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Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in

chaotic systems with large regions of positive and negative divergences. Here, we investigate the

mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative

flow. We describe in detail the particular case of boundary crisis related to the generation of

unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the

existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a

chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point.

This behavior is illustrated in the well-known R€ossler model. The numerical analysis of the

system combines different techniques as chaos indicators, the numerical computation of the

bounded regions, and bifurcation analysis. For large values of the parameters, the system is

studied by means of Fenichel’s theory, providing formulas for computing the slow manifold

which influences the evolution of the first stages of the orbit. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4871712]

Unbounded dynamics is a relevant behavior in dynamical

systems as it makes the orbits go far away. This phenom-

enon provides significant information in Hamiltonian sys-

tems, where it has been well studied (related to open

Hamiltonian systems and chaotic scattering problems).

Moreover, unbounded orbits in maps have been observed

in many models, like the logistic and the H�enon map, and

they have been studied both numerically and theoreti-

cally. In dissipative flows, unbounded dynamics appears

mainly when the divergence of the flow is positive in

unbounded regions, but it can be the dominant behavior

or not. Moreover, when there are large regions with posi-

tive and negative divergence, chaotic invariants coexist

with unbounded behavior. Therefore, to study the mecha-

nism that creates this dominant behavior is a necessary

task to improve the understanding of these dynamics.

This goal is obtained by combining several state-of-the-

art numerical methods in the analysis of the R€ossler

model. Our results state that the key point in the transi-

tion to dominant unbounded dynamics is the existence of

a focus (-saddle or -node) equilibrium point with a lead-

ing unstable manifold and a weak two dimensional (due

to the focus) stable or unstable manifold that acts as a

boundary of the escape region to infinity in the phase

space. When the chaotic attractor or saddle of the system

crosses this boundary, the unbounded dynamics becomes

the dominant behavior. The numerical tests support this

hypothesis and besides, they provide information of the

organization of the parametric space in the region with

dominant unbounded motion. The Fenichel’s singular

perturbed theory provides theoretical insights about the

influence of the slow-manifolds in the transient dynamics

and the escape routes to infinity for large values of the

parameters.

I. INTRODUCTION

The existence of unbounded dynamics is an important in-

formation of a system, and to describe the parametric depend-

ence of such behavior is, therefore, a goal in the study of

systems with such kind of dynamics. In Hamiltonian dynamics,

this behavior is related to open nonintegrable Hamiltonian sys-

tems, like in chaotic scattering problems. In such a case, trajec-

tories are launched in the scattering region; and if the system

is open (i.e., there are some exits), some of these trajectories

escape from this region in a direct way or present a transient

chaotic behavior (related to the presence of an invariant, a cha-

otic saddle—a non attracting chaotic invariant set) in the phase

space.1,2 The study of these systems has attracted the last few

years a large number of researchers due to its relevance in

practical applications as in Chemical Reaction Dynamics,

Astrodynamics, Celestial Mechanics, Atomic and Nuclear

Physics, Hydrodynamical processes, and so on (see the review

paper3 for a long list of applications and references).

A key point in the analysis of unbounded dynamics in

dissipative systems is the study of the different crises leading

to transient chaos (see the recent books of Refs. 2 and 4 and

references therein). Most of the studies have been done for

maps,5,6 focusing the attention into the crisis and the transient

chaos phenomena. But the questions if later we have bounded

or unbounded dynamics and why we have one or another kind

of dynamics have not been studied in detail. Thus, one of the

main objectives of this paper is to study the mechanism of
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creating a dominant unbounded dynamics for most of the

phase space in flows. To that goal, we need to do a large num-

ber of numerical simulations, combining different techniques.

A quite useful numerical technique is a fast chaos indicator,

that is, a fast technique to detect chaotic and regular behavior

(combined with a norm control in position variables to detect

unbounded dynamics). In our case, we have used the OFLI2

chaos indicator7,8 (although any good chaos indicator may be

used instead). This method is combined with the numerical

study of the regions with bounded motion and with the study

of bifurcation curves by means of numerical continuation

techniques. All this information permits us to locate the main

escape regions to infinity (regions in the parametric space

where the unbounded dynamics dominates), to explain its

appearance through a type of boundary crisis and to locate the

areas inside these escape regions where some bounded motion

persists. For large values of the parameters of the system, it is

possible to use Fenichel’s singular-perturbation theory to

study the asymptotic behavior, also dominated by the

unbounded dynamics but, for a compact domain, deeply influ-

enced by the slow manifold of the system.

One requirement to have a dominant unbounded dynam-

ics in a nonlinear chaotic flow is to have a positive diver-

gence for some values of the parameters and variables of the

system (in fact, it is necessary to have a positive divergence

in unbounded regions of the phase space). Note that there

may exist unbounded trajectories when the divergence of the

system is negative: the initial volume eventually shrinks

along the target trajectory, but the trajectory goes to infinity

without bounds. But, in the negative case, unbounded orbits

will not occur in large sets in the phase space (only in zero

measure sets), contrary to what happens in the positive diver-

gence case, where the unbounded motion is the normal

behavior. So, for negative divergence values (globally dissi-

pative systems), unbounded behavior is not relevant to the

global dynamics of the system.

We are mainly interested in flows with a phase space

that has regions with positive divergence and regions with

negative divergence for the same values of the parameters.

Therefore, in these systems, we may expect to have coexis-

tence of unbounded and chaotic behavior (transient or not).

