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We study a plethora of chaotic phenomena in the Hindmarsh-Rose neuron model with the use

of several computational techniques including the bifurcation parameter continuation,

spike-quantification, and evaluation of Lyapunov exponents in bi-parameter diagrams. Such an

aggregated approach allows for detecting regions of simple and chaotic dynamics, and demarcating

borderlines—exact bifurcation curves. We demonstrate how the organizing centers—points

corresponding to codimension-two homoclinic bifurcations—along with fold and period-doubling

bifurcation curves structure the biparametric plane, thus forming macro-chaotic regions of onion

bulb shapes and revealing spike-adding cascades that generate micro-chaotic structures due to the

hysteresis. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4882171]

Understanding common dynamical principles underlying

an abundance of widespread brain behaviors is a pivotal

challenge in the new century. The bottom-up approach to

the challenge should be based on solid foundations rely-

ing on detailed and systematic understanding of dynami-

cal functions of its basic components—neurons—modeled

as plausibly within the Hodgkin-Huxley framework as

phenomenologically using mathematical abstractions.

Such one is the Hindmarsh-Rose (HR) model, reproduc-

ing fairly the basic oscillatory activities routinely

observed in isolated biological cells and in neural net-

works. This explains a wide popularity of the HR-model

in modern research in computational neuroscience. A

challenge for the mathematics community is to provide

detailed explanations of fine aspects of the dynamics,

which the model is capable of, including its responses to

perturbations due to network interactions. This is the

main focus of the bifurcation theory exploring quantita-

tive variations and qualitative transformations of a sys-

tem in its parameter space. We will show how generic

homoclinic bifurcations of equilibria and periodic orbits

can imply transformations and transitions between oscil-

latory activity types in this and other bursting models of

neurons of the Hodgkin-Huxley type. The article is

focused specifically on bifurcation scenarios in neuronal

models giving rise to irregular or chaotic spiking and

bursting. The article demonstrates how the combined use

of several state-of-the-art numerical techniques helps us

confine “onion”-like regions in the parameter space, with

macro-chaotic complexes as well as micro-chaotic struc-

tures occurring near spike-adding bifurcations.

I. INTRODUCTION

The wide-range assessment of brain and behaviors is

one of the pivotal challenges of this century. To move further

in understanding how an incredibly sophisticated conglomer-

ate such as the brain per se functions dynamically, at least it

is imperative to know the dynamics of its elements—neurons.

Having the exhaustive knowledge of behaviors of neurons

should help us deepen our understanding the synergy of

cooperative behaviors of populations of neurons—neuronal

networks in this bottom-up approach. Dynamically, neurons

are categorized and characterized by kinds and shapes of

membrane potential oscillations. Waveforms of such oscilla-

tions have been proved to be useful for prediction and identi-

fication of various neurological deceases such as Parkinson

or epilepsy.1

A neuron is often viewed as a dynamical system,2 which

can be coupled into a multi-parametric family of nonlinear or-

dinary differential equations (ODEs) to describe neuronal ac-

tivity in time. As such, the neuronal dynamics and its core

elements such as robustness to perturbations and/or transfor-

mations depending on parameters become the subject of the

bifurcation analysis. As control parameters of the system are

varied, its dynamics undergo formal bifurcations in terms of

the dynamical system theory that match qualitative metamor-

phoses in terms specific to neuroscience. The range of the

non-stationary activity types is broad and includes regular and

irregular tonic spiking, bursting and mixed-mode oscillations

and combinations of them, as well as oscillatory transients to-

ward quiescent states. In terms of the dynamical system

theory, these would correspond to stable periodic and deter-

ministically chaotic orbits in the phase space of the model.

Individual neurons are modeled plausibly within the Hodgkin-

Huxley framework,2 as well as phenomenologically using

mathematical abstractions. The 3D Hindmarsh-Rose model,3
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reproducing fairly the basic oscillatory activities routinely

observed in isolated biological cells and in neural networks, is

such a popular abstraction among mathematicians.

In 1984, Hindmarsh and Rose proposed a 3D extension

_x ¼ y� x3 þ bx2 � zþ I;

_y ¼ 1� 5x2 � y;

_z ¼ e½4ðx� x0Þ � z�;

8><
>:

(1)

of the original tonic-spiking system to model and describe

two-time scale oscillatory activity in bursting neurons. In this

model, the x state variable should be treated as the voltage

across the cell’s membrane, while the y and z variables would

describe kinetics of some ionic currents, respectively, fast and

slow due to a small parameter 0 < e� 1. Therefore, the HR

model is a slow-fast system with the (x, y)-fast subsystem and

single slow equation in z, in which e controls the time scale of

z, while x0 controls the rest potential of the system. Through

the article, we will use the following values for these parame-

ters: x0¼�1.6 and e¼ 0.01 and e¼ 0.001. The other parame-

ters, b and I, will be the primary bifurcation parameters of the

model in this study such that, by varying them, the model

exhibits the whole spectrum of the activity types typical for

endogenous bursters. A bifurcation study of the HR model

sheds a light on qualitative properties of other neuronal sys-

tems of resemblant fast-slow dynamics.4–6

Irregular or chaotic dynamics in neurons7,8 and corre-

sponding slow-fast models occur at transitions between neu-

ronal activities such as spike adding, and between bursting

and tonic spiking, which must be properly interpreted in

terms of the theory of nonlocal bifurcations.5,9,10 The goal of

this article is to outline a general structure of chaotic regions

in the HR and similar neuron models, which was first

described by Linaro et al.,11 with a particular emphasis on a

chain of narrow islands in the parameter plane, where cha-

otic attractors and stable periodic orbits can coexist. The

occurrence of such islands related to spike-adding cascades

is a typical feature of fast-slow systems with bursting dy-

namics. In what follows we will study and differentiate

between two kinds of regions and islands, which are referred

to as “macro” and “micro” chaotic structures, respectively,

throughout the article. The macro structures due to spike

adding cascades are sculpted by saddle-node (SN) (fold) and

period doubling bifurcation curves originating in

codimension-two homoclinic bifurcations. The chain of

macro chaotic regions has a characteristic “onion”-like struc-

ture. An island of the micro chaos features the bi-stability

and hence the hysteresis phenomenon.

This article is arranged as follows: Section II introduces

briefly the numerical methods used in the article. Section III

presents an organization of such large-scale regions and their

generation. In Sec. IV, we investigate small-scale chaotic

islands and coexistence regions. Summary is presented in

Sec. V of the article.

II. NUMERICAL METHODS

An introductory classification scheme of bursting types

in low-order neuronal models relies, in the very first

approximation, on the slow-fast decomposition paradigm,

where slow and fast dynamics in the subsystems do not over-

lay. Its core is a catalogue of codimension-one bifurcations

that initiate or terminate slow motions, or critical manifolds

composed of equilibria and foliated by limit cycles of the

fast, (x, y)-subsystem in the “frozen”—singular limit e¼ 0,

at which the z-variable becomes the swiping parameter. All

such bifurcations in a plane have been known for nearly a

century.12 The dynamics of the combined system singularly

perturbed at small e 6¼ 0 concentrate around normally hyper-

bolic sections of the slow motion manifolds,13–15 which are

made of stable (hyperbolic in general) equilibria and periodic

orbits staying away from bifurcations in the fast subsystem.

Such sections constitute bare bones of most bursting patterns

in slow-fast neuron models. A typical model of a (square-

wave) burster possesses a pair of such manifolds,16,17 respec-

tively: quiescent, Meq, and tonic spiking, Mlc (Fig. 1).

The slow-fast decomposition approach warrants a dras-

tic reduction for dynamics of a singularly perturbed system.

By combining the modulatory slow dynamics with the topol-

ogy of the manifolds in the fast subspace, we are able to

adequately interpret a plethora of dynamical phenomena

observed in individual neurons and their plausible models.

The approach, however, does not provide full explanations

of (global) bifurcations underlying activity transitions in

slow-fast neuronal systems, as the decomposition does not

account for reciprocal interactions between the slow and fast

dynamics that give rise often to complex dynamical phenom-

ena only occurring in the whole system.10,18–20 This article is

aimed to shed a light on an organization of such global bifur-

cations at transitions between regular and chaotic tonic spik-

ing and bursting in the HR model, as well as to analyze the

structure of its parametric space by combining several com-

putational methods.

FIG. 1. (a) Bursting orbit in the 3D phase space of the HR model

(x0¼�1.3, b¼ 3, I¼ 5, and e¼ 0.002) with two slow motion manifolds: 2D

tonic spiking Mlc and 1D quiescent Meq. Plane, z0 ¼ 0, is a slow nullcline.

The number of turns of the bursting orbit around Mlc is that of spikes per

bursts in the voltage trace (b).
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Several recent works4–6,11 were specifically focused on

detailed studies of global bifurcations of tonic spiking and

bursting orbits giving rise to chaotic dynamics in the HR

model. Most computational studies of complex dynamics in

neuron models typically consolidate the numerical continua-

tion21,22 for bifurcations of homoclinic and periodic orbits and

neuroscience-native spike-quantification (SPQ) approaches to

reveal universal structures in parameter spaces.

