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ABSTRACT 

The magnetic response of a Kramers doublet is analysed in a general case taking into 

account only the formal properties derived from time reversal operation. It leads to a 

definition of a matrix G (gyromagnetic matrix) whose expression depends on the chosen 

reference frame and on the Kramers conjugate basis used to describe the physical system. It is 

shown that there exists a reference frame and a suitable Kramers conjugate basis that gives a 

diagonal form for the G-matrix with all non-null elements having the same sign. A detailed 

procedure for obtaining this canonical expression of G is presented when the electronic 

structure of the KD is known regardless the level of the used theory. This procedure provides 

a univocal way to compare the theoretical predictions with the experimental results obtained 

from a complete set of magnetic experiments. In this way the problems arising from 

ambiguities in the g-tensor definition are overcome. This procedure is extended to find a spin-

Hamiltonian suitable for describing the magnetic behaviour of a pair of weakly coupled 

Kramers systems in the multispin scheme when the interaction between the two moieties as 

well as the individual Zeeman interaction are small enough as compared with ligand field 

splitting. Explicit relations between the physical interaction and the parameters of such a spin-

Hamiltonian are also obtained. 
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1. INTRODUCTION 

After its introduction by Pryce [PR50] the spin Hamiltonian (SH) has been commonly 

used as a powerful tool for describing electron paramagnetic resonance (EPR) results. The SH 

was initially applied to the study of the paramagnetic behaviour of 3d ions with an orbitally 

non-degenerate ground state. Shortly after, it was extended by Elliott and Stevens [ES51, 

ES52, ES53, EL53] for describing the paramagnetic properties of 4f ions. The introduction of 

the effective Hamiltonian concept by Soliverez [SO69] as an alternative way to time 

independent perturbation techniques gave a formal support to the Pryce SH derivation and a 

formal derivation of the SH in a general case was given in [CA72, DU93]. In the early 

construction by Pryce [PR50] and by Abragam and Pryce [AP51] the physical meaning of the 

different terms in the SH was obvious since the spin of the paramagnetic entity is a good 

quantum number. The SH is written in term of an effective spin that coincide with the 

physical spin of the ground state orbital singlet. However, this simple interpretation is lost in a 

general situation where the SH is a class of effective Hamiltonian written in term of spin 

operators acting on the |S´, M´> states of a fictitious spin, S´, which is suitable to describe the 

behaviour of a set of n states of the actual physical system, well separated in energy from the 

excited states. S´ is determined by 2S´+ 1 = n [RM01]. This situation appears in the SH 

introduced by Elliot and Stevens [ES53, El53] which is written in term of an effective spin 

determined by the degeneration of the low energy crystal field level of a rare-earth. A clear 

discussion about the effective spin and fictitious spin concepts has been recently published by 

Rudovicz et al. [RU87, RK15b]. The connection between the physical Hamiltonian, which 

accounts for the physical interactions that determine the behaviour of the paramagnetic entity, 

and the SH written in term of an effective spin and useful for describing the experimental 

findings is a central question. [RK15b] 

All these issues were already underlined by Low [LO60] who wrote “The spin-

Hamiltonian is used to give a shorthand description of the experimental results. The 

experimentalist determines the parameters in the spin Hamiltonian, g factors, initial splittings 

and hyperfine constants”. Below this, the author wrote “One must then find a model of 

crystals field which corresponds to the spin Hamiltonian and which will explain the observed 

parameters”, giving an added value to the SH as a bridge between the experimental results 

and the microscopical description of the paramagnetic entity. As it was recently pointed out 

by Neese [NE11], this point of view is still a central concept for the interpretation of the SH 

parameters. The computing codes today are more powerful in calculating electronic properties 
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of paramagnetic entities [BO03, KB04, BO06, NE07, NE11, SN12, MG13, SK13, GN13] and 

the experimental techniques have become more sophisticated allowing to obtain more wide 

and precise information about SH parameters [SJ01]. However, the existence of some 

ambiguities in the definition of the SH parameters, which was already noted in the early times 

[GR67, FO67, GM75, RS76, RO88] as well as in recent works [BO06, GN13], is a hurdle for 

the direct comparison between the experimentally derived parameters and the calculated one. 

For instance, the SH description of a Kramers doublet (n = 2) is done by introducing a 

fictitious spin S´= ½. Forgetting any other interaction, this SH only contains a linear term in 

the magnetic field, which accounts for the Zeeman interaction and is characterized by a g-

“tensor” [AB70a] although its tensor behaviour is unclear and some authors prefer to use the 

g-“matrix” term [BO06]. . In this case (a KD) the ambiguities that appear in the SH definition 

are the signs of individual principal values of such a g-“tensor”. However, the sign of its 

determinant, which coincide with the product of the three principal g-values, can be 

determined by a suitable experiment that makes use of circular polarised microwave [AB70b, 

PO83]. This sign has a physical meaning because it gives the precession direction of the 

magnetic moment under a magnetic field [PR59, AB70b]. However, most of the spectrometer 

has not a circular polarised microwave source and the measured spectra only provide the 

absolute value of the principal g-values [PO83]. 

Some examples of Kramers ions whose magnetic properties are currently described by 

using the former approximation are d5-ions in the so called low spin (LS) configuration, 

specially LS-Fe(III) [BB56, GR57, TA77, BO77, RI94, GA98a, GA98b, WA99, BS03, 

WA04, AM07, ZB09], LS-d7, mainly LS-Co(II) [GR58, BM70, BC73, GA75, NK78, AA09, 

GM14] and rare earth-ions with an odd number of 4f electrons. 

In this context several works look for criteria to find a non-ambiguous calculation of 

the sign of the principal values of the g-tensor. For instance, a recent discussion about the 

uniqueness of the g-tensor definition of a Kramers doublet has been presented by Chibotaru et 

al. [CC08, CU12] following a similar approach to that given earlier by McGarvey [GA98b]. It 

was postulated that the g-tensor should reflect the symmetry of the physical system when this 

symmetry is high enough and it was assumed that the g-tensor in a general case should show a 

continuous dependence on any deformation that transforms the actual geometry to a suitable 

high symmetry. Other attempts by Bolvin [BO06] part from the definition of the g-“matrix” 

given in [GM75]. The author imposes that all principal values should be positive and so, the 

experimental possibility of detecting systems with a negative product of the principal values, 
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as actually was reported for a neptunyl ion [PR59], is forgotten. On the other hand, other 

authors refused to calculate these signs as they cannot be experimentally detected. This 

negative position appeared in the seminal work by Gerloch and McMeeking [GM75], where a 

general procedure for calculating the “g-tensor” of a paramagnetic entity without any 

predetermined symmetry condition was given, as well as in recent papers where more 

sophisticated techniques were employed to calculate the “g-tensor” [GN13]. 

Here we address the question by using a different approach. The main goal is to 

determine which magnitudes can be calculated when a magnetic field is applied and which of 

them are independent of the KD representation (the basis used to describe it). These quantities 

will be the only ones that can be measured (observables). This task is undertaken in a general 

case assuming that a basis of wave-functions spanning the KD is known without any previous 

condition; we will only take into account the transformation properties of the wave-functions 

under time reversal, which are consequence of the Kramers nature of the system. 

Consequently the results will be independent on the theoretical level used for calculating 

those wave-functions.  

After a brief review of the formal properties of a KD (section 2) our description is 

presented in section 3. Our formalism allows building a fictitious spin Hamiltonian defined by 

a true g-tensor suitable for describing the magnetic behaviour of the system and precise rules 

are given for a straightforward comparison between the experimental results and the 

calculated values. This formulation does not depend on a particular symmetry of the physical 

system. However, the g-tensor (calculated or experimentally determined) should reflect the 

symmetry of the actual physical system (section 4). With the aim of illustrating our results an 

hypothetical case is thoroughly developed in section 5 and some selected example taken from 

the literature are discussed in section 6. 

On the other hand, the study of molecular structures having a number of interacting 

paramagnetic entities is a field of great interest nowadays. A hot topic is the SH description of 

molecular magnets using either the giant spin approach or the multispin one [MG10a, 

MG10b, MP10, MG13, MC14, RM14, RK15b]. In this context, a search for the description of 

a coupled pair of paramagnetic ions is a useful stating point [AB70c, OH72, KA85, CA86, 

BG90, KA93, BO99]. In the case of weakly interacting Kramers moieties, e. g. a pair of rare 

earth ions with an odd number of 4f electrons, a desired goal will be to obtain an effective 

Hamiltonian acting within the low-lying Kramers doublets and to relate the phenomenological 

parameters of such a SH with more fundamental interactions [PT03. PT10, PT11]. In the last 
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section of this paper we sketch how our results can be extended to find a SH suitable for 

describing the magnetic behaviour of a pair of weakly interacting Kramers systems at 

temperature low enough for only the lowest energy levels were populated. The application of 

the method is illustrated by means a hypothetical example. 

 

2. FORMAL PROPERTIES OF A KRAMERS DOUBLET  

Let us recall briefly some formal properties of a Kramers doublet (KD), based on the 

detailed discussion in [AB70a]. In the following we will denote the time reversal operator as 

T, which for a Kramers systems obeys T2 = -I, where I is the identity. 

i) For any state, Φ, in a KD, TΦ is orthogonal to Φ. Consequently, Φ and TΦ are 

linearly independent and then {Φ, TΦ} is a basis of the KD. It forms a pair of Kramer 

conjugate states, whereas the basis {Φ, TΦ} is a Kramers conjugate basis (KCB). If {Φ1, 

TΦ1} and {Φ2, TΦ2} are two KCB, the unitary transformation U relating them belongs to the 

SU(2) group. Reciprocally, any unitary operation of the SU(2) group transforms any KCB to 

another KCB. 

ii) A linear operator, O, is time-even (time-odd) if TOT-1 = O+ (TOT-1 = -O+), where 

O+ denotes the adjoint operator of O. In particular, if O is an observable (Hermitian or self-

adjoint) then it is time-even (time-odd) if TOT-1 = O (TOT-1 = -O). Note that if O1 and O2 are 

two operators having a definite time parity, the product, O1O2, has no definite time parity 

unless O1 and O2 commute or anticommute. Given a pair of Kramers conjugate states, if O is 

a time-even operator then 〈Φ|O|Φ〉 = 〈TΦ|O|TΦ〉 and 〈Φ|O|TΦ〉 = 0. On the other hand, if O is 

a time-odd operator then 〈Φ|O|Φ〉 = -〈TΦ|O|TΦ〉. 

iii) Let us now consider an observable, O, in a KD. O is time-even if and only if O is a 

scalar operator (a multiple of the identity) and O is time-odd if and only if O is a traceless 

operator (for definition of trace of an operator see [ME64c]). Moreover, any observable, O, 

can be decomposed as a sum of a time-even observable and a time-odd observable and this 

decomposition is unique. Then, the real linear space of the observables in a KD is a direct 

sum of the real subspaces of time-even (scalar) and time-odd (traceless) observables. 

