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1. Introduction

A measure μ on Rn is log-concave if for any measurable sets A, B ⊂ R
n and 0 < λ < 1,

μ(λA + (1 − λ)B) ≥ μ(A)λμ(B)1−λ

whenever A, B ⊂ R
n and λA + (1 − λ)B are measurable, where A + B = {a + b : a ∈

A, b ∈ B} is the Minkowski sum.
Log-concave measures naturally appear in Convex Geometry, since the Brunn 

Minkowski inequality establishes the log-concavity of the Lebesgue measure restricted to 
convex sets, and of the marginal sections of convex sets.

A function f : Rn → [0, +∞) is log-concave if f(x) = e−u(x) for some convex function 
u : R

n → (−∞, ∞]. As was shown in [16], a measure μ on Rn with full-dimensional 
support is log-concave if and only if it has a log-concave density with respect to the 
Lebesgue measure.

The class of log-concave functions has proven to be of great importance in several areas 
or mathematics. From a functional point of view it has been shown they resemble Gaus-
sian functions in many different ways. Many functional inequalities satisfied by Gaussian 
functions, like Poincaré and Log-Sobolev inequalities, also hold in a more general sub-
class of log-concave functions [8,9,12]. They also appear in areas as Information Theory, 
in the study of some important parameters, such as the classical entropy [14]. There are 
many examples in the literature of functional inequalities with a geometric counterpart; 
Prekopa–Leindler/Brunn–Minkowski [27] and Sobolev/Petty projection [34] inequalities 
are two of the main examples. This has generated an increasing interest to extend several 
important parameters of convex bodies to functional parameters [5,6,10,12,19,22,24] in 
the class of log-concave functions.

The class of log-concave functions is often regarded as the natural extension of con-
vex bodies, taking into account that the characteristic function of a convex body is a 
log-concave function and that this is the smallest closed under limits class of functions 
that contains the densities of n-dimensional marginals of uniform probabilities on convex 
bodies of higher dimension (we refer to the next section for precise definitions).

In this work we extend Rogers–Shephard inequality [28,29] to the class of log-concave 
functions (Theorems 2.1 and 2.3), characterizing the equality cases as well. We provide 
other functional versions of inequalities around Rogers–Shephard’s with their respective 
characterization of equality cases. While the Brunn–Minkowski inequality is commonly 
seen as the backbone of modern Convex Geometry, Rogers–Shephard inequality can be 
considered as a reverse form of Brunn–Minkowski inequality that not only describes a 
relation between Minkowski addition and volume, but also deals with yet another fun-
damental property in convexity: symmetry. The far reaching influence of this inequality 
becomes evident as it can be found as an ingredient not only in many important works 
in classical and asymptotic convex geometry [11,23,21,26] but also in many others with a 
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more analytical flavor [31,7,33,25] and its extension to a functional setting as well as for 
the entropy of convex measures has already been considered for instance in [17] or [15].

The paper is organized as follows: In Section 2 we provide the notation used in the rest 
of the paper and some previous results and state the precise results we are going to prove. 
In Section 3 we introduce the (θ, t)-convolution bodies of log-concave functions and prove 
the extension of Rogers–Shephard inequalities (8) and (9). In Section 4 we introduce the 
more general concept of k-th (θ, t)-convolution bodies and prove a Rogers–Shephard type 
inequality (10) for surface area. When particularizing to k = n we obtain the previously 
introduced (θ, t)-convolution bodies. In Section 5 we characterize the equality cases in 
these inequalities. Finally, in Section 6, we revisit another result around Rogers–Shephard 
inequality [17] by giving an extended version for two different functions. Thus, we extend 
inequality (7) for any two log-concave functions and characterize the equality cases. Since 
this inequality will strengthen another well known Rogers–Shephard inequality (4) we 
will make use of these new tools to characterize the equality cases in inequality (4).

2. Notation and previous results

The notation used in this paper is quite standard in modern convex geometry and 
consistent with for example [32] and [20]. A convex body is a subset of Rn that is convex, 
compact and has non-empty interior. It is said to be centrally symmetric if for any x ∈ K

we have that also −x ∈ K. When studying geometric properties of a convex body K it 
is usually very convenient to construct another convex body from K which is centrally 
symmetric. There are many ways to construct such a symmetrization. One of them is 
the so called difference body of K, which is the Minkowski sum of K and −K. Let us 
recall that the Minkowski sum of two convex bodies K and L is defined as

K + L = {x + y ∈ R
n : x ∈ K, y ∈ L}

= {x ∈ R
n : K ∩ (x− L) �= ∅}.

Brunn–Minkowski inequality (see, for instance, [4] for several proofs and character-
ization of the equality cases) gives the following lower bound for the volume of the 
Minkowski sum of any two convex bodies K, L ⊆ R

n:

|K + L| 1
n ≥ |K| 1

n + |L| 1
n .

As a consequence of Brunn–Minkowski inequality the following relation between the 
volume of the difference body K −K and the volume of K is always true

|K −K| ≥ 2n|K|,

with equality if and only if K is symmetric. In [28] Rogers and Shephard proved a 
reverse inequality. Namely, Rogers–Shephard inequality states that for any convex body 
K ⊆ R

n, we have
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|K −K| ≤
(

2n
n

)
|K|, (1)

with equality if and only if K is a simplex. This inequality was extended to any pair of 
convex bodies K, L ⊆ R

n in [29], showing that

max
x0∈Rn

|K ∩ (x0 − L)||K + L| ≤
(

2n
n

)
|K||L|, (2)

with equality if and only if K = −L is a simplex (see [2] for the characterization of 
equality).

In the same paper [29] the authors also considered different types of symmetrization 
of a convex body K and proved volume inequalities for them. In particular it was shown 
that for any convex body K ⊆ R

n containing 0, the volume of the convex hull of K and 
−K verifies

|conv{K,−K}| ≤ 2n|K| (3)

with equality if and only if K is a simplex and 0 is one of its vertices. In the same paper 
the authors remarked that, with a similar proof, the latter inequality can be extended 
to the following inequality for any two bodies K and L containing the origin

|K ∩ L||conv{K,−L}| ≤ 2n|K||L| (4)

and they suggested that it is likely that equality is attained if and only if K = L is a 
simplex and 0 is one of its vertices.

Very recently, in [2], the volume of the θ-convolution bodies K +θ L was studied, 
where

K +θ L = {x ∈ K + L : |K ∩ (x− L)| ≥ θ max
z∈Rn

|K ∩ (z − L)|}. (5)

As a consequence of the volume inequalities obtained for convolution bodies, inequality 
(2) was recovered and the equality cases were characterized.

In [1], similar inclusion relations and volume inequalities were obtained for the 
h, θ-convolution bodies of K and L, defined as

K +h,θ L = {x ∈ K + L : h(K ∩ (x− L)) ≥ θ max
z∈Rn

h(K ∩ (z − L))},

where h is a function satisfying some properties. As a particular case we have the k-th 
θ-convolution bodies of two convex bodies, defined as

K +k,θ L = {x ∈ K + L : Wn−k(K ∩ (x− L)) ≥ θ max Wn−k(K ∩ (z − L))},

z∈Rn
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where Wn−k denotes the (n − k)-th quermaßintegral of a convex body which, by Kub-
ota’s formula (cf. [32, p. 295]), can be expressed as an average of the volumes of the 
k-dimensional projections of K

Wn−k(K) = |Bn
2 |

|Bk
2 |

∫
Gn,k

|PE(K)|dμ(E).

(Gn,k denotes the set of k-dimensional linear subspaces, dμ is the Haar probability mea-
sure on Gn,k and PE(K) is the projection of K on a subspace E.) As a consequence 
of these volume inequalities the following Rogers–Shephard type inequality for any two 
convex bodies K, L ⊆ R

n, which involves the surface area of K and L, is obtained

|K + L| ≤
(

2n
n

)
|K||∂L| + |L||∂K|

2 maxx0∈Rn |∂(K ∩ (x0 − L))| , (6)

where |∂K| is the surface area of K. Notice that when L = −K we recover inequality (1). 
Let us recall that, up to a constant which depends only on the dimension n, the surface 
area of a convex body K equals the quermaßintegral W1(K).

Inequality (3) was extended to the context of log-concave functions in [17], where the 
author proved that for any log-concave function f , if its difference function is defined by

Δf(z) = sup
{√

f(x)f(−y) : x, y ∈ R
n : 2z = x + y

}
,

then ∫
Rn

Δf(x)dx ≤ 2n
∫
Rn

f(x)dx. (7)

Taking f(x) = e−hK◦ (x), with hK◦(x) = maxy∈K◦〈x, y〉 the support function of the polar 
set of a convex body K containing the origin, inequality (3) is recovered. This inequality 
was also extended in [3].

