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The purpose of this study is to characterize and attenuate the influence of mean heart

rate (HR) on nonlinear heart rate variability (HRV) indices (correlation dimension, sample,

and approximate entropy) as a consequence of being the HR the intrinsic sampling rate

of HRV signal. This influence can notably alter nonlinear HRV indices and lead to biased

information regarding autonomic nervous system (ANS) modulation. First, a simulation

study was carried out to characterize the dependence of nonlinear HRV indices on

HR assuming similar ANS modulation. Second, two HR-correction approaches were

proposed: one based on regression formulas and another one based on interpolating

RR time series. Finally, standard and HR-corrected HRV indices were studied in a

body position change database. The simulation study showed the HR-dependence

of non-linear indices as a sampling rate effect, as well as the ability of the proposed

HR-corrections to attenuate mean HR influence. Analysis in a body position changes

database shows that correlation dimension was reduced around 21% in median values

in standing with respect to supine position (p< 0.05), concomitant with a 28% increase in

mean HR (p < 0.05). After HR-correction, correlation dimension decreased around 18%

in standing with respect to supine position, being the decrease still significant. Sample

and approximate entropy showed similar trends. HR-corrected nonlinear HRV indices

could represent an improvement in their applicability as markers of ANSmodulation when

mean HR changes.

Keywords: HRV, ANS, HR-correction, nonlinear, entropy, D2, sampling rate

INTRODUCTION

Heart rate (HR) variability (HRV) has been studied as a non-invasive technique to assess autonomic
nervous system (ANS) regulation of the heart. Although, HRV analysis is still controversial
(Karemaker, 2006), its content has been related to sympathetic and parasympathetic modulation
by Task Force of the ESC-NASPE (1996) and Sassi et al. (2015).

During the last decades, HRV analysis has been extended including nonlinear indices based on
chaos theory. These methodologies describe ANS in terms of regularity and complexity. Non-linear
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indices have been studied in a wide range of cardiovascular
diseases revealing discriminant power for risk stratification
(Maestri et al., 2007). Correlation dimension was used to stratify
women who suffered hypotension during spinal anesthesia in
cesarean section (Chamchad et al., 2004; Bolea et al., 2014a).
Sample and approximate entropy were studied comparing
control vs. children with congenital heart malformation due
to effects of cyanotic and acyanotic defects (Aletti et al.,
2012). Furthermore, the integration of linear and nonlinear
HRV indices has been shown relevant to stratify cardiac risk
patients (Voss et al., 2009) and to describe pathophysiological
mechanisms in the cardiovascular and neural system control
(Signorini et al., 2011). Some studies pointed out that HRV
complexity changes as a result of sympathetic activation
(Porta et al., 2007; Turianikova et al., 2011; Weippert et al.,
2013).

However, the physiological interpretation of HRV as a marker
of ANS activity may be blurred since several factors could affect
how intrinsic pacemaker cells and ANS activity are expressed in
HRV (Yaniv et al., 2014a). The nonlinear relationship between
temporal and complexity HRV indices with respect to HR
has been addressed emphasizing the importance of attenuating
this effect (Zaza and Lombardi, 2001; Platisa and Gal, 2006;
Monfredi et al., 2014; Yaniv et al., 2014b). Furthermore, different
mathematical models have demonstrated a relationship between
HRV amplitude and HR correcting it (Chiu et al., 2003; Meste
et al., 2005; Bailón et al., 2011; Sacha, 2014; Billman et al.,
2015). HR correction effect on HRV analysis was studied to
predict riskmortality (Pradhapan et al., 2014). Non linear indices,
such as correlation dimension, sample, and approximate entropy,
are computed over linearly detrended and normalized series
so this effect is already compensated for (Osaka et al., 1993;
Pincus et al., 1993; Porta et al., 2007; Voss et al., 2009; Bolea
et al., 2014a). Despite this normalization, HR may still influence
nonlinear HRV indices due to the fact that HR is the intrinsic
sampling rate of HRV signal. This implies that the amount of
information captured during the same time interval depends on
HR. The dependence of nonlinear indices on data length has
already been reported (Havstad and Ehlers, 1989), and some
studies have computed nonlinear HRV indices over interpolated
RR time series at different sampling rates to increase index
reliability (Theiler, 1990; Osaka et al., 1993; Hagerman et al.,
1996; Radhakrishna et al., 2000; Javorka et al., 2002; Kim et al.,
2005). Our hypothesis is that the influence of HR as sampling
rate on nonlinear HRV indices is still noticeable even when the
same data length is considered.

