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A. Introduccioén: Definicion del objeto matematico

En este trabajo se presenta una propuesta didactica orientada a la ensefianza de la
integral definida en el segundo curso de Bachillerato en la asignatura de Matematicas |1
(seguin establece el Real Decreto 1105/2014, de 26 de diciembre, Boletin Oficial del
Estado de 3 de enero de 2015). En la siguiente tabla (tabla 1) se resumen en términos de
campos de problemas, técnicas y tecnologias los principales elementos en torno a los que

se ha configurado la propuesta didactica.

Campo de problemas Técnicas Tecnologias

-Calculo de areas limitadas -Aplicacion de la integral de | -Integral de Riemann.

por curvas Riemann al calculo de areas | Definicidn

-Aplicacion a situaciones de | P&jo curvas -Propiedades de la integral

la naturaleza y de la -Aplicacion del calculo de definida

tecnologia primitivas y de la regla de _Teorema fundamental del
Barrow al calculo de areas calculo. Demostracion. Regla
bajo curvas de Barrow

Tabla 1. Resumen de los campos de problemas, técnicas generales y tecnologias asociadas a la
propuesta de ensefianza de la integral definida en la asignatura de Matematicas Il de 2° de

Bachillerato.






B. Estado de la ensefianza-aprendizaje de la integral definida

En esta seccion se presenta una breve panoramica del estado actual de la
ensefianza-aprendizaje de la integral definida. Esta se ha elaborado a partir de distintos
puntos de vista. En primer lugar, se ha examinado el curriculo oficial, no sélo teniendo
en cuenta la delimitacion de contenidos sino identificando aquellos aspectos didacticos
que subyacen en dicha formulacion de contenidos y criterios de evaluacion. Por otro lado,
se ha realizado un breve analisis de las propuestas didacticas de una pequefia muestra de
libros de texto. Finalmente, se ha hecho referencia al modo en que las pruebas de acceso
a la universidad, que hasta ahora se han realizado al finalizar el curso académico en que
se introduce la integral definida, han podido condicionar la ensefianza y el aprendizaje de

dicho objeto matematico.

En las versiones mas recientes del curriculo, desde el afio 1992, la integral definida
se asocia al problema del calculo de areas de regiones planas encerradas bajo funciones.
Sin embargo, se han propuesto diferentes ordenaciones de los contenidos que desde el
punto de vista didactico pueden ser significativas. Tanto en la primera version del
curriculo LOGSE, recogida en el Real Decreto 1179/1992 de 2 de octubre, como en el
correspondiente a la legislacion LOE (Real Decreto 1467/ 2007 de 2 de noviembre), se
insta a introducir la integral definida a partir del concepto de area. Ademas, el calculo de
primitivas se sitla después de esta introduccion a la integral definida. En cambio, en la
modificacion del curriculo LOGSE de 2001 (Real Decreto 938/2001, de 3 de agosto) y
en el curriculo LOMCE (Real Decreto 1105/2014, de 26 de diciembre, Orden de 26 de
mayo de 2016, de la Consejera de Educacion, Cultura y Deporte de la Comunidad
Auténoma de Aragon), se introduce en primer lugar la funcion primitiva y las técnicas
elementales de integracion y, posteriormente, la integral definida. En ambos casos, el
calculo de areas de regiones planas se recoge en los contenidos como una aplicacién; no
se hace, por tanto, explicita la sugerencia de utilizar este campo de problemas como razén

de ser para la introduccidn del objeto matematico.

Desde el punto de vista de los libros de texto, resultan interesantes los trabajos de
Labrafia (2001) y, por otra parte, de Contreras et al. (2010) y Orddfiez y Contreras (2011).
En estos andlisis se constata que, en la mayoria de casos, la integral definida se introduce
después del célculo de primitivas. De forma general, este objeto matematico se relaciona

con el célculo de areas. Sin embargo, si se observan el tipo de ejercicios que proponen
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los textos, se infiere que la mayor parte del esfuerzo se dedica a la practica de las técnicas
de céalculo. Pese a que predominan los ejercicios de aplicacion de la integral definida en
un contexto geométrico, en la mayoria de ellos, la resolucién requiere Unicamente la

aplicacion directa de la técnica (Contreras et al. 2010).

Por otro lado, estos autores son criticos con el tratamiento que en los textos se da
a otras aplicaciones de la integral. Labrafia (2001) sefiala que, asi como el uso de la
integral definida para el calculo de areas se suele introducir con cierto grado de rigor, la
extension a otras aplicaciones (p. ej. calculo de longitudes de curvas, problemas fisicos)
no queda suficientemente justificado. Por su parte, Contreras et al. (2010) reclaman una
mayor presencia en los libros de texto del campo de problemas relacionados con la
aplicacion de la integral en la evaluacion del resultado de un proceso de cambio®. A su
juicio, esta aplicacion no se justifica en los textos, de modo que implicitamente se asume

que el alumno es capaz de extrapolar la utilizacién de la integral a otros contextos.

En la tabla 2 se recogen los principales aspectos de las propuestas didacticas
relativas a la integral definida de una muestra de cinco libros de texto utilizados en el

bachillerato desde el afio 1999.

! Se ha mantenido la denominacion de los autores (Contreras et al. 2010) que hace referencia al conjunto
de problemas, generalmente provenientes de otros &mbitos de la ciencia, en los que se aplica la integral
para analizar el cambio resultante en una magnitud resultante de un proceso del que se conoce la intensidad
de la tasa de variacion de dicha magnitud. Dentro de este campo de problemas, son frecuentes en los textos
los relacionados con la cinematica.