The SPQ is based on the location of the attracting peri-

odic orbit after a transient time (in our case 103 time units)

and counting the number of spikes of the resulting periodic

orbit. Note that earlier two papers4,6 introduced the concept

of biparametric spike-quantification sweeps to identify and

locate subregions of the occurrence of quiescent states, spik-

ing, and bursting oscillations including chaos. To that goal,

we use a robust and precise numerical method for ODEs: the

free software TIDES,23 that is based in the Taylor series

method.24 This method is quite adaptive and provides dense

output, quite useful for event location used in the detection

of periodic orbits, as it is the case because we obtain the

maxima of the time-series and we search for very close

approaches (distance lower than 10�6). In the numerical inte-

gration, we use the variable-stepsize and variable-order inte-

grator provided by TIDES, by means of an error tolerance of

10�12. The bi-parametric sweeping is done via a regular grid

of 1000� 1000 points in the parameter space using as initial

conditions for each point the final position of the previous

point simulation.

The spike-quantification approach for a neuron model

works well when a bursting solution follows closely the slow

motion manifolds Mlc and Meq of the fast subsystem and

makes pronounced rapid jumps between them, thus defining

the number of spikes per bursts in the voltage traces. Figure

1 illustrates square-wave bursting activity with robust five

spikes for x0¼�1.3, b¼ 3, I¼ 5, and e¼ 0.002 in the HR

model. Indeed, the spike number within a burst is that of the

complete revolutions of the bursting orbit around the spiking

manifold Mlc. One can observe from this figure that the inter-

spike interval increases by the end of each burst: this is a sig-

nature of the square-wave bursting, which indicates the

homoclinic bifurcation terminating the manifold Mlc, when it

touches a saddle point on the middle section of Meq. The

location of this point can be used as a threshold separating

the hyperpolarized and depolarized, stationary or oscillatory

states of a neuron. In the spike-quantification technique, a

fixed number of spikes per bursts is an indication of regular

bursting, while unpredictably varying numbers are associ-

ated with chaotic bursting, which can be further supported

by the computational approach utilizing the evaluations of

the Lyapunov exponents.

The Lyapunov exponents are obtained using the classi-

cal algorithm proposed by Wolf et al.25 The numerical inte-

gration is done again using the software TIDES with a

tolerance 10�12 and output each time unit for using the

Wolf’s algorithm. A transient time of 103 time units is used

and the final simulation time is 104.

Those two sweeping techniques are combined with the

parameter continuation approach, which is bifurcation theory

native, to uncover a fine structure of the bifurcation set of the

HR model. The bifurcation parameter continuation done in

this article is based on classical continuation theory using the

well known free available software AUTO21 for bifurcations

of equilibrium points and periodic orbits. This software per-

mits to locate the curves of codimension-one bifurcations

and the main codimension-two bifurcation points in such a

curve. Later, a detailed study of the influence of these curves

and points gives key information of the system.

III. MACRO-CHAOTIC STRUCTURES

This article addresses the question concerning the global

organization of the bifurcation structures of the parameter

space of the HR model. Earlier two papers4,6 introduced the

concept of biparametric sweeps to identify and locate subre-

gions of the occurrence of quiescent states, spiking, and burst-

ing oscillations including chaos. Figure 2 represents two bi-

parameter sweeps of the model in the (b, I)-plane at e¼ 0.01

and 0.001 that are done with the spike-quantification

approach. The parameter plane is clearly demarcated into

regions corresponding to periodic tonic spiking, chaotic and

regular bursting of the square-wave and plateau-like types.

The obtained maps are color-coded so the spike numbers are

associated with specific colors. The resulting diagram can be

easily read and interpreted: the region shown in a dark blue is

for stable spiking activity which can be treated as bursting

with a single spike. The diagram reveals a global organization

FIG. 2. Two (b, I)-parametric sweeps of the HR model, which is based on

the spike-quantification approach, at (a) e¼ 0.01 and (b) e¼ 0.001. The pa-

rameter plane is clearly demarcated into regions corresponding to periodic

tonic spiking, chaotic and regular bursting of the square-wave and plateau-

like types. Stripes of gradually changing colors correspond to bursting with

incrementally varying numbers of spikes due to a spike adding cascade.

Bursting becomes chaotic near the transitions to tonic spiking in a chain of

“onion”-like regions.
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of spike adding bifurcations occurring on borderlines between

the corresponding stripes in the blue hue, which all correspond

to square-wave bursting on the model. Stripes of gradually

changing colors correspond to bursting with incrementally

varying numbers of spikes due to a spike adding cascade.

Bursting becomes chaotic near the transitions to tonic spiking

in a chain of “onion”-like regions. A sudden change in the

number (colored in an orange hue) of spikes per bursts is asso-

ciated with a transition from the square-wave to plateau-like

bursting that occurs in the top-left corner of the diagram.

While the terminal of the active phase of square wave bursting

is due to a homoclinic bifurcation in the fast subsystem of the

HR-model, that of plateau-like bursting is caused by saddle-

node bifurcation of the depolarized equilibrium state in it after

the spiking manifold Mlc becomes tangent and stops touching

the middle, saddle branch of the quiescent manifold Meq.
5

Decreasing the value of e¼ 0.001, which determines the dy-

namics of the slow z-variable, does not change qualitatively

the structure of the parameter plane but compresses it.

