner.com/newsroom/id/2636073; last access: April 2016

2 http://www.internetlivestats.com/google-search-statistics/; last access: April 2016

67

http://www.gartner.com/newsroom/id/2636073
http://www.internetlivestats.com/google-search-statistics/


68 approximate computing

Approximate computing takes advantage of this property and exploits
the gap between the level of accuracy required by the application and the
level of accuracy given by the computation, providing that reducing this
accuracy translates into an energy gain. Approximate computing has been
used in a variety of domains, such as image processing or multimedia [168],
machine learning [50], signal processing [11], or scientific computing [131].
Some approximation techniques include precision reduction [164], skipping
tasks [132], memory accesses [108], or some iterations of a loop [110], relax-
ing synchronization [109], performing an operation on inexact hardware [74],
or voltage scaling [38], among others.

One of the main limitations of approximate computing is to decide whether
a given code region or data structure can be safely approximated. Too ag-
gressive approximation or approximating the wrong piece of code or data
might result in worthless results or, even worse, safety issues and abnor-
mal termination. The compiler or the programmer can expose which data
structures or regions of code can be approximated [133] or use dedicated ap-
proximate data types [21]. The approximation technique, on the other hand,
needs to be selected on an application basis.

We take a novel approach and explore a more aggressive approximation
strategy: approximate ISA (Instruction Set Architecture), inspired by the fact
that for current ISAs, there is a percentage of instructions that are rarely (or
never) used [100] and, therefore, can be approximated or removed, and that
for the applications we consider, a small subset of instructions correspond
to most of the execution time. On top of that, all the work done by most
used instructions is not always required. For instance, there are instructions
that can be approximated by sequences of other instructions, or, in a float-
ing point operation between a very big and a very small value, the result
can be approximated by returning the first operand without performing the
addition or by adding the high order bits of the small value. Next section
delves into these ideas.

6.2 reducing the general-purpose processors complexity

An increasingly amount of resources are dedicated to hardware accelerators.
Accelerators are a good choice for dark silicon, because they contribute to
the overall performance but only consume power in special situations. A
potential limitation is that specialized accelerators are conceived to tackle
very specific tasks. Chung et al. studied the performance potential of GPU,
field-programmable gate array (FPGA), and application-specific integrated
circuit (ASIC), regarding area, power, and memory bandwidth [42]. Their
study, corroborated by [155], shows that reconfigurable accelerators (e.g.,
FPGA) are more competitive than dedicated ASICs.

Hence, a hardware accelerator with the potential of executing any appli-
cation without the complexity of a general purpose core, offers a middle
ground between a dedicated ASIC and a complex general purpose core,
with less programmability effort than reconfigurable hardware (i.e., FPGA).

We envision a hardware accelerator capable of executing an approximate
ISA containing the minimal corpus of instructions used in the main compu-
tations of RMS applications, and approximate some of those computations
to obtain energy gains. In Chapter 8, we explore the potential of an Approx-
imate Instruction Set Computer (AISC) and implement a proof-of-concept
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Figure 6.1: Opcodes distribution (native execution).

that approximates the ISA in two directions: Depth (e.g., dropping instruc-
tions) and Breadth (e.g., simplifying instructions).

6.2.1 ISA Redundancy

The ISA bridges the gap between software and hardware layers of the sys-
tem stack. ISA grows with the addition of new extensions in depth (addi-
tion of new instructions) and breadth (wider instructions, in the case of
CISC machines) directions. This growth increases the complexity of the
fetch and decode hardware (front-end), an already power hungry part of
the pipeline, and critical for performance, as it feeds the back-end with in-
structions. Besides, execution units (back-end) and their control policies also
become more complex.

Lopes et al. perform a chronological analysis of several x86 applications
and operating systems and show that 30% of the instructions were rarely
used or become unused over time [100].

Following the same philosophy, we performed the following experiment.
We executed a Pintool [101] that instruments our applications binaries run-
ning on x86 (see Chapter 7) and extracts the static and dynamic instruction
mix and opcode distribution. Figure 6.1 collects in a per application basis
(observing only the selected kernels), the total number of different static
opcodes, and the number of different opcodes that would cover 90% of the
dynamic instructions of the applications (Chapter 7 describes all the applica-
tions in detail). The last group of bars "ALL" considers all the applications.
The number of different opcodes used in our application’s kernels is low,
and most of the instructions executed correspond to a very small set of
different instructions, which reinforces our intuition that these applications
could be executed on an AISC, obtaining large energy gains with a limited
accuracy loss.

ISA extensions have been the proposed in the context of approximation [54,
75]. In [54], the authors describe an ISA extension to provide approximate
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operations and storage. Kamal et al. extend the ISA with custom instruc-
tions for embedded devices, and allow approximation on those custom in-
structions by not meeting timing requirements, as the results might be still
good enough [75]. Instead of extending the ISA, we explore the possibilities
of reducing the ISA complexity, by reducing the set of instructions and/or
the size of the operands. Next, we provide an overview of prior work on
approximate computing.

6.3 related work

Approximate computing is not a novel idea, but it has gained traction in
the last years because of the increasing power constraints of devices. Our
perceptual limitations provide scope for approximate computing in, for ex-
ample, visual applications: video and audio encoders reduce the size of
audio and movie files without a perceptive quality degradation. In other
scenarios, no unique answer exists. For instance, many results may be ac-
ceptable as answer of a search query. In fact, an increasingly large amount
of RMS applications are intrinsically error-tolerant, and dropping or approx-
imating some computations yields to acceptable results, reducing the energy
consumption [35, 96, 148, 158].

Approximate computing is based on the observation that in many sce-
narios, performing exact computation requires large amount of resources.
However, allowing a certain degree of approximation can provide gains in
performance and energy, while still achieving acceptable accuracy [54, 110,
133].

The first step of any approximation framework/technique is to find the
approximable regions or instructions of a given kernel or program (i.e., those
that do not compromise safety). This can be done automatically, for exam-
ple via statistical methods [130], automatic resilience characterization [37],
or with a genetic algorithm (compiler) [13]; ensuring the quality of approx-
imable computations through output monitoring [60, 84, 103, 127]; with pro-
gramming language support for approximate computing (i.e., the program-
mer selects approximable and non-approximable data), e.g., EnerJ [133], Ax-
ilog [163], Rely [25]; or using Open-MP style directives for marking approx-
imable portions [125, 151].