Estado de la ensefianza-aprendizaje de la integral definida

Campo de problemas

Técnica

Tecnologia

Célculo de &rea de regiones planas
(Razon de ser)

Definicion formal de area (Pastor et al. 1999)

Célculo de integrales a partir de la formula del
area de figuras conocidas (Colera et al. 2003,
Escoredo et al. 2009)

Célculo de integrales a partir del limite de
sucesiones (Colera et al. 2003, Escoredo et al.
2009)

Presentacion formal de la integral de Riemann
Algunas transposiciones didacticas relevantes:

-particularizacion para funciones continuas (Pastor et al. 1999,
Monteagudo y Paz 2003, Colera et al. 2003, Escoredo et al.
2009, Vizmanos et al. 2009)

-sumas superiores e inferiores definidas a partir de concepto
de méaximo y minimo de la funcidn en un intervalo (Pastor et
al. 1999, Colera et al. 2003, Escoredo et al. 2009)

-No aparece la integrabilidad (Escoredo et al. 2009)

Célculo de integrales definidas de funciones
continuas:

-Calculo de la funcion primitiva
-Aplicacion de la regla de Barrow

Célculo de integrales definidas de funciones
discontinuas:

-Descomposicion del intervalo de integracion
en intervalos donde la funcion es continua

-Aplicacion de la técnica anterior

Condiciones suficientes para la integrabilidad (sin demostracion p.
ej. Pastor et al. 1999, Colera et al. 2003)

Propiedades de la integral definida (generalmente sin
demostracion p. ej. Pastor et al. 1999, Monteagudo y Paz 2003,
Colera et al. 2003, Escoredo et al. 2009)

Teorema del valor medio (generalmente demostrado p. ej. Pastor
etal. 1999, Colera et al. 2003, Escoredo et al. 2009)

1¢" teorema fundamental del célculo integral (generalmente
demostrado p. ej. Pastor et al. 1999, Colera et al. 2003, Escoredo
et al. 2009)
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Regla de Barrow (generalmente demostrada p. ej. Pastor et al.
1999, Colera et al. 2003, Escoredo et al. 2009)

Aplicacion: calculo de areas

-Procedimiento para el calculo de areas de
regiones definidas por curvas

Otras aplicaciones:

-Volumen cuerpos de revolucion

-Férmula dada (Pastor et al. 1999, Colera et al.

2003, Escoredo et al. 2009)

-Breve justificacion (p. ej. a partir de las sumas de Riemann en
Colera et al. 2003, Escoredo et al. 2009)

-Volumenes de sélidos, longitudes de
arcos (f(x) derivable)

- Formula dada (Vizmanos et al. 2009,
Monteagudo y Paz 2003)

- Breve justificacion a partir de las sumas de Riemann (Vizmanos
et al. 2009)

-Problemas en el campo de la fisica:
cinematica (Vizmanos et al. 2009,
Monteagudo y Paz 2003), célculo de
fuerzas sobre superficies debidas a la
presidn hidrostatica o calculo de
trabajo (Pastor et al. 1999)

-Férmula dada (Pastor et al. 1999)

-Formulacion a partir de un elemento
diferencial (Vizmanos et al. 2009)

-cinemética: a partir de sumas de Riemann (Vizmanos et al. 2009)

Tabla 2. Aspectos generales de las propuestas didacticas que presentan habitualmente los libros de texto.
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Estado de la ensefianza-aprendizaje de la integral definida

En estas propuestas, es habitual que la unidad correspondiente comience con el
planteamiento del problema del célculo del area bajo una curva. En este punto, existen
diferentes orientaciones en las propuestas en cuanto al tratamiento del concepto “area
bajo una curva”. Segun Labrafa (2001) la mayoria de textos asumen que el objeto es
intuitivo para los alumnos y, por tanto no proporcionan una formalizacion del concepto
(p. ej. Colera et al. 2003, Escoredo et al. 2009, Vizmanos et al. 2009).

Una vez se ha contextualizado el problema, los textos se centran en la presentacion
de la integral definida. Esta se realiza en un lenguaje formalista y se basa en una
trasposicion didactica de la integral de Riemann. Esta se define a partir de la introduccion
de las sumas superiores e inferiores (Pastor et al. 1999, Escoredo et al. 2009), o bien a
partir de las sumas de Riemann (Vizmanos et al. 2009). Por otra parte, el desarrollo
tedrico se suele particularizar para funciones continuas. De esta forma, el discurso
didactico se simplifica, ya que se puede eludir la introduccion de definiciones auxiliares,
tales como las de supremo e infimo. Sin embargo, este enfoque relega, desde el punto de
vista didactico, a un segundo plano -y en ocasiones obvia— las cuestiones relacionadas
con la integrabilidad de funciones. En estas propuestas, la integrabilidad de funciones
continuas se afirma pero no se demuestra (p. ej. Vizmanos et al. 2009, Escoredo et al.
2009). La discusién acerca esta caracteristica en otros tipos de funciones cuya aparicion
es frecuente en este nivel, tales como las funciones continuas a trozos, en los casos en que
se aborda, se realiza a través de afirmaciones generales (Vizmanos et al. 2009) o por
medio de la enunciacion de algunas condiciones suficientes para la integrabilidad cuya
demostracion se omite (Pastor et al. 1999).

A partir de esta presentacion de la integral definida, en algunos textos se proponen
algunos ejercicios para el calculo de integrales en los que se utilizan técnicas, o bien
basadas en su identificacion con el area de figuras planas conocidas y la aplicacion de las
propiedades de la integral, o bien en el célculo de limites de sucesiones (p. ej. Colera et
al. 2003). Sin embargo, Contreras et al. (2010) sefialan que la presencia de ejercicios que
refuercen la concepcion de la integral definida como el limite de una sucesion que
aproxima el area bajo la curva es escasa en los textos y generalmente queda reducida a la

articulacion del discurso formal que presenta la integral definida.

Finalmente, el discurso tecnoldgico concluye con la enunciacién y demostracion
del primer teorema fundamental del céalculo integral (en cuya demostracion se utiliza el

teorema del valor medio integral) y de la Regla de Barrow. En este momento queda
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justificada la técnica principal de la unidad para el calculo de integrales definidas de

funciones continuas.

Una vez se han presentado esta técnica para el calculo de integrales definidas, los
textos retoman el problema del area y presentan distintos ejemplos. Ademas, se suelen
incluir otras aplicaciones de la integral definida tales como el célculo de volimenes de

cuerpos de revolucion o en situaciones que provienen del campo de la fisica.