In this paper we extend inequalities (1), (2) and (6) to log-concave functions. Before 
we state our results we need to introduce some more notation.

Given f , g two log-concave functions, their convolution defined by

f ∗ g(x) =
∫
Rn

f(z)g(x− z)dz

is also a log-concave function in Rn. If f(x) = χK(x) and g(x) = χL(x) are the charac-
teristic functions of two convex bodies, then f ∗ g(x) = |K ∩ (x − L)|.

The Asplund product of two log-concave functions is defined by

f � g(x) = sup f(z)g(x− z).

z∈Rn
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If f(x) = χK(x) and g(x) = χL(x), then f � g(x) = χK+L(x). This operation is the 
natural extension of the Minkowski sum of convex bodies, as it has been shown when 
extending geometric inequalities to the context of general log-concave functions (see for 
instance [5]).

Remark 1. Notice that if both f and g are integrable and continuous when restricted to 
their supports then this supremum is a maximum since, in such case, if f � g(x) = 0, 
then for any z ∈ R

n we have that f(z)g(x − z) = 0 and if f � g(x) > 0, then there exists 
a t > 0 such that the set

At(x) := {z ∈ supp f ∩ (x− supp g) : f(z)g(x− z) ≥ t‖f‖∞‖g‖∞}

is not empty. Since f and g are integrable log-concave functions this set is convex and 
bounded. Thus, its closure is a compact convex set. Since both f and g are continuous 
when restricted to their supports and

f � g(x) = sup
z∈Rn

f(z)g(x− z) = sup
z∈cl(At(x))

f(z)g(x− z)

the function f(z)g(x − z) is continuous on the compact set At(x) and the maximum is 
attained.

With this notation, we prove the following extension of inequality (2).

Theorem 2.1. Let f, g : R
n → R be two integrable log-concave functions with full-

dimensional support such that f and g are continuous when restricted to their supports. 
Then

‖f ∗ g‖∞
∫
Rn

f � g(x)dx ≤
(

2n
n

)
‖f‖∞‖g‖∞

∫
Rn

f(x)dx
∫
Rn

g(x)dx. (8)

Furthermore, this inequality becomes an equality if and only if f(x)
‖f‖∞

= g(−x)
‖g‖∞

is the 
characteristic function of an n-dimensional simplex.

In case we consider g(x) = f(−x) the latter inequality can be improved to the following 
extension of inequality (1):

Theorem 2.2. Let f be a log-concave function with full-dimensional support and contin-
uous when restricted to it and let f̄(x) = f(−x). Then

∫
f � f̄(x)dx ≤

(
2n
n

)
‖f‖∞

∫
f(x)dx. (9)
Rn Rn
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Furthermore, this inequality becomes an equality if and only if f(x)
‖f‖∞

is the characteristic 
function of an n-dimensional simplex.

Let us mention that the previous inequality was first obtained by Colesanti [17, The-
orem 4.3] where the author proves it in the quasi-concave case without characterizing 
the equality case.

The fact that inequality (9) is an improvement of inequality (8) follows from Young’s 
inequality ‖f ∗ f̄‖∞ ≤ ‖f‖1‖f‖∞.

The notion of quermaßintegrals has also been extended from convex bodies to the 
setting of log-concave functions. In [18,22,30], the case of the perimeter and the mean 
width is considered while, in [13], a different definition is given for all the quermaßin-
tegrals. We will work with the definition in the latter paper, where, in particular, the 
quermaßintegral W1 (surface area) of a log-concave function is defined by

W1(f) :=
∞∫
0

W1({x ∈ R
n : f(x) ≥ t})dt.

By Crofton’s formula (cf. [32, p. 235]), this equals

W1(f) = cn

∫
An,1

max
z∈E

f(z)dμn,1(E),

where cn = |Bn
2 |

|Bn−1
2 | is a constant depending only on n and An,1 is the set of affine 

1-dimensional subspaces of Rn and μn,1 is the Haar probability measure on it.

Theorem 2.3. Let f, g : R
n → R be two integrable log-concave functions with full-

dimensional support and continuous when restricted to their supports. Then

∫
Rn

f � g(x)dx ≤
(

2n
n

)
‖f‖∞‖g‖∞

W1(g)
∫
Rn f(x)dx + W1(f)

∫
Rn g(x)dx

2 maxx0∈Rn W1(f(·)g(x0 − ·)) . (10)

Furthermore, when n ≥ 3 this inequality becomes an equality if and only if f(x)
‖f‖∞

= g(−x)
‖g‖∞

is the characteristic function of an n-dimensional simplex.

Finally, we will prove the following extension of (7). Before stating it let us start with 
the following definition:

Definition 2.1. Let f, g : Rn → R be two integrable log-concave functions. Define

f ⊕ g(z) := sup
2z=x+y

√
f(x)g(y) =

√
f � g(2z).



3276 D. Alonso-Gutiérrez et al. / Journal of Functional Analysis 271 (2016) 3269–3299
Following the proof given in [17] of inequality (7), we can show the following result. 
The inequality in the result was also obtained in [3] in the more general case where 
z = λx + (1 − λ)y and not just λ = 1

2 . However, equality cases need a more detailed 
argument.

Theorem 2.4. Let f, g : R
n → R be two integrable log-concave functions with full-

dimensional supports and continuous when restricted to them. Then
∫
Rn

√
f(x)ḡ(x)dx

∫
Rn

f ⊕ g(x)dx ≤ 2n
∫
Rn

f(x)dx
∫
Rn

g(x)dx. (11)

Equality holds if and only if the following two conditions are satisfied:

(i) supp f = supp ḡ is a translation of a cone C with vertex at 0 with simplicial section, 
and

(ii) f(x) = c1e
−〈a,x〉 on supp f and g(x) = c2e

−〈b,x〉 on supp g for some c1, c2 > 0 and 
some a, b ∈ R

n such that 〈a, x〉 ≥ 0 ≥ 〈b, x〉 for every x ∈ C.

3. (θ, t)-convolution bodies of log-concave functions and Rogers–Shephard inequalities

In this section we prove the aforementioned extensions of Rogers–Shephard inequal-
ity to log-concave functions. In order to prove them we need to introduce some more 
notation. Given f , g two integrable log-concave functions with full-dimensional support, 
x ∈ supp f + supp g and t ∈ (0, 1], let us recall that we denote

At(x) = At(f, g)(x) := {z ∈ supp f ∩ (x− supp g) : f(z)g(x− z) ≥ t‖f‖∞‖g‖∞}.

Since f and g are integrable log-concave functions, At(x) is a bounded convex set.

Definition 3.1. Let f, g : R
n → R be two integrable log-concave functions with full-

dimensional support, t ∈ (0, 1], θ ∈ [0, 1]. We define the (θ, t)-convolution set of f and g
as the set

Cθ,t = Cθ,t(f, g) := {x ∈ supp f + supp g : At(x) �= ∅ , |At(x)| ≥ θMt}

where

Mt = Mt(f, g) := max
x0∈supp f+supp g

|At(x0)|.

Remark. When f(x) = χK(x) and g(x) = χL(x) are the characteristic functions of two 
convex bodies K and L, the sets At(x) = K ∩ (x − L) for any t ∈ (0, 1] and we recover 
the definition of the θ-convolution bodies K +θ L in [2].



D. Alonso-Gutiérrez et al. / Journal of Functional Analysis 271 (2016) 3269–3299 3277
It is obvious from the definition that for any fixed t, the sets Cθ,t decrease on θ. The 
following lemma implies the convexity of these sets and gives a reverse (increasing on θ) 
inclusion relation when normalized by the right factor, as shows Corollary 3.2.

Lemma 3.1. Let t ∈ (0, 1], f, g : Rn → R be two integrable log-concave functions with 
full-dimensional support such that Mt = |At(0)|, θ1, θ2, λ1, λ2 ∈ [0, 1] with λ1 + λ2 ≤ 1. 
Then

λ1Cθ1,t + λ2Cθ2,t ⊆ Cθ,t,

with 1 − θ
1
n = λ1(1 − θ

1
n
1 ) + λ2(1 − θ

1
n
2 ).