Note that this situation occurs when the divergence of the

system depends on some variables.

Within the field of dynamical systems and chaos for low

dimensional systems, the Lorenz and the R€ossler9 models are

two classic chaotic problems that are heavily studied. Both

of them have attracted a large number of studies and they

continue to appear in the literature. The main reasons are

that they are well-known but not completely understood, and

they have become test problems for almost all new analytical

and numerical techniques in computational dynamics. The

Lorenz model is a closed system, that is, there is no

unbounded dynamics as its divergence is negative for any

value of the parameters (when all of them positive) and of

the variables of the system. On the contrary, the sign of the

divergence of the R€ossler model depends on the value of

some variables and parameters of the system. Thus, the

R€ossler model is an example of a flow with low dimensional

chaos and unbounded dynamics. Therefore, we use this

model as our test problem in this paper, but we remark that

most of the results and simulations can be reproduced in

most open dissipative flows.

This paper is organized as follows: Sec. II reviews some

results of unbounded dynamics in maps. Section III studies

regular and chaotic behavior and some bifurcations of the

R€ossler system and their influence in the organization of the

space of parameters in the escape region to infinity. Besides,

the mechanism of creation of the dominant unbounded dy-

namics is analyzed. In Sec. IV, the singular-perturbation

Fenichel’s theory is applied for large values of the parame-

ters to study the asymptotic behavior of the system and its

relation with the unbounded dynamics.

II. UNBOUNDED DYNAMICS IN MAPS

A phenomenon that frequently occurs in systems with a

parametric dependence is related to a sudden change in the

size or existence of chaotic attractors or saddles. This change

is called crisis. This concept was introduced in Refs. 5 and 6,

where also a classification into boundary and interior crises

was done. Boundary crisis is related to the disappearance of

the chaotic attractor, converted, for example, into a nonat-

tracting chaotic invariant set. The effect of this crisis is a

change in the dynamics of the system. A quite common

mechanism that generates this crisis is related to the collision

of the chaotic attractor with an unstable periodic orbit (PO)

or fixed point, or with some of its manifolds.

The main objective of this section is to review the par-

ticular case of boundary crisis in simple maps related to the

creation of a dominant unbounded motion. Note that this cri-

sis has been already observed in literature but without point-

ing it out. To that goal, we just take two well-known maps.

The first one is a one-dimensional quadratic map, related to

the logistic map, given by

xnþ1 ¼ C� x2
n:

This model5,10 has no fixed points for C < �1=4 and all

orbits are unbounded (asymptotic to �1). At C ¼ �1=4 a

saddle-node bifurcation occurs and two fixed points (one sta-

ble and another unstable) are created. Later, the stable fixed

point undergoes a cascade of period-doubling bifurcations to

chaos. At C¼ 2, the chaotic attractor suddenly disappears

and all the orbits are unbounded. In fact, it is changed into a

nonattracting chaotic invariant set, a chaotic saddle, due to

the tangency between the chaotic attractor and the unstable

fixed point2,5 (see Fig. 1). Therefore, following Grebogi, Ott,

and Yorke,5 the system undergoes a boundary crisis.

Moreover, at this value of the parameter C, the boundary cri-

sis creates in this case a dominant unbounded behavior.

The second map is the classical H�enon map given by

xnþ1 ¼ aþ byn � x2
n;

ynþ1 ¼ xn:

This model was introduced by H�enon11 and now it is a well-

known map model. This model exhibits a chaotic attractor

for several values of the parameters. At a ¼ �ð1� bÞ2=4,

the system experiences a saddle-node bifurcation, where two
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fixed points, p0 (stable) and p1 (unstable), are created. Later,

the stable fixed point undergoes a cascade of

period-doubling bifurcations to chaos. A detailed study was

performed in Ref. 12, where it was shown that, for b ¼ 0:3, a

boundary crisis occurs at a � 1:4269212 due to a tangency

between the stable manifold of the fixed point p1 and the

chaotic attractor. In Fig. 2, the invariants of the H�enon map

are shown just before, at, and after the tangency of the cha-

otic attractor and the stable manifold of p1 ðWsðp1ÞÞ. At this

boundary crisis, the chaotic attractor disappears, becomes a

chaotic saddle, and the unbounded motion prevails, which is

the case that we are interested in analyzing in flows.

III. R €OSSLER MODEL: BIFURCATIONS AND
UNBOUNDED DYNAMICS

In Sec. II, we have shown that in maps a particular case

of boundary crisis, where at the same time a chaotic attractor

disappears and the dominant behavior of the system becomes

unbounded dynamics, is quite common. An interesting task

is to see when and why this crisis also occurs in flows, situa-

tion that has not been studied in detail in the literature.

In this section, we analyze the R€ossler model, a well-

known continuous dynamical system with low dimensional

chaos and unbounded dynamics. The main goal here is to

show the mechanism that generates the crisis from which the

unbounded dynamics becomes the dominant one. To do it, we

need to link the parametric space structure of the system (via

bifurcation analysis to locate the key bifurcations) with the

unbounded dynamics and the remaining bounded structures.