On the program side, we find approximation-aware programming lan-
guages [25, 133, 143] and libraries [21], most based on probabilistic pro-
gramming languages [89].

On the compiler side, compilers can use approximations inferred or auto-
matically expressed, in addition to approximation-aware analysis; i.e., search
for optimizations and/or transformations that maximize the energy savings
subject to the accuracy constraints, either by dynamic testing [15, 110] or
by reducing the problem to an optimization one and use linear or integer
mathematical programmer solvers [111].

On the architecture side, we find approximate techniques applied to proces-
sor [78], memory [98], and storage [134]. Regarding approximate processor
architectures, we could distinguish two implementations: traditional code
running on enhanced general purpose processors and accelerators. In the
first case, the energy savings are limited by running in a general purpose
system. The approximation can be fine-grained [54] or coarse-grained [78].
In the second case, neural-inspired accelerators have been proposed [55].
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6.3.1 Approximate Computing Techniques

One of the most widely used approximation technique is precision scaling.
Many proposals include it as part of their approximation strategy [38, 64,
133, 164, 169]. Rubio-Gonzalez et al. point out that for high-performance
computing, mixed precision programs might have the same accuracy but
compute faster [131]. For example, one operation that requires high accuracy
is done with double (64 bit), while the rest of the program uses float (32

bit). Tong et al. also explore precision scaling, and they show that a digit
serial multiplier has a linear decrease in energy and latency with operand
bit width [150]. In [144], a compiler pass tool also profiles the program to
obtain the minimum width needed for different integers. More recent works
also point out the potential gains of precision reduction and the need of
architectures able to translate lower-precision requirements in high energy
gains [66, 115].

Some techniques use code (or loop) perforation, which consists on drop-
ping some iterations of a loop [110]. The rationale behind loop perforation
is to drop redundant computations, often manifested as extra loop itera-
tions. Computational patterns such as Monte Carlo simulation, iterative
refinement, and search space enumeration are well suited for these tech-
niques [140]. We explore random dropping of computations as a more ag-
gressive code perforation technique.

Finally, it is worth referring to the work from Schkufza et al. [136]. Their
objective is the automatic generation of different floating point kernels, ap-
plying different optimization in an stochastic way. In detail, for each com-
putation kernel, they apply a series of transformations, including changes
in the opcodes, the operands, swapping instructions, and even dropping
computations. Their goal is to obtain aggressive optimization of high per-
formance applications running on conventional hardware, whilst we focus
on emerging RMS applications executing on an AISC-like accelerator.
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This chapter presents the designed environment for testing the proposals of Part III
of the dissertation, including the experimental set-up, programs under test, and the
metrics to quantify the impact of the proposed techniques.

7.1 workloads

We consider a set of workloads from emerging domains such as Recogni-
tion, Mining, and Synthesis (RMS) from Cortex Suite [149]. In some cases,
we extend the provided applications with alternative inputs or input com-
binations that do not fully match the small, medium, or large input sugges-
tions of the benchmark suite, but that are provided by the authors as al-
ternative input sets. For completeness, we add the k-means workload from
MineBench [116]. In the rest of this section, we will explain in detail the ap-
plications we have considered, as well as their inputs and outputs. Table 7.1
summarizes the workloads and their input parameters.

k-means (km): KM clustering is a method of vector quantization; it aims
to partition n observations into k clusters, in which each observation be-
longs to the cluster with the nearest mean, using an iterative refinement
technique. We use as input 100 entries from the edge features of the Corel
Coorporation real image database [116]. The outputs of the workload are
the cluster centers (a vector of coordinates) and the cluster assignments (a
cluster assignment for each input point). The k-means algorithm has many
applications, and it has been successfully used in various topics, including
market segmentation, computer vision, geostatistics, astronomy, and agri-
culture. It is often used as a preprocessing step for other algorithms, for
example to find a starting configuration.

latent dirichlet allocation (lda): LDA is a topic modeling algo-
rithm commonly found in natural language processing. A topic model is a
type of statistical model for discovering the abstract "topics" that occur in a
collection of documents. In LDA, each document may be viewed as a mix-
ture of various topics. Documents are represented as random mixtures over
latent topics, where each topic is characterized by a distribution over the
words. We run the estimation phase, obtaining as outputs the final estima-
tion model and the Dirichlet parameter α. We estimate α in each iteration
and initialize the model randomly. We explore 500 documents with 6907

terms. The stop criteria for the variational inference is 10
-6 or 20 iterations;

the stop criteria for the variational expectation-maximization (EM) is 10
-4 or

100 iterations.

motion estimation (me): ME is the process of determining motion
vectors that describe the transformation form one 2D image to another, usu-
ally adjacent frames in a video sequence. Motion estimation is a key part
of video compression as a way to exploit temporal redundancy. The ap-
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plication we run combines a block matching algorithm for the super-pixel
motion estimation and optical flow for the sub-pixel motion estimation. It
takes as input the "Alpaca" dataset from the Multi-Dimensional Signal Pro-
cessing Research Group (MDSP) from the University of California, Santa
Cruz (UCSC)1. This input set has 16 frames of 96x128 pixels. The outputs of
ME are the motion vectors (1 vector per frame).

principal component analysis (pca): PCA is a statistical proce-
dure that uses an orthogonal transformation to convert a set of observations
of possibly correlated variables into a set of values of linearly uncorrelated
variables called principal components. PCA is one of the most versatile
and widely used statistical techniques for feature extraction in multivari-
ate datasets. PCA is mostly used as a tool in exploratory data analysis and
for making predictive models. We use correlation analysis and, therefore,
the application computes PCA by eigenvalue decomposition of a data cor-
relation matrix. We use as input the "Handwritten Digit Data Set" from the
University of California, Irvine (UCI)2. This input set contains 1593 instances
with 256 attributes. The outputs are the correlation matrix, the eigenvalues,
the eigenvectors, and the projections of the row- and column-points on the
first three principal components.