Por ultimo, algunos investigadores como Turégano (1997) y Orddfiez y Contreras
(2011) han destacado la influencia que ejercen en la ensefianza las pruebas de acceso a la
universidad, ya que reconocen que, en muchas ocasiones, el Ultimo curso se convierte en
una preparacion para éstas. Asi, Turégano (1997) reclama que los ejercicios relacionados
con la integral se centran principalmente en aspectos procedimentales en lugar de
conceptuales. En una linea critica similar, Ordofiez y Contreras (2011), tras realizar un
analisis cuantitativo de los tipos de ejercicios sobre integral definida que aparecen en los
examenes propuestos en Andalucia, concluyen que predominan —con mas de un 80% de

frecuencia relativa— aquellos en los que se solicita la aplicacion directa de la integral.

Si se traslada el analisis a los examenes propuestos en la comunidad de Aragon
durante los afios 2006 y 2016 se obtienen resultados similares. Aproximadamente, el 80%
de los ejercicios que se relacionan con la integral definida son de aplicacion directa y
estan planteados bien en un contexto geomeétrico o algebraico. En la siguiente tabla (tabla
3) se muestran dos ejemplos de ambos tipos de ejercicios. En general, los ejercicios
propuestos en un entorno algebraico requieren el calculo de la primitiva y la aplicacion
de la regla de Barrow y, por tanto, estdn Unicamente centrados en la evaluacion de

aspectos procedimentales.

Ejemplo de ejercicio de aplicacion directa planteado en un contexto geométrico

Calcule el area de la region encerrada entre las curvas f(x) = x3y g(x) = 2x% — x (junio de
2016).

Ejemplo de ejercicio de aplicacion directa planteado en un contexto algebraico

Para la funcion f(x) = % calcular f23f(x)dx (septiembre de 2011).

Tabla 3. Dos ejemplos de los tipos de ejercicios méas frecuentes en las pruebas de acceso para la

universidad celebradas en la comunidad de Aragon durante los afios 2006-2016.
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Estado de la ensefianza-aprendizaje de la integral definida

Asi pues, se puede concluir que, de forma general, en la ensefianza actual la
integral definida se introduce a partir del problema del calculo del area de la region
encerrada bajo una curva. Ademas, ya que este objeto se presenta una vez se han trabajado
las reglas para el calculo de primitivas, el calculo de areas se puede percibir como una
aplicacion de las técnicas previamente asimiladas. En esta adquisicion de destrezas
algebraicas —relacionadas con el correcto uso de las reglas para el calculo de primitivas—
se invierten gran parte de los esfuerzos (Llorens y Santoja 1997 y Orddiiez y Contreras
2011).

B.1 Efectos en el aprendizaje de la integral definida

Algunos autores han sido criticos con este método para la introduccion de la
integral definida en la ensefianza. El desequilibrio entre el significativo esfuerzo invertido
en la asimilacion de las técnicas para el calculo de primitivas frente a la menor presencia
de los aspectos conceptuales, es uno de los hechos que los investigadores han coincidido
en sefialar. Ademas, la presentacion mas frecuente de contenidos —célculo de primitivas
en primer lugar y, posteriormente, integral definida— se puede relacionar con algunos
efectos negativos. Segun Turégano (1998) y Llorens y Santoja (1997) esta introduccién
de contenidos, unida al énfasis en el calculo de primitivas, puede llevar a que los alumnos
consideren la integracion unicamente como operacion inversa a la derivacion. Asimismo,
la presentacion formal de la integral definida particularizada para funciones continuas,
puede contribuir a la configuracién de esta concepcion parcial acerca de la integral
definida. Se pueden relacionar con estos hechos algunos errores tales como la confusion
entre la integrabilidad y la existencia de primitivas, tal como sefialan Labrafia (2001) y
Ordofiez (2011), y la aplicacién errénea de la regla de Barrow. Un ejemplo de este tltimo
caso, lo ilustra la cuestion que planteé Mundy (1984, apud. Llorens y Santoja 1997) en la

que se preguntaba qué habia de incorrecto en el siguiente calculo:

1 dx 1 17!
[ENPRNIE SR
1 X 1 X 11

En la réplica del cuestionario que Llorens y Santoja (1997) realizaron a 198
alumnos universitarios cursando la asignatura de Calculo, se obtuvo alrededor de un 20%
de éxito. En este sentido, Labrafia (2001) considera escaso el énfasis que se realiza en

sefialar las limitaciones del célculo de primitivas.
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En relacion con esta presentacion de la integral definida, en que la visién de la
integral como el limite de una aproximacion se suele introducir exclusivamente dentro de
su presentacion formal, algunos autores han afirmado que los alumnos no la relacionan
con un proceso de convergencia. Este hecho, segin Llorens y Santoja (1997) puede
constituir un obstaculo didactico en el momento de abordar el estudio posterior de las
integrales impropias.

Por otro lado, pese a que los alumnos asocian la integral definida al calculo de
areas (Orddfiez 2011), su practica se centra casi exclusivamente en métodos algebraicos.
Algunos autores han sefialado (Llorens y Santoja 1997, Labrafia 2001) o mostrado
experimentalmente Ordofiez y Contreras (2011) que en las decisiones que los alumnos
adoptan acerca del resultado de un ejercicio tienen prevalencia los calculos que los

razonamientos derivados de una interpretacion grafica. La integral definida, propuesta
por Mundy (1984, apud. Llorens y Santoja 1997), f_33|x + 2|dx, se puede utilizar para

diagnosticar este hecho. En el experimento original el 95% de los estudiantes respondio

incorrectamente a la pregunta.