The R€ossler equations9 are given by

_x ¼ �ðyþ zÞ;
_y ¼ xþ ay;

_z ¼ bþ zðx� cÞ;
(1)

with a; b; c 2 R, and they are assumed to be positive and

dimensionless. This model has two equilibrium points, P1

and P2, for c2 > 4ab, given by P1 ¼ ð�ap1; p1;�p1Þ and

P2 ¼ ð�ap2; p2;�p2Þ with

p1 :¼ � cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab
p

2a
; p2 :¼ � c�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab
p

2a
:

Clearly, the condition of the existence of the equilibria bE �
b ¼ c2=ð4aÞ gives a surface of fold (saddle-node or tangent)

bifurcations. These equilibria have several bifurcations,16,17

as different curves of Andronov-Hopf bifurcations around P1

and P2. These bifurcations give one mechanism of creation

of limit cycles around equilibria.

FIG. 1. Bifurcation diagram on the plane ðC; xÞ for the one-dimensional

quadratic map.

FIG. 2. Unstable fixed points p0;1, and stable ðWsðp1ÞÞ and unstable manifolds

ðWuðp1ÞÞ of the point p1 of the H�enon map for a ¼ 1:4, a ¼ 1:4269212, and

a ¼ 1:43, all cases with b ¼ 0:3. The black squares denote the tangency points.
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It is well known that for different sets of values of the pa-

rameters, the R€ossler model exhibits a chaotic behavior, while

for others a regular one. Besides, as its divergence is given by

divffðx; y; zÞg ¼ a� cþ x, the R€ossler system is not always

dissipative. Thus, in a large region of parameters (especially

when a grows) and for large values of the variable x, we have a

positive divergence and so unbounded orbits (note that

unbounded orbits may also exist for negative divergence if the

flow could diverge and expand to infinity in one direction while

contracting in the perpendicular direction in such a way that the

flow-divergence is negative). Therefore, apart from regular and

chaotic orbits, the R€ossler system also has unbounded orbits

with a transient (chaotic or regular) behavior. This fact makes a

theoretical and numerical analysis of this problem more difficult.

Hence, a study of the different regions in the parameter

space will give some interesting results. In order to perform

this study, in Refs. 13 and 14, the authors used a combination

of different numerical techniques. To be precise, we used, as

main techniques, the numerical continuation of bifurcation

curves by means of the software AUTO,18 the numerical com-

putation of regions with bounded attractors, and the fast

chaos indicator OFLI2 (Refs. 7 and 8) (although any other

chaos indicator would provide similar information). The

combined use of these techniques permitted us to obtain an

exhaustive numerical study of good quality in an affordable

computational time.

Fig. 3 summarizes the global biparametric structure13–15

for b ¼ 0:2: a codimension-2 Belyakov bifurcation point,19

in the homoclinic bifurcation curve of equilibrium P2, is the

key organizing point (top picture). It is the origin of three

countable sets of subsidiary bifurcation curves:20 the first

one of fold curves of periodic orbits; other set with

period-doubling curves of POs and, finally, a set of

saddle-focus homoclinic orbits. Fold- and cusp-shaped bifur-

cation curves of saddle-node periodic orbits, created at the

Belyakov point, form the skeleton of a spiral structure join-

ing shrimp shaped regular regions in the area with dominant

bounded dynamics (see bottom picture). The study in Ref.

14 signs a universality of this structure in similar systems

with chaotic attractors due to homoclinics of the Shilnikov

saddle-focus14 and a relation with changes in the topology of

the chaotic invariant sets of the system.15 Therefore, these

bifurcation lines and points organize the parametric phase

space inside the region where bounded dynamics is the dom-

inant one. Besides, Andronov-Hopf bifurcations of P1;2 equi-

libria and saddle-node bifurcations of equilibria complete the

diagram, bounding regions with different type of equilibria.

We will come back about this subject later.

Some questions arise from Fig. 3. In the white region

above the saddle-node bifurcation curve, most of the orbits

undergo unbounded motion. However, we can see that the

Belyakov point and the sets of bifurcation curves starting

FIG. 3. Top: generation of structures

from global bifurcations13–15 (HB2

homoclinic bifurcation line of equilib-

rium P2, PD period-doubling bifurca-

tion, LPC limit point cycle

bifurcation—fold bifurcation—,

Hopf-P1;2 Andronov-Hopf bifurcation

of P1;2 equilibria, SN saddle-node

bifurcation of equilibria). Bottom:

magnifications of the global structure

outside the regions with dominant

unbounded dynamics. In all the plots,

white means unbounded behavior, dark

color means bounded regular behavior,

and light color chaotic behavior.
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from it are placed in this region. Then, what influence do

these bifurcation curves of periodic orbits here? Moreover,

the spiral structures shown at bottom picture (and others)

appear quite frequently in the bounded dynamics regions.

But, what structures remain in the unbounded dynamics

region? And what is the origin of the boundary crisis that

separates both behaviors? The next subsections provide

answers to these and other related questions.

A. Dependence on initial conditions

A first point to study is to locate the region with unbounded

dynamics, its boundary and its main structures, if any. To that

goal, just the use of fast chaos indicators is not a good choice as

these indicators do not distinguish unbounded from bounded

motion. A simple and efficient tool is to combine a fast chaos

indicator with the control, over time, of the distance of our orbit

to a specific point. If this distance exceeds a certain threshold,

the motion is considered unbounded and the integration is inter-

rupted. The choice of the specific cutoff value is taken heuristi-

cally for each dynamical system. We will call this combined

use BPD (Biparametric Phase Diagrams), as the procedure is

designed mainly for biparametric plots.