 

3. A KRAMERS DOUBLET UNDER AN APPLIED MAGNETIC FIELD  
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Let be an electronic system in the presence of a magnetic field B


. Its intensity will be 

denoted by B and its direction is given by the unitary vector û where ûBB =


. If the total 

orbital and spin angular momenta are L


 and S


, respectively, the Zeeman contribution to the 

Hamiltonian is given by: 

 ( ) NBSgLBH BeBZe


⋅=+⋅= µµ  (1) 

where µB and ge indicate the Bohr magneton and the free electron gyromagnetic factor, 

respectively, and the vector operator under SO(3), SgLN e


+= , has been introduced. Since 

L


 and S


 are time-odd operator then N


 is likewise. 

Given a reference frame, ς ≡ (x, y, z), (1) is written as: 

 ( )zzyyxxBZe NBNBNBH ++= µ  (2) 

where (Bx, By, Bz) are the components of B


 and (Nx, Ny, Nz) the components of the vector 

operator N


, which are also time-odd traceless Hermitian operators. By introducing the 

column matrix u, whose elements are given by the components of û in the reference frame ς ≡ 

(x, y, z), (2) is expressed as: 

 ( ) ( )NuBNuNuNuBH t
BzzyyxxBZe ⋅=++= µµ  (3) 

where N is a column matrix, whose elements are given by the components of the vector 

operator N


 in the chosen reference frame. 

Let us consider now a KD. When a particular KCB, {Φ, TΦ}, is chosen, the matrix 

expression of each one of the N


 components will take the form: 

 ( )z,y,xk
GiGG

iGGG
N

kzkykx

kykxkz
,k =








−+
−

=Φ 2
1  (4) 

where the ½ factor is introduced for convenience and the Gk,j (k, j = x, y, z) are real numbers. 

In this way, given a particular reference frame, ς ≡ (x, y, z), and a KCB, {Φ, TΦ}, a Gς,Φ 

matrix is built as: 

 


















=Φ

zzzyzx

yzyyyx

xzxyxx

,

GGG

GGG

GGG

Gς  (5) 
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It is important to note that as it depends on the chosen KCB, the Gς,Φ matrix is not, in 

principle, observable. The question now is to know how the Gς,Φ matrix transforms when 

another reference frame or a different KCB are used. 

Firstly, let us fix the KCB and consider any other reference frame, ς´ ≡ (x´, y´, z´), 

related with the previous one by a direct rotation R ∈ SO(3). 

 















⋅=

















′
′
′

z
y
x

R
z
y
x

 (6) 

Then, since N


 is a vector operator under the SO(3) group, its components in both, ς and ς´, 

reference frame are related by 

 















⋅=

















′

′

′

z

y

x

z

y

x

N
N
N

R
N
N
N

 (7) 

and, consequently, for the fixed KCB, {Φ, TΦ}, 

 ΦΦ′ ⋅= ,, GRG ςς  (8) 

On the other hand, given a reference frame, ς ≡ (x, y, z), if {Φ´, TΦ´} is another KCB, 

which is related with the previous one by: 

 







Φ
Φ

⋅=







Φ′
Φ′

T
U

T
*  (9) 

with U ∈ SU(2), then: 

 ( ) ( )+ΦΦΦ′ ⋅=⋅= UGUGG ,
t

,, ωω ςςς  (10) 

where ω stands for the homomorphism from SU(2) onto SO(3) [TI64]. 

Consequently, if both, the reference frame and the KCB are changed according to (6) 

and (9), respectively, then 

 ( ) ( )+ΦΦΦ′′ ⋅⋅=⋅⋅= UGRUGRG ,
t

,, ωω ςςς  (11) 

As both, R and ω(U+), matrices belong to the SO(3) group their determinants are equal 

to one, det(R)= det[ω(U+)] = 1. Then, the determinant of the Gς,Φ-matrix is independent of the 

KCB and the reference frame used. This common value will be denoted by ∆: 
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 ∆ = det(Gς´,Φ´) = det(Gς,Φ) (12) 

Consequently, ∆ is a property of the KD; its sign will be designated by s. s = ∆/|∆| if ∆ ≠ 0 

and, as a convention, we will take s = +1 if ∆ = 0. 

A noticeable consequence of the relation (11) is the existence of some reference frame, 

Σ ≡ (X, Y, Z), and some KCB, {Ψ, TΨ}, such that the GΣ,Ψ matrix is diagonal. 

Let us consider an arbitrary reference frame, ς ≡ (x, y, z), and an arbitrary KCB, {Φ, 

TΦ}, to build the Gς,Φ matrix. Taking into account the singular value decomposition of a 

matrix (see appendix A for details) there exist two matrices P, Q ∈ SO(3) and a diagonal 

matrix Gd = diag(GX, GY, GZ) that verify Gς,Φ = P·Gd·Qt, where Qt is the transpose of Q. 

Equivalently: 

 d,
t GQGP =⋅⋅ Φς  (13) 

The number of non-null diagonal elements in Gd coincides with the rank of the Gς,Φ 

matrix; consequently, it does not depend on the reference frame and on the KCB used. The 

common value of this rank will be denoted hereafter by r. Besides, it can be assumed that r > 

0. If r = 0 then Gς,Φ = 0 and no magnetic response would take place. 

As P ∈ SO(3) a new reference frame, Σ ≡ (X, Y, Z), can defined from the initial one, ς 

≡ (x, y, z), by: 

 















⋅=

















z
y
x

P
Z
Y
X

t  (14) 

and, because ω is a homomorphism from SU(2) onto SO(3), it is possible to find a matrix U0 

∈ SU(2) such as ω(U0) = Qt. Then, a new KCB, {Ψ, TΨ}, can be introduced by: 

 







Φ
Φ

⋅=







Ψ
Ψ

T
U

T
*
0  (15) 

According to (11) GΣ,Ψ is given by: 

 ( ) d,
tt

o,
t

, GQGPUGPG =⋅⋅=⋅⋅= ΦΦΨΣ ςς ω  (16) 

The question now is how to obtain a reference frame and a KCB that give the diagonal 

expression of GΣ,Ψ (16) 
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Firstly, note that from (13) it follows that 

 ( ) ( ) t
d

tt
d

t
d

t
,, PGPQGPQGPGG ⋅⋅=⋅⋅⋅⋅⋅=⋅ ΦΦ

2
ςς  (17) 

Then, t
,, GG ΦΦ ⋅ ςς  is a positive-semidefinite symmetric matrix, which does not depend on the 

chosen KCB. It only depends on the reference frame we use. To stress this point it will be 

designated as t
,, GG ΦΦ ⋅=Γ ςςς . Note that 2

dG=ΓΣ  is diagonal and its eigenvalues, which are 

non-negative, do not depend on the used KCB either. Their positive square roots give the |Gr| 

(r = X, Y, Z) values. It is important to note that GXGYGZ = det(GΣ,Ψ) = det(Gς,Φ) = ∆, and this 

value is independent of the KCB used. Since the sign of det(GΣ), s, is determined, see above, 

only four sets for Gr (r = X, Y, Z) values can be, in principle, derived: (s|GX|, s|GY|, s|GZ|), 

(s|GX|, -s|GY|, -s|GZ|), (-s|GX|, s|GY|, -s|GZ|) and (-s|GX|, -s|GY|, s|GZ|). 

Rewriting (17) as ΓςP = PΓΣ, it is easy to see that the columns of P correspond to the 

coordinates of the principal directions of t
,, GG ΦΦ ⋅=Γ ςςς  in the ς ≡ (x, y, z) reference frame. 

These principal directions coincide with the axes of the Σ ≡ (X, Y, Z) reference frame, which, 

consequently, does not depend on the chosen KCB. However, apart from the existence of 

degeneracies (see below, section 4), there are some ambiguities in the choice of the Σ ≡ (X, Y, 

Z) reference frame, which involve π rotations around any of the X, Y or Z axes; we can use 

instead of Σ ≡ (X, Y, Z) any of the ΣX ≡ (X, -Y, -Z), ΣY ≡ (-X, Y, -Z) or ΣZ ≡ (-X, -Y, Z) reference 

frames. That is equivalent to a substitution of GΣ,Ψ = diag(GX, GY, GZ) in (16) by GΣX,Ψ = 

diag(GX, -GY, -GZ), GΣY,Ψ = diag(-GX, GY, -GZ) or GΣZ,Ψ = diag(-GX, -GY, GZ), respectively. 

The election of the ordering of the axes is an additional ambiguity. To overcome this, 

the condition |GX| ≤ |GY| ≤ |GZ| could be imposed. Since rank(GΣ,Ψ) = r > 0, see above, this 

implies that GZ ≠ 0. This is an arbitrary choice that will be useful for the following discussion. 

However, other choices could be as good as this one and they are preferred in some cases to 

highlight symmetry aspects (see below). 

After determining a reference frame, Σ ≡ (X, Y, Z), that makes Γς diagonal we will 

show how a KCB {Ψ, TΨ} giving a diagonal expression for GΣ,Ψ can be obtained. The 

existence of such a basis is guaranteed by (16). Moreover, we will see that if {Ψ, TΨ} is any 

of those KCB, the pairs of Kramers conjugate functions { }Ψ±Ψ± T, , { }Ψ±Ψ± i,iT , 

{ }ΨΨ± ,T  and { }ΨΨ± iT,i   are also KCB giving a diagonal form for GΣ,Ψ and, if 

rank(GΣ,Ψ) = r > 1, these pairs are the only ones that fulfil this condition. It is easy to check 
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that these different choices of the KCB induce a sign change of two of the values of (GX, GY, 

GZ) keeping the product GXGYGZ = ∆ fixed. 

As NZ is a traceless hermitian operator, there is a pair of Kramers conjugate states,  

{ϕ. Tϕ}, of eigenstates of NZ and the eigenspaces of NZ are non-degenerate (GZ ≠ 0, see 

above). Then, Ψ = eiδϕ and TΨ = e-iδTϕ (or Ψ = e-iδTϕ and TΨ = -eiδϕ) where δ is a real 

number. Now the question is to determine the δ value that produces the pair {Ψ, TΨ}, which 

provides the diagonal form of GΣ,Ψ. 

Writting <ϕ | NY |Tϕ > = -i|<ϕ | NY |Tϕ >|eiδ0 it follows that 

 ( )
YY

i
Y GiTNieTN

2
20 −=−=ΨΨ −± ϕϕδδ  (18) 

where the positive sign in the exponent corresponds to Ψ = eiδϕ and TΨ = e-iδTϕ and the 

negative appears when Ψ = e-iδTϕ and TΨ = -eiδϕ. 