The goal of this study is to assess and attenuate the
HR influence as sampling rate on nonlinear HRV indices in
order to provide insight in their physiological interpretation as
markers of ANS modulation. To assess the influence of HR
on nonlinear HRV indices, a simulation study is conducted in
which changes in ANS modulation are independent of changes
on mean HR. Based on simulation results, two approaches are
proposed to attenuate this mean HR influence. Finally, HR-
corrected nonlinear HRV indices are computed over a body
position changes database to study their performance under ANS
elicitation.

MATERIALS

Body Position Changes (BPC) Database
This database was developed collaboratively at Harvard Medical
School, Massachusetts Institute of Technology, and the Favaloro
Foundation Medical School. The whole cohort of short-term
recordings comes from two data collecting studies. Further
details of this database can be found in Sobh et al. (1995).

First Study
Thirteen male subjects of age 21.6 ± 4.4 years (Mean ± SD;
range, 19–38 years) with no history of cardiopulmonary disease
participated in a study carried out at Clinical Research Center at
the Massachusetts Institute of Technology, USA.

Second Study
It comprises groups of subjects of different ages. Only the young
group was included in our work (9 subjects, 26.7 ± 4.7 years;
range, 20–35 years).

Thus, from the whole database we selected 22 subjects.
Two recordings per subject were acquired containing 7-
min electrocardiographic (ECG) and respiration (RP) signals,
sampled at 360 Hz. The protocol included postural changes. First,
ECG and RP signals were recorded while subjects were in supine
position. Then, subjects changed to standing position and after 5
min, to allow reaching hemodynamic equilibrium, ECG and RP
signals were recorded in standing position. Subjects were asked
to breathe following an irregular sequence of tones (Sobh et al.,
1995).

Fantasia Database
Twenty young rigorously-screened healthy subjects underwent
120 min of supine resting while continuous ECG and RP signals
were recorded at 250Hz while watching the movie Fantasia,
Disney 1940, to help maintain wakefulness. Further database
information is available elsewhere (Iyengar et al., 1996) and
can be downloaded from http://www.physionet.org (Goldberger
et al., 2000).

METHODS

ECG Preprocessing
Because the reliability of the HRV analysis can be compromised
by low sampling frequency of ECG recordings (Merri et al.,
1990), the ECGs belonging to BPC and Fantasia database were
interpolated by cubic splines to a frequency of 1080 and 1000 Hz,
respectively. Then, heartbeat times, t(k) where k symbolizes the
kth beat, were estimated using an ECG wavelet-based detector
(Martínez et al., 2004). Ectopic beats were identified imposing
a time-varying threshold on instantaneous heart rate variations.
Then, these ectopic beats are corrected using the IPFMmodel, as
described in Mateo et al. (Mateo and Laguna, 2003).

Non-linear HRV Analysis
Approximate, sample entropy and correlation dimension are
methods that exploit the phase-space representation of a time
series based on Taken’s theorem (Takens, 1981). These nonlinear
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methods are described in the following and further mathematical
details are provided in Appendix.

Approximate and Sample Entropy
SampEn and ApEn are irregularity measurements of the time
series (Pincus, 1995). Although both entropies are closely
related to each other, SampEn was introduced to overcome
the self-pairs-related limitation of ApEn computation. Briefly,
patterns of time series values (reconstructed vectors) of a certain
length (embedded dimension, m) are compared to the rest
of the possible pattern candidates. Those comparisons whose
differences are below a threshold (r) are summed up and used
to calculate correlation sums. The final entropy value measures
the changes produced when increasing the length of the patterns
in one unit. The parametersm and r have to be previously defined
to estimate the entropy values. In this work parameter values
are set to m = 2 and r = 0.15 for SampEn. For ApEn, m = 2
and r is set as the threshold that maximizes approximate entropy
(ApEnmax; Yentes et al., 2013). ApEnmax was selected instead of
ApEn to avoid the bias introduced by in ApEn when considering
self-comparisons (Mayer et al., 2016). Its computation is based
on a previously published algorithm (Bolea et al., 2014a).

Correlation Dimension
Correlation dimension, D2, measures the degree of complexity
of the system that generates the time series (Grassberger and
Procaccia, 1983). In a previous work, we developed techniques
to improve the estimation of correlation dimension (Bolea et al.,
2014a). On that study log-log curves (logarithm of correlation
sums vs. logarithm of thresholds) were fitted to sigmoid curves,
thus increasing the accuracy of maximum slope estimation.
Moreover, another estimate of correlation dimension denoted as
D2(max) based on the points that maximize the difference between
each pair of sigmoid curves was presented. Both D2 and D2(max)

were computed by varying m = 1–16 and r = 0.01–3 in steps
of 0.01.