Proof. Let x1 ∈ Cθ1,t, x2 ∈ Cθ2,t. For any z0 ∈ At(0), z1 ∈ At(x1), z2 ∈ At(x2), the 
log-concavity of f and g implies

f((1 − λ1 − λ2)z0 + λ1z1 + λ2z2)g(λ1x1 + λ2x2 − (1 − λ1 − λ2)z0 − λ1z1 − λ2z2)

≥ (f(z0)g(−z0))1−λ1−λ2(f(z1)g(x1 − z1))λ1(f(z2)g(x2 − z2))λ2 ≥ t‖f‖∞‖g‖∞.

Thus,

At(λ1x1 + λ2x2) ⊇ (1 − λ1 − λ2)At(0) + λ1At(x1) + λ2At(x2)

and, by Brunn–Minkowski inequality

|At(λ1x1 + λ2x2)|
1
n ≥

(1 − λ1 − λ2)|At(0)| 1
n + λ1|At(x1)|

1
n + λ2|At(x2)|

1
n ≥

(1 − λ1 − λ2)M
1
n
t + λ1θ

1
n
1 M

1
n
t + λ2θ

1
n
2 M

1
n
t =

(1 − λ1(1 − θ
1
n
1 ) − λ2(1 − θ

1
n
2 ))M

1
n
t .

Consequently, λ1x1 + λ2x2 ∈ Cθ,t. �
In particular, taking θ1 = θ2 and λ1+λ2 = 1 we obtain that these sets Cθ,t are convex. 

Besides

Corollary 3.2. Let t ∈ (0, 1], f, g : Rn → R be two integrable log-concave functions with 
full-dimensional support such that Mt = |At(0)|, 0 ≤ θ0 ≤ θ < 1. Then

Cθ0,t
1 − θ

1
n
0

⊆ Cθ,t
1 − θ

1
n

.
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Proof. Taking θ1 = θ2 = θ0 in the previous lemma, we have that for any λ1, λ2 ∈ [0, 1]
with λ1 + λ2 ≤ 1

(λ1 + λ2)Cθ0,t = λ1Cθ0,t + λ2Cθ0,t ⊆ Cθ,t,

with (λ1 + λ2)(1 − θ
1
n
0 ) = 1 − θ

1
n . Thus, for any θ0 ≤ θ ≤ 1, taking λ1 + λ2 = 1−θ

1
n

1−θ
1
n
0

we 

obtain the result. �
In a similar way we can prove the following:

Lemma 3.3. Let f, g : Rn → R be two integrable log-concave functions with full-dimen-
sional support. Then for any t1, t2 ∈ (0, 1] and any λ ∈ [0, 1] we have

M
1
n

tλ1 t
1−λ
2

≥ λM
1
n
t1 + (1 − λ)M

1
n
t2 .

Consequently, Mt is continuous on (0, 1).

Proof. Let x1, x2 be such that Mti = |Ati(xi)| for i = 1, 2. Since f and g are log-concave 
we have that for any z1 ∈ At1(x1), z2 ∈ At2(x2) and any λ ∈, [0, 1]

f(λz1 + (1 − λ)z2)g(λx1 + (1 − λ)x2 − (λz1 + (1 − λ)z2))

≥ (f(z1)g(x1 − z1))λ(f(z2)g(x2 − z2))1−λ

≥ tλ1 t
1−λ
2 ‖f‖∞‖g‖∞.

Thus,

Atλ1 t
1−λ
2

(λx1 + (1 − λ)x2) ⊇ λAt1(x1) + (1 − λ)At2(x2).

By Brunn–Minkowski inequality

M
1
n

tλ1 t
1−λ
2

≥ |Atλ1 t
1−λ
2

(λx1 + (1 − λ)x2)|
1
n ≥ λM

1
n
t1 + (1 − λ)M

1
n
t2 .

Consequently, the function f(s) = M
1
n
es is concave in (−∞, 0] and then it is continuous 

on (−∞, 0). Thus, Mt = fn(log t) is continuous on (0, 1). �
Let us now prove inequality (8).

Proof of Theorem 2.1 (inequality). We can assume, without loss of generality, that 
‖f‖∞ = ‖g‖∞ = 1. By definition of Cθ,t, we have that for any t ∈ (0, 1]

C0,t = {x ∈ suppf + suppg : At(x) �= ∅}

= {x ∈ suppf + suppg : f � g(x) ≥ t} .
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For any t ∈ (0, 1], let x0(t) ∈ R
n be such that Mt = |At(x0)|. By Corollary 3.2 with 

θ0 = 0 and g replaced by g(· + x0), for any θ ∈ [0, 1]

(1 − θ
1
n )(−x0(t) + C0,t) ⊆ −x0(t) + Cθ,t.

Taking volumes and integrating in θ ∈ [0, 1] we obtain

|C0,t| ≤
(

2n
n

) 1∫
0

|Cθ,t|dθ =
(

2n
n

)∫
Rn

|At(x)|
Mt

dx.

Consequently

Mt|C0,t| ≤
(

2n
n

)∫
Rn

|At(x)|dx

and, integrating in t ∈ (0, 1]

1∫
0

Mt|C0,t|dt ≤
(

2n
n

) 1∫
0

∫
Rn

|At(x)|dxdt.

The integral on the right-hand side is

1∫
0

∫
Rn

|At(x)|dxdt =
∫
Rn

∫
Rn

f(z)g(x− z)dzdx =
∫
Rn

f(x)dx
∫
Rn

g(x)dx.

On the other hand, the integral on the left-hand side is

1∫
0

Mt|C0,t|dt =
∫
Rn

f�g(x)∫
0

max
x0∈Rn

|At(x0)|dtdx

≥ max
x0∈Rn

∫
Rn

f�g(x)∫
0

|At(x0)|dtdx

= max
x0∈Rn

∫
Rn

∫
Rn

min {f � g(x), f(z)g(x0 − z)} dzdx.

Since ‖f‖∞ = ‖g‖∞ = 1, both quantities in the minimum are smaller than or equal to 1, 
the minimum is bounded from below by the product and so, this quantity is bounded 
from below by
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max
x0∈Rn

f ∗ g(x0)
∫
Rn

f � g(x)dx.

Thus

‖f ∗ g‖∞
∫
Rn

f � g(x)dx ≤
(

2n
n

)
‖f‖∞‖g‖∞

∫
Rn

f(x)dx
∫
Rn

g(x)dx. �

Let us now consider the case in which g(x) = f(−x). We will denote this function f̄
and At(f)(x) := At(f, f̄)(x). Notice that for any t ∈ (0, 1)

At(f)(0) =
{
z ∈ R

n : f(z)2 ≥ t‖f‖2
∞
}

=
{
z ∈ R

n : f(z) ≥
√
t‖f‖∞

}
.

Analogously, let us denote Mt(f) := Mt(f, f̄) and Cθ,t(f) := Cθ,t(f, f̄).
The following lemma shows that the maximum value of |At(f)(x)| is attained at x = 0.

Lemma 3.4. Let f : Rn → R be an integrable log-concave function with full-dimensional 
support, then for any t ∈ (0, 1),

At(f)(x) ⊆ 1
2x + At(f)(0).

Consequently, Mt(f) = |At(f)(0)|.

Proof. Since f is log-concave, for any x ∈ supp f − supp f

At(f)(x) =
{
z ∈ R

n :

√
f(z)
‖f‖∞

f(z − x)
‖f‖∞

≥
√
t

}

⊆
{
z ∈ R

n :
f(z − 1

2x)
‖f‖∞

≥
√
t

}

= 1
2x + At(f)(0). �

The following lemma shows a relation between the (θ, t)-convolution bodies of f and 
f̄ and the θ-convolution bodies of At(f)(0) and −At(f)(0).

Lemma 3.5. Let f : Rn → R be an integrable log-concave function with full-dimensional 
support. Then, for any θ ∈ [0, 1] and any t ∈ (0, 1]

At(f)(0) +θ (−At(f)(0)) ⊆ Cθ,t(f) ⊆ At2(f)(0) + Mt
M

t2
θ (−At2(f)(0)).
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Proof. Notice that

At(f)(x) =
{
z ∈ R

n : f(z)
‖f‖∞

f(z − x)
‖f‖∞

≥ t

}

⊆
{
z ∈ R

n : min
{

f(z)
‖f‖∞

,
f(z − x)
‖f‖∞

}
≥ t

}

= At2(f)(0) ∩ (x + At2(f)(0)),

which proves the right-hand side inequality. On the other hand, we trivially have

At(f)(x) =
{
z ∈ R

n : f(z)
‖f‖∞

f(z − x)
‖f‖∞

≥ t

}

⊇
{
z ∈ R

n : min
{

f(z)
‖f‖∞

,
f(z − x)
‖f‖∞

}
≥

√
t

}

= At(f)(0) ∩ (x + At(f)(0)),

which proves the left-hand side inequality. �
Using these relations we are now able to prove inequality (9).