If rank(GΣ,Ψ) = r = 1 then GY = 0 and consequently <ϕ | NY |Tϕ > = 0 for any pair of 

Kramers conjugate eigenstates of NZ. So, any of these pairs provide the desired KCB. On the 

other hand if rank(GΣ,Ψ) = r > 1 then GY ≠ 0 and it is a real number. Consequently, from (18) 

it follows that δ = δ0/2 + kπ/2 with k an integer number. The eight pairs, {eiδϕ, e-iδTϕ} and  

{e-iδTϕ, -eiδϕ} with k = 0, …, 3, of Kramers conjugates states correspond to the eight KCB 

given above. 

In conclusion, there is, at least a reference frame, Σ0 ≡ (X0, Y0, Z0) and a KCB, {Ψ0, 

TΨ0}, with 

 















=ΨΣ

Z

Y

X

,

G
G

G
sG

00
 (19) 

so, GΣ0,Ψ0 is diagonal and all its non-null element have the same sign, namely, the sign of s. 

We will talk about “a canonical description” of the KD when such a choice of the reference 

frame and of the KCB is used.  

Let us summarize the above obtained results. Given a microscopic model of the 

paramagnetic entity, for any calculation method and any initial reference frame used, and 

once a wave-function in the ground KD, Φ, is obtained, the above described procedure can be 

applied. The reference frame Σ0 ≡ (X0, Y0, Z0), determined by the principal directions of 
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t
,, GG ΦΦ ⋅=Γ ςςς . The KCB {Ψ0, TΨ0} is obtained as a function of the initial one {Φ, TΦ}. 

This allows determined the matrix (19) and in such a way the canonical description of the KD 

is provided. We will see below that this result provides a univocal way to compare the 

information coming from paramagnetic resonance experiments with the predictions derived 

from a microscopic model of the paramagnetic Kramers entity when the ground state is a well 

energy isolated KD. 

Before doing this task it would be convenient to introduce some transformations to 

take advantage of the geometrical properties of the operator space as a Hilbert space 

(Liouville space). This is derived after the introduction of a scalar product defined as (A, B) = 

Tr(A+B) for any pair of operators [JE82]. It should be remembered that, with this metric, the 

Pauli matrices are orthogonal with norm equal to 21/2. On the other hand the Pauli matrices 

form a basis of the real linear space of the traceless hermitian 2×2 matrices. With these 

considerations we built a vector operator, hereafter denoted by n


, in such a way that the 

matrix expression of its components in the Σ0(X0, Y0, Z0) reference frame, referred to the KCB 

{Ψ0, TΨ0}, are multiples of the Pauli matrices (by a factor 1/21/2). Then, Tr(n+
pnq) = δpq (p, q 

= X0, Y0, Z0) and, consequently, the same holds for the components of the n


 vector operator in 

an arbitrary reference frame, ς ≡ (x, y, z). So, the components {nj}j=x,y,z are an orthonormal 

basis of the real space of the traceless Hermitian operators acting on the KD, that coincide 

with the time-odd Hermitian operators (see section II). Note that the vector operator n


 acts 

within the physical states of the KD and: 

 ( )0002
Z,Y,XrnGsN rrr ==  (20) 

Then, the components of the N


 vector operator, defined in equation (1), are expressed 

as a function of the n


 components in an arbitrary reference frame. Let P ∈ SO(3) be the 

direct orthogonal matrix that relates a ς ≡ (x, y, z) reference frame with the Σ0(X0, Y0, Z0) one, 

see equation (14). Defining: 

 















=Σ

Z

Y

X

G
G

G

0
γ  (21) 

and taking into account the vector properties of N


 and n


, it follows that: 
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⋅=



















⋅⋅⋅=


















⋅⋅=


















⋅=



















ΣΣ

z

y

x

z

y

x

t

Z

Y

X

Z

Y

X

z

y

x

n

n

n
s

n

n

n

PPs

n

n

n

Ps

N

N

N

P

N

N

N

ςγγγ
222 0

0

0

0

0

0

0

0

 (22) 

with tPP ⋅⋅= Σ0
γγ ς  (23) 

This let us introduce the γ~  tensor, whose matrix expression in any reference frame, ς 

≡ (x, y, z), is given by the previous equation. Note that, despite of the similarities of equations 

(19) and (21) there is a deep difference between GΣ0,Ψ0 (the of the G-matrix expression for the 

particular reference frame and KCB providing a canonical description of the KD) and γΣ0 (the 

matrix expression  of the tensor γ~  in the reference frame Σ0). Then, the following tensor 

relation between the N


 and n


vector operators holds: 

 ng~n~sN

⋅=⋅=

2
1

2
γ  (24) 

where  γ~sg~ =  (25) 

is, a second-rank symmetric tensor under SO(3), the gyromagnetic tensor. Its matrix 

expression in the Σ0 ≡ (X0, Y0, Z0) reference frame is diagonal and it coincides with the 

canonical form of Gd. Therefore, all its diagonal elements have the same sign and it coincides 

with s, the sign of det(G). 

In this way (1) is given by 

 ( ) 





⋅⋅=+⋅= ng~BSgLBH BeBZe



2
1µµ  (26) 

which act on the physical wave functions in the KD. 

As it is formally discussed in Supplementary Information (section S.1) the behaviour 

of the KD under an applied magnetic field, B


, which is described by (26) is reproduced by 

the behaviour of an S =1/2 system described by the Hamiltonian: 

 Sg~BH B
S
Ze


⋅⋅= µ  (27) 

Moreover, any physical prediction on the physical KD coincides with that made on 

this S =1/2 system if the substitution rule  

 Sn


2←→  (28) 
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see (S.2), is applied. Then, equation (27) gives a fictitious spin-Hamiltonian suitable for 

describing the magnetic behaviour of the KD. 

It is known that in the case of an S =1/2 system the EPR spectrum and its angular 

variation (when a single crystal is available) supply information about the g~ -tensor [PF72]. 

As the most of spectrometers has not available a circular polarised microwave source only 

information about the absolute value of the g-tensor principal values and the orientation of its 

principal axes (which define the Σ0 reference frame) respect to the laboratory axes is obtained. 

If the crystal is properly oriented this information is directly translated to the orientation of 

the Σ0(X0, Y0, Z0) reference frame with respect to the initial reference systems implicitly used 

for calculating the magnetic properties of the KD in the suitable microscopic model (see 

above). This type of experiment performed without using circular polarised microwave will 

be designed hereafter as “conventional EPR experiment”. 

On the other hand, the sign of the determinant of the g-tensor, which coincide with the 

product of the three principal g-values, can be determined with a spectrometer having a 

circular polarised source is used, by measuring the difference between the spectra taken with 

opposite polarizations [AB70b, PO83]. Therefore, if a single crystal is available and the 

angular variation of the spectrum is measured using circular polarised microwaves (we say 

that we do a “complete EPR experiment”) the canonical form of the G-matrix, see eq. (19) 

and the Σ0(X0, Y0, Z0) reference frame can be experimentally determined and, using the 

protocol indicated above, it can be straightforward compared with the predicted values. 

So, a univocal bridge among the experimental findings and the theoretical predictions 

has been given, which overcomes the problems derived from the sign ambiguity. When only 

data from a conventional EPR (without circular polarised microwave soured) experiment are 

available, there will be an uncertainty in the sign of det(G). 

 

4. POINT SYMMETRY AND THE g-TENSOR  

The role of the symmetry in the EPR spectroscopy has been recognized from its early 

times and the analysis of the rotational diagram is a powerful tool for getting information 

about the local symmetry of the paramagnetic entities [PF72b, PE73, SN92, WE07, BG09]. In 

this context it is worth noting that the approaches adopted by several authors to overcome the 

sign ambiguity were based on symmetry considerations [GA98b, CC08]. Here we will briefly 

analyse how the symmetry properties of the paramagnetic entity translate straightforwardly 
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into the g-tensor (and into the G-matrix) as defined in the previous section and, consequently, 

this information can be obtained experimentally. 

Firstly, it is important to remember that both, the magnetic field and the N


 operator, 

behave as vectors under the SO(3) but remain invariant under inversion. In this way, the 

transformation properties of the Zeeman interaction (1) under SO(3) operations have been 

used to define the g-tensor. However, the point group, G, describing the local symmetry of 

the paramagnetic entity is not, in general, a subgroup of SO(3) since G could include 

improper rotations. This drawback can be overcome by using, instead of G, the point group 

Ĝ, a subgroup of SO(3) that coincides with G if all its elements are proper rotations. Ĝ is 

either a subgroup of G (of index two) if the inversion is a symmetry element of G, or it is 

isomorphic to G (see appendix B for details about how Ĝ is built). In the following we shall 

restrict ourselves to transformation operations of Ĝ.  

Let R be a direct orthogonal matrix that represents a transformation of Ĝ. Obviously, 

Rt it also a direct orthogonal matrix belonging to Ĝ. Rt can be also seen as a rotation matrix of 

the reference frame. On the other hand, from (3) 

 ( ) ( ){ } ( ){ } ( )NuBNRuBNuRBNuBH t
B

tt
B

t
B

t
BZe


⋅=⋅⋅=⋅⋅=⋅= µµµµ  (29) 

where NRN t ⋅=


 or equivalently NRN


⋅= , N being a column matrix, whose elements are 

the components of the vector operator N


 in the given reference frame. N


 is defined in a 

similar way and, consequently, ΦΦ ⋅= ,, GRG ςς


 for any reference frame and any KCB. 

As we have seen in section 3, if P is the orthogonal matrix that makes t
,, GG ΦΦ ⋅=Γ ςςς  

diagonal, see (17), it follows that P·R makes t
,, GG ΦΦ ⋅=Γ ςςς


 diagonal with the same 

eigenvalues since tRR ⋅Γ⋅=Γ ςς


. Moreover, the columns of P and, hence, the columns of P·R 

correspond to the principal directions of Γς. Note that the columns of P·R give the coordinates 

of the columns of P by the transformation R, and they correspond to the same eigenvalues. 

Besides, R is a direct rotation. Then, if R is an n-fold rotation, with n > 2, there are only two 

possibilities: the rotation axis coincides with one of the principal directions of Γσ or two 

eigenvalues are equal and their principal directions are perpendicular to the rotation axis.  

In consequence, since in the canonical description of the Kramers doublet the diagonal 

expression of GΣ0,Ψ0 is given by positive square roots of the eigenvalues of Γσ together with 

the sign of det(G), s, it follows that the existence of a n-fold rotation axis, with n > 2, implies 
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the equivalence of two of these diagonal elements of GΣ0,Ψ0. Also, the reference frame Σ0 ≡ 

(X0, Y0, Z0) is determined in such a way that one axis, commonly the Z0 axis, is along the n-

fold rotation axis and the other two are any pair of arbitrary directions normal to this 

direction. If we are dealing with a cubic symmetry, octahedral, cubal or tetrahedral 

environment, it follows straightforwardly that all diagonal element of GΣ0,Ψ0 are equal. The 

construction of the g-tensor, as presented in the previous section, guarantees that it fulfils the 

same symmetry properties. 