In Fig. 4, we present the BPD diagrams on the ða; cÞ
plane (with b ¼ 0:2) for different values of the initial condi-

tions. Different colors are associated with different behaviors

for initial conditions considered. White color for unbounded

motion; blue color for regular behavior; red and green colors

for chaotic behavior. On the top pictures, we can see that

some small islands of bounded motion appear on different

areas in the region with dominant unbounded motion. This

situation is shown more clearly on magnifications. Note that

a similar picture for just one set of initial conditions was

presented in Ref. 21; but in this paper, we intend to provide

a complete explanation of this phenomenon. These magnifi-

cations show different positions and shapes of the islands

for different initial conditions. In the bottom picture, we

present a mixture of BPD diagrams with different initial

conditions, giving priority to those that experience a

bounded motion. A comparison between this picture and the

top ones shows, mainly for c < 15, that the limit zone which

separates the region with unbounded motion from the

regions with bounded one varies clearly. These coexistences

of different behaviors on the R€ossler system depending on

the initial conditions have not been considered in previous

studies.21

Besides, the local bifurcations curves22 of limit

cycles over the BPD diagram show that the islands appear

around those bifurcations, giving a mechanism for the crea-

tion of these bands. This situation will be analyzed in

Subsection III B.

If we fix the value of the parameters and vary the initial

conditions, we can realize that regions with different behav-

ior exist. In Fig. 5, we fix the parametric values ða; b; cÞ ¼
ð0:504; 0:2; 19:0Þ (red-dotted points on the right-down corner

of magnifications of Fig. 4) and we show the region where

the motion is bounded for different values of the initial coor-

dinate z. It can be seen how the structure of the region

changes with z giving a 3D structure that determines the

basin of attraction of the bounded attractor. These plots show

pictures with two spiral structures with bounded motion.

This dependency on the initial conditions can be shown by

plotting the orbits with different initial conditions. In the bot-

tom pictures of Fig. 5, we provide two different orbits with

the same values of parameters (ða; b; cÞ ¼ ð0:504; 0:2; 19:0Þ)
but with different initial conditions. The beginning of the

orbit is plotted with red color, blue for the middle, and green

for the last part. So, we can see that the first orbit escapes

from any bounded region that we define, and the other orbit

ends up converging to the attractor shown in red in Fig. 6 (it

is in the basin of attraction of the chaotic attractor). Note that

the basin of attraction has a fractal structure; and outside it,

the unbounded dynamics dominates.

FIG. 4. Top: BPD diagrams on the ða; cÞ plane (b ¼ 0:2) for different values

of the initial conditions and magnifications of some structures in the region

with dominant unbounded dynamics. Bottom: bifurcation curves over BPD

diagram.
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In order to visualize better the 3D structure of this basin

of attraction, we show in Fig. 6 the three dimensional region

with bounded motion for the same values of parameters than

Fig. 5. Different colors are used just to distinguish between dif-

ferent sections with different values of z. The chaotic attractor

appears in red. As we can see, the region with bounded motion

goes shrinking when z grows until around z¼ 950, where it

disappears. For negative values of z, part of the region disap-

pears progressively when z decreases. The basin of attraction

of the chaotic attractor is much smaller than the region with

unbounded motion and it is located close to the chaotic attrac-

tor (or stable periodic orbit) of the system. We can conclude

that the basin of attraction is a bounded set with fractal struc-

ture inside the region with unbounded motion.

We have shown in Fig. 5 that, in the region with domi-

nant unbounded dynamics, there are some islands where dif-

ferent behaviors coexist. If we look at the region not

dominated by the unbounded dynamics, we might think that

the same situation happens: Fig. 7 shows BPD diagrams for

two sets of initial conditions, and we observe how both dia-

grams present the same basic structure of regular and chaotic

motion, but they show differences of some “ghost bands”

inside the regular region. In fact, these bands are generated

by the transient dynamics of the orbits. What really we have

is a stable limit cycle that is the attractor of the system inside

the regular bands; but at the same time, the transient dynam-

ics is dominated by the chaotic saddle of the system, what is

shown on the bottom-left picture. On the right picture, we

observe the attractor of the system in the regular band at the

studied point. As we will see in Subsection III B, in the

region with dominant unbounded motion, the transient dy-

namics generates a large orbit that enters in a region of the

phase space that pushes the orbit far away; and therefore,

this generates an unbounded orbit.

We remark that fast chaos indicators are quite useful

techniques for detecting transient behavior due to the short

final time of the simulations; but if we change the initial and

final time, we can easily remove all the transient dynamics.

Moreover, the combination of two or more sets of initial con-

ditions, as we have done in Figure 7, permits us to detect

transient dynamics or coexistence of different behaviors.

B. Dependence on parameters

In Subsection III A, we have located numerically where

the change from bounded to unbounded motion occurs (the

boundary crisis remarked in Fig. 4). In this subsection, we

intend to provide some theoretical insights about this crisis.

As a first study, in Fig. 8, we show a similar BPD plot to

that of Fig. 4, but now we remark the different regions of the

FIG. 5. Regions with bounded motion

(sections of the fractal basin of attraction

of the chaotic attractor) for different val-

ues of the initial condition z (parametric

values ða; b; cÞ ¼ ð0:504; 0:2; 19:0Þ).
Bottom: two orbits with slightly different

initial conditions. Left, unbounded orbit

for initial conditions outside the fractal

basin of the chaotic attractor. Right,

bounded orbit converging to the red cha-

otic attractor in Fig. 6.
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parametric plane in function of the stability of the equilib-

rium points. At the same time, we plot some bifurcation

lines, as the homoclinic bifurcation line of equilibrium P2

and the fold and period-doubling bifurcations around it. In

that parametric plane, there are six different regions, R1-R6.