Non-linear indices estimation may be compromised when the
amplitude value of time series appears discrete in a reduced set
of values due to the lack of variation. A pre-processing stage is
included and details can be found elsewhere (Bolea et al., 2014a).

Simulation Study
A simulation study is conducted to assess the mathematical
relationship between HR and nonlinear HRV indices. The
simulation study was carried out based on a HRV representation
through the IPFM model. This model assumes that the ANS
influence on the sinoatrial node can be represented by a
modulating signal, (t) (Mateo and Laguna, 2000). According
to this model, when the integral of 1+ (t) reaches a threshold,
T, a new heartbeat is generated at time instant t(k). Threshold T
represents the inverse mean HR.

Fantasia database was selected to compute modulating signals.
Assuming that (t) is causal, band-limited and (t) < 1 then
the instantaneous HR can be described as:

dHR(t) =
1+ (t)

T
(1)

Instantaneous heart rate dHR(t) is obtained from the heartbeat
times t(k) based on the IPFM model (Mateo and Laguna, 2003),
and sampled at 4 Hz. A time-varying mean heart rate dHRM(t) is
computed by low pass filtering dHR(t) with a cut-off frequency of
0.03 Hz. The heart rate variability signal is obtained as dHRV (t)
= dHR(t) − dHRM(t). Finally, the modulating signal, (t), is

approximated by dHRV (t)/dHRM(t) (Bailón et al., 2011), that is
the HRV signal corrected or normalized by the mean HR.

Spectral analysis was applied to 5-min modulating signals
(t) by Welch periodogram. Frequency domain indices were

estimated based on spectral bands (LF band from 0.04 to 0.15
Hz and HF band from 0.15 to 0.4 Hz). Respiratory frequency was
checked to be within the HF band.

Among all modulating signals, only those which presented
one marked peak on each band (LF and HF band) were selected.
Spectral indices such as the powers and the frequency peaks
were used to generate synthetic modulating signals using an
autoregressive moving average technique (ARMA; Orini et al.,
2012). A total of one hundred 5-min segments were selected and
their spectral indices were used to feed the ARMAmodel. A total
of M = 50 stochastic modulating signals j(t) with j = 1,...,M,
were simulated for each (t). Figure 1 shows the spectra of 50
stochastic realizations, their median spectrum and the one of the
segment-recording they are based on.

Then, the IPFM model was applied on each stochastic
realization, varying the parameter Tn, where n = 1,...,16,
corresponding to T from 0.46 to 1.1 s in 0.04 s steps, to simulate

the heartbeat occurrence times, t
j
Tn(k), from which simulated

300-sample, are obtained. In this way, simulated RR series are
generated where ANS modulation is independent from changes
in mean HR. Simulation scheme is illustrated in Figure 2. D2,
SampEn and ApEn(max) are computed over these simulated RR
time series.

FIGURE 1 | Spectra derived from 50 stochastic realizations of

simulated modulating signals during supine conditions (data simulates

subject conditions from Fantasia database) applying ARMA technique

fixing LF and HF content (red lines). Average spectrum is shown in circles

(blue) and spectrum belonging to real data in dashed line (green).
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FIGURE 2 | Simulation data scheme is illustrated. Heartbeat time occurrences are detected from ECG. Based on the IPFM model the ANS modulating signal

M(t) is estimated. Spectral analysis by Welch periodogram is computed on (t) in order to estimate the parameters needed for the simulation, frequency and power

of LF and HF components, which are used to construct a new set of modulating signals, j (t), through ARMA technique, with M = 50 realizations. Then, IPFM

model is used to generate simulated heartbeat occurrences t
j
Tn
(k) with different values of T from 0.46 to 1.1 s. Simulated RR series are computed from the t

j
Tn
(k).

Another simulation was done based on the BPC database
characteristics. However, since subjects were asked to breathe
following an irregular sequence of tones, the HF band does not
show a dominant peak. In this case, the low and high frequencies
used to feed the ARMA model were placed in the middle of
LF and HF band, respectively. Then, modulating signals were
simulated from spectral indices derived from supine and upright
positions. This extends the analysis of HRV dependence on HR
under enhanced sympathetic conditions.

Non-linear Indices Dependence on HR as
Sampling Rate
The methodology used to compute nonlinear HRV indices,
considered in this study, is applied over linearly detrended
and normalized RR time series. The detrending ensures that
mean HR values are removed from the series whereas the
normalization eliminates the influence of mean HR on HRV
amplitude. Despite this fact, the effect of mean HR as sampling
rate might still be present on them. In this section this effect
is investigated on the simulation study, where changes in mean
HR are independent from changes in ANS modulation. First,
a mathematical relationship between nonlinear HRV indices
and HRM is assessed by two regression formulas; then, a
HR-correction is proposed based on these formulas. Second,
interpolation of RR series is proposed to attenuate the sampling
rate influence by mean HR on nonlinear HRV indices.

