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ON THE GAUSSIAN BEHAVIOR OF MARGINALS AND THE

MEAN WIDTH OF RANDOM POLYTOPES

DAVID ALONSO-GUTIÉRREZ AND JOSCHA PROCHNO

Abstract. We show that the expected value of the mean width of a random

polytope generated byN random vectors (n ≤ N ≤ e

√

n) uniformly distributed
in an isotropic convex body in R

n is of the order
√
logNLK . This completes

a result of Dafnis, Giannopoulos and Tsolomitis. We also prove some results
in connection with the 1-dimensional marginals of the uniform probability

measure on an isotropic convex body, extending the interval in which the
average of the distribution functions of those marginals behaves in a sub- or
supergaussian way.

1. Introduction

In asymptotic convex geometry, the hyperplane conjecture is a very well known
problem that first appeared explicitly in [8]. This conjecture says that there exists
an absolute constant c such that every convex body of volume 1 has a hyperplane
section of volume greater than c. A result by Hensley [13] yields an equivalent
formulation, saying that there exists an absolute constant c such that every convex
body has isotropic constant LK less than c.

The study of random polytopes began with Sylvester and the famous four-point
problem nearly 150 years ago. Since then, a tremendous effort has been made to
study expectations, variances, and distributions of several functionals on a random
polytope. This turned out to be very useful and many applications have been found
(see [3], [29] and references therein). Random polytopes also provided counterex-
amples to several conjectures (see, for instance, [12], [31] or [20]).

In 1989, Milman and Pajor [19] showed a deep connection between the hyper-
plane conjecture and the study of random polytopes, proving that the expected
volume of a random simplex in an isotropic convex body is closely related to the
value of its isotropic constant.

In [10], the authors studied the expected value of the quermaßintegrals of a ran-
dom polytope generated by N random vectors uniformly distributed in an isotropic
convex body in R

n. They showed that if n ≤ N ≤ e
√
n the expected value of the

smallest quermaßintegral, which is the volume radius, is greater than c
√

log N
n
LK

and the expected value of the biggest one, which is the mean width, is smaller
than C

√
logNLK . This yields a sharp estimate for the expected value of any quer-

maßintegral when n2 ≤ N ≤ e
√
n, but leaves a gap for the range n ≤ N ≤ n2. Our
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first purpose is to fill this gap for the expected value of the mean width. Denot-
ing by a ∼ b the fact that there exist positive absolute constants c, C such that
ca ≤ b ≤ Ca, in Section 3 we will prove the following:

Theorem 1.1. Let K ⊆ R
n be a symmetric isotropic convex body and n ≤ N ≤

e
√
n. Let KN = conv{±X1, . . . ,±XN} be a random polytope, where X1, . . . , XN

are independent random vectors uniformly distributed in K. Then,

Ew(KN ) ∼
√

logNLK .

This estimate in the range n ≤ N ≤ n2 will be a consequence of the central limit
theorem for convex bodies proved by Klartag [16] and the results proved by Sodin
[30]. The central limit theorem for convex bodies was first considered in [2] and says
that most of the 1-dimensional marginals 〈X, θ〉 of a random variable X uniformly
distributed in an isotropic convex body K are, in a certain sense, approximately
Gaussian. To be more precise, Klartag showed that the distribution function Fθ(t)
of most of these marginals is “almost” Gaussian whenever |t| is smaller than some
power of n. It turns out that the Gaussian behavior for a particular value of t in
this range will be enough to prove Theorem 1.1.

Along these lines a great deal of research was devoted in connection with the
marginals of the uniform probability measure on an isotropic convex body and im-
portant results were obtained. For instance, in [9] Bourgain verified the hyperplane
conjecture for the class of ψ2 bodies, i.e., the class of convex bodies such that every
direction (or 1-dimensional marginal) is subgaussian. Given an isotropic convex
body K, we say that a direction θ ∈ Sn−1 is subgaussian with constant r > 0 if

|{x ∈ K : |〈x, θ〉| ≥ tLK}| ≤ e−
t2

r2

for all 1 ≤ t ≤ r
√
n.