Proof of Theorem 2.2 (inequality). From the right-hand side inequality in Lemma 3.5
we have that for any t ∈ (0, 1]

C0,t(f) ⊆ At2(f)(0) −At2(f)(0).

Thus, taking volumes and using Rogers–Shephard inequality (1) we have

|C0,t(f)| ≤
(

2n
n

)
|At2(f)(0)|.

Integrating t ∈ (0, 1] we obtain the result. �
4. k-th (θ, t)-convolution bodies of log-concave functions and Rogers–Shephard 
inequality

In this section we will prove inequality (10). To this end, we consider the following 
sets.

Definition 4.1. Let f, g : R
n → R be two integrable log-concave functions with full-

dimensional support, t ∈ (0, 1], θ ∈ [0, 1]. We define the k-th (θ, t)-convolution set of f
and g

Ck
θ,t = Ck

θ,t(f, g) := {x ∈ supp f + supp g : At(x) �= ∅ , Wn−k(At(x)) ≥ θMn−k,t}
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where

Mn−k,t = Mn−k,t(f, g) := max
x0∈supp f+supp g

Wn−k(At(x0)).

Remark. When f(x) = χK(x) and g(x) = χL(x) are the characteristic functions of two 
convex bodies, the sets At(x) = K∩(x −L) for any t ∈ (0, 1] and we recover the definition 
of the k-th θ-convolution bodies K +k,θ L in [1].

When k = n these are the convex bodies Cθ,t introduced in the previous section and, 
with identical proofs, using the Brunn–Minkowski inequality for quermaßintegrals (see 
[32], Theorem 6.4.3) we have

Lemma 4.1. Let t ∈ (0, 1], f, g : Rn → R be two integrable log-concave integrable functions 
with full-dimensional support such that Mn−k,t = Wn−k(At(0)), θ1, θ2, λ1, λ2 ∈ [0, 1] with 
λ1 + λ2 ≤ 1. Then

λ1Ck
θ1,t + λ2Ck

θ2,t ⊆ Ck
θ,t,

with 1 − θ
1
k = λ1(1 − θ

1
k
1 ) + λ2(1 − θ

1
k
2 ).

Consequently,

Corollary 4.2. Let t ∈ (0, 1], f, g : Rn → R be two integrable log-concave functions with 
full-dimensional support such that Mn−k,t = Wn−k(At(0)), 0 ≤ θ0 ≤ θ < 1. Then

Ck
θ0,t

1 − θ
1
k
0

⊆
Ck
θ,t

1 − θ
1
k

.

Lemma 4.3. Let f, g : Rn → R be two integrable log-concave functions with full-dimen-
sional support. Then for any t1, t2 ∈ (0, 1] and any λ ∈ [0, 1] we have

M
1
k

n−k,tλ1 t
1−λ
2

≥ λM
1
k

n−k,t1
+ (1 − λ)M

1
k

n−k,t2
.

Consequently, Mn−k,t is continuous on (0, 1).

Using the (n − 1)-th (θ, t)-convolution bodies of f and g, we are now able to prove 
inequality (10).

Proof of Theorem 2.3 (inequality). We can assume, without loss of generality that 
‖f‖∞ = ‖g‖∞ = 1. Proceeding as in the proof of Theorem 2.1 we have that

1∫
0

Mn−k,t|Ck
0,t|dt ≤

(
n + k

n

) 1∫
0

∫
Rn

Wn−k(At(x))dxdt.
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If k = n− 1

1∫
0

M1,t|Cn−1
0,t |dt = 1

2

(
2n
n

) 1∫
0

∫
Rn

W1(At(x))dxdt.

Since W1(A) = cn
∫
Sn−1 |Pθ⊥A|dσ(θ), where cn is a constant depending only on n, the 

integral on the right hand side equals

cn

1∫
0

∫
Rn

∫
Sn−1

∫
θ⊥

χ{maxs∈R f(z+sθ)g(x−z−sθ)≥t}(z)dzdσ(θ)dxdt

= cn

∫
Sn−1

∫
θ⊥

∫
Rn

max
s∈R

f(z + sθ)g(x− z − sθ)dxdzdσ(θ)

= cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

∫
R

max
s∈R

f(z + sθ)g(w − z + (r − s)θ)drdwdzdσ(θ)

= cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

∫
R

max
s∈R

f(z + sθ)g(w + (r − s)θ)drdwdzdσ(θ).

Let fz(s) = f(z+sθ) and gw(s) = g(w+sθ) for fixed θ ∈ Sn−1, z, w ∈ θ⊥. This quantity 
equals

cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

1∫
0

∣∣∣∣
{
r ∈ R : max

s∈R

fz(s)gw(r − s) ≥ t

}∣∣∣∣ dtdwdzdσ(θ).

Since the set in the integrand is contained in the set{
r ∈ R : max

s∈R

min {fz(s)‖gw‖∞, gw(r − s)‖fz‖∞} ≥ t

}

= {r ∈ R : {s : fz(s)‖gw‖∞ ≥ t} ∩ (r − {s : gw(s)‖fz‖∞ ≥ t}) �= ∅}

= {s : fz(s)‖gw‖∞ ≥ t} + {s : gw(s)‖fz‖∞ ≥ t} ,

and the 1-dimensional volume of the sum of segments is the sum of the volumes of the 
segments, the previous integral is bounded from above by

≤ cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

‖fz‖∞‖gw‖∞∫
0

|{s : fz(s)‖gw‖∞ ≥ t}| dtdwdzdσ(θ)

+ cn

∫ ∫ ∫ ‖fz‖∞‖gw‖∞∫
|{s : gw(s)‖fz‖∞ ≥ t}| dtdwdzdσ(θ)
Sn−1 θ⊥ θ⊥ 0
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= cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

‖gw‖∞
‖fz‖∞∫
0

|{s : fz(s) ≥ t}| dtdwdzdσ(θ)

+ cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

‖fz‖∞
‖gw‖∞∫

0

|{s : gw(s) ≥ t}| dtdwdzdσ(θ)

= cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

‖gw‖∞
∫
R

fz(s)dsdwdzdσ(θ)

+ cn

∫
Sn−1

∫
θ⊥

∫
θ⊥

‖fz‖∞
∫
R

gw(s)dtdwdzdσ(θ)

= cn

∫
Sn−1

∫
θ⊥

‖gw‖∞
∫
Rn

f(x)dxdwdσ(θ)

+ cn

∫
Sn−1

∫
θ⊥

‖fz‖∞
∫
Rn

g(x)dxdzdσ(θ)

= cn

∫
An,1

max
z∈E

g(z)dμn,1(E)
∫
Rn

f(x)dx

+ cn

∫
An,1

max
z∈E

f(z)dμn,1(E)
∫
Rn

g(x)dx

by Crofton’s formula (cf. [32, p. 235]).
On the other hand, the integral in the left hand side is

1∫
0

M1,t|Cn−1
0,t |dt =

∫
Rn

f�g(x)∫
0

max
x0∈Rn

W1(At(x0))dtdx

≥ max
x0∈Rn

∫
Rn

f�g(x)∫
0

W1(At(x0))dtdx

= cn max
x0∈Rn

∫
Rn

f�g(x)∫
0

∫
An,1

χ{maxz∈E f(z)g(x0−z)≥t}(E)dμn,1(E)dtdx

= cn max
x0∈Rn

∫
Rn

∫
An,1

min
{
f � g(x),max

z∈E
f(z)g(x0 − z)

}
dμn,1(E)dx

≥ cn

⎛
⎝ ∫

Rn

f � g(x)dx

⎞
⎠ max

x0∈Rn

∫
An,1

max
z∈E

f(z)g(x0 − z)dμn,1(E),

using Crofton’s formula. �
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5. Equality cases in functional Rogers–Shephard inequalities

In this section we will characterize the equality cases in Theorems 2.1, 2.2 and 2.3. 
Since the characterization of the equality cases in Theorems 2.1 and 2.3 follow the same 
lines we will write them together later and we will start with Theorem 2.2.

To characterize the equality in Theorem 2.2 we need the following characterization of 
the characteristic function of a simplex:

Lemma 5.1. Let f : Rn → R be an integrable log-concave function with full-dimensional 
support such that f is continuous when restricted to it and verifies ‖f‖∞ = 1. Then 
f(x) = χK(x) with K an n-dimensional simplex if and only if for every t ∈ (0, 1)

(i) At(f)(0) is an n-dimensional simplex, and
(ii) A1(f)(0) contains a facet of At(f)(0).