Regression Formulas
In order to explore the relationship between nonlinear HRV
indices and HR the following regression models were proposed.

X = β + αRR, (Linear model), (2)

X = β(RR α), (Parabolic model), (3)

where X ∈ {D2, SampEn, ApEn}, α and β are regression
coefficients.

Based on the former models HR-correction formulas were
obtained by projecting each nonlinear index onto a standard level
of RR= 0.5 s, hence:

Linear : XC1 = X+ ξ (0.5− RR), (4)

Parabolic : XC2 = X

(

0.5

RR

)ξ

, (5)

where ξ is the correction factor.
Transformation of XC1 or XC2 and RR into linear relationship

was used to compute Pearson correlation coefficient ρ. Then,
optimization was assessed by total least squares providing
correction factors by the Golden Cut Search satisfying ρ(ξ ) = 0.

Correction factors were computed on each stochastic
realization. Thus, subject-specific correction was defined
considering the correction factors of the 50 stochastic realizations
for each modulating signal and computing the median of the
HR-corrected indices.

Furthermore, a unique correction parameter was computed
considering all stochastic realizations for all modulating signals.
The transformation and optimization technique described above
was applied to median values for each nonlinear index, thus
defining a median correction approach to obtain Xξ

C1 and Xξ
C2.

Interpolation
RR series are unevenly sampled being the HR its sampling rate.
This implies that the number of data information for the same
time interval is dependent on HR. On the other hand, it is
known that estimation of nonlinear indices such as correlation
dimension, sample, and approximate entropy are dependent on
data length (Havstad and Ehlers, 1989). Therefore, interpolating
RR time series at the same sampling rate may alleviate the
influence of mean HR on nonlinear HRV indices since it allows
using the same number of data for the same time interval.
Interpolation at 2, 4, and 8 Hz were studied (XI2, XI4, and XI8

respectively).
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Statistical Analysis
Kolmogorov–Smirnov test was used to test the normality
of data distributions. Mann–Whitney U-test was used when
necessary; otherwise paired T-test was applied. Furthermore,
Pearson correlation was used to assess linear correlation between
corrected nonlinear HRV indices and RR. p< 0.05 are considered
as statistically significant.

Bland–Altman plots were used to analyse the agreement of
subject-specific vs. median correction formulas. The intra-classes
coefficient (ICC) was computed by SPSS for Windows, Version
15.0. Chicago, SPSS Inc.

RESULTS

Non-linear HRV Indices and Mean HR
Reflect Body Position-Induced Changes
Non-linear HRV indices (D2, SampEn, and ApEnmax) were
computed for the BPC database considering 300-sample
segments. All of them were found significantly higher in supine
than in standing position (see Figure 3B). Mean HR was
also significantly higher in supine than in standing position
(Figure 3A), which might explain the statistical differences
observed in the computed nonlinear HRV indices.

Relationship between Non-linear HRV
Indices and RR in the Simulation Study
The relationship between nonlinear HRV indices and RR is
assessed in the simulation study where RR is changed without
changes in ANS modulation. Non-linear HRV indices computed
from simulated data are illustrated in Figure 4 (median values
shown as blue circles). The correlation of nonlinear indices
and mean HR was evaluated by Pearson correlation coefficient
finding high correlation, for a wide range of median index values
being 3.5–5.02 for D2(max), 0.42–1.02 for SampEn, and 0.72–1.24
for ApEnmax (see Table 1).

HR-Corrected Non-linear Indices by
Regression Formulas
Regression formulas were applied to each simulated modulating
signal (subject-specific approach) providing corrected indices
with minimal mean HR correlation. The obtained HR-corrected
nonlinear indices are shown in Figure 4 (median values
considering all segments, in triangles right and left for linear and
parabolic regressions, respectively). The application of correction
formulas alleviated the correlation between nonlinear indices
and mean HR. Furthermore, the range covered by them was
highly reduced (3.81–3.95 forD2(max), 0.57–0.61 for SampEn, and
0.8–0.9 for ApEnmax), see Table 1.

A set of correction factors (median approach) was obtained
by considering the median of all nonlinear index values for
each heart rate and computing global correction parameters
(Table 1). To evaluate the agreement between subject-specific
vs. median correction approaches, the ICC was analyzed, being
above 0.8 for all HR-corrected nonlinear indices and for
both proposed regression formulas. The Bland–Altman plot in

Figure 5 illustrates the difference between both approaches in
which D2(max) is shown as an example.