In this setting, the following question was posed by Milman: is it true that
every convex body has at least one subgaussian direction? This question has been
answered in the affirmative for the class of 1-unconditional convex bodies [7], for the
class of zonoids [23], and for the class of isotropic convex bodies with small diameter
[24]. (In fact, it was shown that the measure of subgaussian directions is greater

than 1− e−
√
n for this last class of convex bodies) In [15], Klartag established the

existence of a subgaussian direction up to a logarithmic factor in the dimension.
See also [11].

In [27], Pivovarov considered the dual question of finding supergaussian direc-
tions. We say that a direction θ ∈ Sn−1 is supergaussian with constant r > 0 if for

all 1 ≤ t ≤
√
n

r
we have

|{x ∈ K : |〈x, θ〉| ≥ tLK}| ≥ e−r2t2 .

He gave an affirmative answer up to a logarithmic factor for the class of 1-unconditional
convex bodies.

In [25], Paouris showed that every isotropic convex body with bounded isotropic
constant has “many” supergaussian directions. This includes several classes of
convex bodies such as 1-unconditional convex bodies, zonoids, duals of zonoids,
and the unit balls of the Schatten classes. He also proved that if for every isotropic
convex body a random direction is supergaussian with high probability, then the
hyperplane conjecture is true.
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Going in the same direction, Klartag proved in [14] that every non-degenerate
n-dimensional measure has one direction that behaves in a “supergaussian way” for
t in the interval 1 ≤ t ≤ c(log n)

1
4 . As a consequence of the aforementioned central

limit theorem this interval was extended to 1 ≤ t ≤ nκ for some constant κ (see
[30]).

The approach used to prove the central limit theorem, as well as some previous
weaker results (see [2], [5] or [30]), involved the study of the average of the distri-
bution functions of the 1-dimensional marginals together with a concentration of
measure phenomenon. More precisely, Sodin proved that if the Euclidean norm ver-
ifies a concentration hypothesis, then the average of the distribution function of the
1-dimensional marginals of an isotropic random vector is approximately Gaussian
for |t| ≤ nκ for some absolute constant κ, which is smaller than 1

4 (due to “spherical
approximation”). A similar result was obtained for k-dimensional marginals in [4].
In [16], the concentration hypothesis was shown to be true for every convex body.

In [1], a new approach to study the expected value of the support function
of a random polytope generated by N vertices in an isotropic convex body was
introduced. Using this approach, we will prove in Section 4 that a supergaussian
estimate for the average of the distribution function of the 1-dimensional marginals
of the uniform probability measure on an isotropic body holds for the whole range

1 ≤ t ≤
√
n

c
, and not only if t ≤ nκ. Namely, if we define

F (t) =

∫

Sn−1

|{x ∈ K : |〈x, θ〉| ≥ tLK}| dσ(θ),

where dσ denotes the uniform probability measure on Sn−1, we have the following:

Theorem 1.2. There exists an absolute constant c such that for every symmetric

isotropic convex body K ⊆ R
n and every 1 ≤ t ≤

√
n

c
we have

F (t) ≥ e−c2t2 .

Using the same idea, in Section 5 we will also show a subgaussian estimate for
the average distribution function. However, in this case the estimate does not cover
the whole range 1 ≤ t ≤ c

√
n except for convex bodies with small diameter, i.e.,

R(K) ≤ C
√
nLK .

Theorem 1.3. There exists an absolute constant c such that for every symmetric

isotropic convex body K ⊆ R
n and any 1 ≤ t ≤ n

1
4

F (t) ≤ e−c2t2 .

Furthermore, if K has small diameter then this estimate is true for 1 ≤ t ≤ C
√
n.