restricted boltzmann machine (rbm): RBM is a generative stochas-
tic artificial neural network that can learn a probability distribution over its
set of inputs. RBMs are found in areas such as dimensionality reduction,
classification, collaborative filtering, feature learning, and topic modeling.
The application we run uses RBM to implement movie suggestions (collab-
orative filtering) on variants of the Netflix database. We train the network
with 100 users and 100 movies for 20 iterations, and then obtain movie
suggestions for 100 users. The output of the application is the movie sugges-
tions.

super-resolution reconstruction (srr): SRR is a technique that
enhances the resolution of images. It uses slight sub-pixel variations in the
information encoded in a series of low resolution images, to recover a higher
resolution image. We use as input the "EIA" dataset from the MDSP Group
from UCSC3. This input set has 16 frames of 64x64 pixels. The output is the
reconstructed image, which has a size of 256x256.

singular value decomposition (svd3): SVD3 is a factorization of
a real or complex matrix, and it is used in many artificial intelligence, signal
processing, and computer vision applications. The singular value decom-
position of a mxn matrix M is a factorization of the form USV∗, where
U (mxm) and V (nxn) are unitary matrices, and S (mxn) is a rectangular
diagonal matrix, whose values are the singular values of M. The input is a
500x500 M matrix from KOS Press; the outputs are the U, V , and S matrices.

1 https://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html; last access: February
2016

2 http://archive.ics.uci.edu/ml/datasets.html; last access: February 2016

3 See Footnote 1

https://users.soe.ucsc.edu/~milanfar/software/sr-datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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Table 7.1: Benchmarks deployed: classification and input parameters.

Application Domain Input

K-means (KM) Clustering
Edge features Corel Corporation DB
(100 entries, 18 features)

Latent Dirichlet
Allocation (LDA)

Topic Modeling

500 documents, 6097 terms
Variational inference: 20 itr./10

-6 error
Variational EM: 100 itr./10

-5 error
Estimate alpha, random initialization

Motion-Estimation (ME) Computer Vision
"Alpaca" Dataset
(16 frames, 96 x 128)

Principal Component
Analysis (PCA)

Feature Selection
"Handwritten Digit Dataset"
(1593 instances, 256 attributes)

Restricted Boltzmann
Machine (RBM)

Deep Learning
Netflix DB
(100 train users, 100 test users,
100 movies, 20 training iterations)

Super-Resolution
Reconstruction (SRR)

Computer Vision
"EIA" Dataset
(16 frames, 64 x 64)

Single Value
Decomposition (SVD3)

Feature Selection
KOS Press
(500x500 matrix)

7.2 methodology

We compiled the applications with GCC 4.8.4 on Ubuntu 14.04 with -O1

optimization. As we perform manual transformations on the code, high op-
timization levels hinder the task; we resort to -O1 for our proof-of-concept
and leave for future work more exploration on compiler optimizations. We
run our experiments on an Intel Core i5 3210M machine running at 2.5 GHz.

First, we selected the main kernels of each application, focusing on the
main computations and avoiding I/O routines. We used Callgrind, a pro-
filing tool that runs on Valgrind [117], and which records the call history
among functions in a program’s run as a call-graph, obtaining information
about the runtime behavior of an application.

Then, to experiment with the approximate ISA, we run the different exper-
iments with a custom Pintool that runs on Pin 2.14 [101]. Pin is a dynamic
instrumentation framework for the IA-32 and the x86-64

4 instruction set ar-
chitectures that enables the creation of dynamic program analysis tools or
Pintools. Our Pintool instruments the compiled binary at run time, observ-
ing only the selected kernels, and captures the instructions being executed
on the fly; then, for each instruction captured, it emulates it (e.g., replacing
it by another instruction or instructions), removes it, or executes it natively,
depending on the desired behavior of the approximate ISA.

7.2.1 Evaluation Metrics

To evaluate the behavior of the selected applications, we consider three dif-
ferent metrics: performance, energy, and accuracy.

4 Our ideas are, in general, ISA-independent, but we provide results for the x86-64 architecture
as a use case.



76 experimental framework

7.2.1.1 Performance

As performance metric we use the number of executed instructions and the
instruction mix, provided by our Pintool.

We classify the instructions in three categories: critical, integer, and floating
point. In the critical instructions group, we include control-flow instructions
(e.g., jumps, call/return from functions, comparison), access to the stack
(e.g., push/pop), conversion instructions (e.g., from integer to double), etc.
We consider these instructions "critical", as approximating or removing them
might alter the control flow of the program and prevent successful program
termination. For this work, we consider these instructions not suitable for
approximation, and we will always execute them natively (no emulation).
Integer instructions include all the arithmetic integer instructions; note that
in this group, we find also instructions that compute memory addresses.
Finally, floating point instructions are those instructions that operate with
floating point data. We further divide this group in sizes: 64-bit, 32-bit, and
16-bit5 operands.

7.2.1.2 Energy

We build a first-order approach to quantify the energy savings based on
bare-metal measurements for x86 processors [43]. Energy efficiency is often
measured by calculating the effective energy per instruction (EPI), but EPI
makes the most sense as a metric when it remains constant, independent
of IPC. However, real machines expend energy at a certain minimum rate
even when idle. Hence, actual EPI becomes a function of IPC, and the ef-
fective cost of an instruction decreases with higher IPC, because the fixed
costs are shared. This relationship is the result of high static power and com-
plex control logic that is always on, independently of core utilization. The
percentage of fixed and variable power depends on the architecture, technol-
ogy, micro-architecture enhancements, etc. For example, on the Intel Penryl
micro-architecture, 56% of the energy consumption is due to fix costs, while
on the Haswell micro-architecture the percentage of energy consumption
due to fix costs increases to 75%. Power can be modeled as a function of IPC
to approximate this overhead:

Pt = α ∗ IPC+β (7.1)

where Pt is the total power, and α and β are constants that model the vari-
able and the fixed power, respectively, and depend on the architecture, tech-
nology, frequency, voltage, etc. From this equation, it is clear that the α pa-
rameter represents EPI/Tc for a given configuration, being Tc the cycle time.
To model the energy consumption, we can multiply each of the terms of the
previous equation by execution time (Texec = Tc ∗ Cycles, where Cycles
represent the total execution cycles):

Et = α
′ ∗Ninst +β ∗ Texec (7.2)

where α ′ = EPI.

