000058563 001__ 58563
000058563 005__ 20190709135424.0
000058563 0247_ $$2doi$$a10.1063/1.4973436
000058563 0248_ $$2sideral$$a97669
000058563 037__ $$aART-2017-97669
000058563 041__ $$aeng
000058563 100__ $$aMazario, E.
000058563 245__ $$aMaghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters
000058563 260__ $$c2017
000058563 5060_ $$aAccess copy available to the general public$$fUnrestricted
000058563 5203_ $$aPolyamidoximes (pAMD) are known to have strong affinities for uranyl cations. Grafting pAMD onto the surface of functionalized maghemite nanoparticles (MNP) leads to a nanomaterial with high capacities in the extraction of uranium from wastewaters by magnetic sedimentation. A diamidoxime (dAMD) specifically synthesized for this purpose showed a strong affinity for uranyl: Ka = 105 M-1 as determined by Isothermal Titration Calorimetry (nano-ITC). The dAMD was grafted onto the surface of MNP and the obtained sorbent (MNP-dAMD) was characterized. The nanohybrids were afterward incubated with different concentrations of uranyl and the solid phase recovered by magnetic separation. This latter was characterized by zeta-potential measurements, X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Fluorescence spectroscopy (XRF), whereas the supernatant was analyzed by Inductively Coupled Plasma coupled to Mass Spectrometry (ICP-MS). All the data fitted the models of Langmuir, Freundlich and Temkin isotherms very well. These isotherms allowed us to evaluate the efficiency of the adsorption of uranium by MNP-dAMD. The saturation sorption capacity (qmax) was determined. It indicates that MNP-dAMD is able to extract up to 120 mg of uranium per gram of sorbent. Spherical aberration (Cs)-corrected High-Resolution Scanning Transmission Electron Microscopy (HRSTEM) confirmed these results and clearly showed that uranium is confined at the surface of the sorbent. Thus, MNP-dAMD presents a strong potential for the extraction of uranium from wastewaters.
000058563 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000058563 590__ $$a1.653$$b2017
000058563 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b174 / 285 = 0.611$$c2017$$dQ3$$eT2
000058563 591__ $$aPHYSICS, APPLIED$$b81 / 146 = 0.555$$c2017$$dQ3$$eT2
000058563 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b69 / 92 = 0.75$$c2017$$dQ3$$eT3
000058563 592__ $$a0.472$$b2017
000058563 593__ $$aPhysics and Astronomy (miscellaneous)$$c2017$$dQ2
000058563 593__ $$aNanoscience and Nanotechnology$$c2017$$dQ2
000058563 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000058563 700__ $$aHelal, A.S.
000058563 700__ $$aStemper, J.
000058563 700__ $$0(orcid)0000-0002-5229-2717$$aMayoral, A.
000058563 700__ $$aDecorse, P.
000058563 700__ $$aChevillot-Biraud, A.
000058563 700__ $$aNovak, S.
000058563 700__ $$aPerruchot, C.
000058563 700__ $$aLion, C.
000058563 700__ $$aLosno, R.
000058563 700__ $$aLe Gall, T.
000058563 700__ $$aAmmar, S.
000058563 700__ $$aEl Hage Chahine, J.M.
000058563 700__ $$aHémadi, M.
000058563 773__ $$g7 (2017), 056702 [7 pp.]$$pAIP advances$$tAIP advances$$x2158-3226
000058563 8564_ $$s8273710$$uhttps://zaguan.unizar.es/record/58563/files/texto_completo.pdf$$yVersión publicada
000058563 8564_ $$s90264$$uhttps://zaguan.unizar.es/record/58563/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000058563 909CO $$ooai:zaguan.unizar.es:58563$$particulos$$pdriver
000058563 951__ $$a2019-07-09-11:28:10
000058563 980__ $$aARTICLE