Proof. If f is the characteristic function of a simplex then (i) and (ii) are trivially verified, 
since At(f)(x) = K ∩ (x +K). Assume that f is a log-concave function with ‖f‖∞ = 1, 
then f(x) = eV (x), with V : Rn → [−∞, 0] a concave function. Since

At(f)(0) = {z ∈ R
n : f(z) ≥

√
t} = {z ∈ R

n : V (z) ≥ log(
√
t)}

we have that for every s ∈ (−∞, 0], if Bs denotes the set

Bs = {z ∈ R
n : V (z) ≥ s},

then

(i) Bs is an n-dimensional simplex
(ii) B0 contains a facet of Bs.

Let t0 < 1 and s0 = log
√
t0 < 0. Since V is concave, the set

G = {(x, y) ∈ R
n+1 : V (x) ≥ y}

is convex. Thus, G contains C = conv{B0 × {0}, Bs0 × {s0}}. Consequently, for every 
s ∈ [s0, 0) we have that

{z ∈ R
n : (z, s) ∈ C} ⊆ Bs ⊆ Bs0 .

Since B0 contains a facet F of Bs0 we have that for every s ∈ [s0, 0), F × {s} is 
contained in C and consequently F is a facet of Bs for every s ∈ [s0, 0).

Let Ps0 be the vertex of Bs0 that is not contained in F and let P1, . . . , Pn be the 
vertices of Bs0 that are contained in F . For any choice of i1, . . . , in−1 ∈ {1, . . . , n} we 
have that
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conv{Pi1 × {0}, . . . , Pin−1 × {0}, Ps0 × {s0}} ⊆ C

and consequently, if s ∈ (s0, 0) we can write s = (1 − (n − 1)λ)s0 for some λ, and the 
point

((1 − (n− 1)λ)Ps0 + λPi1 + · · · + λPin−1) × {s}

belongs to C and consequently to Bs. Since the point (1 −(n −1)λ)Ps0+λPi1+· · ·+λPin−1

belongs to the relative interior of the facet of Bs0 spanned by Ps0 , Pi1 , . . . , Pin−1 we have 
that the facet F spanned by P1, . . . , Pn must be a facet of the simplex Bs, the vertex 
Ps not contained in F must belong to Bs0 and, at the same time Bs must contain some 
points lying in the relative interior of the other facets of Bs0 . Thus, Ps must be equal to 
Ps0 and for every s ∈ (−∞, 0) the simplex Bs must be the same.

Thus, for every t ∈ (0, 1) the simplex At(f)(0) is the same simplex and f is the 
characteristic function of a simplex. �

Now we are able to prove the characterization of the equality cases in (9).

Proof of Theorem 2.2 (equality). We can assume, without loss of generality, that 
‖f‖∞ = 1. It is clear that if f is a characteristic function of a simplex then the in-
equality becomes Rogers–Shephard inequality (1) for a simplex, which is an equality.

Let us show that equality in (9) implies that f is the characteristic function of a 
simplex. We recall that equality holds in (9) if and only if equality holds in

1∫
0

|C0,t(f)|dt
(a)
≤

1∫
0

|At2(f)(0) −At2(f)(0)|
(b)
≤

(
2n
n

) 1∫
0

|At2(f)(0)|dt.

Since f is continuous when restricted to its support, At(f)(0) is a convex body for every 
t ∈ (0, 1) and the functions |C0,t(f)|, |At2(f)(0) +0 (−At2(f)(0))| and |At2(f)(0)| are 
continuous on t ∈ (0, 1] and so, equality in (a) and (b) implies that for every t ∈ (0, 1]
there is equality in

|C0,t(f)| ≤ |At2(f)(0) −At2(f)(0)| ≤
(

2n
n

)
|At2(0)|.

First of all notice that, from the characterization of the equality cases in Rogers–
Shephard inequality (1) we have equality in the right hand side inequality if and only if 
for every t ∈ (0, 1) At2(f)(0) is a simplex. We will see that A1(f)(0) contains a facet of 
At2(f)(0) for every t ∈ (0, 1).

Let us assume that there exists t ∈ (0, 1), and P , Q vertices of the simplex At2(f)(0)
such that P, Q /∈ A1(f)(0). We are going to see that in such case the set C0,t(f) is strictly 
contained in At2(f)(0) −At2(f)(0) and, since f is continuous, these sets do not have the 
same volume.
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Since P and Q are vertices of At2(f)(0) we have that f(P ) = f(Q) = t. Let us take 
ε > 0 such that (t + ε)2 ≤ t − ε. A1(f)(0) does not contain P . Thus there exists a 
hyperplane HP separating them, parallel to the opposite facet to P of At2(f)(0). Notice 
that HP intersects At2(f)(0) and we can take HP such that t ≤ f(z) ≤ t + ε for every 
z ∈ At2(f)(0) in the same side of HP as P . Analogously, we take a hyperplane HQ

separating Q from A1(f)(0) parallel to the opposite facet of Q of At2(f)(0) and such 
that t ≤ f(z) ≤ t + ε for every z ∈ At2(f)(0) in the same side of HQ as Q.

Thus, we can take x = λ(P − Q) for some 0 < λ < 1 such that At2(f)(0) ∩ (x +
At2(f)(0)) �= ∅ and for every z ∈ At2(f)(0) ∩ (x + At2(f)(0))

• t ≤ f(z) ≤ t + ε

• t ≤ f(z − x) ≤ t + ε

Notice that since At2(f)(0) ∩ (x + At2(f)(0)) �= ∅, x ∈ At2(f)(0) − At2(f)(0). On 
the other hand for every z ∈ At2(f)(0) ∩ (x + At2(f)(0)) we have that f(z)f(z − x) ≤
(t + ε)2 ≤ t − ε < t and for every z /∈ At2(f)(0) ∩ (x + At2(f)(0)), f(z)f(z − x) < t. 
Thus, At(f)(x) = ∅ and x /∈ C0,t(f). Consequently, x ∈ (At2(f)(0) −At2(f)(0))\C0,t(f)
and |C0,t(f)| < |At2(f)(0) −At2(f)(0)|.

Thus, if there is equality in (9) A1(f)(0) contains a facet of every simplex At(f)(0)
and by the previous lemma f is the characteristic function of a simplex. �

We now show the characterization of the equality case in (8).

Proof of Theorem 2.1 (equality). Without loss of generality we assume that ||f ||∞ =
||g||∞ = 1.

Then, equality holds in (8) if and only if it holds equality on each inequality all along 
the proof of (8). In particular, we have that for almost every t ∈ [0, 1]

Mt|C0,t| =
(

2n
n

)∫
Rn

|At(x)|dx.

Notice that by Lemma 3.3 the function Mt is continuous on (0, 1), the function |C0,t| is 
continuous on (0, 1] since it is the volume of the level sets of the log-concave function 
f � g, and the function 

∫
Rn |At(x)|dx is also continuous on (0, 1] as a consequence of the 

dominated convergence theorem, since for every t0 ∈ (0, 1] and any x ∈ R
n, |At(x)| is 

continuous on t0 and, in a neighborhood of t0, (t0 − ε, t0 + ε) we have,

|At(x)| ≤ |At0−ε(x)|.

Thus, we have

Mt|C0,t| =
(

2n
n

)∫
|At(x)|dx
Rn
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for every t ∈ (0, 1) and, consequently, for almost every θ ∈ [0, 1]

(1 − θ
1
n )(−x0(t) + C0,t) = −x0(t) + Cθ,t.

As a consequence of Corollary 3.2 we have equality in the last equality not only for almost 
every θ ∈ [0, 1] but for every θ ∈ [0, 1). Consequently, if x0(t) is such that Mt = |At(x0)|
we have that

(i) for every θ, t ∈ (0, 1), (1 − θ
1
n )(−x0(t) + C0,t) = −x0(t) + Cθ,t,

(ii)

max
x0∈Rn

∫
Rn

f�g(x)∫
0

|At(x0)|dtdx =
∫
Rn

f�g(x)∫
0

max
x0∈Rn

|At(x0(t))|dtdx,

(iii) for every x, z ∈ R
n,

min{f � g(x), f(z)g(x0(t) − z)} = f � g(x) f(z)g(x0(t) − z).