5 The micro-architecture lacks support for 16-bit floating point values, so we emulate these oper-
ations. Please refer to the next chapter for more details.
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In the next chapter, we discuss in more detail how we apply this model
to our experiments.

7.2.1.3 Accuracy

Regarding the applications output accuracy loss, we follow the guidelines
from [5] and run the ACCURAX tool with the proper application-specific
accuracy loss metric. Table 7.2 collects the different outputs we consider for
each of the applications described in the previous section, together with the
accuracy loss metric for each of the outputs. Table 7.2 also includes output
randomization [5] results: for each application output, we compute the error
we would obtain with a complete random output with respect to the native
outputs. The idea of output randomization is, for a given application and
its accuracy metric, to compare the accuracy loss under approximation with
the average accuracy loss by a completely random output. A total random
output, as it is input-independent, will be likely the close-to-worst-case ac-
curacy loss we could obtain. We generate 10

4 random outputs and collect
the average of the distribution of the calculated accuracy loss for each appli-
cation output. These results will guide the accuracy loss impact discussion
of the following chapter.

Table 7.2: Benchmarks deployed: output results and accuracy metrics.

Application Output Accuracy Metric
Random
Output

K-means (KM)
• Cluster centers
• Cluster assignments

• Coordinate displacement
• Rel. number differences

• 51.91

• 92.43

Latent Dirichlet
Allocation (LDA)

• Estimation model • ANPS a • 41.83

Motion
Estimation (ME)

• Motion vectors
(1 per frame)

• Coordinate displacement • 39.60

Principal
Componenet
Analysis (PCA)

• Correlation matrix
• Row projections
• Column projections

• ANPS
• 39.40

• 43.95

• 60.06

Restricted
Boltzmann
Machine (RBM)

• Suggestions for users
(100 x 100 matrix)

• ANPS • 28.27

Super-resolution
Reconstruction
(SRR)

• Reconstructed image
(256 x 256)

• SSIM b • 49.99

Single Value
Decomposition
(SVD3)

• Decomposition matri-
ces (U, V , S)

• ANPS
• 83.32

• 55.11

• 46.10

a ANPS: Average Noise to Peak Signal

b SSIM: Structural Similarity Index
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Three emerging classes of applications, Recognition, Mining, and Synthesis (RMS),
rely on iterative, often probabilistic, algorithms in processing massive yet noisy
(inaccurate) input data sets. Usually there is no single correct output and valid out-
puts span a range. Therefore, RMS applications are intrinsically tolerant to errors
in computation. In this chapter, we explore how such intrinsic algorithmic error tol-
erance can help reduce the complexity of the instruction set architecture and thereby
improve the energy efficiency of computing without compromising functional com-
pleteness.

8.1 introduction

The Instruction Set Architecture (ISA) specifies semantic and syntactic char-
acteristics of a practically functionally complete set of machine instructions.
Modern ISAs are not necessarily mathematically functionally complete, but
provide sufficient expressiveness for practical algorithms. For software lay-
ers, the ISA defines the underlying machine—as capable as the variety of
algorithmic tasks the composition of its building blocks, instructions, can ex-
press. For hardware layers, the ISA rather acts as a behavioral design specifi-
cation for the machine organization. Accordingly, the ISA governs both the
functional completeness and complexity of a machine design.

Based on the observation that the emerging Recognition, Mining, and
Synthesis (RMS) classes of applications [35] can effectively tolerate errors in
computation due to iterative (usually probabilistic) algorithms processing
massive yet noisy (i.e., inaccurate) input data [96, 148, 158], in this chap-
ter, we explore how the intrinsic algorithmic error tolerance can help reduce ISA
(hence, hardware design) complexity without compromising functional complete-
ness. Such reduction in complexity often directly translates into higher en-
ergy efficiency, i.e., performance gain per unit power consumed.

The end result is an Approximate Instruction Set Computer (AISC) that trades
computation accuracy for complexity, and thereby energy efficiency. In this
context, the complexity reduction in ISA spans two dimensions:

• Depth: elimination of relatively more complex and less frequently used
instructions.

• Breadth: simplification on a per instruction basis.

The combination of these two dimensions, Breadth + Depth, replaces com-
plex and less frequently used instructions by a sequence of simpler instruc-
tions.

Depending on the instruction mix of the workload, aggressive complex-
ity reduction along any of these dimensions can affect the computation ac-
curacy, and may potentially lead to invalid or unacceptable results. AISC
implementations should prevent the latter cases by limiting the complexity
reduction such that the anticipated loss in accuracy remains bounded. This
represents the key difference between AISC and other ISAs optimized for
complexity such as RISC (Reduced Instruction Set Computer) [124], which
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do not compromise computation accuracy. When compared to RISC vari-
ants, AISC can unlock more opportunities for complexity reduction at the
cost of accuracy loss, as long as this accuracy loss remains bounded and
acceptable.

AISC facilitates ISA complexity reduction along two dimensions: Depth,
Breadth, and its combination, Breadth + Depth. Various techniques apply
to realize complexity reduction along each dimension. This study covers a
representative, but not necessarily exhaustive, set. Different techniques give
rise to different AISC implementations in a rich design space.

Depth encompasses all techniques that orchestrate elimination, i.e., drop,
of complex and less frequently used instructions. Such techniques can be of
static or dynamic nature. Static variants of instruction dropping techniques
in Depth selectively eliminate (static) instructions from the binary—these
instructions can never get executed. A collection of such instructions can be
permanently eliminated from the ISA. Dynamic variants of instruction drop-
ping techniques in Depth, on the other hand, selectively eliminate dynamic
instances of static instructions within the course of execution.

Under Breadth fall all techniques that can reduce the complexity of an
instruction. The stellar representatives are techniques which modulate arith-
metic precision by reducing operand widths. Well-studied precision scaling
variants [38, 64, 66, 115, 131, 133, 144, 150, 164, 169] are directly applica-
ble, so are techniques to simply discard a sequence of the least significant
operand bits. Reducing the operand width often enables simplification in
the corresponding arithmetic operation, in addition to a more efficient uti-
lization of the available communication bandwidth for data (i.e., operand)
transfer.