As a consequence, we will find an interval in which a random direction θ ∈ Sn−1

verifies a subgaussian estimate with high probability. A restriction of the interval
leads to better estimates for the measure of set of “subgaussian directions” in the
case of convex bodies with small diameter.

2. Preliminaries and Notation

Before we go into more detail we start with some basic definitions. A convex body
K ⊂ R

n is a compact convex set with non-empty interior. It is called symmetric
if −x ∈ K, whenever x ∈ K. We will denote its volume (or Lebesgue measure) by
| · |. The volume of the Euclidean unit ball Bn

2 will be denoted by wn = |Bn
2 |. We
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write Sn−1 = {x ∈ R
n : ‖x‖2 = 1} for the standard Euclidean sphere in R

n and dσ
for the uniform probability measure on Sn−1. A convex body is said to be isotropic
if it has volume 1 and satisfies the following two conditions:

•
∫

K
x dx = 0 (center of mass at 0),

•
∫

K
〈x, θ〉2 dx = L2

K ∀θ ∈ Sn−1,

where LK is a constant independent of θ, which is called the isotropic constant of
K. Here, 〈·, ·〉 denotes the standard scalar product in R

n.
A probability measure µ on R

n is said to be isotropic if it is centered at 0 and
its covariance matrix is the identity. Notice that a convex body is isotropic if and
only if the uniform probability measure on K

LK
is isotropic.

Let K be a convex body and θ ∈ Sn−1 a unit vector. The support function of
K in the direction θ is defined by hK(θ) = max{〈x, θ〉 : x ∈ K}. The mean width
of K is

w(K) =

∫

Sn−1

hK(θ) dσ(θ).

Given a symmetric isotropic convex bodyK, we denote byKN = conv{±X1, . . . ,±XN}
the random polytope, whereX1, . . . , XN are independent random vectors uniformly
distributed in K.

In the sequel, if µ is an isotropic probability measure on R
n, fθ will denote the

density of the random variable 〈X, θ〉 with X distributed according to µ. γ will
denote the density of a standard Gaussian, i.e.,

γ(t) =
1√
2π
e−

t2

2 .

The following lemma is very well known

Lemma 2.1. For every t ≥ 1

γ(t)

2t
≤
∫ ∞

t

γ(s) ds ≤ 2γ(t)

t
.

The letters c, c′, C, C′, c1, c2, . . . will denote positive absolute constants, whose
value may change from line to line.

Now, let us mention the central limit theorem in the form we will use it to prove
Theorem 1.1 in Section 3.

Klartag’s central limit theorem for isotropic measures, combined with an argu-
ment by Sodin [30] gives the following:

Theorem 2.2 ([16], Theorem 1.4). Let n ≥ 1 be an integer and let X be a random
vector in R

n with an isotropic, log-concave density. Then there exists Θ ⊆ Sn−1

with σn−1(Θ) ≥ 1−Ce−
√
n such that for all θ ∈ Θ, the real valued random variable

〈X, θ〉 has a density fθ : Rn → [0,∞) with the following properties:

(1)
∫∞
−∞ |fθ(t)− γ(t)| dt ≤ 1

nκ ,

(2) For all |t| ≤ nκ we have
∣

∣

∣

fθ(t)
γ(t) − 1

∣

∣

∣
≤ 1

nκ .

Here, C, κ > 0 are universal constants.

In the case of symmetric X , those results give κ = 1
24 , obtaining that there exists

Θ ⊆ Sn−1 with σn−1(Θ) ≥ 1− Ce−
√
n such that for any θ ∈ Θ,

(2.1)

∣

∣

∣

∣

fθ(t)

γ(t)
− 1

∣

∣

∣

∣

≤ C′

n
1
24

,
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whenever |t| < cn
1
24 .

Let us also introduce some notation and results we will need to prove the esti-
mates for the average of the distribution functions of the 1-dimensional marginals.