Notice that taking θ tending to 1 in (i) we have that for every t ∈ (0, 1) the maximum 
of |At(x)| is only attained at x0(t). Besides, by the continuity of Mt, the continuity of 
|At(x0)| in t and in x0, (ii) holds if and only if x0(t) is the same for every t ∈ (0, 1), and 
thus we may suppose without loss of generality that x0(t) = 0. Thus

(i) for every θ, t ∈ (0, 1), (1 − θ
1
n )C0,t = Cθ,t,

(ii) for every t ∈ (0, 1), maxx0∈Rn |At(x0)| = |At(0)|,
(iii) for every x, z ∈ R

n, min{f � g(x), f(z)g(−z)} = f � g(x) f(z)g(−z).

First of all notice that if g(x) = χK(x) is the characteristic function of a convex body, 
then

At(x) = At2(f)(0) ∩ (x−K)

and

Cθ,t = At2(f)(0) +θ K,

where At2(f)(0) +θ K denotes the θ-convolution of convex bodies defined in (5). Thus, 
since the (θ, t)-convolution bodies of the functions are the θ-convolution bodies of some 
convex bodies we have equality in (i) if and only if for every t ∈ (0, 1) At2(f)(0) = −K

is a simplex and, consequently f(x) = g(−x) is the characteristic function of a simplex.
We will prove that in the equality case necessarily one of the functions is the charac-

teristic function of a convex body.
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Condition (iii) occurs if and only if f � g(x) or f(z)g(−z) equals 0 or 1, for every 
x, z ∈ R

n. First, assume that f � g(x) = 1 for every x ∈ supp f + supp g. Then for every 
x ∈ supp f + supp g, A1(f)(0) ∩ (x −A1(g)(0)) �= ∅ and so

A1(f)(0) + A1(g)(0) = supp f + supp g.

Consequently f and g are characteristic functions.
Let us now assume that there exists x ∈ supp f +supp g such that f �g(x) < 1. Then 

for every z ∈ R
n, f(z)g(−z) equals 0,1 and then, for every t ∈ (0, 1], At(0) = A1(0). 

In such case the function Mt is constant in (0, 1]. In particular it is also continuous on 
t = 1 and then (i) also holds for t = 1.

Notice that if |A1(0)| = |At(0)| = 0, then for every t ∈ (0, 1) we have that for every 
θ ∈ (0, 1)

Cθ,t = {x ∈ suppf + suppg : At(x) �= ∅},

contradicting (i). Thus, if we have equality in (8), |A1(0)| > 0.
Now, if (i) holds, we fix t ∈ (0, 1] and take x ∈ supp(f) + supp(g). If x /∈ C0,t then 

At(x) = ∅. If x ∈ C0,t then there exists θx ∈ [0, 1] such that x ∈ ∂Cθx,t and x = (1 −θ
1
n
x )y

for some y ∈ ∂C0,t. Thus, we have equality in

θ
1
n
x |At(0)| 1

n = |At(x)| 1
n = |At(θ

1
n
x 0 + (1 − θ

1
n
x )y)| 1

n

≥ θ
1
n
x |At(0)| 1

n + (1 − θ
1
n
x )|At(y)|

1
n ≥ θ

1
n
x |At(0)| 1

n ,

and, by the equality cases in Brunn–Minkowski inequality, At(x) is homothetic to At(0). 
Thus, for every x ∈ R

n and t ∈ (0, 1], At(x) is either empty or a homothetic copy of 
At(0). Moreover, if we particularize in t = 1, we have that

A1(x) = {z : f(z)g(x− z) = 1} = {z : f(z) = 1} ∩ (x + {z : g(−z) = 1}) and

A1(0) = {z : f(z)g(−z) = 1} = {z : f(z) = 1} ∩ {z : g(−z) = 1}

and for any θ ∈ [0, 1] then Cθ,1 is the θ-convolution of the convex bodies

Cθ,1 = A1(f)(0) +θ A1(g)(0).

Thus, by Proposition 2.10 in [2], the convex bodies A1(f)(0) and −A1(g)(0) are the 
same simplex A1(0).

Let us now assume that none of the functions f , g is a characteristic function, and we 
will find a contradiction.

Since f and g are not characteristic functions there exist 0 < t1, t2 < 1 and z1, z2 ∈ R
n

such that t1 ≤ f(z1) < 1 and t2 ≤ g(−z2) < 1. Let us denote by F1 a facet of A1(0), 
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with outer normal vector u1 and contained in the hyperplane {x ∈ R
n : 〈x, u1〉 = c1}, 

such that A1(0) ⊆ {x ∈ R
n : 〈x, u1〉 ≤ c1} and 〈z1, u1〉 > c1. Analogously, let F2 be a 

facet of A1(0), with outer normal vector u2 and contained in the hyperplane {x ∈ R
n :

〈x, u2〉 = c2}, such that A1(0) ⊆ {x ∈ R
n : 〈x, u2〉 ≤ c2} and 〈z1, u2〉 > c2.

Observe that the log-concavity of f and g imply that conv{z1, A1(0)} ⊂ At21
(f)(0)

and conv{z2, A1(0)} ⊂ At22
(ḡ)(0).

If F1 = F2, then

(conv{z1,A1(0)} ∩ conv{z2,A1(0)})\A1(0) �= ∅.

Let z0 be a point in this intersection. Then z0 ∈ At1t2(0) since

t1t2 ≤ f(z0)g(−z0) < 1.

However, this is not possible, since At1t2(0) = A1(0).
If F1 �= F2, let x be a vector with a small enough norm and parallel to the only edge 

contained in all n −1 facets F3, . . . , Fn+1 of A1(0) different from F1 and F2 and pointing 
from F2 to F1 such that z1 /∈ x + A1(0) and A1(0) ∩ (x + F2) �= ∅,

(conv{z1,A1(0)}\{z1,A1(0)}) ∩ (x + F1) �= ∅,

and

A1(0) ∩ (x + conv{z2,A1(0)}\{z2,A1(0)}) �= ∅.

Observe that for any point z in the first intersection, it holds t1t2 < t1 ≤ f(z)g(x − z), 
whereas if z′ is on the second, then t1t2 < t2 ≤ f(z′)g(x − z′) and, since x points from 
F2 to F1, z′ does not belong to x + A1(0).

Besides, for any other facet Fi ∩ (x +Fi) �= ∅ and for any point z′′ in Fi ∩ (x +Fi) we 
have f(z′′)g(x −z′′) = 1. These three types of points belong to the set At0t1(x), which we 
have proved that is a homothetic copy of the simplex At1t2(0) = A1(0). Then, since for 
every facet Fi there exist points in (x +Fi) ∩At1t2(x) we have that x +A1(0) ⊆ At1t2(x)
and since the points z′ ∈ At1t2(x)\(x + A1(0)) the inclusion is strict. Thus

|At1t2(0)| = |A1(0)| = |x + A1(0)| < |At1t2(x)|,

contradicting (ii).
Thus, f or g must be a characteristic function and, consequently, f(x) = g(−x) is the 

characteristic function of a simplex. �
The proof of the equality cases in (10) follows the same lines.

Proof of Theorem 2.3 (equality). Without loss of generality we assume that ||f ||∞ =
||g||∞ = 1.
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Then, equality holds in (10) if and only if it holds equality on each inequality all along 
the proof of (10). More particularly, if x0(t) is such that M1,t = W1(At(x0)) we have 
that

(i) for every θ, t ∈ (0, 1), (1 − θ
1

n−1 )(−x0(t) + Cn−1
0,t ) = −x0(t) + Cn−1

θ,t ,
(ii)

max
x0∈Rn

∫
Rn

f�g(x)∫
0

W1(At(x0))dtdx =
∫
Rn

f�g(x)∫
0

max
x0∈Rn

W1(At(x0(t)))dtdx,

(iii) for every x ∈ R
n, E ∈ An,1,

min{f � g(x),max
z∈E

f(z)g(x0(t) − z)} = f � g(x) max
z∈E

f(z)g(x0(t) − z),

(iv) for every θ ∈ Sn−1 and for every z, w ∈ θ⊥, r, s ∈ R,

max
s∈R

fz(s)gw(r − s) = max
s∈R

min{fz(s)‖gw‖, gw(r − s)‖fz‖∞}.