We observe from Fig. 8 that the crisis is not related to the

local bifurcation lines, but it occurs in a region (R4) where

the equilibrium point related to the creation of the unbounded

dynamics (P1) is an unstable focus-node, what means that the

unstable manifold has dimension 3 with two complex conju-

gate eigenvalues with a real part lower than the positive real

eigenvalue. This implies that the equilibrium has a leading

1D strong-unstable manifold, which, as shown later, will

have a relevant role in the unbounded dynamics. However,

these regions do not give an explanation about the change of

behavior. Therefore, a deeper analysis is necessary.

If we integrate two orbits with the same initial condi-

tions for two slightly different sets of parameter values (the

top black circles in Fig. 8), one on each side of the crisis

curve, we can observe in Fig. 9 how for a while both trajec-

tories behave similarly. However, at a certain point, the tra-

jectory corresponding to the set of parameter values to the

right of the boundary crisis goes far away.

The explanation of why, when, and where the second

trajectory begins to diverge is given in Fig. 10. In this case,

we plot several invariant manifolds of the equilibrium points.

In Ref. 23, it has been established that, for any slow-fast dy-

namical system of low dimension, the location of the point

where the curvature of the flow vanishes provides the analyt-

ical equation of the slow invariant manifold associated with

such dynamical system. So, first we plot the slow-manifold

of the system that generates several surfaces in the phase

space. These surfaces are related to the regions where the

motion is the slowest. But, the most relevant point in this

study is the weak-unstable manifold of the equilibrium P1.

This weak-unstable manifold behaves as a real boundary

between bounded and unbounded dynamics. That is, once a

trajectory crosses outwards this manifold, the orbit is domi-

nated by the leading 1D strong-unstable manifold that points

far away. And, therefore, the orbit becomes an unbounded

orbit. In the case that interests us, the boundary crisis occurs

precisely when the chaotic attractor touches this manifold

and crosses it. At this point, any orbit that follows the chaotic

invariant set (now a chaotic saddle) leaves the transient cha-

otic behavior and it becomes an unbounded orbit. This mech-

anism generates the region with dominant unbounded

motion and the limit in the parametric space is determined

by the tangency among the weak-unstable manifold and the

chaotic attractor. In Fig. 10, we plot, apart from the mani-

folds, the same orbits as in Fig. 9. Now, both behaviors are

justified. Besides, we plot, for the non dominant unbounded

dynamics, an orbit on the left (bounded orbit) and on the

right (unbounded orbit) of the (linear) weak-unstable mani-

fold. That is, for these values of the parameters (before the

crisis), the bounded and unbounded motions coexist, depend-

ing on the initial conditions of the orbit, but the unbounded

dynamics does not dominate in the region to the left of the

weak-unstable manifold. On the contrary, after the crisis, not

only the orbits on the right of the weak-unstable manifold

diverge but also any orbit that follows for some time the

chaotic-saddle. Then, most of the orbits diverge in this situa-

tion; and, therefore, now the unbounded dynamics dominates

in the system.

We remark that in this model (and in general), we can

observe boundary crises that lead to unbounded dynamics

(the one studied in detail in this paper) and to bounded dy-

namics (just changing the character of the attractor). A

remaining question is to study what bounded structures stay

in the dominant unbounded dynamics region. In Subsection

III A, we have seen that, around the period-doubling and fold

bifurcation lines, there are some bands of bounded motion

with a fractal basin of attraction; and outside them, the

unbounded dynamics dominates. In Fig. 11, we show, on the

top, the BPD of two regions in the parametric space, before

and after the boundary crisis studied in this paper. In both

regions, each regular band is originated by a fold bifurcation

curve where two periodic orbits (one stable and the other

unstable) arise. In plots A3 and B3, the stable periodic orbits

in both regions are shown. Later, there is a chain of period-

doubling bifurcations that leads, through a Feigenbaum

period-doubling cascade, to a “thin” chaotic attractor (A2

and B2). The region where this attractor exists is perfectly

FIG. 6. Fractal basin of the chaotic attractor (in red) of the system for

ða; b; cÞ ¼ ð0:504; 0:2; 19:0Þ.
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located (in green in top pictures) by the chaos indicator tech-

nique. This chaotic attractor and the stable periodic orbits

are bounded. Although in the dominant unbounded motion

region, their basin of attraction is fractal, the attractors have

the same structure on both sides of the crisis. The only differ-

ence appears below the interior crisis, where we have a

“thick” chaotic attractor (A1) or unbounded dynamics after a

transient chaos (B1). These changes may be seen in the pic-

tures on the middle, where we show the maximum Lyapunov

exponent (MLE) in two vertical segments.

Therefore, the global structure of the parametric space is

the same all over, the difference appears when the “thin”

FIG. 8. Regions R1-R6 with different type of equilibrium points (for

b ¼ 0:2) and some related bifurcations. The numbers in brackets denote the

dimension of the stable and unstable manifolds of the equilibria P1;2. The

boundary crisis that generates dominant unbounded dynamics occurs in

region R4, where the equilibrium point P1, which organizes the unbounded

dynamics, is an unstable focus-node.

