000057934 001__ 57934 000057934 005__ 20200221144225.0 000057934 0247_ $$2doi$$a10.1090/proc/12883 000057934 0248_ $$2sideral$$a97165 000057934 037__ $$aART-2016-97165 000057934 041__ $$aeng 000057934 100__ $$0(orcid)0000-0003-1256-3671$$aAlonso Gutiérrez, David$$uUniversidad de Zaragoza 000057934 245__ $$aProbabilistic estimates for tensor products of random vectors 000057934 260__ $$c2016 000057934 5060_ $$aAccess copy available to the general public$$fUnrestricted 000057934 5203_ $$aWe prove some probabilistic estimates for tensor products of random vectors, generalizing results that were obtained by Gordon, Litvak, Schu ¨tt, and Werner [Ann. Probab., 30(4):1833–1853, 2002], and Prochno and Riemer [Houst. J. Math., 39(4):1301–1311, 2013]. As an application we obtain embeddings of certain matrix spaces into L1. 000057934 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/MTM2013-42105-P 000057934 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000057934 590__ $$a0.679$$b2016 000057934 591__ $$aMATHEMATICS$$b143 / 310 = 0.461$$c2016$$dQ2$$eT2 000057934 591__ $$aMATHEMATICS, APPLIED$$b185 / 255 = 0.725$$c2016$$dQ3$$eT3 000057934 592__ $$a1.175$$b2016 000057934 593__ $$aMathematics (miscellaneous)$$c2016$$dQ1 000057934 593__ $$aApplied Mathematics$$c2016$$dQ1 000057934 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion 000057934 700__ $$aPassenbrunner, Markus 000057934 700__ $$aProchno, Joscha 000057934 7102_ $$12006$$2015$$aUniversidad de Zaragoza$$bDpto. Matemáticas$$cÁrea Análisis Matemático 000057934 773__ $$g144, 5 (2016), 2133-2148$$pProc. Am. Math. Soc.$$tPROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY$$x0002-9939 000057934 8564_ $$s225712$$uhttps://zaguan.unizar.es/record/57934/files/texto_completo.pdf$$yPreprint 000057934 8564_ $$s60363$$uhttps://zaguan.unizar.es/record/57934/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint 000057934 909CO $$ooai:zaguan.unizar.es:57934$$particulos$$pdriver 000057934 951__ $$a2020-02-21-13:17:20 000057934 980__ $$aARTICLE