A convex function M : [0,∞) → [0,∞) with M(0) = 0 and M(t) > 0 for t > 0
is called an Orlicz function (see for instance [18] or [28]).

Let X be a random vector in R
n. For every θ ∈ Sn−1 we define an Orlicz function

Mθ by

Mθ(t) =

∫ s

0

∫

{ 1
t
≤|〈X,θ〉|}

|〈X, θ〉| dP dt.

This Orlicz function was used in [1] to study the expected value of the support
function of a random polytope in the direction θ since if Mθ is the Orlicz function
associated to a random vector uniformly distributed on an isotropic body K and
KN is a random polytope on K then we have (see [1], Corollary 2.2 )

EhKN
(θ) ∼ inf

{

s > 0 : Mθ

(

1

s

)

≤ 1

N

}

.

The following proposition was obtained:

Proposition 2.3 ([1], Proposition 4.3). Let K be a symmetric convex body in R
n

of volume 1. Let s > 0, θ ∈ Sn−1 and Mθ be the Orlicz function associated to the
random variable 〈X, θ〉, where X is uniformly distributed in K. Then,

(2.2)

∫

Sn−1

Mθ

(

1

s

)

dµ(θ) =

∫

K

M〈θ,e1〉

(‖x‖2
s

)

dx,

where M〈θ,e1〉 is the Orlicz function associated to the random variable 〈θ, e1〉 with

θ uniformly distributed on Sn−1. For any s ≤ ‖x‖2

(2.3) M〈θ,e1〉

(‖x‖2
s

)

=
2wn−1

nwn

∫ cos−1( s
‖x‖2

)

0

sinn y

cos2 y
dy,

and 0 otherwise.

With this representation the existence of some directions for which EhKN
(θ) ≥

C
√
logNLK holds was established. Using this very same approach we are going to

prove Theorem 1.2 and Theorem 1.3 in Section 4.

3. Expected value of the mean width of a random polytope

In this section we are going to prove Theorem 1.1. It is a direct consequence of
the following Theorem, which will fill the gap left by the results already proved in
[10].

Theorem 3.1. Let K be a symmetric isotropic convex body and KN a random
polytope in K, with n ≤ N ≤ nδ. There exist absolute constants c, C and a set
Θ ⊆ Sn−1 with σ(Θ) ≥ 1− Ce−

√
n such that for every θ ∈ Θ

EhKN
(θ) ≥ c√

δ

√

logNLK .
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Proof. First of all, notice that for every θ ∈ Sn−1

Mθ

(

1

s

)

=

∫ 1
s

0

∫

K∩{|〈x,θ〉|≥ 1
t
}
|〈x, θ〉| dx dt

≥
∫ 1

s

1
2s

1

t
|{x ∈ K : |〈x, θ〉| ≥ 1

t
}| dt

≥
(

1

s
− 1

2s

)

s|{x ∈ K : |〈x, θ〉| ≥ 2s}|

=
1

2
|{x ∈ K : |〈x, θ〉| ≥ 2s}|.

Thus, if s0 = t0LK such that Mθ

(

1
s0

)

= 1
N

we have that

2

N
≥ |{x ∈ K : |〈x, θ〉| ≥ 2t0LK}| = P{|〈Y, θ〉| ≥ 2t0},

where Y is a random variable distributed uniformly on K
LK

. Thus, if for some t

we have P{|〈Y, θ〉| ≥ t} > 2
N
, then, t0 ≥ t

2 . From (2.1) we have that if Y is a
log-concave isotropic (covariance matrix equals the identity) random vector in R

n,

then there exists a subset Θ ⊆ Sn−1 with measure greater than 1 − Ce−
√
n such

that for any θ ∈ Θ
∣

∣

∣

∣

fθ(t)

γ(t)
− 1

∣

∣

∣

∣

≤ C′

n
1
24

when |t| ≤ cn
1
24 .