Taking θ tending to 1 in (i) we have that for every t ∈ (0, 1] the maximum of W1(At(x))
is only attained at x0(t). Besides, (ii) holds if and only if x0(t) is the same for every t, 
and thus we may suppose without loss of generality that x0(t) = 0. Thus

(i) for every θ, t ∈ (0, 1), (1 − θ
1

n−1 )Cn−1
0,t = Cn−1

θ,t ,
(ii) for every t ∈ (0, 1], maxx0∈Rn W1(At(x0)) = W1(At(0)),
(iii) for every x ∈ R

n, E ∈ An,1,

min{f � g(x),max
z∈E

f(z)g(−z)} = f � g(x) max
z∈E

f(z)g(−z),

(iv) for every θ ∈ Sn−1 and for every z, w ∈ θ⊥, r, s ∈ R,

max
s∈R

fz(s)gw(r − s) = max
s∈R

min{fz(s)‖gw‖, gw(r − s)‖fz‖∞}.

As in the previous case, we have that if g(x) = χK(x) is the characteristic function 
of a convex body, then the (n − 1)-th (θ, t)-convolution bodies of the functions are the 
(n − 1)-th θ-convolution bodies of some convex bodies and, as it was proved in [1], if 
n ≥ 3 we have equality in (i) if and only if for every t ∈ (0, 1) At2(f)(0) = −K is a 
simplex and, consequently f(x) = g(−x) is the characteristic function of a simplex.

We will prove that in the equality case necessarily one of the functions is the charac-
teristic function of a convex body.

Condition (iii) occurs if and only if f � g(x) or maxz∈E f(z)g(−z) equals 0 or 1, for 
every x ∈ R

n, E ∈ An,1. As we have seen in the previous case, if f � g(x) = 1 for every 
x ∈ supp f + supp g then f and g are characteristic functions.
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Let us now assume that there exists x ∈ supp f +supp g such that f �g(x) < 1. Then 
for every E ∈ An,1 maxz∈E f(z)g(−z) equals 0 or 1. Consequently, for every t ∈ (0, 1]
At(0) = A1(0) because otherwise there exists some t ∈ (0, 1) and some z ∈ R

n such 
that t ≤ f(z)g(−z) < 1 and since z /∈ A1(0) there exist 1-dimensional affine subspaces 
passing through z and not intersecting A1(0) and for all such subspaces we would have 
t ≤ maxz∈E f(z)g(−z) < 1. Like before, in such case (i) also holds for t = 1.

Notice that if W1(A1(0)) = W1(At(0)) = 0, then for every t ∈ (0, 1) we have that for 
every θ ∈ (0, 1)

Cθ,t = {x ∈ suppf + suppg : At(x) �= ∅},

contradicting (i). Thus, if we have equality in (8), W1(A1(0)) > 0.
Now, if (i) holds, we fix t ∈ (0, 1] and take x ∈ supp(f) + supp(g). If x /∈ C0,t then 

At(x) = ∅. If x ∈ C0,t then there exists θx ∈ [0, 1] such that x ∈ ∂Cθx,t and x = (1 −θ
1
n
x )y

for some y ∈ ∂C0,t. Thus, we have equality in

θ
1
n
x W1(At(0))

1
n−1 = W1(At(x))

1
n−1 = W1(At(θ

1
n
x 0 + (1 − θ

1
n
x )y))

1
n−1

≥ θ
1
n
x W1(At(0))

1
n−1 + (1 − θ

1
n
x )W1(At(y))

1
n−1

≥ θ
1
n
x W1(At(0))

1
n−1 ,

and, by the equality cases in Brunn–Minkowski inequality for quermaßintegrals, if n ≥ 3
then At(x) is homothetic to At(0). Thus, for every x ∈ R

n and t ∈ (0, 1], At(x) is either 
empty or a homothetic copy of At(0). Particularizing at t = 1, we have that for any 
θ ∈ [0, 1] Cn−1

θ,1 is the (n − 1)-th θ-convolution of the convex bodies

Cn−1
θ,1 = A1(f)(0) +n−1,θ A1(g)(0).

Thus, if (i) holds then by the characterization of the equality cases in [1] A1(f)(0)
and −A1(g)(0) are the same simplex A1(0).

Now, if we assume that neither of the functions f , g is a characteristic function, with 
the same proof as before we find a contradiction. Thus, f or g must be a characteristic 
function and, consequently, f(x) = g(−x) is the characteristic function of a simplex. �
6. Colesanti’s inequality for two functions

In this section we show that Colesanti’s functional version of Rogers–Shephard in-
equality (7) can be extended to the case in which we consider any pair of functions and 
not necessarily g(x) = f̄(x). Let us recall that similar results were obtained in [3].

Proof of Theorem 2.4. For any z ∈ R
n such that f ⊕ g(z) > 0 let xz, yz ∈ R

n be such 
that f⊕g(z) =

√
f(xz)g(yz) with 2z = xz+yz. Notice that xz and yz exist by Remark 1, 

since f ⊕ g(z) =
√
f � g(2z). Using the log-concavity of f and g,
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f(x)g(z − x) ≥
√

f(xz)g(yz)
√

f(2x− xz)g(xz − 2x) (12)

for every x ∈ R
n. Integrating in x ∈ R

n

f ∗ g(z) ≥
√

f(xz)g(yz)
∫
Rn

√
f(2x− xz)ḡ(2x− xz) dx

= 1
2n f ⊕ g(z)

∫
Rn

√
f(x)ḡ(x)dx.

Integrating in z ∈ R
n we finally obtain

∫
Rn

f(x)dx
∫
Rn

g(x)dx ≥ 1
2n

∫
Rn

f ⊕ g(z)dz
∫
Rn

√
f(x)ḡ(x)dx,

as wanted.
Let us now characterize the equality cases. If (i) and (ii) are satisfied, then there exists 

p ∈ R
n such that

supp f = supp ḡ = p + C

and for every z ∈ supp f + supp g we have that

supp f ∩ (z − supp g) = (p + C) ∩ (z + p + C) = p + C ∩ (z + C)

and since C has a simplicial section, this equals

supp f ∩ (z − supp g) = p′ + C

for some p′ ∈ R
n. We will show that p′ = p

2 + xz

2 for xz such that f ⊕ g(z) =√
f(xz)g(2z − xz). Notice that, as before, such xz exists, because of the continuity 

properties of f and g on their supports. In such case we would have that for every 
z ∈ supp f + supp g

supp f ∩ (z − supp g) = xz

2 + 1
2(supp f ∩ supp ḡ)

and then for every z ∈ supp f + supp g and every x ∈ supp f ∩ (z − supp g)

• 2x − xz ∈ supp f , and
• xz − 2x ∈ supp g.

Then, inequality (12) holds with equality for the functions f(x) = c1e
−〈a,x〉, x ∈ supp f

and g(x) = c2e
−〈b,x〉, x ∈ supp g for every x, z ∈ R

n.
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In order to show that for every z ∈ supp f + supp g we have p′ = p
2 + xz

2 , notice that

2(supp f + supp g) = 2C − 2C = C − C = supp f + supp g

and so, 2z ∈ supp f + supp g and for every x ∈ supp f ∩ (2z − supp g)
√
f(x)g(2z − x) =

√
c1c2e

−〈a, x2 〉e−〈b,z− x
2 〉

=
√
c1c2e

−〈b,z〉e−〈a−b, x2 〉

and so,

f ⊕ g(z) =
√
c1c2e

−〈b,z〉e− min{〈a−b, x2 〉:x∈supp f∩(2z−supp g)}

=
√
c1c2e

−〈b,z〉e− min{〈a−b,x̄〉:x̄∈ p
2 +C∩(z+C)}.

Since (C ∩ z + C) = −p + supp f ∩ (z − supp g) = −p + p′ + C we have that

min
x̄∈ p

2 +(C∩z+C)
〈a− b, x̄〉 = min

x̄∈− p
2 +p′+C

〈a− b, x̄〉

and since 〈a −b, x〉 ≥ 0 for every x ∈ C, the minimum is attained when x̄ = xz

2 = −p
2 +p′. 

Thus p′ = p
2 + xz

2 .
Let us now prove that (i) and (ii) are necessary conditions for equality in (11) to hold. 

We can assume, without loss of generality, that f(x0) = ‖f‖∞ = ‖g‖∞ = g(y0) = 1 and 
let us write f(x) = e−u(x) and g(x) = e−v(x) for some convex functions u, v. Notice that, 
since ‖f‖∞ = ‖g‖∞ = 1, u and v take values in [0, +∞].

Equality in (11) happens if and only if for every z ∈ supp f + supp g and every 
x ∈ supp f ∩ (z− supp g) we have equality in (12). Thus, for every z ∈ supp f + supp g

the support of both functions as functions of x ∈ R
n must be the same and so

supp f ∩ (z − supp g) = xz

2 + 1
2(supp f ∩ (−supp g)),

where xz is such that f ⊕ g(z) =
√

f(xz)g(2z − xz). Notice that in particular this 
implies that supp f ∩ (−supp g) is full-dimensional, since we are assuming that supp f

and supp g are full-dimensional and then there exists some z ∈ supp f+supp g such that 
supp f∩(z−supp g) is full-dimensional and then (supp f∩(−supp g)) is full-dimensional.