 

5. LIGAND FIELD AND THE g-TENSOR  

As follows from section 3, if the electronic structure of the KD is known (whatever the 

degree of sophistication adopted in the calculation) a g-tensor can be defined in a univocal 

way, which can be compared with the results derived from a complete set of EPR 

experiments. Conversely, attempts to obtain information about the electronic structure of the 

paramagnetic impurity from the experimentally determined g-tensor have repeatedly appeared 

in the literature. In contrast, Rudowicz and Sung [RS01] wrote “The electron magnetic 

resonance techniques can measure only the ZFS/FS (fine structure) parameters, whereas the 

CF/LF (ligand field) parameters can be determined by optical spectroscopy, neutron 

scattering, and/or Raman spectroscopy”.. This issue has been discussed by Rudowicz and 

coworkers in depth [RS01, RU08a, RU08b, RK14, RK15, RK15b]. The misuse of the CF/LF 

and ZFS/FS terms often appearing in the literature is attributed as the main source of errors. 

In the present case, as we are dealing with a Kramers doublet, no ZFS/FS contribution 

is present. Hence, the following discussion will be focused in the attempt of getting 

information of the ligand field from the measured g-tensor. This will be possible only in some 

specific cases. 

However, if the ligand field contribution is the main one giving out a non-degenerate 

ground term and the spin-orbit contribution can be considered up to a first order, the approach 

by Pryce [PR50] and Abragam and Pryce [AP51] indicates that the deviations of g-tensor 

principal values from the free electron one are of the order of ξ/∆E, ξ being the spin-orbit 

coupling constant and ∆E the energy of any excited terms relative to the ground term. Hence, 

the experimentally determined principal g-values can provide an estimate for the ligand field 

splitting given by ∆E when the quotients ξ/∆E are small enough. The question now is to 

analyse what happens when this perturbation scheme is no longer valid because the spin-orbit 
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contribution is similar to the ligand field one. In this situation there could be a substantial 

entanglement of the orbital and spin wave functions in the states of the ground KD, whose 

magnetic properties are described with a fictitious spin-Hamiltonian with a g-tensor that could 

depart significantly from the free electron g-value. Therefore, it is unclear if a dependence of 

the g-tensor with the ligand field contribution parameters can be univocally established.  

Let us analyse this point by considering a simple example, which, in spite that it could 

be rather academic, will be useful for clarifying those ideas. Here we only introduce the 

model and discuss the relevant conclusions. The cumbersome technical details are given as 

Supplementary Information (see S.2)  

Let us consider a single electron occupying a p-orbital in an environment given by two 

unlike pairs of ligands placed in the corners of a square in trans positions (see figure 1.a). The 

reference frame, Σ ≡ (X, Y, Z), we will use is also given in Figure 1.a. Due to the ligand field 

effect the p orbital degeneracy is lifted. Let the pZ orbital be the ground orbital. As a 

convention this pZ orbital will be taken as the origin of energy, (E = 0). So, the relevant 

energies can be given as a function of the ∆X and ∆Y parameters (see figure 1.b). With this 

convention ∆X ≥ ∆Y ≥ 0.  

When the electronic spin is considered the ground state is two-fold degenerate and it 

results in a KD. As shown in Supplementary Information, S.2, a KCB is given by:  

 
ααβ

ββα

,pw,piv,pu

,pw,piv,pu

XYZ

XYZ

−++=Ψ

++=Ψ

−

+

 (30) 

where the (u, v, w) coefficients are chosen to be real with u2 + v2 + w2 = 1. They accomplish:  

 ( ) ( ) 





 −++=∆







 −++=∆+−=

uw
wvu

uv
wvu

u
wvE XY 11

2
111

2
1

2
1

ξξξ
 (31) 

Moreover, since ∆X/ξ ≥ ∆Y/ξ ≥ 0, 

 0≥≥> wvu  (32) 

Using the KCB given in (30) and the reference frame Σ ≡ (X, Y, Z) depicted in figure 

1.a the GΣ,Ψ matrix is calculated. It results to be diagonal, with: 
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( ) ( ){ } ( )( )
( ) ( ){ } ( )( )
( ) ( ){ } ( )( )wvuwvuwvuvwwvuG

wvuwvuvwuuwwvuG

wvuwvuwvuuvwvuG

ZZ

YY

XX

−++−=−−=+−−=

−+−−=−−=−+−=

+−−−=−−=−−+=

2222

2222

2222

22222

22222

22222

 (33) 

where we have taken ge = 2. Besides,  

 ( ) ( ) ( ) ( ) 08 222 ≥−++−−−== wvuwvuwwuGGGGdet ZZYYXX  (34) 

So, in any case, the principal g-values are given by: 

 ZZZYYYXXX GgGgGg ===  (35) 

and the principal axes of the g-tensor coincide with the formerly defined Σ ≡ (X, Y, Z) 

reference frame. 

Consequently, the former description is canonical if GXX, GYY, GZZ are all positive (or 

zero). Taking into account (32), it follows that GZZ is always positive and GXX and GYY have the 

same sign, which coincide with the sign of (u - v - w). As u, v, w are continuous functions of 

∆X/ξ and ∆Y/ξ, see Supplementary Information, S.2, the condition (u - v - w) = 0 will define the 

regions of the (∆X/ξ, ∆Y/ξ) plane where the previous description is canonical or not. From (31), 

the condition (u - v - w) = 0 is equivalent to ∆X∆Y = ξ2. So, the previous description is 

canonical if ∆X∆Y > ξ2 whereas non-canonical if ∆X∆Y < ξ2. This is illustrated in figure 2. 

Let us assume for the moment that the above description is canonical,  

(u - v - w) > 0 and GXX, GYY, GZZ are all positives. Then GXX = gX, GYY = gY and GZZ = gZ with  

gX ≤ gY ≤ gZ. Once these values are determined experimentally, the (u, v, w) parameters can be 

calculated from (33) and then the LF parameters relative to the spin-orbit constant, ∆x/ξ and 

∆y/ξ, are obtained from (31). In the opposite case, GXX = -gX, GYY = -gY and GZZ = gZ also with gX 

≤ gY ≤ gZ, so we can proceed in the same way. However, EPR experiments cannot provide any 

information about the condition LF parameters actually fulfil. So, there is no way to 

distinguish among the two formerly described situations through EPR spectroscopy since in 

both cases gXgYgZ ≥ 0. This outcome illustrates the observation by Rudowicz and Sung [RS01] 

that EPR spectroscopy is not, in general, a suitable tool for gathering information about 

CF/LF parameters. 

 

6. SOME EXAMPLES FOR THE LITERATURE 
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Next, we go to present the application of the former description to some cases that can 

be found in the literature. We include low spin heminic system, some d7 ions in a strong 

ligand field situation and Kramers trivalent rare-earth. The examples are necessarily no 

comprehensive but we expect it will help to show the general validity of the formalism given 

in section 3. 

 

6.1. d5 ions in LS configuration (strong ligand field) 

Let start with the description of the EPR properties of the d5 ions in the low spin 

configuration. These systems, especially LS - FeIII ions, have received particular attention 

because many hemoproteins show such behaviour [BS03, WW99, WA04, WA99, AM07, 

ZB09]. It is worth mentioning that in those works it was implicitly admitted that each 

principal value of the g-tensor has a definite sign in spite that it cannot be determined from 

the EPR spectra since these experiments only provides the magnitude of those g-factors. 

Then, different strategies were proposed to circumvent this problem that, herein, will be 

called the “sign problem”. 

A first description of the electronic structure of the ground state Kramers doublet of 

this system was given by Bleaney and O´Brian [BB56], who established a relation between 

the calculated and the observed gyromagnetic factors. They also introduced the “sign 

problem”. A year later Griffith used the same approach to derive the electronic structure of 

FeIII in ferrihaemoglobin azide [GR57] from its EPR spectrum previously reported [GI57]. 

This author obviated the sign problem when relating the calculated with the experimental 

absolute values and an implicit (positive) sign was assigned to all principal g-values in the 

same paper when the ligand field splitting was estimated. It is worth noting that the states 

describing the ground doublet show noticeable entanglement between the orbital and spin 

wave functions and, consequently, the electronic spin is not a good quantum number. Hence, 

the spin introduced in this SH description is actually a fictitious spin [RU87].  

Later, Taylor [TA77] derived his well-known equations, which relate the principal g-

values with the coefficients used for describing the ground state wave function. Those 

coefficients are related to the splitting of the t2g orbitals due to the low symmetry ligand field 

and the “sign problem” is also discussed. Since then, Taylor´s equations have been widely 

used; see references [BO77, RI94, GA98a, WA99, BS03, ZB09] where some reviews are 

presented. Among them a contribution by McGarvey [GA98b] developed an extension of the 
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former approaches by including the configuration interaction up to second order in the spin-

orbit interaction. This is necessary for 4d5, RuIII, and 5d5, OsIII, systems because of their 

higher spin-orbit coupling constants. The “sign problem” was also tackled by using symmetry 

arguments, it is also noted that these arguments could be inexact if the symmetry departs 

significantly from the octahedral one. However, the “sign problem” persists in the literature 

[RI94, WA99, WA04, ZB09]. In a recent paper [AM07] the Taylor´s formulation was revised 

and it was noted that additional information about the sign of the gyromagnetic factors can be 

obtained from knowledge of the 57Fe hyperfine coupling tensor derived from Mössbauer data. 

As the ground state of these LS-d5 ions is a KD the formalism given in section 3 can 

be applied to determine their magnetic behaviour. This task is given in Supplementary 

Information (section S.3) by using the LF description given in [AM07]. The results are similar 

to those found in the case of the example given in section 5 but in this case all the ambiguities 

are overcome when the sign of the product of the three principal g-values (which coincides 

with the sign of the determinant of the matrix G) is known. So, the ”sign problem” in these 

LS-d5 systems need to be rethought. In terms of section 3 formulation, the individual signs 

actually correspond to the sign of diagonal components of a diagonal G-matrix (eq. 13) but 

those signs have not a physical meaning as far as they depend on the chosen KCB. So, the 

“sign problem” is not a real problem but a fanciful one. 

If the sign of the product of the three principal g-values is not experimentally 

determined as it usually happens (when a conventional EPR experiment using linear polarized 

microwave is performed) two possibilities arise for the LF splitting (∆ and V parameters, see 

figure S.1). In general, see figure S.2, those pairs of values are very different. So, some 

additional physical arguments could help to distinguish among them. 