HR-Corrected Non-linear Indices by
Interpolation
The nonlinear indices were computed from simulated RR time
series resampled at 2, 4, and 8 Hz. As shown in Figure 4, the
corrected nonlinear index values obtained applying regression
formulas projected onto RR = 0.5 s and by interpolating RR
time series at 2 Hz have similar median values. Despite the
fact that Pearson correlation factor computed between HR-
corrected nonlinear HRV indices by interpolation and mean HR
is still significant their range is much reduced [3.84–3.86 for
D2(max), 0.588–0.592 for SampEn, and 0.824–0.836 for ApEnmax]
being negligible compared to the range of uncorrected nonlinear
ones.

Application to BPC Database
The proposed HR-corrections were evaluated in the BPC
database. The results shown in Figure 3C illustrate the
differences found between supine and standing conditions.
Median and interquartile range of uncorrected and HR-corrected
nonlinear HRV indices are provided in Table 2.

In a first study, the value of the median correction factor
ξ extracted from the simulation study was used. It is worth
noting that after linear correction there was no significant
difference in SampEn and ApEnmax between supine and standing
positions, while parabolic correction only reduced differences
below significance for SampEn.

In a second study, simulation of each recording’s
characteristics was computed to apply subject-specific correction,
derived independently from supine, and standing recordings.
HR-corrected D2(max) was found statistically significantly
different for linear and parabolic regression formulas whereas
ApEnmax was only significant for parabolic.

Finally, nonlinear HRV indices were computed on RR time
series interpolated at 2, 4, and 8 Hz. We can conclude that the
higher the interpolation order, the lower the nonlinear HRV
values. In all cases HR-corrected nonlinear indices calculated
by interpolation showed statistical differences between positions
regardless of the interpolation order used (results of 4 and 8
Hz not included in the manuscript) being their range notably
reduced.

DISCUSSION

HRV analysis has been widely used as a non-invasive technique
to assess and quantify cardiac ANS modulation (Task Force of
the ESC-NASPE, 1996; Voss et al., 2009; Sassi et al., 2015).
However, HRV analysis is still under investigation due to HRV
characteristics that could lead to physiological misinterpretations
(Osaka et al., 1993; Chiu et al., 2003). ANS modulation is linked
to ANS tone (HRmean) and, as a consequence, an increase in the
sympathetic activity and a decrease in the vagal tone are related
to an increment in the HR and a reduction on its variability
(Chiu et al., 2003; Kazmi et al., 2016). This implies that there
is a physiological correlation between HRV and HR. However,
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FIGURE 3 | BPC database (22 subjects) was analyzed in which supine and standing positions were compared. (A,B) Illustrate mean RR and uncorrected

nonlinear HRV indices while (C) shows HR-corrected nonlinear HRV indices. Asterisks (*) indicates p < 0.05 by Mann–Whitney U-test between supine (Sup) and

standing (Std) positions.

we have demonstrated that there exists also a methodological
influence between nonlinear HRV indices and HR due to the
fact that HR is the intrinsic sampling rate of HRV. To do this,
we have conducted a simulation study. ANS modulating signals
were generated as realizations of a stochastic process (Orini
et al., 2012). Then, heart beat occurrences are generated using
an IPFM model, which is based on action potential generation
in SA node cells, and has been proven appropriate to describe
the genesis of HRV (Mateo and Laguna, 2000). This simple
model allows keeping the ANS modulation constant for different
mean HR values, which is not possible in the reality. This
simulation allowed assessing the nonlinear dependence of the
standard deviation of normal beats on mean HR as it has been
pointed out in previous studies (Zaza and Lombardi, 2001;
Monfredi et al., 2014; Yaniv et al., 2014b; data not included in the
manuscript). Two approaches have been proposed to attenuate

the effect shown in the simulation study: regression formulas and
interpolation.

Regression Formulas
Regression formulas are commonly used to characterize the
relationship between two magnitudes such as ventricular
repolarization and heart rate (Pueyo et al., 2004; Smetana et al.,
2004; Baumert et al., 2010). The relationship between correlation
dimension, sample, and approximate entropy, computed over
simulated 300-sample RR series, and mean HR was studied
by linear and parabolic regression. Although, the use of other
regression models different from linear or parabolic ones
may suppose an improvement, it would be unjustified since
coefficients of determination R2 ≥ 0.9 were obtained for all
cases for these models. Then, a correction was proposed based
on regression formulas derived for each simulated case, the
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FIGURE 4 | Non-linear HRV indices computed from simulation study varying mean heart period, distribution of all uncorrected nonlinear HRV indices

are shown in (blue) circles, corrected by linear regression in (brown) down triangles, corrected by parabolic regression in (green) up triangles, both

former cases only subject-specific correction value of non-linear indices for each RR were shown. Finally, HR-corrected non-linear indices by interpolating

RR time series at 2, 4, and 8 Hz in (orange) diamonds. Data corresponds to all simulations derived from Fantasia database. Distributions are represented by median

and interquartile range.