Besides, for every z ∈ supp f +supp g we have equality in (12) for every x ∈ supp f ∩
(z − supp g) if and only if

u

(
1
2(2x− xz) + xz

2

)
= 1

2(u(2x− xz) + u(xz))

v

(
1
2(xz − 2x) + yz

2

)
= 1

2(v(xz − 2x) + v(yz))
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for every x ∈ supp f ∩ (z − supp g), where xz, yz ∈ R
n are such that f ⊕ g(z) =√

f(xz)g(yz). In particular, for z0 = x0+y0
2 we have that f ⊕ g(z0) =

√
f(x0)g(y0) and 

so

u

(
1
2(2x− x0) + x0

2

)
= 1

2u(2x− x0)

v

(
1
2(x0 − 2x) + y0

2

)
= 1

2v(x0 − 2x).

Consequently, for every x′ = x − x0 and y′ = x0
2 − y0

2 − x

u (x0 + x′) = 1
2u(x0 + 2x′)

v (y0 + y′) = 1
2v(y0 + 2y′).

Thus, supp f∩(z0−supp g) = x0
2 + 1

2 (supp f∩(−supp g)) is a closed convex cone x0+C

(with C a cone with vertex at 0) and so

supp f ∩ (−supp g) = x0 + C

and for every z ∈ supp f + supp g

supp f ∩ (z − supp g) = xz

2 + x0

2 + C.

Furthermore, supp g ∩ (z0 − supp f) = z0 − supp f ∩ (z0 − supp g) = z0 − x0 − C

is a closed convex cone y0 + C ′. This implies that C ′ = −C. Besides, if the vertex of 
the cone is unique, z0 − x0 = y0 and then y0 = −x0 which implies z0 = 0. If the vertex 
is not unique then, since both z0 − x0 and y0 are vertices of the cone y0 − C, also 
y0 + 2(z0 − x0 − y0) = y0 − 2z0 = −x0 and so y0 −C = −x0 −C and −x0 +C = y0 +C.

On the other hand, for any z ∈ supp f + supp g if x ∈ supp f ∩ (z − supp g), then

2x− xz ∈ x0 + C.

If equality holds in (12) then u is affine in any segment that connects x0 + C with a 
point xz and v is affine in any segment that connects −x0 − C and some yz.

Let us now take z ∈ x0 + supp g. Then −x0 + z ∈ supp g and, since x0 ∈ supp f we 
have that −x0 + z ∈ (z− supp f) ∩ supp g = z− supp f ∩ (z− supp g) = z− xz

2 − x0
2 −C

and so xz

2 ∈ x0
2 − C and

xz ∈ x0 − C.

Consequently xz = x0. Otherwise, consider the ray from xz that passes through x0. Since 
xz ∈ x0−C any point p in this ray such that the segment [xz, p] contains x0 is contained 
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in x0 + C and since u ≥ 0 is affine in the segment [xz, p] and u(x0) = 0 then u = 0 for 
any such p, contradicting the integrability of f .

Thus, for any z ∈ x0 + supp g we have that xz = x0 and yz = 2z − x0. Notice that 
then for every z ∈ x0 + supp g we have that

supp f ∩ (z − supp g) = xz

2 + x0

2 + C = x0 + C

as xz = x0. Consequently, supp f = supp f ∩ (−supp g) since for every y ∈ supp f , 
as C is a full-dimensional cone, we can take w ∈ C such that y ∈ −w + (x0 + C). 
Thus, if we take z = −w ∈ −C = x0 − (x0 + C) ⊂ x0 + supp g, we have that y ∈
z + (x0 + C) ⊂ z − supp g and so y ∈ supp f ∩ (z − supp g) = supp f ∩ (−supp g). 
Consequently supp f = x0 + C ⊆ −supp g.

Analogously, take z ∈ −x0 + supp f . Since −x0 ∈ supp g, we have that x0 + z ∈
supp f ∩ (z − supp g) = xz

2 + x0
2 + C and, consequently yz

2 ∈ −x0
2 + C. Thus yz ∈

−x0 + C = y0 + C. Consequently yz = y0. Otherwise, consider the ray from yz that 
passes through y0. Since yz ∈ y0 +C any point p in this ray such that the segment [yz, p]
contains y0 is contained in y0 − C and since v ≥ 0 is affine in the segment [yz, p] and 
v(x0) = 0 then v = 0 for any such p, contradicting the integrability of g.

Thus, for any z ∈ −x0 + supp f we have that xz = 2z − y0 and yz = y0. Notice that 
then for every z ∈ −x0 + supp f we have that

supp f ∩ (z − supp g) = xz

2 + x0

2 + C = z − y0

2 + x0

2 + C = z + x0 + C,

since x0+C = −y0+C. Consequently, −supp g = supp f∩(−supp g) since for every y ∈
−supp g, as C is a full-dimensional cone, we can take w ∈ C such that y ∈ −w+(x0+C). 
Thus, if we take z = w ∈ C = −x0 +supp g we have that y+z ∈ supp f ∩(z−supp g) =
z + x0 + C and so y ∈ x0 + C = supp f .

Consequently −supp g ⊆ supp f and so −supp g = supp f = x0 + C.
Now let us see that v is affine on −x0 − C. Let us take x, y ∈ −x0 − C and consider 

z = y
2 + x0

2 ∈ −C = x0 + supp g. Then, for this z, yz = y and since x ∈ −x0 − C, 
v is affine in the segment that connects x and y. Consequently, v is affine on −x0 − C

and so g(x) = c2e
−〈b,x〉 on −x0 − C. Thus, C does not contain any straight line l since 

otherwise, as v is affine and positive, it must be constant on the line l and so C has only 
one vertex and x0 = −y0 and 〈b, x〉 < 0 for every x ∈ C\{0}.

Analogously, u is also affine on x0 + C since for any x, y ∈ x0 + C, if we take z =
x
2 − x0

2 ∈ C = −x0 + supp f we have that for this z, xz = x − x0 − y0 = x and so, u
is affine on x0 + C and f(x) = c1e

−〈a,x〉 on x0 + C. Since ‖f‖∞ = f(x0) we have that 
〈a, x〉 > 0 for every x ∈ C.

Finally, considering the section of C by a hyperplane, since the intersection of this 
section with any of its translates is homothetic to itself, the section must be a simplex. �
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Remark. Theorem 2.4 becomes inequality (7) if g(x) = f̄(x) because f ⊕ g(z) = Δf(z). 
Moreover, it also recovers (4) when we particularize f(x) = e−hK(x), g(x) = e−hL(−x), 
where hK and hL are the support functions of two convex bodies K and L that contain 

the origin. Then f ⊕ g(x) = e−hK∩L(x) and 
√
f(x)g(x) = e

−hK−L
2

(x)
, and since

∫
Rn

e−hK(x)dx = n!|K◦|,

then (11) becomes

|(K ∩ L)◦|
∣∣∣∣
(
K − L

2

)◦∣∣∣∣ ≤ 2n|K◦||L◦|.

From the characterization of the equality cases in (11), this only converges to equality 
when we consider sequences of sets (K◦

n)n and (−L◦
n)n converging to simplices with 0 in 

one of the vertices and the same outer normal vectors at the facets that pass through 
the origin.

Taking into account that (K ∩ L)◦ = conv{K◦, L◦} and K−L
2 ⊂ conv{K, −L}, if we 

change the role of K◦ and L◦ by K and −L for simplicity, then

|K ∩ L||conv{K,−L}| ≤
∣∣∣∣
(
K◦ − L◦

2

)◦∣∣∣∣ |conv{K,−L}| ≤ 2n|K||L|,

showing the assertion and slightly strengthening (4). In order to have equality in (4)
we must have K and L be simplices with 0 in one of the vertices and the same outer 
normal vectors at the facets that pass through the origin and K+L

2 = conv{K, L}. Thus 
K = L is a simplex. Otherwise there exists a direction θ ∈ Sn−1 such that hK(θ) < hL(θ)
(or hL(θ) < hK(θ)). Thus, hK+L

2
(θ) < hL(θ) ≤ hconv{K,L}(θ) (or hK+L

2
(θ) < hK(θ) ≤

hconv{K,L}(θ)).
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