 

6.2. LS-d7 ions in tetragonal symmetry with donor ligands 

An early interpretation of the spin Hamiltonian parameters used for the description of 

the EPR spectra of CoII (d7) in an environment close to the square-planar one was given by 

Girffith [GR58]. A dominant ligand field was assumed and the spin-orbit interaction was 

introduced up to first order, which causes a mixing of the excited states in the ground state 

wave function. The same approximation was followed by other authors [BM70, BC73]. A 

work by McGarvey [GA75] deserves special mention as it presents a comprehensive model to 

analyse the magnetic properties of these “low spin” d7 systems. Since then, several 
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descriptions of the electronic properties of the ground state doublet of this LS-d7 

configuration have appeared [MR80, BB82, SM07]. In particular, Nishida and Kida [NK78] 

proved that a good estimation of the g-tensor is achieved by neglecting the spin doublets that 

involve an unpaired electron in the highest energy x2-y2 orbital. So, seven electron have to be 

accommodated in the four low-laying orbitals and the hole formalism can be used for 

describing the electronic properties of the ground state.  

Recently, we have used a similar approximation to study the magnetic properties of 

homoleptic organoderivates of Ni(II) [AA09] and Co(II) [GA14] paramagnetic complexes of 

general formula [M(C6X5)4]-q, M = Ni(III), Co(II), where (C6X5) stands for a perhalophenyl 

radical (X = F or Cl). In these cases the metal environment has a symmetry close to D4, see 

reference [AA09, GA14], and the observed EPR spectra were axial. As discussed in the above 

cited references there are two possibilities for the ordering of the single-electron energy levels 

in a SP-4 (planar-square) environment. In both of them the b1(x2-y2) orbital is strongly 

destabilised while the e(xz, yz) doublet have the lowest energy. The (x, y, z) reference frame is 

defined with the z axis along the four-fold rotation axis and the equivalent x and y axes are 

given by the metal-ligand bond directions. The actual ordering of the a1(z2) and b2(xy) 

determines the SOMO orbital and, consequently, the magnetic properties of the complex. (A) 

and (B) labels were introduced for the two cases of the unpaired electron in a a1(z2) and b2(xy) 

orbital, respectively. The LF energy of the SOMO orbital measured from the lowest energy 

e(xz, yz) doublet, will be denoted by ∆. This is summarized in Figure 3.  

For the case (A), a KCB for the ground (hole) KD is given by: 

 
αθαθβψθ

βθβθαψθ

yzxzzA

yzxzzA

dsinidsincosT

dsinidsincos

22
1

22
1

−+=Φ

−−=Φ
 (36)  

where some s contribution in the SOMO orbital ψz has to be considered; ψz = adz2 – bs, where 

a, b are real coefficient satisfying a2 + b2 = 1. tg(2θ) = 2√6aζ/(2∆+ζ) being ζ the single-

electron spin-orbit coupling constant and ∆ the energy of the SOMO measured from the 

lowest energy e(xz, yz)  doblet, see figure 3, with 0 ≤ θ ≤ π/4. 

Similarly, for the case (B) a KCB of the hole ground state is: 
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with tg(2θ) = 2√2ζ/(2∆-ζ) and 0 ≤ θ ≤ π/4 too. A detailed derivation of these results is given 

in [AA09, GA14]. 

For applying the formalism given in section 3 we calculate the G-matrix, see eq. (5), 

using the KCB and the reference frame (x, y, z) above introduced. If an orbital reduction is 

modelled by a parameter k [AA09, GA14], we obtain: 
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in the case (A), and 
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 (39) 

in the case (B). It has been taken ge =2 in the two former expressions. 

In both case, the G-matrix results to be diagonal with GXX = GYY, which is a 

consequence of the SP-4 symmetry. Then the sign of det(G) is given by the sign of GZZ. 

Taking into account that 0 ≤ θ ≤ π/4 in both cases, it results that GZZ. > 0 for usual values of k 

(close to one).  

Previous studies took no care on the sign of principal g-values [GR58, GA75, BM70, 

BC73, MR80, NK78, BB82, SM07, AA09, GA14] and gave the comparison between 

calculations and observations in terms of absolute (positive) value. As we show here , 

incidentally, this unjustified choice coincides with the actual canonical description. 

 

6.3. Rare earths ions with an odd number of unpaired electrons 

The first description of the magnetic properties of Kramers rare-earth ions was given 

by Elliot and Stevens [ES52, ES53]. Those results were restricted to axial (trigonal) symmetry 
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and later were extended to a more general symmetry by Rubins [RU70a, RU70b]. A detailed 

presentation was given in the Abragam and Bleaney book [AB70d] and, more recently, in 

[MI11] where the method developed in [MC97] is summarized. On the other hand there is a 

great amount of published papers on the EPR characterization of Kramers rare-earth ions in 

functional materials mainly with the aim to discriminate between the different occupancy 

sites, which drive its behaviour [KE02]. Some example was given in [AS71] and more 

recently in [YH01, GK02, GG06, ML09]. The potential use of these systems in quantum 

information processing [LS12, AL15] gives a renewal interest to their study. 

Due to the inner character of the f electrons the effect of LF can be consider as a first 

order perturbation within the free ion levels characterized by the total angular momentum 

quantum number J. In low enough symmetry the energy levels are KD and their energy 

separation is about tenths or hundreds of reciprocal wavenumbers. At low enough temperature 

only the ground KD is populated and, consequently, the magnetic properties can be described 

by using an effective S´= ½ spin. Hence, the electronic Zeeman interaction is characterized by 

a g-tensor (or a g-matrix) and, in most of the published papers, the comparison between the 

experimental determination and the calculations of the principal g-factors is given in terms of 

absolute values. This was explicitly indicated in the papers by Elliot and Stevens [ES52, 

ES53]. Later Robins [RU70a, RU70b] resigned to calculate the sign of the principal g-factors. 

This last author indicated that all of them can be arbitrarily taken positive forgetting that the 

sign of the product can be experimentally determined [PR59]. This position remains 

nowadays [MI11] with few exceptions found in the literature. In a previous study of the EPR 

spectrum of Er3+ in Y2SiO3 single-crystals [GG06] it is claimed that sign of the g-matrix can 

be univocally determined by fitting the angular variation of the spectrum due to even isotopes 

(I = 0) along three orthogonal planes, forgetting that this experiment only provides 

information about the “g2 tensor” [PF72]. 

Since the ground state of those systems is a KD the formalism given in section 3 can 

be directly used as it is briefly sketched below. 

After modelling LF with a suitable potential, which implicitly assumes the choice of a 

particular reference frame, σ ≡ (x, y, z), a KCB of the ground KD can be expressed as: 
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where the cM coefficients are determined by the diagonalization of the LF contribution within 

the ground energy level of the free ion [RU70a, RU70b]. On the other hand, if a magnetic 

field, B


, is applied, the Zeeman interaction restricted to this energy level of the free ion is 

given by 

 JBgH JBZe


⋅= µ  (41)  

where gJ is the Landé factor of the free atom level. So, see eq (1), JgN J


=  and, using the 

KCB (40), the G-matrix (see eq. 5) results to be 

 ∑
−=

ΦΦ =
J
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M
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with {M} = [J(J+1) – M(M+1)]½.   

The sign of the principal g-factors is given by the sign of determinant of the G-matrix 

(E.33) while their absolute values corresponds to the positive square root of the eigenvalues 

of σσ ,
t

, GG ΦΦ . Its eigenvectors determine the principal axes of the g-tensor respect to the 

reference frame, σ ≡ (x, y, z), initially introduced. 

Then, the ambiguities of the g-tensor definition in the case of rare-earth can be 

removed. This point is of particular relevance when studyimg pairs of weakly interacting rare-

earth since, as we will see in the next section, an adequate definition of individual g-tensor 

allows relating the phenomenological coupling parameters with the physical interaction in a 

straightforward way. 

 

7. SPIN HAMILTONIAN DESCRIPTION OF TWO WEAKLY COUPLED KRAMERS 

DOUBLETS UNDER AN APPLIED MAGNETIC FIELD  

Finally, an extension of the previously developed fictitious spin formalism will be 

presented, which is suitable for describing the magnetic properties associated to the lowest 

lying states in the case of a pair of coupled Kramers ions when the inter-ion as well as the 
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individual Zeeman interactions are small enough in comparison to the energy splitting 

between the Kramers doublets of isolated ions. Here a general solution will be given and a 

fictitious spin Hamiltonian in the multispin scheme [MG10a, MG10b, MP10, MG13, MC14, 

RM14, RK15b] will be derived. It will include the Zeeman interaction of two isolated S = ½ 

fictitious spins described by the corresponding g-tensors and an exchange interaction between 

them. This exchange interaction, written as a function of the true interaction, includes the 

isotropic, symmetric traceless and antisymmetric (Dzyaloshinskii-Moriya) terms. A particular 

solution for this problem was given a decade ago in [PT03] and this kind of Hamiltonian had 

been introduced in a phenomenological way on several occasions [BG90, KA93, BO99]. 

When two Kramers systems, (a) and (b), are coupled through an interaction, Hint, weak 

enough, in the absence of an applied magnetic field, the Hamiltonian of the whole system is 

given by: 

 intintba HHHHHH +=++= 0  (44) 

where H0 is the zero-order Hamiltonian for non-interacting systems and Hint is considered a 

perturbation. If the solutions of Hr|φr〉 = Er|φr〉 (r = a, b) are known, the zero order solutions of 

(43) are given by |Ψ〉 =|φa〉⊗|φb〉 with energy E = Ea + Eb. 

If no extra degeneracy apart from the Kramers one exists, the energy levels of each 

isolated subsystem will be Kramers doublets and a KCB {Φr, TrΦr} can be chosen in each 

doublet of the subsystem r (r = a, b) where Tr is the corresponding time-reversal operator and 

Φr is any arbitrary KD state. Consequently, in such a case, the zero-order levels of the whole 

system are fourfold degenerate and {|Φa〉⊗|Φb〉, |Φa〉⊗|TbΦb〉, |TaΦa〉⊗|Φb〉, |TaΦa〉⊗|TbΦb〉} is 

a basis of each zero-order level. In the following the shortened notation |φa, φb〉 will be used 

for |φa〉⊗|φb〉. 