TABLE 1 | Pearson correlation factor ρ and p-values of non-linear indices and RR obtained from simulation study.

D2(max) SampEn ApEnmax

ρ 0.959 ± 0.068 0.947 ± 0.1 0.949 ± 0.074

p-value 0.0002 ± 0.0015 0.0004 ± 0.0044 0.0003 ± 0.0022

Median ± IQR 4.26 ± 0.76 0.72 ± 0.30 0.98 ± 0.26

Regression formulas Linear Parabolic

D2(max)C1 SampEnC1 ApEnC1 D2(max)C2 SampEnC2 ApEnC2

R2 0.919± 0.129 0.896± 0.186 0.902± 0.139 0.923± 0.129 0.896± 0.179 0.910±0.125

ρ sub-spe (× 10−05) 0.013± 0.20 0.016± 0.21 −0.0051± 0.20 −0.016± 0.20 0.011± 0.20 0.01±0.20

p-value sub−spe 1± 0 1± 0 1± 0 1± 0 1± 0 1±0

Median , IQR 3.88± 0.07 0.59± 0.02 0.85± 0.04 3.85± 0.02 0.59± 0.01 0.84±0.03

R2Median 0.997 0.988 0.970 0.999 0.990 0.982

ρMedian (× 10−05) −0.787 −0.109 −0.051 0.661 0.232 0.061

p-value Median 1 1 1 1 1 1

ξ Correction factor 2.39 0.93 0.75 0.39 0.84 0.54

Median ± IQR 3.88± 0.07 0.59± 0.02 0.85± 0.05 3.85± 0.02 0.59± 0.01 0.84±0.03

2 Hz Interpolation D2(max) SampEn ApEnmax

ρI2 −0.473 ± 1.41 −0.39 ± 1.09 −0.29 ± 0.77

p-value I2 0.0005 ± 0.044 0.008 ± 0.19 0.068 ± 0.37

Median ± IQR 3.85 ± 0.01 0.59 ± 0.002 0.83 ± 0.006

Linear and parabolic dependence of non-linear indices on RR was evaluated. Coefficient of determination (R2 ) as well as Pearson correlation factor and p-values (considering subject-

specific and median correction) and ξ correction factor are presented for both regressions. Pearson correlation factor ρ and p-values of non-linear indices and RR obtained interpolating

the simulated RR time series at 2 Hz. Data are given as median ± interquartile range.

so-called subject-specific correction, minimizing nonlinear HRV
indices correlation to meanHR. A correction based on regression
formulas derived from median parameters was proposed as an
extension to be applied to other databases. ICC values >0.8 were
found when evaluating subject-specific vs. median correction
approaches for all nonlinear HRV indices, suggesting the usage
of either of the approaches, see Figure 5.

Interpolation
Simulated RR time series were interpolated at 2, 4, and 8 Hz.
The higher the interpolation rate, the lower the nonlinear index
values. The addition of new data, resulting from interpolation,
can be interpreted in terms of entropy as an increase in
signal regularity being in concordance with a previous work
in which electroencephalogram complexity through correlation
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FIGURE 5 | Bland-Altman plots and intra-class coefficient (ICC) illustrate the agreement between subject-specific and median correction approaches

computed on Fantasia database to correct HR effect for both proposed regressions for corrected D2(max) index: linear (left panel) and parabolic (right

panel).

TABLE 2 | Uncorrected Non-linear HRV indices and HR corrected by

proposed approaches.

Supine Standing p-value

D2(max)C1 5.61 (4.88|6.38) 4.41 (3.64|4.88) 0.0025

D2(max)C1 5.10 (4.33|5.62) 4.07 (3.41|4.57) 0.0014

D2(max)C2 4.85 (4.19|5.25) 3.97 (3.31|4.46) 0.0019

D
2(max)

ξ

C1

4.66 (3.98|5.27) 3.88 (3.24|4.42) 0.0045

D
2(max)