Applying this result to the uniform probability measure on K
LK

we have that there

exists Θ ⊆ Sn−1 with measure greater than 1 − Ce−
√
n such that for any θ ∈ Θ

and ant 0 ≤ t ≤ cn
1
24 we have, using Lemma 2.1

P{|〈Y, θ〉| < t} ≤
(

1 +
C′

n
1
24

)(

1− 2

∫ ∞

t

γ(s) ds

)

≤
(

1 +
C′

n
1
24

)(

1− γ(t)

t

)

,

and so

P{|〈Y, θ〉| ≥ t} ≥ 1−
(

1 +
C′

n
1
24

)(

1− γ(t)

t

)

.

Taking t = α
√
logN we have that t ≤ cn

1
24 , since N ≤ nδ. Thus

P{|〈Y, θ〉| ≥ α
√

logN} ≥ e−
α2

2 logN

√
2πα

√
logN

− C′

n
1
24

(

1− e−
α2

2 logN

√
2πα

√
logN

)

≥ 1
√
2παN

α2

2

√
logN

− C′

n
1
24

≥ 1
√
2παN

α2

2

√
logN

− C′

N
1

24δ

>
2

N

whenever N ≥ N0 if we take α2 = 1
24δ . Thus, for every θ ∈ Θ,

EhKN
(θ) ∼ s0 >

1

2
√
24δ

√

logNLK .

�
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Remark 3.2. In a similar way, using the central limit theorem, one can show that
if n ≤ N ≤ nδ with very high probability hKN

(θ) ≥ c√
δ

√
logNLK for every θ ∈ Θ.

However, we decided to include this weaker result instead since it is enough for our
purpose and the proof of Theorems 1.2 and 1.3 follow the same idea.

4. Supergaussian Estimates

In this section we use the technique introduced in [1] to prove Theorem 1.2,
extending the interval in which the average of the distribution function behaves in
supergaussian way.

Proof of Theorem 1.2. First of all, notice that for any s > 0 and any isotropic
convex body K we have

∫

Sn−1

Mθ

(

1

s

)

dσ(θ) =

∫

Sn−1

∫ 1
s

0

∫

K∩{|〈x,θ〉|≥ 1
t
}
|〈x, θ〉| dx dt dσ(θ)

≤
∫

Sn−1

1

s

∫

K∩{|〈x,θ〉|≥s}
|〈x, θ〉| dx dσ(θ)

≤
∫

Sn−1

1

s
LK |{x ∈ K : |〈x, θ〉| ≥ s}| 12 dσ(θ)

≤ LK

s

(
∫

Sn−1

|{x ∈ K : |〈x, θ〉| ≥ s}| dσ(θ)
)

1
2

.

Thus, taking s = tLK we have that for any t > 0
(
∫

Sn−1

|{x ∈ K : |〈x, θ〉| ≥ tLK}| dσ(θ)
)

1
2

≥ t

∫

Sn−1

Mθ

(

1

tLK

)

dσ(θ).

Using the representation of the average ofMθ as an integral on K (Proposition 2.3)
and the lower bound obtained in the proof of Theorem 4.2 in [1], we obtain that
for every positive t

t

∫

Sn−1

Mθ

(

1

tLK

)

dσ(θ) ≥ t

∫

K\2tLKBn
2

cwn−1

nwn

‖x‖2
tLK

e
−Cnt2L2

K

‖x‖22 dx.

Using the small ball probability estimate from [22], there exists an absolute constant
c1 such that |K\c1

√
nLK | ≥ 1

2 . Thus, if 0 < t ≤ c1
2

√
n

(
∫

Sn−1

|{x ∈ K : |〈x, θ〉| > tLK}| dσ(θ)
)

1
2

≥
∫

K\c1
√
nLKBn

2

cwn−1

nwn

‖x‖2
LK

e
−Cnt2L2

K

‖x‖22 dx

≥ c2e
−Ct2 ≥ e−c3t

2

,

if 1 ≤ t ≤ c1
2

√
n. Thus, taking c = max{ 2

c1
, 2c3} we obtain that for every isotropic

convex body K and every 1 ≤ t ≤
√
n
c

∫

Sn−1

|{x ∈ K : |〈x, θ〉| > tLK}| dσ(θ) ≥ e−ct2 .