Breadth + Depth embeds all techniques that emulate a complex instruc-
tion by using a sequence of simpler instructions. The key difference from
Depth comes from the emulation of relatively more complex instructions:
Depth techniques drop such instructions without any replacement.

AISC-induced accuracy loss may not be (or not always be) acceptable for
many workloads, including the operating system code. At the same time, the
tolerance to accuracy loss of an application may change within the course of
execution. We envision a heterogeneous many-core platform with a subset
of the cores featuring AISC, and the rest, any ISA not compromising accu-
racy. This platform can then map only applications (or application phases)
that can tolerate accuracy loss to AISC cores.

In the rest of this chapter, Section 8.2 details a proof-of-concept AISC im-
plementation and practical limitations. In Section 8.3, we quantify the com-
plexity versus energy efficiency trade-off as induced by AISC. Section 8.4
concludes and summarizes our findings.

8.2 aisc : proof-of-concept implementation

We start with a motivating example. Figure 8.1 shows how the (graphic)
output of a typical RMS application, SRR (see Table 7.1), changes for rep-
resentative Depth, Breadth, and Breadth + Depth techniques under AISC.
Figure 8.1a captures the output for the baseline for comparison, Native ex-
ecution, which excludes AISC. We observe that the accuracy loss remains
barely visible and varies across different techniques. We will next analyze
the sources of this diversity.
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(a) Native. (b) Depth. (c) Breadth. (d) Breadth + Depth.

Figure 8.1: Graphic output of SRR under representative AISC techniques (b)-(d).

8.2.1 Depth Techniques

Depth encompasses all techniques that orchestrate dropping of complex and
less frequently used instructions. The key question is how to pick the instruc-
tions to drop. A more general version of this question, which instructions to
expose to AISC techniques, already applies to AISC techniques across all di-
mensions, but the question becomes more critical for Depth. As the most
aggressive in our bag of tricks, Depth can incur significant loss in accuracy.
RMS applications can tolerate errors in data-centric phases as opposed to
control [40]. Therefore, confining instruction dropping to data-flow can help
limit the incurred accuracy loss. A profiler backed compiler pass, possibly
exploiting algorithmic information via programmer annotations [133], can
determine candidate instructions for dropping.

Depth techniques from the proof-of-concept AISC implementation come
in two flavors: Static-Drop and Dynamic-Drop. Static-Drop directly eliminates
static instructions from the binary; Dynamic-Drop eliminates dynamic in-
stances of static instructions within the course of execution on top. For
Dynamic-Drop, runtime or hardware [54] support is necessary to drop in-
structions as a function of evolving runtime conditions. Figure 8.1b captures
an example execution outcome under Static-Drop.

8.2.2 Breadth Techniques

The proof-of-concept AISC implementation features various Breadth tech-
niques: DPtoSP, DP(SP)toHP, and DP(SP)toINT.

Under the IEEE 754 standard, 32 (64) bits express a single (double) pre-
cision floating point number: one bit specifies the sign; 8 (11) bits, the expo-
nent; and 23 (52) bits the mantissa, i.e., the fraction. For example, (−1)sign×
2exponent−127 × 1.mantissa represents a single-precision floating number.

DPtoSP is a bit discarding variant, which omits 32 least-significant bits
of the mantissa of each double-precision operand of an instruction, and
keeps the exponent intact. DP(SP)toHP comes in two flavors. DPtoHP omits
48 least-significant bits of the mantissa of each double-precision operand
of an instruction, and keeps the exponent intact; SPtoHP omits 16 least-
significant bits of the mantissa of each single-precision operand of an in-
struction. Figure 8.1c captures an example execution outcome under DP-
toHP. DP(SP)toINT also comes in two flavors. DPtoINT (SPtoINT) replaces
double (single) precision instructions with their integer counterparts, by
rounding the floating point operand values to the closest integer.



82 aisc : approximate instruction set computer

8.2.3 Breadth + Depth Techniques

The proof-of-concept AISC design features two representative Breadth +
Depth techniques: MULtoADD and DIVtoMUL.

MULtoADD converts multiplication instructions to a sequence of addi-
tions. AISC picks the smaller of the factors as the multiplier, which deter-
mines the number of additions. AISC rounds floating point multipliers to
the closest integer number.

DIVtoMUL converts division instructions to multiplications. AISC first
calculates the reciprocal of the divisor, which next gets multiplied by the
dividend to render the end result. In our proof-of-concept implementation
based on the x86 ISA, the reciprocal instruction has 12-bit precision. DIV-
toMUL12 uses this instruction. DIVtoMUL.NR, on the other hand, relies on
one iteration of the Newton-Raphson method [52] to increase the precision
of the reciprocal to 23 bits. DIVtoMUL12 can be regarded as an approxi-
mate version of DIVtoMUL.NR, eliminating the Newton-Raphson iteration,
and hence enforcing a less accurate estimate of the reciprocal (of only 12 bit
precision). Figure 8.1d captures an example execution outcome under DIV-
toMUL.NR. Algorithm 1 provides an example sequence of instructions to
emulate division according to DIVtoMUL.NR, where one reciprocal (RCPSS),
3 multiplication (MULSS), one addition (ADDSS), and one subtraction (SUBSS)
instruction substitute a division. DIVtoMUL12 omits the iteration of the
Newton-Raphson method (lines 3-6) from Algorithm 1. As opposed to DIV-
toMUL.NR, DIVtoMUL12 keeps the 12-bit accuracy of the RCPSS instruction.
Hence, it becomes mathematically equivalent to omitting 11 bits of the man-
tissa.