Assuming that the interaction Hint can be considered up to a first order, it has to be 

applied within any of these quartets. It is important to note that Hint is a time-even operator 

and the time-reversal operator of the whole system is given by T = Ta⊗Tb, where Ta and Tb are 

the time-reversal operators for the subsystem (a) and (b), respectively [ME64b]. Then THint = 

HintT. Also, it can be assumed that Hint is traceless by including the diagonal contributions in 

H0. That allows us to express Hint, using a particular reference frame ς ≡ (x, y, z) and the 

vector operators an


 and bn


 defined in section 3 for both subsystems, as 
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( ) ( )( ) ( ) ( )∑∑ ∑
== =

=⊗⊗=⊗=
z,y,xj,i

b
j

a
iij

z,y,xj,i z,y,xj,i
j;babi;aijj;bi;aijint nnHnIInHnnHH

2
1

2
1

2
1  (45) 

where the coefficient ½ is introduced for convenience and the shorthand notation ni
(a) = 

na;i⊗Ib and nj
(b) = Ia⊗nb;j is used. Ia and Ib are the identity operators acting on the subsystems 

(a) and (b), respectively. 

Since Tr{n+
r;in r;j} = δij (r = a, b), then Tr[(na;i⊗nb;k)+(na;j⊗nb;l)] = 

Tr[n+
a;ina;j]Tr[n+

b;knb;l] = δijδkl and, consequently,  

 ( )[ ]intq;bp;apq HnnTrH +⊗= 2  (46) 

Under any SO(3) rotation, Ia and Ib operators are invariant whereas an


 and bn


 behave 

as vectors. Hence, the operators ( )
ba

a Inn ⊗=


 and ( )
ba

b nIn


⊗=  also behave as vectors. 

Then, a second-rank tensor, V~ , can be built whose components in the reference frame, σ ≡ (x, 

y, z), are given by (46) and the Hint expansion (45) in any reference frame takes the form: 

 ( ) ( )ba
int nV~nH


⋅⋅=

2
1  (47) 

Let us now consider a magnetic field, B


, acting on the system. The Hamiltonian will 

be: 

 pZe,bZe,aintba HHHHHHHH +=++++= 0  (48) 

where the Zeeman interaction for both subsystems, Ha,Ze and Hb,Ze, has been included in Hp. 

Considering a weak coupling among the subsystems (a) and (b), we have to describe the 

perturbation Hamiltonian, Hp, within the ground quartet. Taking into account (26) and (46) it 

can be written as a function of ( )an


 and ( )bn


 vector operators as: 

 ( ) ( ) ( ) ( ) 





⋅⋅






+






⋅⋅+






⋅⋅= bab

bB
a

aBp nV~nng~Bng~BH


2
1

2
1

2
1

2
1 µµ  (49) 

where ag~  and bg~  are the gyromagnetic tensors of the systems (a) and (b) as defined in 

section 3.  

It is important to realize that Hp acts as perturbation on the physical states 

corresponding to the four-fold degenerated ground state of the non-interacting pair. We will to 

build an fictitious spins Hamiltonian able to reproduce the behaviour of this physical system. 

How to achieve this will be briefly sketched although some mathematical rigor may be lost. 
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The fictitious spin formalism in the case of a Kramer doublet yields the substitution 

rule where the n


 vector operator should be replaced by a fictitious spin operator, namely 

S


2 , see (28). If we now introduce the state space of two one-half spins, aS


 and bS


, the 

following substitution rules can be derived: ( )
ba

a Inn ⊗=


 → ( )baba ISIS ⊗=⊗


22 , 

( )
ba

b nIn


⊗= → ba SI


2⊗  = ( )ba SI


⊗2 . Then, using the shorthand notation 

( ) bba SIS


=⊗  and ( ) bba SSI


=⊗ , a (fictitious) spin Hamiltonian, Hs, equivalent to (49) is 

given by: 

 212211 SV~SSg~BSg~BH BB
S


⋅⋅+⋅⋅+⋅⋅= µµ  (50) 

where the two first terms account for a Zeeman interaction for the two one-half spins and the 

last one corresponds to a bilinear coupling between both spins. Note that (50) act on the space 

of state of two one-half (fictitious) spins aS


 and bS


 while (49) acts on the low energy 

physical states. 

In general V~  can be decomposed as a sum of its symmetric part, which will be 

denoted by SK~ , and its antisymmetric part determined by a vector under SO(3), W


. 

Moreover, taking the scalar ( ) ( )SK~trK 310 =  and the symmetric traceless tensor 

0KK~K~ S −= , the coupling term in (50) can be written as [B099b] 

 ( ) ( ) ( )babababab
S

aba SSWSK~SSSKSSWSK~SSV~S


∧⋅+⋅⋅+⋅=∧⋅+⋅⋅=⋅⋅ 0  (51) 

The first contribution in (51), ( )ba SSK


⋅0 , is interpreted as an isotropic exchange 

interaction (Heisenberg interaction) between the (fictitious) spins whereas the second one, 

ba SK~S


⋅⋅  represents a traceless symmetric exchange interaction, sometimes denoted as a 

pseudo-dipolar [KA93] or asymmetric [BO99] interaction. The last one, ( )ba SSW


∧⋅ , is 

identified with the Dzyaloshinkii-Moriya interaction or antisymmetric exchange interaction 

[BO99]. 

With the aim of illustrating the formerly presented formalism we will consider a 

simple (rather academic) example in order to lighten mathematical details. Let two identical 

rare earth Kramer ions be in an axial local symmetry placed with their distinguished axis (z1 

and z2, respectively) rotated, in opposite direction, an angle θ around a common direction 

normal to the line joining the two ions (see figure 4). The principal values of the g-tensor for 
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the ground KD of the ions will be denoted as g|| and g⊥ and (xa, ya, za) and (xb, yb, zb) are the 

principal axes of the g-tensor of (a) and (b), respectively. All the calculations will be referred 

to a common reference frame (X, Y, Z) with the Z axis along the direction joining both ion and 

with the X axis in the common principal direction of both g-tensor (see figure 4)  

Let rJ


 (r = a, b) be the angular momentum operator of each ion (with Ja = Jb = J) and 

gJ the corresponding free ion g-value. Let us also assume an interaction between both ions 

given by a Heisenberg term 

 ( )baint JJH


⋅= ε  (52) 

As an application of the Wigner-Eckart theorem, within any manifold of a given 

angular momentum Jr (r = a, b), the following equivalence can be used: 

 ( ) ( )b,arJgSgLN rJrerr ==+=


 (53) 

Consequently, see (24): 

 ( ) ( )b,arng~
g

N
g

J rr
J

r
J

r =⋅==


2
111  (54) 

and (52) is given in any reference frame, σ ≡ (x, y, z), as 

 ( ) ( )∑ ∑
= = 
















=

z,y,xj,i
jbia

z,y,xk
kj,bki,a

J
int nngg

g
H 22

1 ε  (55) 

since rg~  (r = a, b) is a symmetric tensor (see section 3). Then, the matrix expression of V~ , 

see (47), in any reference frame is given by: 

 ( )212 gg
g

V
j

⋅=
ε  (56) 

where gr (r = a, b) is the matrix expression of rg~  in this reference frame. In particular, 

referring to the reference frame (X, Y, Z) above defined, see figure 4, as 

 ( )
( ) 
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−+=
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θθθθ

θθθθ
22

22

0

0

00
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  (57) 
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where the sign minus (plus) in the off-diagonal non-null element corresponds to r = a (r = b). 

Then: 
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 (58) 

Hence, we obtain 

 ε








 +
= ⊥

2

22

0 3
2
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Thus, the principal axes of the effective traceless symmetric exchange interaction 

coincide with the axes of the (X, Y, Z) reference frame . Finally, the components of the W


 

vector, which define the Dzyaloshinkii-Moriya interaction, are: 

 004
2

2

==






 −
= ⊥

ZY
J

||
X WWsina

g
gg

W θ  (60) 

Note that the symmetric exchange interaction appears as a consequence of the 

anisotropy of the individual g-tensors whereas, the antisymmetric interaction results from the 

non-coaxial arrangement of their principal axes.  

 

8. CONCLUDING REMARKS  

It is well-known that the paramagnetic behaviour of a KD can be experimentally 

described as an S = 1/2 entity characterized by a g-tensor. A complete set of EPR experiments 

determines the absolute values of its principal values, their principal directions and the sign of 

the product of the three principal values. However, at present there is no clear way to compare 

the theoretical predictions with the above mentioned experimental information in a general 

case since some ambiguities appear. 
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In this work, a procedure to extract all this experimentally obtained information has 

been established when the electronic structure of the KD is known, regardless the level of the 

used theory. This procedure also gives precise rules to build the suitable spin Hamiltonian by 

the substitution of some physical operators (the magnetic moment components in a suitable 

reference frame) with the corresponding spin operators. In this way, a univocal way to 

compare the information coming from paramagnetic resonance experiments with the 

predictions derived from a microscopic model of the paramagnetic Kramers entity is provided 

for a ground state being a well isolated KD. 

Those substitution rules also provide a way to build a fictitious spin Hamiltonian to 

account for the magnetic behaviour of the lowest energy levels of a pair of weakly interacting 

Kramers systems. This fictitious spin Hamiltonian, expressed in a multispin scheme, include 

the Zeeman interaction of two isolated one half fictitious spins (described by the 

corresponding g-tensors) and an (effective) exchange interaction between both spins. This 

exchange interaction includes isotropic, symmetric traceless and antisymetric terms. Explicit 

relations between the parameters of that effective exchange interaction and those describing 

the physical interaction are given. On the basis of these results, further extensions for 

describing more complex systems of several interacting Kramers moieties may be developed. 
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APPENDIX A. 

Each a m×n real matrix A (with m ≥ n)  can be factorized as A = U·W·V, where U is a 

m×n real matrix fulfilling Ut U = In, the n×n identity matrix, V is a n×n orthogonal matrix, V ∈ 

O(n), and W is a n×n diagonal real matrix with all its diagonal elements non-negative [PT92, 

DE97]. The diagonal elements of W are the singular values of A and the factorization A = 

U·W·V is called the singular value decomposition (SVD) of the matrix A.  

If A is a square matrix of dimension n then U ∈ O(n) as well. Any element of A is 

given by Aij = Σk=1,n(wkUikVjk), where wk stands for the diagonal elements of W, the singular 
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values of A. Consequently, as the change of the sign of the elements of a column of a square 

matrix induces a change of the sign of its determinant, if the restriction wk ≥ 0 is lifted, it is 

possible to take U and V as direct rotation, U, V ∈ SO(n). This result has been used in 

deriving equation (13). 

 

APPENDIX B. 

First definitions and nomenclature in group theory can be obtained, for instance, in 

[HE60, HA62, TI64b, CO90] and a more depth discussion on the structure of groups and on 

the homomorphism decomposition, as it is used in the next paragraph, can be read in [HU74]. 