�

As a consequence, we obtain the following estimate of the measure of the set of
directions verifying a supergaussian estimate for a particular t. However, oppositely
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to what will happen for a subgaussian estimate, the estimate of the measure of this
set of directions will be very small for big values of t.

Corollary 4.1. There exist absolute constants c, c′ such that for every isotropic

symmetric convex body K ⊆ R
n, and every 1 ≤ t ≤

√
n

c
the set of directions

verifying the supergaussian estimate

|{x ∈ K : |〈x, θ〉| ≥ tLK}| ≥ e−c2t2

has measure greater than e−c′t2 .

Proof. By Theorem 1.2
∫

Sn−1

|{x ∈ K : |〈x, θ〉| < tLK}| dσ(θ) ≤ 1− e−c2t2 .

Thus, by Markov’s inequality, we have

σ
{

θ ∈ Sn−1 : |{x ∈ K : |〈x, θ〉| < tLK}| > 1− e−c′
2
t2
}

≤ 1− e−c2t2

1− e−c′2t2
.

Consequently,

σ
{

θ ∈ Sn−1 : |{x ∈ K : |〈x, θ〉| ≥ tLK}| < e−c′
2
t2
}

≤ 1− e−c2t2

1− e−c′2t2
,

and so

σ
{

θ ∈ Sn−1 : |{x ∈ K : |〈x, θ〉| ≥ tLK}| ≥ e−c′
2
t2
}

≥ 1− 1− e−c2t2

1− e−c′2t2

=
e−c2t2(1− e−(c′2−c2)t2)

1− e−c′2t2
.

Choosing c′2 = 2c2 we obtain the result. �

5. Subgaussian Estimates

In this section we will extend the interval in which the average of the distribu-
tion function verifies a subgaussian estimate. As a consequence we will obtain an
estimate of the measure of the directions verifying a subgaussian estimate in some
interval.

Proof of Theorem 1.3. As we have seen in the proof of Theorem 1.1 for every θ ∈
Sn−1, we have

Mθ

(

1

s

)

≥ 1

2
|{x ∈ K : |〈x, θ〉| ≥ 2s}|.

Thus, using the upper bound shown in [1]

F (t) ≤ 2

∫

Sn−1

Mθ

(

2

tLK

)

dσ(θ) ≤ 4ωn−1

nωntLK

∫

K

|x|e−
(n−1)t2L2

K
2|x|2 dx.

By Paouris’ concentration of measure result, there exist constants such that for
every γ > c1, |K\γ√nLKB

n
2 | ≤ e−c2γ

√
n. Hence,

∫

K

|x|e−
(n−1)t2L2

K
2|x|2 dx =

∫

K∩γ
√
nLKBn

2

|x|e−
(n−1)t2L2

K
2|x|2 dx+

∫

K\γ√nLKBn
2

|x|e−
(n−1)t2L2

K
2|x|2 dx

≤ γ
√
nLKe

− ct2

γ2 + (n+ 1)LK |K\γ
√
nLKB

n
2 |
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≤ γ
√
nLKe

− ct2

γ2 + (n+ 1)LKe
−c2γ

√
n.

Consequently,

F (t) ≤ C

t

(

γe
− ct2

γ2 +
√
ne−c2γ

√
n

)

≤ C

t

(

γe
− ct2

γ2 + e
√
ne−c2γ

√
n

)

≤ C

t

(

γe
− ct2

γ2 + e(1−c2γ)t
2

)

if 1 ≤ t ≤ n
1
4 and γ is a constant big enough. Thus, we obtain that for t in the

aforementioned interval

F (t) ≤ C

t
e−ct2 ≤ e−c′t2 .