Therefore, for simplicity without loss of generality we con-

sider e¼ 0.01.

The large scale diagram in Fig. 2 for e¼ 0.01 helps us

identify an organization of a multilayer area secluded around

b 2 ½2:5; 3:3� and I 2 ½2:2; 4:5�, which should carry over the

typical structures for all such regions in the “onion”-like

chain. Recently, the first small chaotic region around b¼ 3.2

and I¼ 2.5 has attracted some attention in some experimen-

tal studies.26 In addition, we will get a closer look in regions

bordering transitions from square-wave to plateau bursting,

which is white boxed. The magnifications of the region are

presented in Fig. 3.

Panel (a) in Fig. 3 represents the bi-parametric sweep

using the Lyapunov exponents, k2 � k1. The colormap of the

diagram is designed as follows: the colors, from blue to red

are associated with the increasing value of the first, maxi-

mum Lyapunov exponent, k1 > 0, thus indicating chaotic

dynamics and quantifying the disorder degree. Whenever

k1 ¼ 0 on a periodic orbit within its existence region, we

evaluate the second Lyapunov exponent, k2 that determines

its stability. Negative values of k2 are associated with colors

of grey shades, so that a black means that k2 is close to zero

from the left, which means that the corresponding multiplier

of the periodic orbit is close to þ 1 or �1 and it is about to

undergo a period doubling or a saddle-node bifurcation.27

So, a single black line passing through symmetrically grey

area of the diagram should be interpreted as the stable peri-

odic orbit loosing stability through period doubling bifurca-

tion. In the case of a saddle-node bifurcation, such a black

line is surrounded by adjoin regions of some asymmetric

hue on sides, which would be an indication of bistability in

the system, through which the phase point switches to

another attractor. It is seen clearly from panel (a) in Fig. 3

that the transition from tonic spiking to square-wave burst-

ing must always passes through a strip of chaotic dynamics.

The chaotic region produces a chain of shrinking extensions

following the curves of spike adding cascade. It becomes

evident that such extensions carry over the same properties,

it suffices to figure out the bifurcation overlay in one such a

“bulb.”

Panel (b) in Fig. 3 represents bi-parametric sweep using

the spike-quantification. The linear colormap of the diagram

must be interpreted as follows: blue stands for tonic-spiking,

or single-spike bursting. As the spike number increases, the

color shifts towards the hot side of the spectrum. Circled

numbers indicate the quantities of spikes per burst in the cho-

sen locations in the parameter plane. We can clearly see the

line demarcating transitions from square-wave to plateau

bursting after the spike number jumps at once to 25 and

greater, which are represented by orange-red in the diagram.

The number of spikes fluctuating substantially over the time

and reaching a threshold value for some single parameter

values is associated with a dark red, thus indicating the onset

of chaotic bursting in the model. There is a perfect agree-

ment between both diagrams, Figs. 3(a) and 3(b), both

revealing in detail the complex organization of the parameter

space along with chaotic regions at the tonic-spiking and

bursting transitions, as well as bursting metamorphoses

including spike adding cascades.6

Panel (c) in Fig. 3 represents a spike-quantification

sweep of the HR model at e¼ 0.001. Decreasing e leads

automatically to proportional increases of spikes per regular

FIG. 3. Magnifications of the upper-left (boxed) fragments of the diagrams

in Fig. 2. Panel (a) shows the 1st and 2nd Lyapunov exponents in the color

and gray scales, respectively, for e¼ 0.01. Panel (b) shows the SPQ sweep

of the same region. Panel (c) shows the spike-quantification sweep for

e¼ 0.001. Circled numbers depict spike numbers per bursts in the chosen

locations.
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bursts so that while the biparametric diagram becomes over-

populated and it persists qualitatively similar structures

though considerably condensed.

In conclusion of this section, we recapitulate on the

approaches: sweeps based on the spike-quantification organ-

ically complement the suit of tools for computational exami-

nations of the dynamics and bifurcations in slow-fast

models of neurons. This approach, natural for neuroscience,

allows for both pilot and detailed studies of individual and

networked models of oscillatory cells, detections of princi-

pal bifurcations underlying various intrinsic transformations

(spike-adding) and transitions between activity types such as

quiescence, regular and chaotic tonic-spiking and bursting

of different kinds. While qualitatively the spike-

quantification approach works as effectively as the tools

based on Lyapunov exponents, for swiping bifurcation dia-

grams, the former one is significantly faster and besides

provides quantitative/statistical measurements available as

well.

A. Bifurcation skeleton

In what follows we will augment the sweeping techni-

ques with the parameter continuation approach for the HR

model at e¼ 0.01.11 The results are shown in the two panels

of Fig. 4: the full size diagram (a) and the magnification of

its particular subregion (b). In these figures, the red and yel-

low lines correspond to period-doubling (PD) and SN bifur-

cations, respectively. The homoclinic bifurcation curve is

drawn in the black; it bends into a characteristic U-shape.11

As was said above, the consideration will be focused around

the two largest (chaotic) regions in the chain.