Let G be a point symmetry group (PSG). G is a subgroup of the full three dimensional 

orthogonal group, O(3). SO(3) is the special orthogonal group: its elements are the direct 

rotations belonging to O(3). So, SO(3) is given by those O(3) transformations whose 

determinants are equal to one. Lastly, Ci denotes the point group formed by the identity, I, and 

the origin inversion, JO. Both, SO(3) and Ci, are normal subgroups of O(3) and O(3) = 

SO(3)⊗Ci. So, any transformation R ∈ O(3) either belongs to SO(3) or there exists an unique 

Q (in fact, Q = R·JO) belonging to SO(3) and accomplishing R = Q·JO = JO·Q. The projection, 

π, of O(3) onto SO(3), that verifies π(R) = R if R ∈SO(3) and π(R) = R·JO otherwise, is a 

group homomorphism. Its kernel is Ci, Ker(π) = Ci. On the other hand, the inclusion, χ, of G 

to O(3), such that χ(T) = T for any operation of G, is also a group homomorphism. 

Consequently, the application ζ = π°χ is an homomorphism of G in SO(3). Its image is a 

subgroup of SO(3) that will be denoted as Ĝ. Besides Ker(ζ) = G∩Ci. So, ζ is injective if and 

only if the inversion does not belong to G. In a similar way, given a point symmetry group, G, 

all direct transformation in G form a subgroup of it, which will be denoted as SG. Then, SG = 

G∩SO(3). The SG subgroup of the relevant PSG in Chemistry [CO90] are collected in table 

1. 

 

Table 1. Classification of the PSG relevant in chemistry in cases I, II and III 
indicating the corresponding SG and Ĝ groups.  

G  SG case Ĝ 

Ci  C1 II C1 

Cs  C1 III C2 



 

31 

Cn  Cn I Cn 

Dn  Dn I Dn 

Cnv  Cn III Dn 

Cnh  (n even) Cn II Cn 

 (n odd) Cn III C2n 

Dnh (n even) Dn II Dn 

 (n odd) Dn III D2n 

Dnd (n even) Dn III D2n 

 (n odd) Dn II Dn 

S2n (n even) Cn III C2n 

 (n odd) Cn II Cn 

T  T I T 

Th  T II O 

Td  T III O 

O  O I O 

Oh  O II O 

 

If G only contains direct rotations, SG = G, then G is a subgroup of SO(3) and ζ is the 

inclusion, consequently Ĝ = G (case I). In the opposite case there is an improper operation, R, 

in G and two possibilities appear. If R·JO is also in G then Ci is a subgroup; so, G = SG⊗Ci 

and then, Ĝ = SG (case II). Otherwise, Ĝ is isomorphic to G but both, Ĝ and G, are different 

(case III). Cn is an example of case I, Oh of case II and Td of case III. In the last two cases Ĝ 

= O, the group of direct rotations of the octahedron. Table 1 also shows the classification of 

all PSG in those three cases and the corresponding Ĝ PSG. In summary, if Ğ is the group 

product of G and Ci, a subgroup of O(3), then Ĝ = SĞ. In the practice the elements of Ĝ are 

all direct rotations in G and those built as product of any element of G and the origin 

inversion. 

Let us consider a paramagnetic entity whose magnetic behaviour is described by (1). If 

R is a transformation belonging to its symmetry group, G, the magnetic response of the 

system should be the same for a magnetic field B


 and for the transformed magnetic 

field ( )BR


. On the other hand, since B


 is a vector that remains invariant under the origin 

inversion, it turns out that the magnetic response of the system should be the same if R is any 

element of Ğ. Also, the invariance of B


 under the origin inversion allows us to consider only 
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those transformation operations in Ĝ. Hence Ĝ results to be the relevant PSG for analysing 

the magnetic properties of our system. 

A classification of the crystallographic PSG in eleven “aggregates” was given by 

Roitsin [RO81]. The present construction of Ĝ is supported by the same arguments than those 

given there for the “aggregates” classification of the PSG although our objective is more 

modest. While [RO81] pursues the classification of a “Generalized Spin Hamiltonian” of any 

paramagnetic entity based on symmetry arguments we are dealing here with the simpler case 

of a KD whose SH, as shown in section 3, is characterized by a g-tensor and our goal is to 

prove that with our construction the g-tensor should reflect the point symmetry of the Kramer 

entity. However, note that the Ĝ group is a suitable label for the Roitsin’s aggregates and this 

group is the adequated one to describe the symmetry properties of the SH. 
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Figure 1. a) Schematic representation of the model system used in section 5. b) Orbital 
energy levels of the studied system showing the chosen axes labelling and the energies of 
the orbitals referring to the low energy one (pz), see text. 

 

 

 

Figure 2. Regions of the (∆X, ∆Y) plane, with ∆Y < ∆X, in which the given description is 
canonical, ∆X∆Y > ξ2, or non-canonical, ∆X∆Y < ξ2. 
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Figure 3. Single-electron energy levels in an SP-4 environment labeled 
according to their transformation properties under D4 symmetry operations. The 
two possible orderings of the a1(z2) and b(xy) levels for mainly σ-donor ligands 
are labeled (A) and (B). The relevant energy difference ∆ is indicated in each 
case. Adapted from reference [GA14]. 
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Figure 4. Sketch for the two interacting rare earth ions showing the different 
reference frame used. 
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S.1. Fictitious spin formalism for describing a Kramers doublet. 

 

A paradigm of a Kramers doublet is an S = ½ system. The corresponding state space 

will be denoted by S1/2. Given any reference frame ς ≡ (x, y, z) it is possible to take a KCB of 

S1/2, {|α〉, |β〉}, of eigenstates of Sz and, with a suitable choice of phase, the matrix expressions 

of the spin components Sr (j = x, y, z) in this basis are multiples (by a ½ factor) of the Pauli 

matrices. On the other hand, given a KD we can pick any KCB {Ψ, TΨ} to describe it. Then, 

an isometry, λ, between the KD and S1/2 can be defined by λ(Ψ) = |α〉 and λ(TΨ) = |β〉. 

Associated to this isometry an isomorphism Λ, Λ(A) = λ·A λ-1, appears between the algebra of 

endomorphisms of KD and the algebra of endomorphisms of S1/2, which preserves the trace of 

any operator. In short, Λ is an isometry between the corresponding Liouville spaces that 

transforms an observable into an observable and a unitary operator into a unitary operator. Λ 

also transforms the time reversal operator in the KD into the time reversal operator in S1/2. 

The notation AS for Λ(A) will be used in the following. Operator A acting on the physical 

states in the KD is transformed into AS = Λ(A) acting in the S1/2 space. On the other hand, 

taking into account the freedom in the choice of the KCB of KD (and in the choice of the 

reference frame in the S1/2 description) there are many ways to define λ corresponding to 

different representations [S1-S2]. 

In particular, fixing a reference frame, Σ0(X0, Y0, Z0), and a KCB {Ψ0, TΨ0} that give a 

canonical description of the KD (see paragraph 3) and referring the {|α〉, |β〉} KCB of S1/2 to 

the same reference frame, Σ0, it follows that: 

 
000000

222 Z
S
YY

S
YX

S
X SnSnSn ===  (S.1) 

where np (p = X0, Y0, Z0) are the components, in the Σ0 reference frame, of the vector operator 

n


 defined in section 3. Since a basis of the Liouville space of the KD is given by the identity 

and the components of the vector operator n


 in any reference space, (S.1) provides a practical 

rule to build the transformed operator, AS, of any operator A. The rule is given by the 

following substitution law  

 Snn S


2=←→  (S.2) 

In particular, from (26), it follows that: 
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and the equivalent operator of the spin density matrix, ρ, of the physical KD, which act on 

S1/2, results: 
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where θ indicates the temperature. It is important to realize that ρS coincides with the spin 

density operator in S1/2 associated to the Hamiltonian (S.3). 

Let O be an observable in the KD. Its expectation value is given by 〈O〉 = tr(ρO). 

Since tr(ρO) = tr(ρλ-1λOλ-1λ) = tr(λρλ-1λOλ-1) = tr(ρSOS), this expectation value coincides 

with the expectation value of the observable OS = Λ(O) in S1/2 under the Hamiltonian (S.3). 

As a consequence any observation on the physical KD in an arbitrary reference system should 

coincide with that of the S1/2 system under the Hamiltonian (S.3) if the relationship of the 

observables given above is taken into account.  

 

S.2. Detailed analysis of the example given in section 5 

In section 5 we introduce a particular example that show why information on the 

ligand field (LF) cannot be univocally derived from the measured g-tensor in a general 

situation. Here we present a detailed analysis of this model. We refer in the following to the 

initial reference frame, Σ ≡ (X, Y, Z), and to the LF splitting defined in figure 1. In the 

following we will use the convention of taking the energy of the ground orbital, pZ equal to 

zero (see figure 1). 

In absence of spin-orbit (SO) interaction the ground state is a KD that can be described 

by the KCB {pZα, pZβ} where α and β denote the spin states corresponding to ms = +1/2 and 

ms = -1/2, respectively, referred to the Z axis. This KD behaves as an S = ½ entity with and 

isotropic g-factor (g = ge where ge is the free electron g-factor). 

Let us start considering a situation where the spin-orbit coupling constant (SOCC), ξ, 

is small as compare with the LF energy differences, ∆X and ∆Y. So, the SO interaction, 

slHSO

⋅= ξ , is cinsidered up to a first order. The energies of the levels do not change since 

the orbital angular momentum is quenched in each of the pr (r = X, Y, Z) orbitals. However, 
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the wave function is modified by the mixing with the excited states induced by HSO. The 

perturbed wave-functions that span the ground KD are given, up to a first order in ξ, by: 
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 (S.5) 

As +− Φ=Φ T , (S.5) provides a KCB of the ground state KD. Using this KCB and the 

reference frame, Σ ≡ (X, Y, Z), depicted in figure 1, the G matrix, see equation (5), can be 

built. Keeping linear terms in ξ/∆X and ξ/∆Y: 
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 (S.6) 

Then, GΣ,Φ is diagonal and all its diagonal elements have the same sign because it is 

assumed that HSO is a perturbation on the ligand field states (ξ/∆X, ξ/∆Y << 1). So, the KCB 

given by (S.5) and the reference frame Σ ≡ (X, Y, Z) (see Figure 1) provide a canonical 

description of the ground KD. Consequently, see section 3, a g-tensor can be defined for 

describing the EPR results. Its principal axes coincide with (X, Y, Z) axes and their principal 

values are: 

 222 =
∆

−=
∆

−= z
Y

Y
X

X ggg ξξ  (S.7) 

So, an EPR experiment provides information about the ligand field splitting if the 

spin-orbit interaction is low enough as compared to ∆X and ∆Y.  