FIG. 7. BPD diagrams using two dif-

ferent initial conditions in the region

before the boundary crisis that creates

dominant unbounded dynamics, and

two orbits with the transient dynamics

for ða; b; cÞ ¼ ð0:3155; 0:2; 26:3Þ.

FIG. 9. Bounded and unbounded behavior for two orbits with the same ini-

tial conditions but slightly different sets of parameter values (before and af-

ter the boundary crisis, respectively).
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attractor experiences a crisis. What really happens in this sit-

uation is that there is a crossing point of two branches, the in-

terior crisis and the boundary crisis. This crossing point is

called double crisis point in literature;24,25 and at that point,

both crisis bifurcations change their nature. In Fig. 12, on the

left, we show a schematic diagram of the change of dynam-

ics.25 In the bottom region (below the horizontal line), from

left to right, the big chaotic attractor experiences a boundary

crisis. However, in the top region, the attractor does not ex-

perience any change in shape or stability. The only change

takes place in the size and shape of the basin of attraction,

which now becomes fractal (we have crossed a basin meta-

morphosis bifurcation), as shown in Subsection III A in

Fig. 6. To the left of the vertical line, if we move from top to

bottom, the chaotic attractor experiences an interior crisis

becoming wider. In contrast, to the right of the vertical line,

the attractor undergoes a boundary crisis. The right picture

of Fig. 12 shows the location of one double crisis point in a

BPD diagram, which includes both behaviors shown in Fig.

11. This picture presents all the changes shown in the sche-

matic diagram.25

Note that the above mechanism can be also applied to the

case of having a saddle-focus equilibrium point with a domi-

nant unstable manifold and a weak stable manifold (focus).

What is important is the existence of the boundary given by

the weak manifold, given by the complex eigenvalues of the

focus, and a dominant unstable manifold that leads to the

unbounded motion (of course it is also necessary to have a

positive divergence in unbounded regions of the phase space).

IV. R €OSSLER MODEL: SLOW MANIFOLDS AND
UNBOUNDED DYNAMICS

In the previous sections, we have studied the unbounded dy-

namics from a numerical point of view. It remains to study which

is the behavior when the different parameters grow. In this situa-

tion, the Fenichel’s theory provides us information about tran-

sient behaviors of the orbits and alternative routes to escape.

First, we briefly review some basic results on singular

perturbation theory (see Refs. 26–28 for theoretical settings

and Refs. 29 and 30 for applications).

Consider an autonomous system written on the form

(slow-fast system on slow-time formulation)

_x ¼ f ðx; y; eÞ ¼ f0ðx; yÞ þ e:::; x 2 D � Rn;

e _y ¼ gðx; y; eÞ ¼ g0ðx; yÞ þ e:::; y 2 G � Rm;
(2)

where e is a small parameter. We assume that f and g, as well

as all their derivatives, are Oð1Þ as e # 0. In this system, x

and y are called the slow and fast variables, respectively. In

the limit case e ¼ 0, the system becomes the DAE system

(reduced slow system)

_x ¼ f ðx; y; 0Þ ¼ f0ðx; yÞ; 0 ¼ gðx; y; 0Þ ¼ g0ðx; yÞ:

The zero set of gðx; y; 0Þ defines a manifoldM0 in phase space,

the so called critical manifold to which the motion of the

reduced slow system is confined. We focus on systems for which

the critical manifold is represented by the graph of a function,

which is defined on a compact domain D � Kx 2 Rn, that is,

M0 ¼ fðx; yÞ 2 Rnþm j y ¼ h0ðxÞ; x 2 Kxg, and which are

normally hyperbolic. A manifoldM is called normally hyper-
bolic if the normal bundle ofM can be split with respect to the

flow generated by the dynamical system in an exponentially sta-

ble one, Ns, and an exponentially unstable one, Nu (that is, it is

hyperbolic) and if Ns and Nu contract and expand more sharply

than the tangent bundle TðMÞ under the flow.

The question of whether28 the slow manifold Me

approximated by M0 persists for e > 0 was answered by

Fenichel.26 Who stated that if M0 is a compact manifold

that is normally hyperbolic, then there exists, for sufficiently

small, positive e, a smooth manifoldMe close toM0.

Now we may state the following result when a " þ1,

c " þ1 or both a; c " þ1 or b; c " þ1 (the Fenichel’s

FIG. 10. Explanation of the origin of the dominant unbounded behavior: the

change in the relative position of the chaotic invariant set and the weak-

unstable manifold.
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theory cannot be applied to the rest of the cases b " þ1 and

a; b " þ1 as in those cases the system does not fit the slow-

fast formulation (2)). Note that we have to restrict ourselves

to work on a compact domain Kx, although the R€ossler sys-

tem may be unbounded, and so the validity of the result is

just on the initial stages of the unbounded behavior.