Algunos autores han relacionado (p. ej. Labrafia 2001, Orddiiez y Contreras 2011)
algunos resultados negativos del aprendizaje actual en torno a la integral definida con la
practicamente exclusiva asociacion de este objeto matematico al calculo de areas. De esta
forma, es posible que los alumnos sélo reconozcan la aplicacion de la integral definida al
calculo del area bajo la curva (Berry y Nyman 2003). Asimismo, se reconocen las
dificultades, de forma inversa, para aplicar la integral definida en otros contextos (Artigue
1991, apud. Mufioz 2000), Tall (1991), Labrafia 2001). En los trabajos més recientes de
Camacho et al. (2008) y Orddfiez (2011) se muestran evidencias empiricas de la dificultad
de los alumnos para utilizar e interpretar la integral definida mas alla del calculo de areas.
Orddfiez y Contreras (2011) sefialan que la ausencia —0 presencia residual—, tanto en los
libros de texto como en las pruebas de acceso a la universidad, de campos de problemas
en los que la integral se relacione con la nocidn de acumulacion o con la evaluacién de

un proceso de cambio puede ser uno de los origenes de este hecho.
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C. Conocimientos previos

En esta seccion se realiza una recapitulacion de los conocimientos y competencias
que se consideran necesarios para la implementacion en el aula de la propuesta didactica
que aqui se plantea. En la tabla 4 se recogen y organizan por bloques de contenidos,

haciendo referencia al lugar que ocupan en el curriculo.

Bloque de contenidos | Conocimientos y competencias (Lugar en el curriculo)

Funciones -propiedades: continuidad, monotonia y acotacion (1°y 2° Bach.)

-representacion grafica de funciones elementales (1° y 2° Bach.)

-uso de las funciones para analizar, describir, interpretar y resolver
fendmenos naturales, econémicos y sociales (1°y 2° Bach.)

Limites -concepto de limite de una funcién (1°y 2° Bach.)

Derivada -concepto de tasa de variacion media e instantanea (1°y 2° Bach.)

-definicion de derivada de una funcion en un punto. Funcién
derivada (1°y 2° Bach.)

-significado geométrico de la derivada. Aplicacion de la derivada a
otros &mbitos del saber (1°y 2° Bach.)

-derivada de funciones elementales. Dominio de las técnicas de
derivacion (1°y 2° Bach.)

Sucesiones -uso del lenguaje algebraico para expresar la ley de formacion de
sucesiones (3° ESO)

-sucesiones de numeros reales: monotonia y acotacion (1° Bach.)

-limite de sucesiones (1° Bach.)

Area -nocién de area

-técnicas para el calculo de areas de figuras planas

Tabla 4. Relacion de conocimientos previos necesarios para la introduccion de la integral definida

segun la propuesta didactica.

Una buena parte de los contenidos la forman los relacionados con el analisis que
se imparte en los dos cursos de Bachillerato. Es preciso que los alumnos conozcan algunas
propiedades como la continuidad, monotonia o acotacién. Ademas es, por una parte,
necesario gque posean cierta destreza en la representacién de funciones elementales y, por
otra parte, deseable que sean competentes en la utilizacion de las funciones para abordar

o0 analizar situaciones problematicas.
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Se considera importante que el alumno haya adquirido el concepto de limite y la
forma en que se ha definido formalmente. Por Gltimo, en relacion a la introduccion del
teorema fundamental de calculo, es necesario cierto dominio de los conceptos de tasa de
variacion media e instantanea de una funcion y de derivada. Dado que estos contenidos
del blogue de analisis se han abordado recientemente, se considera que el proceso de

evaluacion llevado a cabo durante el curso es suficiente para conocer el nivel general del
grupo.

En lo que atafie a los contenidos del bloque de geometria, se considera suficiente
que el alumno posea una nocion de area y que sea capaz de aplicar las técnicas basicas
para el calculo de areas de figuras geométricas planas basicas. Se ha asumido que estos
contenidos se han trabajado en los cursos tempranos de la educacion secundaria. No
obstante, en la primera actividad dedicada al repaso de algunos contenidos se incluyen

algunos ejercicios en los que se pueden aplicar algunas técnicas para el calculo de areas.

Por ultimo, los contenidos relacionados con las sucesiones se consideran
necesarios para abordar la introduccion a la integral definida. Principalmente, se requiere
cierta destreza en el manejo algebraico de sucesiones, asi como conocer algunos
conceptos como monotonia y acotacion. Dado que estos contenidos se abordan en el
tercer curso de la Educacion Secundaria Obligatoria y que su presencia en el Bachillerato
es escasa, se ha considerado conveniente la realizacion de una actividad inicial que tenga
por objetivo retomar los aspectos principales de estos contenidos y poder corregir algunas

concepciones erroneas.
C.1 Actividad inicial

Se propone realizar una actividad inicial que consistira en la realizacion, por
parejas 0 grupos, de los ejercicios que se muestran en la tabla 5. La sesion tiene dos
principales objetivos, por un lado se pretende realizar un diagnéstico general acerca de
los conocimientos de los alumnos acerca de las sucesiones y, por otro lado, revisar los
conceptos y técnicas que se consideran més relevantes desde el punto de vista de esta

propuesta para la ensefianza de la integral.
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Conocimientos previos

Al-1. Ejercicio 1

Al dejar caer —en direccidn vertical- una pelota desde una altura H el rebote hace que siempre
alcance una altura maxima de H/2.

i) Imagina ahora que esta pelota de deja caer y rebotar libremente. Calcula la distancia que
recorre la pelota hasta que se produce el primer, segundo y tercer impacto con el suelo. ¢Puedes
obtener una expresién algebraica que permita calcular dicha distancia en funcion del nimero
n de impactos?

ii) Si se prolonga indefinidamente el proceso, ¢qué distancia recorre la pelota?, ;cual es el
namero de rebotes?

Al-2. Ejercicio 2
Observa las dos familias de figuras geométricas que se muestran en el dibujo. En cada una de

ellas, las sucesivas figuras se crean mediante una ley de recurrencia de tal forma que se pueden
ordenar segun el nimero n como se indica en el gréfico.

n=1 n=2 n=3 n=4

A

AA
A
AA

A AA

()

Encuentra dicha ley y obtén una expresion general para el calculo del area de la region
coloreada en azul de ambas familias de figuras en funcién de dicho nimero n. ;Qué ocurre con
el &rea de las figuras que resultan de la aplicacion de sendas leyes de formacion un nimero
infinito de veces? ;Y con el perimetro??

Tabla 5. Ejercicios propuestos para la actividad inicial previa a la introduccién de la unidad

didactica acerca de la integral definida.