The feature of square-wave bursters is the homoclinic

bifurcation of a saddle. The homoclinic loop of the saddle

FIG. 4. Complex partitions of the pa-

rameter plane of the HR-model at

e¼ 0.01, where the spike-quantification

sweeps are overlaid with the bifurcation

curves that demarcate the borderlines of

the regions of colors ranging from blue

to red and corresponding to spike num-

bers (vertical bar). Curves shown in red

and yellow correspond to PD and SN

bifurcations, respectively; a black line

corresponds to the primary homoclinic

bifurcation, while green dots indicate

codimension-two orbit-flip (OF) points

and magenta ones IF points. The first

period doubling (PD1) of each chaotic

region comes from an OF point with

smaller b values than the OF point gen-

erating the countable pencil of PDs.

Panel (a): brown straight-line, given by

I¼ (1� 0.265b)/0.0691, cuts through

the chain of chaotic regions and it is

studied in detail later. A subarea within

a white box is magnified in panel (b); a

magnification of the small white box is

given in Fig. 10.
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ends up the stable slow-motion manifold, Mlc, in the extended

space of the fast subsystem of the HR model, while the saddle

sets a voltage threshold between tonic spiking and hyperpolar-

ized quiescent in the waveforms (Fig. 1). The dynamical con-

sequences of this plain bifurcation in the full model are no

longer that simple. The reason is that as soon as the static z
becomes a dynamic variable, the saddle changes the leading

unstable direction, which is due to the slow equation (1). This

implies that a separatrix loop at e 6¼ 0 makes an orbit flip and

approaches the saddle not in the (x, y) subspace but along the

middle branch of Meq, see more details in Ref. 5. Such a trans-

formation is called a homoclinic orbit flip bifurcation,9 which

is in general of codimension-two, and hence corresponds to an

isolated point on the homoclinic bifurcation curve in the pa-

rameter plane. A few such identified points are represented by

the green dots, OF, in Fig. 4. Depending on the magnitude of

the characteristic exponents of the saddle, the unfolding of the

orbit-flip bifurcation may vary.9 In either case (Fig. 5), the

loci of the unfolding includes curves corresponding to

saddle-node and period-doubling bifurcations, as well a

duple-pulse (secondary) homoclinic bifurcation (bifurcation

type B28), which is referred to as a homoclinic doubling bifur-

cation nowadays. In other cases, like one under consideration

(type C), it can be more populated by a countable set of such

bifurcation curves for longer, n-pulses homoclinics and

matching periodic orbits.9,28,29 Such an orbit-flip bifurcation

gives rise to the onset of complex dynamics of a finite-shift

type due to a formation of topological Smale horse-shoes in

the return maps. Such dynamics occur near tonic-spiking and

bursting transitions in square-wave bursters.30 We will outline

below how such codimension-2 points can organize globally

the bifurcation set of the HR model.

In the model under consideration, countable sets of sub-

sidiary bifurcation curves are originated in a vicinity of each

orbit-flip bifurcation point of the type C.11 Moreover, all the

period-doubling and saddle-node bifurcation curves end up

at the same (or several nearby) inclination flip (IF) bifurca-

tion point at the top-left area. Due to abundance and density

of such points, it is computationally hard to determine very

accurately the terminals for some bifurcation curves.

Together, they form a “palm” or “onion”-like structure

(Fig. 6). It is seen from Fig. 4 that the formation of a chaotic

region (in dark red) begins with a period doubling cascade

(red curves), and it terminates with the saddle-node

bifurcation (yellow curve) that generates a stable periodic

orbit existing in the stability region (blue) between two suc-

cessive chaotic layers, due to a spike increment.

The very tip of the chaotic region gives rise to the begin-

ning of a line corresponding to the spike-adding in bursting.

We call the chain of such chaotic organizations the macro-
chaotic structure of the HR-model.

Let us examine construction details of these macro-chaotic

structures with the use of a single parameter pathway transver-

sally passing throughout the chain of the chaotic regions. Such

a pathway can be a line segment given by I¼ (1 � 0.265

b)/0.0691, where b 2 ½2:6; 3:2�, which is drawn in a brown in

Fig. 4. The sweeping diagram is presented in panel (a) of Fig.

7 illustrating the progression of the z-coordinates of the inter-

section points of periodic and chaotic attractors of the model

with the Poincar�e surface of section (PSS) fðx; y; zÞjx ¼
0; _x > 0g plotted against the b-parameter. Panel (b) of Fig. 7

demonstrates the dependence of the maximum Lyapunov

FIG. 6. Sketch of an “onion”-like organization unifying chaotic regions by

multiple layers of the same origin, and separating the regions of tonic-

spiking (above) and bursting (below) where it gives rise to spike-adding

cascades.

