000058347 001__ 58347
000058347 005__ 20200221144244.0
000058347 0247_ $$2doi$$a10.1016/j.cej.2015.08.127
000058347 0248_ $$2sideral$$a92828
000058347 037__ $$aART-2016-92828
000058347 041__ $$aeng
000058347 100__ $$0(orcid)0000-0003-3211-0485$$aJulián, I.
000058347 245__ $$aGas permeation effect on the Two-Section Two-Zone Fluidized Bed Membrane Reactor (TS-TZFBMR) fluid dynamics: A CFD simulation study
000058347 260__ $$c2016
000058347 5060_ $$aAccess copy available to the general public$$fUnrestricted
000058347 5203_ $$aTwo-Fluid Model simulations were conducted using the commercial software Ansys CFX and Fluent to study the effect of the gas extraction on the fluid dynamic behavior of a membrane-assisted Two-Section Two-Zone Fluidized Bed Membrane Reactor (TS-TZFBMR). Simulated bubble properties and bed dynamics were analyzed and compared among different membrane reactor configurations, including reactor-wall (RWM) and immersed tubular (ITM) membranes, for their future use in catalytic reactions, e.g., alkane dehydrogenation or methane steam reforming. According to the solids hold-up distribution at different fluidization regimes and permeation fluxes, the ITM configuration is the most suitable to enhance the gas-particle contact and to favor the solids axial mixing for in-situ catalyst regeneration purposes. However, the RWM configuration provides a greater permeation area for selective gas removal and is preferred to enhance purification. It was found that relative permeation fluxes above 20% of the total feed gas have a significant impact on the fluid dynamic regime within the TS-TZFBMR, concerning the appearance of local defluidized regions, gas channeling and solids axial mixing.
000058347 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/CTQ2010-15568$$9info:eu-repo/grantAgreement/ES/MINECO/ENE2013-44350-R
000058347 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000058347 590__ $$a6.216$$b2016
000058347 591__ $$aENGINEERING, ENVIRONMENTAL$$b3 / 49 = 0.061$$c2016$$dQ1$$eT1
000058347 591__ $$aENGINEERING, CHEMICAL$$b6 / 135 = 0.044$$c2016$$dQ1$$eT1
000058347 592__ $$a1.758$$b2016
000058347 593__ $$aChemical Engineering (miscellaneous)$$c2016$$dQ1
000058347 593__ $$aIndustrial and Manufacturing Engineering$$c2016$$dQ1
000058347 593__ $$aEnvironmental Chemistry$$c2016$$dQ1
000058347 593__ $$aChemistry (miscellaneous)$$c2016$$dQ1
000058347 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000058347 700__ $$0(orcid)0000-0003-1940-9597$$aHerguido, J.$$uUniversidad de Zaragoza
000058347 700__ $$0(orcid)0000-0002-2494-102X$$aMenéndez, M.$$uUniversidad de Zaragoza
000058347 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000058347 773__ $$g301 (2016), 201-211$$pChem. eng. j.$$tChemical Engineering Journal$$x1385-8947
000058347 8564_ $$s761141$$uhttps://zaguan.unizar.es/record/58347/files/texto_completo.pdf$$yPostprint
000058347 8564_ $$s100360$$uhttps://zaguan.unizar.es/record/58347/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000058347 909CO $$ooai:zaguan.unizar.es:58347$$particulos$$pdriver
000058347 951__ $$a2020-02-21-13:23:16
000058347 980__ $$aARTICLE