El primer ejercicio fue utilizado por Garbin y Azcarate (2001) para el analisis
acerca de las concepciones de los alumnos acerca del infinito. En el segundo, se propone
el uso de la geometria fractal para combinar la revision de los contenidos relativos a
sucesiones con la practica de algunas técnicas para el calculo de area. Los ejemplos que

se han escogido —triangulo de Sierpinski y curva de copo de nieve de Koch- han sido ya

2 Se debe contabilizar tanto el perimetro interior como el exterior en la primera familia de figuras.
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propuestos por Figueiras et al. (2000) o Moreno-Marin (2002) para el tratamiento de los
contenidos relacionados con la Geometria y las sucesiones en secundaria y bachillerato.

Los objetivos de estos ejercicios son los siguientes:

e Evaluary practicar la destreza de los alumnos en la utilizacion del lenguaje
algebraico para expresar leyes de recurrencia

e Revision de los conceptos monotonia de una sucesion y limite de una
sucesion

e Introduccién de la suma de infinitos términos. Algunos investigadores
(Labrafia 2001, Ordoiiez y Contreras 2006) han sefialado un obstaculo
epistemoldgico en el aprendizaje de la integral definida relacionado con la
suma de infinitos términos. La observacion experimental realizada de
Orton (1983, apud. Contreras et al. 2010) de que los alumnos no reconocen
que a través del proceso de aproximacion se pueda calcular el valor exacto

del area o la integral, se puede relacionar con el mencionado obstéculo.

18



D. Sobre las razones de ser de la integral definida

D.1 Razones de ser historicas

Se realiza en esta seccion un breve repaso acerca de los campos de problemas
relacionados con el desarrollo, hasta nuestros dias, de la integral definida. En la tesis
doctoral de Orddfiez (2011) se puede encontrar un analisis detallado de la evolucién

historica de los significados asociados a la integral definida.

En la cultura griega, la existencia de inconmensurables constituia un obstaculo
para la unién entre nUmero y geometria. Eran conscientes de que ciertas magnitudes no
pueden expresarse en términos de una cantidad entera de veces una unidad basica. De este
modo, el propdsito principal era el de establecer razones entre longitudes, areas y

volumenes de unos figuras y cuerpos con otros (rectificacion, cuadratura y cubatura).

Eudoxo (s. IV a. C.), que habia formulado la teoria griega de proporciones para
razones conmensurables e inconmensurables, propuso el método de exhauscion para
hallar areas y volumenes de figuras curvilineas. A partir de éste principio, demostrd, por
ejemplo, que la relacion entre las areas de dos circulos es igual al cuadrado de la relacién
de sus radios, que la relacion entre los volimenes de dos esferas se corresponde con el
cubo de la razon de sus radios y que es un tercio la relacion entre el volumen de una

piramide y el de un prisma con igual base y altura.

Arquimedes (s. Il a. C.) utilizé el método de exhauscidn para el célculo de areas
y volumenes. Por ejemplo, obtuvo una aproximacion del nimero m y calculé el volumen
de esferas y paraboloides de revolucion y el area bajo un segmento parabolico. En el

ambito de la mecanica, obtuvo la posicion del centro de gravedad de algunas figuras.

En la baja edad media, en torno al estudio de la variacion temporal de las
magnitudes fisicas se realizan algunos desarrollos que se pueden relacionar con el calculo
integral. Oresme (1323-1382) aplica la representacion grafica estos los problemas en los
que interviene la variacion temporal. Con esta metodologia, aborda el problema del
movimiento uniforme y uniformemente acelerado. Segun su representacion, la velocidad
de un movimiento uniforme queda representada por un segmento horizontal cuya altura
indica la intensidad de dicha magnitud. En este entorno de representacion, llego a la
conclusion que el desplazamiento de un movil que se mueve con aceleracion uniforme

desde el reposo hasta una cierta velocidad es equivalente al efectuado a una velocidad
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constante igual a la mitad de dicha velocidad maxima. Dado que la justificacion de este
resultado se basé en la congruencia del tridngulo y rectangulo asociados a cada uno de
los movimientos, se puede considerar, segun Boyer (1959), la primera asociacion del area
bajo una curva con el resultado del cambio de una magnitud fisica —en este caso, el
desplazamiento-. Por su parte, Suiseth y Hentisbery (s. XIV) habian demostrado de forma
dialéctica este hecho, utilizando series infinitas.

En el renacimiento, la difusion de la obra traducida de Arquimedes tuvo una
importante influencia. A raiz de ésta, por ejemplo, Stevin (1548-1620) utiliz6 el método
de exhauscion mediante la aproximacion mediante paralelogramos inscritos para calcular
el centro de gravedad de triangulos y figuras curvilineas. Ademas, proporciond una
justificacion al problema de la presion hidrostatica media ejercida en una pared cuadrada
basada en la sucesiva division, en direccion vertical, del cuadrado en rectangulos cada

vez mas pequefos.

En el siglo XVII, una vez que se adoptd el concepto de funcion, la creacion y
desarrollo del céalculo estuvo motivada por dar repuesta a los problemas que, si bien ya
habian interesado en la cultura griega, suscitaba en ese momento la labor cientifica. En
relacion al célculo, Kline (2012) identifica cuatro grandes familias de problemas: estudio
del movimiento —interesaba tanto la determinacion de velocidades y aceleraciones a partir
de un desplazamiento, como el problema inverso—, determinacion de tangentes de curvas,
calculo de maximos y minimos y el relacionado con el calculo de longitudes de curvas,

areas, volumenes, centros de gravedad y fuerzas gravitatorias entre cuerpos.

En este periodo, la actividad matematica se caracteriza por el intento de liberar el
método de exhauscion mediante la utilizacion de distintos procedimientos intuitivos.
Existe disparidad —e incluso ambigledad— de visiones en la concepcion de los
infinitésimos. Cavalieri (1598-1647), en su trabajo sobre cuadraturas, y Galileo (1564-
1642), en el analisis del movimiento uniformemente acelerado, utilizan los indivisibles.
Desde este punto de vista, una superficie plana se considera compuesta por infinitas
rectas. Roberval (1602-1675), en cambio, consideraba que la superficie estd compuesta

por una infinidad de superficies.