Algorithm 1 DIVtoMUL.NR
; Take reciprocal of the divisor: x0 = RCP(divisor) ; 12-bit precision
; Newton-Raphson iteration to increase reciprocal precision to 23 bits:
; x1 = x0 × (2− divisor× x0) = 2× x0 − divisor× x20
; Multiply dividend with reciprocal: result = dividend× x1
1 MOVSS xmm1, divisor

2 RCPSS xmm0, xmm1 ; x0
3 MULSS xmm1, xmm0 ; divisor× x0
4 MULSS xmm1, xmm0 ; (divisor× x0)× x0
5 ADDSS xmm0, xmm0 ; 2× x0
6 SUBSS xmm0, xmm1 ; x1 = 2× x0 − divisor× x20
7 MULSS xmm0, dividend ; result = dividend× x1

8.3 evaluation

In this section, we analyze the impact of the different proposed AISC tech-
niques in terms of instruction mix and count, energy, and accuracy of the
results, based on the methodology depicted in Chapter 7. We first refine the
energy model discussed in Chapter 7. Then we explore the proof-of-concept
AISC results.
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Figure 8.2: Impact on instruction mix and count.

8.3.1 Evaluation Setup: Energy Modeling

In Chapter 7, we discussed energy modeling as the addition of a fixed and
a variable component. The fixed component gathers the fixed costs asso-
ciated to the execution of an instruction (e.g., clock, front-end, ROB, etc.),
independently of the instruction type and IPC, while the variable compo-
nent captures changes in activity. AISC affects both, the fixed and the vari-
able component: savings in the variable component come from the operand
width reduction under Breadth, and instruction dropping under Depth. The
fixed component can also decrease if the micro-architecture exploits AISC
for a less complex pipeline front-end (fetch + decode) design.

For this work, we do not assume or model any concrete micro-architecture,
so we cannot estimate execution time trustingly. Therefore, we model the
impact of our proposals on energy in a conservative way, and report the
anticipated energy savings in the variable component. The total savings will
depend on the percentage of variable energy with respect to the total. Note
also that some of the techniques we explored aimed to reduce the complex-
ity of the processor front-end would directly impact in the fixed costs, likely
reducing the ratio of fixed/variable energy.

We conservatively assume that the EPI of an integer instruction equals the
EPI of a 32-bit floating point arithmetic instruction, and scale the EPI values
for 64-bit and 16-bit operations according to [41].

8.3.2 AISC Proof-of-Concept Evaluation

Figure 8.2 shows the impact on instruction mix and count, as characterized
by a group of bars for each benchmark. The first bar corresponds to the
Native execution outcome, excluding any AISC technique. The rest of the
bars capture execution under Breadth, Breadth + Depth, and Depth. The
height of each bar captures the relative change in the instruction count with
respect to the native outcome. The stacks in each bar depict the instruction
mix, considering three categories: Critical indicates control-flow instructions
such as accesses to the stack; Integer, integer data transfer and arithmetic; FP
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(a) KM.
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(b) LDA.
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(c) ME.
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(d) PCA.

0 10 30 50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Accuracy Loss (%)

N
o
rm

a
liz

e
d
 E

n
e
rg

y
(e) RBM.
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(f) SRR.
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(g) SVD3.

DPtoSP
DP(SP)toHP
DP(SP)toINT

DIVtoMUL.NR
DIVtoMUL12
DropDIV

Accuracy Loss of Randomized Output
KM 92.43
LDA 41.83
ME 39.60
PCA 60.06

RBM 28.27
SRR 49.99
SVD3 46.10

(h) Legend.

Figure 8.3: Energy vs. accuracy trade-off.

(Floating Point), floating point data transfer and arithmetic. AISC excludes
Critical instructions, as approximating or removing them might alter the con-
trol flow and prevent successful program termination. The proof-of-concept
AISC implementation does not approximate Integer instructions to avoid
corrupting pointer arithmetic, which may in turn prevent successful termi-
nation. We further categorize FP instructions by the size of the operands:
64b(it), 32b, and 16b.

To understand the corresponding implications for accuracy, Figure 8.3
shows, on a per benchmark basis, the trade-off space of energy versus accu-
racy loss. Each point corresponds to the outcome under one AISC technique.
We report both energy and accuracy loss relative to the native execution
outcome, which excludes AISC techniques. Trade-off spaces do not include
non-terminating executions and executions that render more than 40% in-
crease in energy consumption. On the normalized energy axis, any point
above 1 is unfeasible. Figure 8.3h shows the output randomization results
for each benchmark [5], which serve as a proxy for (close to) worst case
accuracy loss.

Next, we examine the proof-of-concept AISC techniques from Section 8.2,
which span the dimensions in more detail.
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(a) Native. (b) 1 instr. (c) 3 instr. (d) 5 instr.

Figure 8.4: Accuracy of SRR output under Static-Drop.

8.3.2.1 Breadth Techniques

We observe that Breadth—DPtoSP, DP(SP)toHP, DP(SP)toINT—can reduce
the instruction count significantly for benchmarks PCA and SVD3 (Fig-
ure 8.2). These benchmarks adapt iterative refinement; under bit discard-
ing due to Breadth, they reach the convergence criteria earlier. In this case,
only two experiments fail to terminate, marked by a cross in Figure 8.2:
DP(SP)toINT in KM and DP(SP)toHP in LDA. Significant changes in in-
struction count mainly stem from early or late convergence.

Breadth, in terms of DPtoSP and DP(SP)toHP, provides large energy re-
ductions (20% and 37% on average) accompanied by a modest accuracy loss
(less than 10%) for most of the applications—except PCA and SRR, where
accuracy loss reaches 78.1% and 34.6%, respectively; and LDA where the
experiments failed to terminate due to bit discarding. Even the very ag-
gressive DP(SP)toINT works for LDA, ME, and SVD3, where the accuracy
loss becomes 18.9%, 13.0%, and 4.6%, respectively. The energy reduction for
LDA (98%) and SVD3 (81%) is significant, as the number of iterations to
convergence gets drastically reduced: LDA reduces the number of iterations
by 97.3%; SVD3, by 97.9%. KM is the only application that does not survive
DP(SP)toINT. For the rest of the benchmarks, the accuracy loss becomes
comparable to the accuracy of a randomly generated output (which cap-
tures close-to-worst-case accuracy loss [5]), therefore, likely not acceptable
(Figure 8.3h).

8.3.2.2 Depth Techniques

Under Depth, we study two different techniques: Static-Drop and Dynamic-
Drop (Section 8.2).