FIG. 7. (a) Sweeping diagram, showing the PSS z-variable plotted against

the b-parameter of the HR model along the (brown) straight-line

(I¼ (1� 0.265 b)/0.0691) transversally passing throughout the chain of the

chaotic regions in Fig. 4. Shown in green are chaotic attractors; other colors

denote stable/unstable periodic orbits. (b) Ups and downs of the maximum

Lyapunov exponent (MLE) of the attractors plotted against the b-parameter

reveal alternation of chaotic and stability regions. Black dots locate specific

parameter values in the text and in Figures 8 and 9.

FIG. 5. Two unfoldings of homoclinic orbit-flip bifurcation of codimension-

two.9,28 Unfolding of type B contains three primary curves corresponding to

SN and PD bifurcations of periodic orbit and to a homoclinic bifurcation of

a double (secondary) separatrix loop. Unfolding of type C has a complex

locus of curves for bifurcations of various n-pulse homoclinic orbits and PD

and SN bifurcations of matching periodic orbits. The type of the unfolding

depends on the magnitudes of the characteristic exponents of the saddle

equilibrium state.
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exponent on attractors plotted against b. Both diagrams show

alternation between periodic windows and chaotic regions.

Chaotic dynamics occurring within each region is univer-

sally organized: it begins with a period-doubling cascade of

a (n)-spike bursting orbit on one side and ends up by a

saddle-node bifurcation underlying intermittency of type I

transitioning to a stable (nþ 1)-spike bursting orbit on the

other side of the region. As the value of b decreases, bursting

orbits with larger spike numbers will be observed in the sta-

bility windows and so forth. The detailed examination con-

firms that the orbits, being created on one side, continue till

they vanish in reverse period-halving cascades. This sup-

ports the results in Ref. 7 that the organization of macro-

chaotic structures in the Hindmarsh-Rose model is due to a

sequence of forward period-doubling and reverse period-

halving cascades.31

Considered next are chaotic dynamics and their meta-

morphoses on the single-parameter pathway I¼ (1 � 0.265

b)/0.0691 through the chain of chaotic regions in the (b, I)-
plane. Fig. 8 represents a showcase of chaotic attractors for

designated points (black dots in Fig. 7) with positive values

of the maximum Lyapunov exponent. Plotting the attractors

next to each other lets one assess the evolution of their

shapes in qualities of square-wave bursters. The evolution

starts at b¼ 2.626 with chaotic tonic spiking. With increas-

ing b to 2.635, bursting incorporates a large number of spikes

thus increasing its period. Increasing b further makes the

bursting attractor loose spikes. One way to quantify the

shape of a chaotic attractor is to find its bare-bone made of

minimal unstable periodic orbits (UPOs) (all periodic orbits

of low multiplicity); this is a core of UPOs approach.

The numerical algorithm for the search of such periodic

orbits is based on the stability transformation (ST) method

combined with the damped Newton method.32 The ST

method33 was specifically developed to locate unstable peri-

odic orbits in chaotic attractors of discrete dynamical sys-

tems. The approach was generalized for time-continuous

systems through reductions of the original continuous flow

to a Poincar�e return map, and then to detection of the desired

fixed points.34 An advantage of the method is that it let one

investigate less constrained and hence wider basins for loca-

tions of fixed points in question compared to the Newton

method.33

The number of all UPOs for values of b marked in Fig. 7

is summarized in Table I. We present, for each selected

value b (column 1), the number of periodic orbits with m
spikes, up to m¼ 5, inside the corresponding chaotic attrac-

tor (columns 2 to 6). The number of UPOs embedded on the

chaotic attractor and their distribution determines its struc-

ture.35,36 Taking into account the “onion”-like structure of

the set of chaotic layers, chaotic attractors with the same top-

ological structure exist with big and small values of b. For

example, we can see in this table that attractors in the

extremes (b¼ 2.626 and b¼ 3.05) present the same number

of UPOs for each quantity of spikes (up m¼ 5). This fact is

not enough to say that their topological structure is the same,

but it guarantees some similarity in the attractors.37

The chaotic attractors sampled at b¼ 3.05 and 2.69 are

superimposed by their skeletons (formed by the minimal

unstable periodic orbits) in Fig. 9. We can see how the distri-

bution of the orbits along the attractor is very different in

both situations. While for b¼ 2.69, the periodic orbits cover

regions of chaotic attractor with smaller values of z when the

number of spikes, m, increases. As for b¼ 3.05, from m¼ 2,

unstable periodic orbits go over all range of values of z

where the chaotic attractor exists. It should be noted that in

the first case (b¼ 2.69), all orbits pass close to each other.

This makes it more difficult to find them. Actually blue and

black cases in m¼ 4 have been found using only ST method

since the Newton method does not converge even for points

very near to the solution.