Uno de los resultados de la primera parte del siglo XVII, obtenido mediante
distintos métodos por Cavalieri, Torricelli y Roberval, es el equivalente en notacion actual

an+1

a foa x™-dx = para n racional distinto de —1.

n+1’
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A partir del método de los infinitésimos, Fermat (1601-1665) lograr cuadrar,
usando una progresién geométrica, parabolas e hipérbolas. Plante6 estos problemas de
cuadratura en un entorno algebraico, lo que le permitid dotar de mayor generalidad a sus

resultados.

Barrow (1630-1677), siguiendo la tradicion euclidiana, abordo el problema de la
cuadratura en un entorno puramente geométrico. A €l se atribuye el reconocimiento del

caracter inverso del problema de las tangentes y la cuadratura.

Se puede considerar que este proceso de origen y primer desarrollo del calculo
culmina con los trabajos de Newton (1642-1727) vy Leibniz (1646-1716) (Kline 2012).
El primero, advirtié el caracter inverso del problema de la derivacion e integracion.
Ademas propuso un método general para el calculo de areas basado en realizar en sentido
contrario las operaciones de diferenciacion. Aunque habia partido del uso de los
infinitesimales, Newton los opt6 por la descripcion de las figuras a partir del movimiento
continuo. Asi, una superficie se engendra por el movimiento continuo de una recta. Desde
este punto de vista, utilizé el término fluxion para designar la razén primera de los

incrementos emergentes.

Por su parte, de forma paralela, Leibniz establece que la integracion es el proceso
inverso a la diferenciacion. Aunque el caracter inverso de los problemas del calculo del
area y determinacion de la tangente habia sido sefialado por Barrow y Newton, Leibniz
es el primero que la expresa como una relacion entre sumacion y diferenciacion (Kline
2012).

Por ultimo, en el siglo XIX, una de las principales preocupaciones de los
matematicos consistia en dotar de rigor a los desarrollos realizados en las distintas ramas
del analisis. Hasta el momento, no habian sido rigurosamente definidas las nociones de
integral y derivada. Cauchy (1789-1857) proporciona la primera definicion precisa de
integral definida a partir del significado otorgado por Leibniz de suma y utilizando el
concepto de limite. La integral definida se asocia al limite de la suma cuando la longitud
de los subintervalos tiende a cero. Pudo demostrar la existencia de dicho limite para
funciones continuas. En ese momento, la integral definida se extiende a funciones
continuas a trozos o con un namero finito de puntos de discontinuidad. Por su parte,
Riemann (1826-1866) desarroll6 una teoria mas amplia de integracion para poder

incorporar funciones con infinidad de discontinuidades.
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Asi pues, algunos autores (Labrafia 2001, Ord6fiez 2011) coinciden en sefialar tres
principales situaciones que dieron origen a la integral definida. En primer lugar,
reconocen el céalculo de longitudes de curvas, areas y volumenes, en general ligado a una
percepcion estatica. Dentro del &mbito cientifico, se pueden encontrar problemas de esta
naturaleza en el céalculo de centros de gravedad, fuerzas gravitacionales o fuerzas
hidrostaticas. Segun Labrafia (2001) esta problematica conecta —una vez superadas las

barreras epistemoldgicas necesarias— con la idea de suma de pequefias cantidades.

Por otra parte, sefialan los problemas relacionados con el analisis de la variacion
en el tiempo de la intensidad de las magnitudes fisicas. Ordofiez (2011) sefiala que,
precisamente la idea de tiempo puede producir un acercamiento intuitivo a la nocién de
continuidad. Asimismo, este campo de problema, segun Labrafia (2001), permite conectar
la idea de acumulacion, o de resultado de un proceso de cambio en el tiempo, con el

proceso de célculo inverso de derivadas.

Por altimo, reconocen una ultima la motivacion relacionada con la necesidad de
dotar de rigor y fundamentacion teorica a los desarrollos efectuados en el ambito del

calculo.

D.2 Razon de ser en la propuesta didactica

Los problemas que constituyen la razon de ser de la propuesta didactica
pertenecen a los dos primeros campos de problemas o situaciones que a través de la
historia de las matematicas motivaron el origen y el desarrollo de la integral definida. En
primer lugar, el calculo de areas de figuras curvilineas se utilizard como situacion
problematica que induzca la aparicion de la integral definida. En segundo término, se
utilizara un problema relacionado con el analisis de los procesos dinamicos que permita
realizar las primeras indagaciones acerca del caracter inverso de la integracion y

derivacion.

En la elaboracion de la propuesta didactica se han tenido en cuenta las siguientes

recomendaciones realizadas por los investigadores:

e Turégano (1992) y Azcarate (1996) proponen introducir la integral
definida independientemente de la derivada, previamente al calculo de
primitivas.

e Labrafia (2001) sugiere ampliar a través de la variedad de campos de
problemas la fenomenologia de la integral en las propuestas didacticas.
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Sobre las razones de ser de la integral definida

Orddiiez y Contreras (2011) reclaman una mayor presencia del campo de
problemas relacionado con el analisis de los procesos de cambio en los
textos actuales. La utilizacion y el reconocimiento en la secuencia
didactica como campos de problemas especificos de estas situaciones
pueden contribuir a ampliar el significado de los alumnos del objeto
matematico asi como puede aumentar su nivel de competencia para aplicar

la integral en distintos contextos.

Es habitual, cuando se introducen situaciones para la aplicacion de la integral
dentro del campo del anélisis del resultado de un proceso de cambio, utilizar problemas
relacionados con la cinematica. Sin embargo, algunos autores han sefialado (Azcarate
1990, apud. Labrafia 2001) o mostrado empiricamente (Ordofiez 2011) cierto obstaculo
didactico asociado a la propensién de los alumnos a utilizar las relaciones que conocen
del movimiento uniforme y que han trabajado durante su instruccion anterior con cierta
frecuencia. De este modo, se ha optado por introducir primero, dentro de este campo,

problemas acerca del llenado de depositos.