The second order contribution of HSO to the energy of the ground doublet is given by: 

 ( )








∆

+
∆

−=
ZX

oE 11
4
1 22 ξ  (S.8) 

Note that it is negative whereas the energies of the excited doublets are positive in the strong 

LF limit (∆X, ∆Y >> ξ). 
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The opposite occurs when the SO interaction is dominant. In particular, when ∆X = ∆Y 

= 0, the ground doublet energy is E0 = -ξ and there are two degenerate Kramers doublets with 

energy E1 = ξ/2. Note that whereas E0 is negative E1 is positive. A KCB of the ground state is 

given by: 
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For a low enough ligand field contribution (∆X, ∆Y << ξ) the energy of the ground doublet, up 

to a first order, is 

 ( ) ( )YXE ∆+∆+−=
3
11

0 ξ  (S.10) 

Note that it is negative, ( ) 01
0 <E . 

The question now is to analyse what happens when both, HSO and the ligand field, HLF, 

contributions are comparable. In such a situation, it will be necessary to simultaneously 

consider HLF and HSO. As long as we are dealing with a Kramers system a KCB of the ground 

state can be given by: 
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where (u, v, w) are non-trivial real solutions of: 
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 (S.12) 

corresponding to the lowest E/ξ value. Since H is a symmetric real matrix, the (u, v, w) 

coefficients were chosen to be real with u2 + v2 + w2 = 1. It worth of noting that E = 0 is not a 

solution of (S.12) regardless of what the values of ∆X/ξ and ∆Y/ξ are, since det(H) =  

-(1/4)ξ 2(ξ+∆X+∆Y) ≠ 0 (remember that the origin of energy has been conventionally taken in 

the pZ orbital, see figure 1). Consequently, that lowest E/ξ value is negative for any value of 

the ∆X/ξ and ∆Y/ξ ratios since the eigenvalues of H are continuous functions of (ξ, ∆X, ∆Y). 

From (S.12) it follows that: 
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Taking u > 0, since E/ξ < 0, it follows that (v + w) > 0, and also (u + v + w) > 0. Besides, 1/w 

≥ 1/v ≥ 1/u, since ∆X/ξ ≥ ∆Y/ξ ≥ 0 with the axes labelling shown in figure 1. So: 

 0≥≥> wvu  (S.14) 

Using the KCB given in (S.11) and the reference frame Σ ≡ (X, Y, Z) depicted in figure 1.a 

the matrix GΣ,Ψ is again diagonal, with: 
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where we have taken ge = 2. These expressions correspond to equation (33) in section 5. 

 

 

S.3. The g-tensor of a LS-Fe(III) systems. Relation with the Taylor´s equations 

As indicated in section 6.1 the description, of the magnetic properties of LS-Fe(III) 

systems has been the goal of many works since the pioneer paper by Bleaney and O´Brian 

[S3]. We have also commented that the formalism developed in section 3 is useful to this 

issue and the main derived conclusions were also given there. Here we will show technical 

details about how to define a g-tensor for this system by applying the developed formalism. 

As some steps are given in reference [S3] and some others are similar to those addressed in 

the previous section (Supplementary Information, S.2) many details will be omitting for the 

sake of brevity. 

It should be remembered that the strong ligand field (LF) scheme with a dominant 

octahedral contribution is commonly assumed for describing the electronic properties of these 

LS-Fe(III) systems; the five d electrons are accommodated in the six available orbitals of the 

t2g triplet and excitations to the empty eg orbitals are neglected [S4]. This octahedral LF 

contribution implicitly defines a reference frame, ς ≡ (x, y, z), that will be denoted as 

molecular reference frame. Hence, the lowest energy t2g triplet is spanned by the {dyz, dzx, dxy} 

standard orbitals.  
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When the low symmetry LF contribution are considered up to a first order the t2g 

triplet is split and the relevant energy differences are commonly given as a function of two 

parameters, ∆ and V (see figure S.1. and reference [S4] for details). Besides, the LF orbital 

wave functions {φX, φY, φZ} are expressed as a linear combination of the {dyz, dzx, dxy} standard 

orbitals by defining an direct orthogonal matrix Ω ∈ SO(3). In this way a reference frame  

Σ ≡ (X, Y, Z) is introduced by: 
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 (S.16) 

which is commonly named as magnetic reference frame, because it coincide with the g-tensor 

principal axes as it will be seen below. 

Using the hole formalism [S4] the problem may be reduced to a single-particle one. In 

figure S.1.b the energy levels for the hole are shown and, for convenience, the relevant hole 

energy differences, ∆Y and ∆Z, are also indicated. These latter parameters are given as a 

function of the former ones, ∆ and V, by: 
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 (S.17) 

 

 

Figure S.1. a) Low lying energy levels of a LS-d5 entity showing the electron filling. b) 
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Energy levels for the equivalent hole. The relevant energy differences (∆y, ∆z) and the 
equivalent conventional LF (∆, V) parameters are also shown. 

 

Note that, as in section S.2, we adopt the labelling of the (X, Y, Z) axes imposing the 

additional condition ∆Z ≥ ∆Y ≥ 0 or, equivalently, ∆ ≥ V/2≥ 0. Then, the hole ground orbital is 

φX and, for convenience in the calculation, the hole energy will be referred to it (E0X = 0, see 

figure S.1). This labelling may not correspond to the proper axes convention widely adopted 

in the description of heminic systems (see, for instance [S4 –S6]), which is imposed by 0 ≤ V 

≤ 2|∆|/3.  

When the SO interaction is taking into account a KSB of the ground KD is given by: 

 
αφβφβφ

βφαφαφ

ZYX

ZYX

cibaT

ciba

++=Φ

−−=Φ
 (S.18) 

where the spin function {α, β} are referred to the formerly introduced reference frame  

Σ ≡ (X, Y, Z) and (a, b, c) are the non-trivial real solutions of: 
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corresponding to the lowest eigenvalue of H, E0, In (S.19) ζ is the single electron SOCC. 

Following the same arguments as in section S.2 it is proved that E0 ≤ 0 (with the 

energy convention given in figure S.1). Moreover, once the coefficients (a, b, c) were known, 

the relevant energies relative to the SOCC, ∆Y/ζ, ∆Z/ζ and E0/ζ result to be:  

 ( ) ( )
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cacba
ab

bacba
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cbE ZY −
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2
1

2
1

2
10
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 (S.20) 

and taking a > 0 it follows 

 0≥≥> cba  (S.21) 

Note that b = c if and only if ∆Z = ∆Y, which corresponds to an axial situation. In an 

isotropic environment ∆Z = ∆Y = 0 and a = b = c = 1/√3, see above.  
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When the KCB given by (S.18) and the Σ ≡ (X, Y, Z) reference frame are used for 

calculating the G-matrix, it results; 
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So, the GΣ,Φ-matrix is diagonal and consequently the Σ ≡ (X, Y, Z) axes correspond to 

the principal axes of the g-tensor (see section 3). If ge = 2 is taken the principal values of the 

GΣ,Φ-matrix accomplish 
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From (S.23) it follows that 
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 (S.24) 

This, together the normalization condition, a2 + b2 + c2 = 1, and the convention a > 0, 

would yield a univocal determination of the coefficients (a, b, c) if the (GXX, GYY, GZZ) values 

were known. Then, the energy splittings relative to the spin-orbit coupling constant are 

obtained after using (S.20). On the other hand, since det(G) = GXXGYYGZZ, its sign, s, is 

determined by the sign of (a – b – c); s = -sign(a – b – c). It will now be discussed what 

information about the G-values can be obtained from an EPR experiment. 

Taking into account (S.21) we have GYY ≤ 0 and GZZ ≤ 0 with |GYY| ≤ |GZZ| in all cases 

whereas the sign of GXX is determined by the (a – b – c) value. Consequently, the previous 

description is canonical if (a – b – c) ≥ 0 and non-canonical when (a – b – c) < 0. The 

condition (a – b – c) = 0 will define the regions of the (∆Z/ζ, ∆Y/ζ) plane where the previous 

description is canonical or not. From (S.20), the condition (a - b - c) = 0 is equivalent to ∆Z∆Y 

= ζ2; the previous description is canonical if ∆Z∆Y > ζ2 whereas it is non-canonical if ∆Z∆Y < 

ζ2. This result is similar to that found in the case of the example discussed in section 5 by 

exchange ∆Z by ∆X (see Figure 2). In terms of the ligand field parameters, ∆ and V, 

conventionally used (in the heminic system context) for describing the ligand field effects, see 
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(S.17), the previous description is canonical if (∆+V/2)V > ζ2 whereas it is non-canonical in 

the opposite case. This is illustrated in figure S.2. 

 

 

Figure S.2. Regions of the (V, ∆) plane, with V < 2∆, in which the given 
description is canonical (red shaded) or it is non-canonical (blue shaded). 

 

Assuming that the above description using the KCB given by (S.18) together the Σ ≡ 

(X, Y, Z) reference frame is canonical, (a – b – c) ≥ 0, which implies GXX ≤ 0; also |GXX| ≤ |GYY| 

≤ |GZZ| and in this case the principal values of the g-tensor are all negative fulfilling 

 ZZZYYYXXX gGgGgG −=−=−=  (S.25) 

Then, from (S.24), it is explicitly obtained that 
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In the opposite case, (a – b – c) < 0, the previous description is non-canonical since 

GXX > 0 while GYY ≤ 0 and GZZ ≤ 0. Consequently det(G) > 0 and all the principal values of the 

g-tensor are positive. A canonical description is achieved by keeping the Σ ≡ (X, Y, Z) 

reference frame and by choosing a new KCB defined by {|+>, |->} with |+> = iT|Φ> (|-> = 

i|Φ>) where |Φ> is given by (S.18). Then: 
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with 0 < GXX ≤ GYY ≤ GZZ; in this case  

 ZZZYYYXXX gGgGgG ===  (S.28) 

Consequently if ∆Z∆Y < ζ2 the coefficients (a, b, c) that describe the ground KD are 

given as a function of the principal value of the g-tensor as: 
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It is important to recall that a conventional EPR experiment only provides the absolute 

values |gX|, |gY|, |gZ|. Therefore, such an experiment cannot discriminate between the two above 

described situations and it provides, in principle, two solutions for the description of the 
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ground KD, corresponding to expressions (S.26), that coincide with the equations derived by 

Taylor [S5] and to expressions (S.29). 

This ambiguity is similar to that studied in the example discussed in section 5. 

However, when the sign of the product gXgYgZ, that coincide with the sign of det(G), is 

established from an adequate experiment (i.e. by taking the EPR spectrum using circular 

polarized microwave and measuring the difference of the signals corresponding to the two 

opposite polarizations [S7-S9]) all ambiguities are overcome and univocal information about 

the ligand field splittings relative to the spin-orbit coupling constant can be obtained. The 

finding gXgYgZ > 0 implies (∆+V/2)V > ζ2 whereas gXgYgZ < 0  entails (∆+V/2)V > ζ2. 
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