Theorem. For any sufficiently small e defined as e ¼ a�1,

e ¼ c�1, e ¼ a�1 ¼ ðkcÞ�1 ðk 2 RþÞ or e ¼ b�1 ¼ ðkcÞ�1

ðk 2 RþÞ, there is a function he such that the graph

Me ¼ fðx; yÞ j y ¼ heðxÞ; x 2 Kxg

is locally invariant under the dynamics of the R€ossler equa-
tions (1). The function he admits an asymptotic expansion on
the compact set Kx

heðxÞ ¼ h0ðxÞ þ eh1ðxÞ þ e2h2ðxÞ þ � � � as e # 0;

where the coefficients hi : Kx � Rn ! Rm are found succes-
sively by using the equations

(1) In case e ¼ a�1, the fast variable is y ¼ y and the equa-
tions of the slow manifoldMa

e are given by

h0 ¼ 0; h1 ¼ �x;

hiþ1ðx; zÞ ¼ �z
@hi

@x
þ ðbþ zðx� cÞÞ @hi

@z
�
Xi

j¼0

hj
@hi�j

@x
:

(2) In case e ¼ c�1, the fast variable is y ¼ z and the equa-
tions of the slow manifoldMc

e are given by

FIG. 12. Double crisis point originated

by the intersection of an interior crisis

and a boundary crisis. On the left, an

schematic diagram; and on the right,

an example taken from a specific band

in the R€ossler model.

FIG. 11. Top: BPD of two different

parametric regions, before and after

the studied boundary crisis, respec-

tively. Second row: MLE for two verti-

cal segments. Third and Fourth rows:

Similar trajectories for both regions

except A1 and B1 with bounded and

unbounded behavior, respectively.
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h0 ¼ 0; h1 ¼ b;

hiþ1ðx; yÞ ¼ xhi þ y
@hi

@x
� ðxþ ayÞ @hi

@y
þ
Xi

j¼0

hj
@hi�j

@x
:

(3) In case e ¼ b�1 ¼ ðkcÞ�1, the fast variable is y ¼ z and
the equations of the slow manifoldMbc

e are given by

h0 ¼ k;

hiþ1ðx; yÞ ¼ xhi þ y
@hi

@x
� ðxþ ayÞ @hi

@y
þ
Xi

j¼0

hj
@hi�j

@x
:

(4) In case e ¼ a�1 ¼ ðkcÞ�1, the fast variables are y ¼ ðy; zÞ
and the equations of the slow manifoldMac

e are given by

hy
0 ¼ 0; hy

1ðxÞ ¼ �
x

k
;

hy
iþ1ðxÞ ¼ �

1

k

Xi

j¼0

ðhy
j þ hz

j Þ
dhy

i�j

dx
;

hz
0 ¼ 0; hz

1 ¼ b;

hz
iþ1ðxÞ ¼ x hz

i þ
Xi

j¼0

ðhy
j þ hz

j Þ
dhz

i�j

dx
:

Furthermore, he 2 Cr for any finite r, and it is attracting
in cases e ¼ c�1 and e ¼ b�1 ¼ ðkcÞ�1 ðk 2 RþÞ; repul-
sive in case e ¼ a�1 and it has attractive and repulsive
directions in case e ¼ a�1 ¼ ðkcÞ�1 ðk 2 RþÞ.

Proof. The theorem is based on Fenichel’s theory.27 We just

have to prove the basic requirements of the theory, that is,

that the critical manifold is normally hyperbolic. As in the

four cases, the analysis is quite similar, we just detail the

case e ¼ a�1 ¼ ðkcÞ�1 ðk 2 RþÞ. Now, the slow-time system
is given by

_x ¼ �ðyþ zÞ; e _y ¼ exþ ky; e _z ¼ ebþ exz� z:

So, M0 ¼ fðx; y; zÞ j y ¼ 0; z ¼ 0g, the fast variables are

y ¼ ðy; zÞ, and

gyðx; h0; 0Þ � @ðexþ ky; ebþ exz� zÞ
@ðy; zÞ

����
M0

¼ k 0

0 �1

� �
:

Therefore, <fSpðgyðx; h0; 0ÞÞg ¼ f�1; kg (with < Sp the

real part of the spectrum) and the normal bundle has one

dimensional exponentially stable and unstable parts. So, the

manifoldM0 is normally hyperbolic but it has attractive and

repulsive directions. Now, from the Fenichel’s theorems,

there is a function he such that its graph on the compact set

Kx defines the slow manifold Mac
e . The function he �

ðhy
e ; h

z
eÞ admits an asymptotic expansion

heðxÞ ¼ h0ðxÞ þ eh1ðxÞ þ e2h2ðxÞ þ � � � as e # 0;

where the coefficients hi � ðhy
i ; h

z
i Þ : Kx � R! R2 are

found successively by using the equations of the fast varia-

bles eð _y; _zÞ ¼ ðexþ ky; ebþ exz� zÞ. That is, by substitution

y ¼ hy
eðxÞ and z ¼ hz

eðxÞ, we have the invariance equations

eðDhy
eÞðxÞ ð�hy

eðxÞ � hz
eðxÞÞ ¼ exþ khy

eðxÞ;
eðDhz

eÞðxÞ ð�hy
eðxÞ � hz

eðxÞÞ ¼ ebþ ex hz
eðxÞ � hz

eðxÞ:

Now, by taking coefficients of the same degree on the small

parameter e, we obtain the formula for the terms hy
i ðxÞ and

hz
i ðxÞ. �

Just to give an idea of the equations of the slow manifolds,

we give explicit expressions of them up to third order in e

Ma
e ¼ fðx; y; zÞ j y ¼ �exþ e2zþ e3ðb� xþ zðx� cÞÞÞ
þOðe4Þg;

Mc
e ¼ fðx; y; zÞ j z ¼ bðeþ e2xþ e3ðx2 þ yÞÞ þ Oðe4Þg;