En el primer problema que se ha utilizado como razon de ser se propone una
situacion en la que se necesita calcular el area bajo una parabola (tabla 6). Se tratara de
que los alumnos propongan algin método para obtener una aproximacion de dicha
magnitud. El ejercicio continta con la secuencia de preguntas cuyo objetivo es hacer
emerger los principales elementos que configuran la definicion de la integral de Riemann.
Dicha actividad posterior, se detalla en la seccion dedicada a la praxeologia de la
propuesta.
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P-RS1. En algunos edificios singulares se pueden encontrar elementos constructivos, tales
como cubiertas o pafios de fachada, con formas especiales. En concreto, este ejercicio se centra
en fachadas con forma de parabola. En la puedes ver algunos ejemplos.

Fig. Ejemplos de edificios con fachadas con forma parabélica. a) Palacio Guell (A. Gaudi, Barcelona),
b) Edificio Berliner-Bogen (A. Maul, M. Horn / BRT Architekten, Hamburgo). ¢) Centro de Barcos de
Madera (Architects Lahdelma and Mahlamaki, Kotka, Finlandia)

Una de las medidas que desde el punto de vista practico interesa conocer es el &rea de estos
elementos. Con ella se pueden relacionar muchos aspectos que afectan al proceso de disefio y
construccion (cantidad de material que se necesita, peso del elemento, fuerza que ejerce el
viento sobre el mismo).

i) ¢Recuerdas alguna formula que permita hallar el &rea de estas figuras del plano? En el caso
contrario, idea un procedimiento que, al menos, permita realizar una evaluacion aproximada
del area. Puedes aplicarlo al caso concreto en el que la altura de la fachada es 20 m y su anchura
maxima es de 60 m.

Tabla 6. Problema-razén de ser relacionado con el célculo de superficies de figuras planas.

El segundo problema planteado como razén de ser (tabla 7), pretende que los
alumnos realicen, a través del andlisis de una situacion de variacion en el tiempo, unas
primeras indagaciones acerca del carécter inverso de la derivacion e integracion. Para
evocar las ideas de tasa media en instantanea de cambio, asi como la de acumulacion, se
ha optado por la seleccidn de un sistema fisico sencillo, como lo es un depdsito que se

llena a diferentes ritmos.
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P-RS2.A. El recipiente del problema CP-1.10 se encuentra inicialmente vacio. ;Cual sera la
evolucion temporal del volumen contenido si se llena de las siguientes formas? Represéntalo
en forma de funcion. ¢En qué momento rebosara?

i) Con un caudal fijo g = %l/min
ii) Con un caudal variable (q(t), expresado el litros por minuto) con el tiempo expresado en

minutos, cuya evolucion describe la siguiente funcién:

1 ¢t

q®)={ 5 20
0 t = 4min

iii) Con el caudal presenta una evolucion periddica que se repite cada 3 minutos

t <4 min
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iv) Con el caudal cuya evolucion temporal describe la siguiente funcion:

q(t) = —”5”81(”'” l/min

B. En una nueva situacion se desconoce el caudal que entra pero, ya que se dispone de
cronometro y el recipiente est4 graduado, se puede medir la evolucion temporal del volumen
de liquido. En este caso, la evolucion del volumen de liquido con el tiempo se corresponde con
la siguiente funcion V (t).

t2
. 0<t<2
10 =
2
g 2<t<4
V(t) =
“ 2+(t_4)2 4<t<6
5 10 -
4 <
\ z 6=t

i) ¢(Cuadl es el caudal promedio de liquido que entra entre los instantes t = 0 miny t = 2 min?
Jyentret = 6minyt =8min?

ii) A partir del procedimiento de calculo que has utilizado en el apartado anterior, ¢puedes
realizar una aproximacion al caudal que entra en el instante t = 1 min? ¢Cuan precisa puede
llegar a ser? ¢Es posible, entonces, calcular el valor exacto? ;Ocurre lo mismo en instante t =
2 min? Completa la siguiente tabla y representa los valores de la derivada calculados.
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t q(t)

a 0<a<?2

a 2<a<4

4

a 4<a<é6

iii) Compara el procedimiento de célculo que has utilizado en el apartado anterior para evaluar
el valor exacto del caudal con el empleado en la primera parte del problema. ;Qué caracteriza
a los puntos en los que no se puede calcular el caudal instantaneo?

iv) Aprovecha el resultado anterior para calcular la evolucion del volumen en el caso A.iv).

Tabla 7. Problema-razon de ser relacionado con el andlisis del resultado de procesos de cambio.

D.3 Metodologia de implementacion en el aula

La metodologia de implementacion en el aula persigue el objetivo de que a través
de los ejercicios o problemas que se plantean surjan los elementos que componen los
contenidos de la unidad. En general, los ejercicios estan formulados de manera que
puedan realizar la funcion de guia que encauce las reflexiones de los alumnos hacia dichos

conceptos.

Se propone la realizacion de los problemas o ejercicios planteados para las
distintas sesiones® en grupos o parejas. Las primeras actividades, destinadas al estudio
del proceso de convergencia de las sumas superiores e inferiores en la integral definida,

se apoyaran en el uso de la herramienta informéatica Geogebra.

3 En la tabla 24, de la seccion E.3, donde se recoge la planificacion de las sesiones, se las actividades de
este tipo.
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E. Praxeologia: campos de problemas, técnicas y tecnologias

En esta seccion se realiza la exposicion de los elementos que caracterizan la
praxeologia de la propuesta didactica. Se ha optado por respetar el orden de presentacion
de dichos contenidos en la secuencia didactica. De esta forma, las técnicas y tecnologias
se articulan en torno a los campos de problemas con los que se proponen. Con el objetivo
de clarificar estos aspectos, que al ser presentados dentro de un discurso didactico han
podido dispersarse, en la tabla 24 del final de esta seccion se reunen y resumen los
principales aspectos de la secuencia didactica.