ξ

C2

4.47 (3.93|4.93) 3.82 (3.25|4.32) 0.0064

D2(max)I2 3.67 (3.23|4.08) 3.02 (2.84|3.64) 0.024

SampEn 0.73 (0.53|0.83) 0.48 (0.037|0.0.67) 0.008

SampEnC1 0.28 (0.05|0.38) 0.24 (0.15|0.37) 0.73

SampEnC2 0.40 (0.28|0.44) 0.33 (0.25|0.44) 0.44

SampEn
ξ

C1
0.333 (0.158|0.434) 0.272 (0.185|0.424) 0.39

SampEn
ξ

C2
0.436 (0.344|0.488) 0.364 (0.27|0.47) 0.062

SampEnI2 0.50 (0.42|0.54) 0.35 (0.26|0.42) 0.0013

ApEn(max)C1 1.11 (1.03|1.17) 0.88 (0.77|0.95) 0.008

ApEn(max)C1 0.94 (0.91|1.01) 0.88 (0.80|0.97) 0.057

ApEn(max)C2 0.94 (0.91|0.99) 0.87 (0.79|0.96) 0.038

ApEn
(max)

ξ

C1

0.784 (0.684|0.838) 0.775 (0.707|0.856) 0.5

ApEn
(max)

ξ

C2

0.783 (0.742|0.825) 0.777 (0.713|0.838) 0.94

ApEn(max)I2 0.80 (0.74|0.85) 0.71 (0.66|0.80) 0.0098

Data is shown in terms of median and interquartile range. Statistical differences are tested

by Mann–Whitney U-test.

dimension was evaluated varying the sampling rate (Jing and
Takigawa, 2000). In our study, interpolation was used as
a technique to alleviate the dependence of nonlinear HRV
indices on mean HR as sampling rate effect since it allows
estimating nonlinear indices over the same time interval and
the same number of points. Sampling rate should be above the
maximum HR. HR-correction nonlinear HRV indices computed
by interpolating at 2 Hz and by regression formulas presented
similar values and range. In some studies, RR time series were

interpolated to increase the number of data points to increase
reliability of nonlinear measurements, thus compensating mean
HR effect on them. The used sampling frequency varies including
2, 4, and 8 Hz, or even 20 KHz (Osaka et al., 1993; Hagerman
et al., 1996; Kim et al., 2005). However, since nonlinear HRV
indices estimates are strongly dependent on the selected sampling
rate, results should be compared with caution.

Despite the dependence of nonlinear HRV indices on mean
HR revealed in the simulation study, no HR-correction of
nonlinear HRV indices is applied in most of the studies found
in the literature, where mean HR values are even not provided in
some cases (Penttilä et al., 2003; Platisa and Gal, 2006; Melillo
et al., 2011; Kunz et al., 2012; Moon et al., 2013; Weippert
et al., 2013). The application of nonlinear indices without
HR correction should be restricted to HR steady-state group
conditions, as for example in Weippert et al. (2013).

Classical nonlinear HRV indices evaluated in the BPC
database showed around 21, 34, and 21% of reduction in median
values from standing with respect to supine position for D2(max),
SampEn, and ApEnmax respectively while mean HR increased by
around 28%. Changes in these indices may reflect changes in
mean HR as well as additional changes in ANS modulation, as
suggested in a previous study (Platisa and Gal, 2006; Yaniv et al.,
2014a).

In the BPC database, HR-corrected nonlinear indices were
computed under supine and standing conditions and D2(max)

was found to be significantly different for all regression
approaches while ApEnmax only for subject-specific using
parabolic regression. Linear and parabolic regression formulas
were selected to be suitable for the three indices under simulation
conditions, although coefficients of determination were slightly
lower for ApEnmax and SampEn than for D2(max).

On the other hand, all nonlinear HRV indices were found
still significantly different when corrected by interpolation. It
was found a statistically significant reduction in standing with
respect to supine position of 18, 30, and 12% forD2(max), SampEn,
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and ApEnmax respectively, mostly reflecting ANS modulation
changes while mean HR effect was attenuated. HR-corrected
nonlinear index ranges, calculated as the difference of median
values for supine and standing positions, were found reduced
when compared to uncorrected nonlinear HRV index ranges.

Although, regression formulas were studied as HR-correction
approach, their suitability depends on simulation requirements.
Possible mismatches of simulated data with respect to real
data difficult their application and therefore, we propose to
compute nonlinear indices over interpolated RR series to
attenuate mean HR effect, since no simulation is required, it
saves computational time and still differentiates between both
positions. This correction may lead to better understanding
complexity and regularity under ANS changes unbiased by mean
HR as natural sampling rate of RR time series.

Note that, although HR-correction attenuates the effect of
mean HR as sampling rate, HR-corrected nonlinear HRV indices
may be still correlated with mean HR due to their physiological
dependence. After HR-correction, nonlinear HRV indices are
capable of capturing information about ANS modulation in
response to body position changes.