Static-Drop comes in two flavors. First, we selectively remove all the float-
ing point division instructions of the binary (DropDIV). This would be equiv-
alent to removing the floating point division instruction from the ISA, with-
out providing any substitute (as oppose to Breadth + Depth techniques).
Dropping division instructions does not affect the termination of the exper-
iments, although PCA and SVD3 do not reach convergence. As shown in
Figure 8.2, KM and LDA show a significant reduction in the executed in-
structions under DropDIV, which translates into an energy reduction of 15%
and 90%, respectively, with an accuracy loss of 28% and 13.62%. For ME,
RBM, and SRR, the instruction count remains practically the same, while
the accuracy loss of the outputs reaches the loss of completely random out-
puts (as indicated Figure 8.3h).
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Figure 8.5: Energy vs. accuracy trade-off for Dynamic-Drop.

As a more aggressive Static-Drop approach, we randomly delete static
(arithmetic) FP instructions. For each static instruction, we base the drop-
ping decision on a pre-defined threshold t. We generate a random number
r in the range [0, 1], and drop the static instruction if r remains below t. We
experiment with threshold values between 1% and 10%. We observe three
distinctive behavior:

1. SVD3 and PCA do not tolerate Static-Drop; experiments either fail to
terminate, or render an invalid output/excessive accuracy loss.

2. ME, RBM, and SRR can tolerate dropping, but the outcome highly de-
pends on the instructions dropped. Figure 8.4 illustrates three different
SRR outcomes for t=3%: dropping 1 static instruction (Figure 8.4b); 3

static instructions (Figure 8.4c); 5 static instructions (Figure 8.4d); the
native output is also shown for comparison (Figure 8.4a). SRR has 477

static instructions, out of which around 80 are FP. The dropped static
instructions translate into dropping 16 million dynamic instructions in
Figure 8.4b; 245 million in Figure. 8.4c; and 255 million in Figure 8.4d,
respectively. The numeric accuracy metric, SSIM [5] becomes 17.1%
(Figure 8.4b), 30.2% (Figure 8.4c), and 48.2% (Figure 8.4d). To compen-
sate for the missing instructions, SRR executes additional iterations,
increasing the dynamic instruction count.

3. For KM and LDA some experiments fail and some survive with vary-
ing accuracy loss.

We next analyze Dynamic-Drop. This time, for each dynamic instruction,
we base the dropping decision on a pre-defined threshold t. We generate a
random number r in the range [0, 1], and drop the dynamic instruction if r
remains below t. We experiment with threshold values between 1% and 10%,
similar to Static-Drop. In this case, LDA, SRR, and SVD3 fail to terminate,
while KM and PCA reach the maximum number of iterations without con-
vergence in most of the experiments. Only ME and RBM survive: Figure 8.5
shows the energy vs. accuracy trade-off for both applications with different
dropping thresholds: t = 2%, 3%, 5%, and 10%, respectively. In both cases,
the accuracy loss increases with the dropping threshold. ME compensates
the dropped instructions with more iterations, which practically translates
into no energy gain. RBM, on the other hand, shows a slight (and practically
invisible) energy decrease with the number of instructions dropped, but the
accuracy loss increases and reaches the output randomization values which
capture the close-to-worst-case accuracy loss (Figure 8.3h).
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8.3.2.3 Breadth + Depth Techniques

Under Breadth + Depth, we observe that MULtoADD (Section 8.2) signif-
icantly increases the instruction count and/or prevents successful termi-
nation (LDA and SVD3)—except for RBM, where most of the multiplica-
tions involve very small operands between 0 and 1. In any case, we did not
observe any improvement on the energy vs. accuracy trade-off space, and,
therefore, we excluded MULtoADD from Figures 8.2 and 8.3.

DIVtoMUL variants also increase instruction count, although this increase
is only significant for LDA, PCA, and SVD3, where more iterations are
run to compensate for the precision reduction, as we did not alter the con-
vergence criteria. Breadth + Depth, in terms of DIVtoMUL.NR and DIVto-
MUL12, does not show an energy advantage, mostly due to our conserva-
tive energy modeling (we assume that all FP instructions of a given preci-
sion have the same EPI). KM, ME, and SRR have a very small percentage
of division operations, accordingly, DIVtoMUL variants have minimal im-
pact. Eliminating the Newton-Raphson iteration under DIVtoMUL.NR only
increases the accuracy loss in RBM. PCA and SVD3 experience a significant
energy increase under DIVtoMUL12 (when compared to DIVtoMUL.NR)
due to the increasing number of iterations until convergence to meet the
convergence criteria.

8.4 conclusion and discussion

The ISA bridges the gap between software and hardware layers of the sys-
tem stack. ISA grows with the addition of new extensions in Depth (addi-
tion of new instructions) and Breadth (wider instructions, in the case of
CISC machines) directions. This growth increases the complexity of the
fetch and decode hardware (front-end), an already power hungry part of
the pipeline, and critical for performance, as it feeds the back-end with in-
structions. Besides, execution units (back-end) and their control policies also
become more complex.

Conventional ISAs are unaware of the intrinsic error tolerance of many
emerging algorithms. AISC turns around this assumption to reduce hard-
ware complexity, and, thereby, energy consumption. To reduce hardware
complexity, AISC shrinks the Breadth and Depth of an ISA design, where
algorithmic error tolerance helps masking the corresponding loss in accu-
racy without compromising correctness or functional completeness of the
ISA. In RMS workloads, AISC can cut energy 20.6% on average, at around
14.9% accuracy loss.

We find that the energy vs. accuracy trade-off is very sensitive to appli-
cation convergence characteristics. Therefore, an efficient AISC implemen-
tation should carefully examine convergence criteria. For example, under
Depth, applications that tolerate instruction dropping either compensate for
the missing instructions by executing more to meet the convergence criteria,
or exhibit a very large accuracy loss.

The presented proof-of-concept implementation does not track data de-
pendencies beyond instruction boundaries. Operand width reduction under
Breadth or Breadth + Depth is confined to the input and output operands of
the respective instructions. Transitively adjusting the precision of the vari-
ables which depend on or determine such input and output operands may
substantially increase energy savings.
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This chapter highlights the main conclusions of this dissertation and points out fu-
ture research directions based on the main findings herein presented.