Notice that if R(K) ≤ C
√
nLK , then we do not need to split the integral as the

sum of two integrals and we obtain that

F (t) ≤ C

t
e−ct2 ≤ e−c′t2

for every 1 ≤ t ≤ C
√
n. �

As a consequence we will obtain that if we consider an interval t0 ≤ t ≤ n
1
4 with

t0 big, then the measure of the directions that are subgaussian in such interval is
big. It is explicitely stated in the following:

Corollary 5.1. Let K ⊆ R
n be an isotropic symmetric convex body and let 1 ≤

t0 ≤ n
1
4 . Then the set of directions θ ∈ Sn−1 that verify

|{x ∈ K : |〈x, θ〉| ≥ tLK}| ≤ e−c2t2 for every t0 ≤ t ≤ n
1
4

has measure greater than 1− e−c′
2
t20 .

Furthermore, if K has small diameter we can take t0 ≤ C
√
n and t0 ≤ t ≤ C

√
n.

Proof. Applying Markov’s inequality in Theorem 1.3 we have that for every 1 ≤
t ≤ n

1
4

σ
{

θ ∈ Sn−1 : |{x ∈ K : |〈x, θ〉| ≥ tLK

}

≥ e−c′
2
t2} ≤ e−(c2−c′

2)t2 .

Taking c′2 = 1
2c

2 we have that there exists a constant c0 such that for every

1 ≤ t ≤ n
1
4

σ
{

θ ∈ Sn−1 : |{x ∈ K : |〈x, θ〉| ≥ tLK

}

| ≥ e−c0
2t2} ≤ e−c20t

2

.

Take now t0 < t1 < · · · < tI = n
1
4 . Then,

σ
{

θ ∈ Sn−1 : ∃0 ≤ i ≤ I with |{x ∈ K : |〈x, θ〉| ≥ tiLK

}

| ≥ e−c0
2t2i } ≤

I
∑

i=0

e−c20t
2
i .

Taking t2i = t20 + λi, this probability is bounded by e−c20t
2
0 1

1−e
−c2

0
λ
. If for every i we

have that

|{x ∈ K : |〈x, θ〉| ≥ tiLK}| ≤ e−c0
2t2i ,

then for every ti ≤ t ≤ ti+1 we have

|{x ∈ K : |〈x, θ〉| ≥ tLK}| ≤ |{x ∈ K : |〈x, θ〉| ≥ tiLK}| ≤ e−c0
2t2i
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= e−c0
2t2ec0

2(t2−t2i ) ≤ e−c0
2t2ec0

2(t2i+1−t2i )

= e−c0
2t2ec0

2λ.

Choosing λ a constant smaller than 1 we obtain the result.
If K has small diameter the same proof works in the interval t0 ≤ t ≤ C

√
n with

1 ≤ t0 ≤ C
√
n. �
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[3] I. Bárány, Random polytopes, convex bodies, and approximation, Stochastic Geometry, Lec-

ture Notes in Mathematics 1892, 77–118 (2007)
[4] J.Bastero, J.Bernués, Asymptotic behavior of averages of k-dimensional marginals of mea-

sures on R
n. Studia Math. 190 1–31 (2009)

[5] S. Bobkov, On concentration of distributions of random weighted sums. Ann. Probab. 31 no
1, 195–215 (2003).

[6] S. G. Bobkov, F. L. Nazarov, On convex bodies and log-concave probability measures with

unconditional basis, Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics
1807, Springer, Berlin, 53–69 (2003)

[7] S. G. Bobkov, F. L. Nazarov, Large deviations of typical linear functionals on a convex

body with unconditional basis, Stochastic inequalities and applications, Progr. Probab. 56,
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