TABLE I. UPO quantity with given number, m, of spikes in chaotic attrac-

tors at different value b.

b m¼ 1 m¼ 2 m¼ 3 m¼ 4 m¼ 5

3.05 1 1 0 1 2

2.87 1 1 2 3 6

2.69 1 1 2 3 6

2.635 1 1 2 3 6

2.626 1 1 0 1 2FIG. 8. Evolution showcase of chaotic attractors in the 3D space of the HR-

model for different b-values (black dots in Fig. 7).
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IV. MICRO-CHAOTIC STRUCTURES

In this section, we examine less pronounced regions of

the co-existence of chaotic bursting with stable periodic

orbits. Such regions featuring bistability are proposed to be

termed micro-chaotic structures.

By revisiting Fig. 4, we note that each chaotic layer

starts from the vicinity of an orbit flip bifurcation point. If

we pay attention to panel (b) of the same figure, we can

observe that bifurcation curves related to each layer come

from different OF points in the homoclinic curve. The first

one (PD1) comes from an OF point with smaller b values

than the OF point generating the countable pencil of PDs.

This situation generates that the first period-doubling

bifurcation curve crosses the rest of bifurcation curves of the

chaotic layer. Panel (a) of Fig. 10 displays a magnification of

the region where these crossings occur for the first chaotic

layer. In panel (b), we can see the bifurcation diagram along

the green segment of (a). This diagram shows that two attrac-

tors coexist for values of parameter b higher than the corre-

sponding value for the first period-doubling bifurcation (an

example is plotted in panel (d)). In fact, slightly lower values

also show coexistence of attractors. This is because the fold

bifurcation (yellow dotted) curve is almost touching the first

period-doubling bifurcation and makes one of the attractors

becomes unstable. These two bifurcation curves correspond

to attractor with fewer spikes (in red). During coexistence,

this attractor has a basin of attraction larger than the other,

being the dominant. After the fold, it becomes unstable and

the other attractor dominates the evolution of the system. The

attractor with the largest number of spikes (in black) experien-

ces the rest of bifurcations and becomes chaotic (see panel

(c)). Therefore, the coexistence region contains an island

where a chaotic attractor with a small basin of attraction

exists. This is which we have called a micro-chaotic structure.

Figure 11 documents the case of bistability that is due to

a hysteresis loop. Such hysteresis of coexisting attractors,

occurring in a variety of nonlinear systems is organized by

two saddle-node bifurcations interconnected in a closed

loop. It is seen from the schematic explanation in Fig. 12

that in between two turning points corresponding to saddle-

nodes, the system exhibits bistability of two attractors whose

basins are separated by an unstable threshold. Such attractors

can be as simple equilibria and periodic orbits as a result of a

sequence of bifurcations, like period doubling or spike add-

ing, producing, respectively, chaotic tonic spiking or

bursting.

The HR model can exhibit several types of bistability

that occur in a narrow parameter regions close to the OF

points. A typical bistability is the coexistence of two stable

periodic orbits, one of which with an extra spike, as shown

FIG. 10. (a) Magnification of a vicinity of the primary orbit-flip point in Fig.

4, showing the beginning of a chaotic layer. Green segment is the range of

the bifurcation diagram (b) showing the PSS z-coordinate of attractors plot-

ted against the b-parameter. Panel (c) depicts weakly chaotic bursting result-

ing at b¼ 3.041 through a period doubling cascade. Panel (d) depicts two

stable orbits with two and four spikes coexisting at b¼ 3.0455.
FIG. 9. The collection of unstable periodic orbits with four or less spikes

inside chaotic attractors for two values of the bifurcation parameter. (a)

Pronounced chaotic bursting at b¼ 2.69 with the minimal unstable periodic

orbits generated by the primary homoclinic and subsequence period-

doubling and fold bifurcations. (b) Magnification of the region of the chaotic

attractor where the minimal unstable periodic orbits are located. Comparing

with panel (c) (chaotic attractor and minimal unstable periodic orbits for

b¼ 3.05), we can see that, not only the attractor but also the distribution of

the embedded periodic orbits changes with the increment of the parameter b.
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in Figure 11.6,11 It is predictably observed within a relatively

broad range near every spike-adding bifurcations.

Spike-adding cascades have happened to be endogenous

bifurcation phenomena for various fast-slow systems. For

the HR at I¼ 2.15, panels (b) and (e) of Fig. 11 present the

b-parameter continuation diagram of the PSS of two bursting

orbits with two (in blue) and three (in red) spikes. One can

see from the diagram that the bistability of these orbits is due

to the hysteresis.

Another less common situation is the hysteresis underly-

ing bistability of a periodic orbit and weakly chaotic attractor.