This dissertation explores new approaches to improve the energy efficiency
of future systems in the dark silicon era. We explore sources of natural on-
chip redundancy and take advantage of them in the context of computing
at voltages near the threshold and approximate computing.

9.1 faulty last-level sram caches at near-threshold volt-
ages

Insufficient voltage reduction in ultra-deep technologies jeopardizes the ben-
efits that scaling has been providing to the processor industry in the last
decades. Within the processor, SRAM cells limit the minimum voltage be-
cause at lower voltages, manufacturing induced parameter variations limit
the correct functionality of SRAM structures.

The stochastic nature of parameter variations makes some cells more
prone to errors than others when voltage is lowered. To cope with this prob-
lem, block disabling techniques enable voltage reductions by disconnecting
cells that do not fulfill the stability requirements, improving energy effi-
ciency. However, inclusive large last-level caches, LLCs, implementing block
disabling experiment a substantial reduction in associativity and capacity,
which manifest in two specific drawbacks: the number of inclusion victims
in private L1 caches increases and the MPKI figures grow, increasing main
memory energy consumption.

In Part II of this dissertation, we propose a technique to improve block
disabling in CMPs leveraging current coherence mechanisms: we call this
technique Block Disabling with Operational Tags (BDOT). BDOT relies on
the use of robust cells to implement the LLC tag array, enabling some cache
blocks to be only in private levels by simply tracking their tags. With regard
to inclusion victims, the LLC associativity is fully restored, but to unlock
the benefits of BDOT, we need to implement the proper cache management
policy to take into account the different nature of LLC entries. Hence, we
implement on top of BDOT a cache management policy with two goals: pro-
tect blocks that are going to be used in the future and maximize the on-chip
content. Our BDOT-based cache management policy is able to reduce MPKI
up to 37.3% and 54.2% for multiprogrammed and parallel workloads, re-
spectively, compared to block disabling. Those improvements translate into
performance improvements of 13% and 34.6%, respectively.

This approach, as well as other existing micro-architectural approaches to
increasing cache reliability, focus on enabling and combining the valid cells,
thereby reducing the available cache capacity. Although our fault-aware
cache management policy obtains great improvements over block disabling
with a very low overhead, for programs with large footprints and/or work-
ing sets, the extent of performance degradation is still substantial. Depart-
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ing from these approaches, we propose Concertina, an LLC that compresses
cache blocks to reduce their size in order that they can fit into entries with
non-functional cells. Concertina ensures the use of 100% of the LLC capacity
through a low overhead insertion/replacement policy that combines block
compressibility and fault awareness to enable smart allocation of blocks to
cache entries. We explore several LLC implementations with cells that trade
off area and power for reliability, as well as several Concertina designs. A
lower-overhead design with a modest 5.4% and 5.9% increase in area and
leakage, respectively, achieves a minimal performance degradation within
2%, with respect to an unrealistic defect-free LLC.

9.2 approximate computing at the isa layer

Approximate computing has gained much traction in the last years due
to the emergence of intrinsically error-tolerant applications, which rely on
iterative algorithms to process noisy inputs, and whose outputs are not
required to be unique ("acceptable" rather than precise outputs). Conven-
tional ISAs are unaware of the intrinsic noise tolerance of these emerg-
ing algorithms. In Part III of this dissertation, we propose AISC (Approx-
imate Instruction Set Computer), a set of techniques that turn around this
assumption to reduce hardware complexity, and, hence, energy consump-
tion, shrinking the ISA in several dimensions: Breadth (e.g., operand bit dis-
carding), Depth (e.g., dropping instructions), and the combination of both
Breadth + Depth (e.g., substituting complex instructions with simpler ones).
In RMS (Recognition, Mining, and Synthesis) workloads, AISC can cut en-
ergy 20.6% on average, at around 14.9% accuracy loss. We find that the ener-
gy/accuracy trade-off is very sensitive to converge characteristics, therefore,
an efficient AISC implementation should carefully examine convergence cri-
teria.

The presented proof-of-concept implementation does not track data de-
pendencies beyond instruction boundaries. Operand width reduction under
Breadth or Breadth + Depth is confined to the inputs and outputs of the
respective instructions. Transitively adjusting the precision of the variables
which depend on or determine the inputs and outputs may substantially
increase energy savings.

9.3 future work

As technology advances, power becomes a first-order design constraint that
imposes severe restrictions on future chips. This dissertation tackles power
consumption from two perspectives: near-threshold voltage computing and
approximate computing. This work opens doors to many more research
ideas, and we anticipate some:

• BDOT is implemented on top of an inclusive cache hierarchy; exclusive
and non-inclusive/non-exclusive hierarchies expose different trade-
offs, which could be as well exploited for efficient near-threshold volt-
age execution. For example, we could explore decouple tag/data LLC
designs to obtain higher flexibility in the allocation of cache blocks.

• Concertina implements a simple yet efficient compression technique
(null subblock compression). Other compression techniques with the
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same design objectives (high coverage, low compression ratio) might
be implemented.

• BDOT and Concertina lend themselves well to mutual integration:
adding a reuse- and fault-aware management policy would likely im-
prove the performance and, therefore, reduce the energy consumption
of Concertina.

• So far, the computer architecture community has collected low-hanging
fruits on the approximate computing paradigm, and we anticipate a
shift towards more approximate applications and designs in the near
future. With respect to our concrete proposals, we made a preliminary
analysis of the potential of an approximate ISA. Other techniques can
be integrated in our framework. For example, on the Depth shrinkage
techniques side, only random dropping has been examined. A smarter
dropping mechanism might unlock the energy potential we envision.

Finally, approximate computing and near-threshold voltage computing
philosophies get along very well; low-voltage SRAM caches might be used
for approximate storage, and intrinsically fault-tolerant applications might
run in hardware prone to errors. However, the main limitation of approxi-
mate computing, which data/code is suitable for approximation and which is not,
posses a major challenge to the widespread of this paradigm in commercial
systems.
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