HR-corrected nonlinear HRV indices addressed in this study,
pointed out a reduction in the complexity of the underlying
system and an increase in the HRV series regularity caused by an
increase of the sympathetic activity, when changing from supine
to standing position, being in agreement with previous works
with similar conditions, considering tilt table test or even exercise
(Osaka et al., 1993; Kamen et al., 2000; Radhakrishna et al.,
2000; Javorka et al., 2002; Porta et al., 2007; Bolea et al., 2014b).
Nevertheless, these results and their physiological interpretation
are limited by the low number of subjects of study and further
studies are needed.

CONCLUSION

In this work, changes in nonlinear HRV indices were studied
under different sympathetic conditions where mean HR also
changed. It is studied to what extend changes in nonlinear
HRV indices are explained by HR ones. Correlation dimension,

approximate and sample entropy dependence on mean HR as
sampling rate is explored. A simulation study was carried out
emulating ANS modulation no linked to mean HR. Simulation
results showed that heart rate affects nonlinear indices as it is
the intrinsic sampling rate of HRV even when considering the
same data length. Two HR-correction methodologies, regression
formulas and interpolation, were proposed. Their evaluation on
a BPC database revealed a reduction of all studied HR-corrected
nonlinear HRV indices in supine and standing positions. After
HR-correction, nonlinear HRV indices are capturing changes in
the sympathetic modulation by body position-induced changes.
HR-correction by interpolation was found suitable to attenuate
nonlinear HRV indices effect on mean HR and its application
could represent an improvement in their applicability extending
it in such cases of non-steady mean HR.
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APPENDIX

Non-linear Method Calculations
Let x(k), k= 1,...,N be the time series of interest,N being the total
number of samples. A set ofm-dimensional vectors, ym(i), called
reconstructed vectors, can be generated:

ymi =
[

x(i), x(i+ 1), x(i+ 2), . . . , x(i+ (m− 1))
]T

(A1)

Then, the amount of reconstructed vectors is Nm = N − (m−1)
for eachm-embedded dimension. The distance between each pair
of reconstructed vectors, y m

i , y m
j is denoted as dmi,j . The norm

used is L∞. Then, each distance is compared with a threshold, r,
in order to compute how many reconstructed vectors are within
a hyper-space centered in the reconstructed vector of reference.
The embedded dimension was set tom= 2 in this manuscript for
the three following methods. Let see it mathematically on each
particular case.

Approximate Entropy (ApEn)

Cm
i (r) =

1

Nm

∑Nm

j= 1
H

(

r − dmi,j

)

(A2)

is the correlation sum where H is the Heaviside function.

H(x) =

{

1 x ≥ 0
0 x < 0

}

(A3)

φm(r) =
1

Nm

∑Nm

i= 1
log

(

Cm
i (r)

)

(A4)

ApEn (N,m, r) = φm(r)− φm+1(r) (A5)

In addition, due to the intrinsic characteristics of ApEn, there is
a threshold, r, for each time series at which ApEn is maximum
defining ApEnmax. Computation of ApEnmax is explained in the
last subsection of this Appendix.

Sample Entropy (SampEn)
Self-comparisons, dmi,i , bias ApEn estimation being more
notable when data length becomes shorter. Thus, SampEn was

introduced to solve this bias and to be data length independent.
In this case,

Cm
i (r) =

1

Nm − 1

∑Nm−1

j= 1,j 6= i
H
(

r − dmi,j

)

(A6)

is the correlation sum not considering self-comparisons.

φm(r) =
1

Nm

∑Nm

i= 1
Cm
i (r) (A7)

SampEn (N,m, r) = −In
(

φm (r)/φm+ 1 (r)
)

(A8)

SampEn is also commonly calculated at the same range of r as for
ApEn, spanning from 0.1 to 0.2 times standard deviation of the
data.

Correlation Dimension (D2)

Cm(r) =
1

Nm (Nm − 1)

∑Nm

i,j= 1
H

(

r − dmi,j

)

(A9)

For deterministic systems, Cm(r) decreases monotonically to

0 as r approaches 0, and it is expected that Cm(r) is well
approximated by Cm(r) ≈ rD

m
2 . For correlation dimension

estimation the threshold, r, is varied from r = 0.01–3 in steps

of 0.01.
Thus, Dm

2 can be defined as:

Dm
2 = lim

r→0

logCm(r)

log(r)
(A10)

For increasingm, Dm
2 values tend to saturate to a value D2 which

constitutes the final correlation dimension estimate. Embedded

dimension is varied from m = 1–16. In Bolea et al. (2014a),

a fast computation algorithm was presented and it is further

detailed elsewhere. The algorithm considers self-comparisons in

the correlation sums allowing ApEn computation in a middle-

step. Therefore, ApEnmax is computed at the same time as
correlation dimension
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