It occurs from a quick period-doubling cascade and hence

looks like a narrow band in panels (a) and (c) of Fig. 11. The

corresponding pathway is taken on the line segment, given by

I¼�25/9(b� 2.92)þ 2.7, that cuts through the spike-adding

region and parallel to the primary homoclinic bifurcation

curve (in black). Closeness of the chaotic attractor to the

threshold saddle orbit (dashed line) explains that out of two,

the stable orbit will dominant in this bistability competitions.

As before, we refer to the existence region of the other

attractor as a micro-chaotic structure. Such micro structures

are located nearby the OF homoclinic bifurcations on the pa-

rameter plane. We remark that in this region of spike-adding

cascades another micro-chaotic behavior (MMBOs) have

been discovered recently38 related with canard phenomena.

The summarizing Fig. 13 discloses schematically the

likely global wiring by the curves corresponding to saddle-

node, period doubling, and homoclinic bifurcations that parti-

tion the (b, I)-parameter plane of the HR-model.11 It singles out

the relative locations of spike addition transitions as well as the

islands of microscopic and macroscopic chaos, which are

caused by and constrained within the unfolding of the orbit-flip

codimension-two bifurcations, which are essential for under-

standing the complex dynamics at a transition between tonic

spiking and bursting in square-wave bursters.5,11

FIG. 12. Schematic explanation of hysteresis loops with two lines involving

a pair of periodic orbits co-existing (a) or one stable periodic orbit and a

micro-scaled chaotic attractor caused by period doubling cascades (b).

FIG. 11. Sketch of infolding structures

near two orbit-flip (OF) homoclinics

including SN, PD, and spike adding

bifurcations. Two consecutive SN

bifurcations set frames for the hystere-

sis loops of coexisting bursting orbits

with 2 and 3 spikes (panels (b) and (e))

on the yellow dashed-segment on

I¼ 2.15, or 3-spike bursting and a cha-

otic attractor (panels (a) and (c)) due to

PD-bifurcations on the pathway

I¼�25/9(b� 2.92)þ 2.7, close to the

homoclinic bifurcation curve (in

black).

FIG. 13. Symbolic wiring of the global organization of the bifurcation dia-

gram underlying regions of microscopic and macroscopic chaos, and spike-

adding transitions. SN, PD, and hom abbreviations stand for saddle-node,

period-doubling, and homoclinic bifurcations, including orbit-flip (OF) and

inclination-flip (IF) points.
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V. SUMMARY

Two-time scale bursting activity has been long modeled

by slow-fast odes. To understand bursting, one has tradition-

ally used the decomposition approach dismantling the sys-

tem to basic components—critical or slow motion manifolds.

The approach has proved to work well for spiking and burst-

ing models unless one is interested in particular bifurcations

and transition between activity types. For square-wave bur-

sters, the key transformations that shape the dynamics are

due to homoclinic bifurcations. The first is a simple homo-

clinic bifurcation that ends up the cylinder-shape manifold

spanned by periodic orbits corresponding to tonic spiking in

neuron models. This homoclinic bifurcation becomes much

less trivial with an addition of slow-dynamics necessary to

describe square-wave bursting. The slow-fast scales make

the bifurcation degenerate and drastically complicate its

unfoldings. A feature of such bifurcations is that they can

cause chaotic dynamics with overlapping complex bifurca-

tion structures including saddle-node and period doubling

bifurcations of periodic orbits. As such, a multilayer passage,

through such structures in the parameter space of the neuron

model, reveals a plethora of dynamical phenomena including

the aforementioned bifurcations of tonic spiking and bursting

orbits, a hierarchy, based on self-similarity of small and large

scale chaotic dynamics, various kinds of bistability of the

periodic and chaotic attractors, spike adding and more. A

comprehensive understanding of such metamorphoses of

homoclinic bifurcations and impending consequences on

overall dynamics in singular perturbed system is yet to

come.

This article is aimed to disclose the main components

assembling the bifurcation structure of the Hindmarsh-Rose

model exhibiting all above dynamic features. Given the

breadth and ranges of non-local bifurcations underlying

transformations of oscillatory activity including chaos

onsets, we rely heavily on computational explorations of the

dynamics of the model. We have proposed and combined

several numerical techniques to uncover and explain the or-

ganization of its bifurcation structure. They include but not

limited to biparametric spike-quantification diagrams,

Lyapunov exponent sweeps, parameter continuation to locate

individual bifurcations of periodic and homoclinic orbits.

With this consolidated approach, we were able to identify

the modulatory bifurcation structure in the chain form of

chaotic islands centered around the codimension-two orbit-

flip homoclinic bifurcations.

At the aftermath of our detailed numerical studies, we

come up with the symbolic representation of the bifurcation

organization that we believe would be typical for models of

square-wave bursters other than the Hindmarsh-Rose model

under considerations. As in most cases of systems with com-

plex chaotic dynamics, it is impossible to embrace all, but

principle elements of constructions of infinite complexity.
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