Mbc
e ¼ fðx; y; zÞ j z ¼ kð1þ exþ e2ðyþ kþ x2Þ

þe3ðx3 � ayþ xð1þ 4kþ 3yÞÞÞ þ Oðe4Þg;

Mac
e ¼ ðx; y; zÞ j y ¼ �e

x

k
� e3 1

k2
� x

k
þ b

� �
þOðe4Þ;

�

z ¼ bðeþ e2xþ e3x2Þ þ Oðe4Þ
�
:

Note that the theorem requires that in the case when

both a or b and c tend to infinity, they have a linear relation

a or b ¼ kc, but this is just a technical hypothesis to give an

explicit expression of the slow manifold in such a case. To

use Fenichel’s theorem; and therefore to justify the existence

of the manifold in this case, we just have to impose that both

tend to infinity.

In Fig. 13, we show the evolution of four orbits in cases

c, a, b¼ c or a¼ c large and the corresponding slow mani-

foldsMe. To be precise, the complete set of values of the pa-

rameters are ða; b; cÞ ¼ ð0:4; 1; 1000Þ; (100, 1, 1), (0.4, 1000,

1000), or (100, 1, 100), respectively. The big green dot

shows the initial conditions ðx0; y0; z0Þ and the red square the

final point of the orbit; whereas on grey, we show the attract-

ing manifolds and in pink the non-attracting ones.

In case a " 1, the slow manifold is repulsive and the

orbits go out of the manifold exponentially fast;28 and in

case a ¼ c " 1, the slow manifold has attracting and repul-

sive directions. Note that this behavior is on a compact do-

main Kx and when the variables go away, due to the

unbounded behavior, the theory just gives some indications

FIG. 13. Slow manifolds and an orbit approaching (left) or going far away

(right) from them, when a " þ1, c " þ1 or both a; c " þ1 or b; c " þ1.

024407-11 Barrio, Blesa, and Serrano Chaos 24, 024407 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

155.210.59.210 On: Wed, 07 May 2014 07:29:13



on the way of going out. In any case, this gives us an extra

escaping mechanism, due to the impulse given by the repul-

sive manifolds or directions. This can be seen in the right

pictures of Fig. 13.

In cases c " 1 and b ¼ kc " 1, the slow manifoldMe is

attracting. This fact has a great influence in the transient dy-

namics of the orbits, as they go initially to the attracting slow

manifold, staying close to it during a transient time as shown in

left pictures of Fig. 13. If the orbits cross the two-dimensional

weak unstable (stable) manifold of P1, then they continue the

unbounded dynamics following the leading unstable direction,

as explained in the previous sections. An example of this situa-

tion is presented in Fig. 14, where we show on the left the

same orbit (ðx0; y0; z0Þ ¼ ð1; 1; 10Þ) as in case c large

(ða; b; cÞ ¼ ð0:4; 1; 1000Þ) of Fig. 13, but for longer integration

time, and on the right for a different set of initial conditions

(ðx0; y0; z0Þ ¼ ð10;�70;�1000Þ) (small picture for short inte-

gration time and large picture for longer integration time). Note

that the final dynamics of the orbits follow the leading unstable

manifold of P1 denoted by a red arrow.

From the figures, we observe that the slow manifold

theory has a role in the evolution of the first stages of the

orbit for large values of the parameters, giving the transient

dynamics in the attracting slow manifold or providing fast

escapes in the repulsive case.

V. CONCLUSIONS

We have studied in detail the mechanism that creates

large regions of dominant unbounded dynamics in the well-

known R€ossler model. Unbounded dynamics appears,

mainly, when the divergence of the flow is positive in

unbounded regions in phase space; but in any case, it can be

the dominant behavior or not when there are also large

regions with negative divergence. Therefore, to grasp the

mechanism that creates this dominant behavior is an impor-

tant goal to improve understanding of the dynamics of these

flows. Several numerical tests have been done using several

state-of-the-art numerical methods to study dynamical sys-

tems, as chaos indicators, basins of attraction, and bifurca-

tion analysis. This combined use of several techniques of

different nature provides a complete study.

The bifurcation skeleton of the system provides relevant

information, as around the bifurcation lines small regions of

bounded motion persist. Moreover, the numerical study using

chaos indicators also gives information in the whole paramet-

ric space. We have observed that along the complete paramet-

ric space the global bifurcation curves are maintained. The

difference is that, after the boundary crisis that leads to a dom-

inant unbounded dynamics, there is no more a “thick” chaotic

attractor but a transient chaotic dynamics instead. At the same

time, the basins of attraction of the bounded attractors become

fractal. Besides, double crisis points are located in the inter-

section of this boundary crisis and the interior crises of the

chaotic attractor. For very large values of the parameters, the

R€ossler system has been studied by means of Fenichel’s

theory, providing formulas for computing the slow manifolds

which give information concerning the transient dynamics of

the orbits and giving alternative routes of escape.

Our results in the R€ossler model permit to describe a

particular case of boundary crisis related to the point where

the unbounded dynamics becomes the dominant one in this

system. This crisis occurs in flows with an unstable focus-

node (or a saddle-focus) equilibrium point and a chaotic

invariant set (saddle or attractor) on the system. When the

weak-unstable (or weak-stable) manifold of this equilibrium

point is tangent to the chaotic invariant set, the crisis arises.

These results fit well with previous studies on maps and

flows in the literature, giving a generic framework.
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