E.1 Primer campo de problemas: calculo de areas y voliumenes

El primer campo de problemas esté relacionado con la aplicacion de la integral
para el calculo de magnitudes estaticas. Se parte del problema del célculo del area de
regiones encerradas por curvas y, posteriormente, se amplian las situaciones a otras que
se pueden englobar dentro de este campo: célculo de volumenes y, dentro de las
aplicaciones del ambito cientifico, el célculo de fuerzas resultantes de la presion
hidrostética.

No se ha incluido la aplicacion del célculo de longitudes de curvas, en cuya
justificacion podrian invertirse mas tiempo del disponible. Asimismo, dentro de las
aplicaciones de la integral en el ambito cientifico, se ha evitado utilizar problemas que
hagan referencia a magnitudes fisicas sobre los cuales los alumnos puedan carecer de
intuiciones arraigadas. Asi, el problema del calculo de centro de gravedad, que implica la
comprension de la nocion de momento estatico no se incluira en el blogue de problemas

principales.

La primera actividad, dentro de este campo de problemas, parte de la primera
razon de ser presentada en la seccién anterior. En ella se recurrira al uso de herramientas
informaticas. El principal objetivo es que a través del programa Geogebra puedan
visualizar las sumas superiores, inferiores y el proceso de convergencia hasta el area. El

enunciado de la actividad se recoge en la tabla 8.
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P-RS.1-CP.1.1.a*

En algunos edificios singulares se pueden encontrar elementos constructivos, tales como
cubiertas o pafios de fachada, con formas especiales. En concreto, este ejercicio se centra en
fachadas con forma de parabola.

i) Idea un procedimiento que permita realizar una evaluacion aproximada del &rea. Puedes
aplicarlo al caso concreto en el que la altura de la fachada es 20 m y su anchura maxima es de
60 m.

ii) ¢Puedes de alguna forma cuantificar la calidad de tu aproximacion? Una manera de obtener
informacién acerca de la aproximacion asociada a cada particién es conseguir acotar el
resultado que se busca. Propdn un procedimiento que permita evaluar este aspecto.

En Geogebra puedes visualizar el resultado de las sumas superiores e inferiores. Contesta a las
siguientes cuestiones:

i) ¢Qué ocurre con las sumas superiores e inferiores cuando se afiaden puntos a una particion?
¢Puedes dar un razonamiento?

ii) ¢Qué relacion encuentras entre la suma superior y la suma inferior asociada a dos particiones
cualesquiera? ¢ Qué relacidn existe con el area que se pretende calcular?

Tabla 8. Primera parte del problema CP-1.1.

Se procurard que los alumnos aborden el problema usando las herramientas
analiticas que conocen (ecuacion de la parabola, representacion grafica). Dentro de este
entorno, la cuestion tiene por objetivo que surja la idea de obtener una estimacion del area
de la parabola a partir de la divisién de la regién en un cierto nimero de partes cuya area
se puede aproximar mejor a la de elementos ya conocidos. Asimismo, se les indicara que,
ya que se va a trabajar con ordenador, es deseable que el método de obtener una
aproximacion se pueda sistematizar de tal manera que se puedan obtener aproximaciones
tan precisas como se requiera. En este sentido, si los alumnos poseen cierta destreza en el
uso de hojas de calculo, se puede proponer que implementen el procedimiento con el
objetivo de obtener un valor numérico de la estimacion. Aungue ésta es una situacion
interesante, pues acerca a los alumnos al contexto de la integracion numérica, no se
considera prioritaria, de modo que no se invertira mucho tiempo en esta parte de la

actividad.

Asi, en torno a la problematica que plantea la cuestion (i) del problema (tabla 8)

puede surgir la estrategia de dividir la region de tal manera que se pueda obtener una

4 Se ha utilizado la siguiente nomenclatura para ordenar los problemas o ejercicios. Se particulariza la
aclaracion para el ejemplo al que hace referencia:

P-RS1-CP.1.1.a: Problema, primero dentro de la categoria “razén de ser” (RS) y ordenado como 1.a dentro
del conjunto global correspondiente al primer campo de problemas (CP.1).
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aproximacion sencilla de cada region. Una vez que se haya generalizado la idea, se puede
institucionalizar el concepto de particion (tabla 8). Seguidamente, se introducen las sumas
superiores e inferiores justificadas, en primera instancia, como una estrategia para poder
estimar la calidad de la aproximacion (cuestion ii, tabla 8). Su funcion dentro del discurso
deductivo-formal, se trata de aclarar con la respuesta a las preguntas (i) y (ii) de la segunda
parte del problema (tabla 10).

Las tablas en las que se refleja la institucionalizacion de los contenidos estan
enunciadas en un lenguaje formal que en clase debera ser adaptado hasta que resulte
asequible para los alumnos. En esta primera actividad, se puede utilizar una definicién
preliminar de las sumas superiores e inferiores a partir de los valores maximos y minimos
de la funcion. Mas adelante, a través de algunos ejemplos de funciones discontinuas se
puede justificar la necesidad de recurrir a las cotas superiores minimas e inferiores

méaximas.

Definicion 1. Particion
Dado el intervalo [a, b] (siendo a < b) se denomina particién (P) a toda coleccion finita de
puntos de los cuales uno es a y otro es b.
Asi, dicha coleccion de puntos se puede expresar de la siguiente forma
P ={xg,xq, .., Xpn}
De tal manera que los puntos x;satisfagan las siguientes relaciones:
a=xg<X{.Xp_1<X,=Db
Definicion 2. Sumas superiores e inferiores

Supongamos que la funcién f esta acotada en el intervalo [a,b] Yy P = {x, ..., x,} €S Una
particion de dicho intervalo. Se definen m; y M;, respectivamente, como la maxima cota
inferior (infimo) y la minima cota superior (supremo) de la funcién f en cada subintervalo
[x;_1,x;] asociado a la particién P. O, expresado de otra manera:

m; = inf{f(x):x;_1 < x < x;}
M; = sup{f(x): x;—1 < x < x;}

La suma inferior de f para P de la siguiente forma

L(P,f) = Zmi “(t; —ti—q1)
=1

Anélogamente, la suma superior se define:

UP.f)= ) M- (= ti)
i=1

Tabla 9. Institucionalizaciones asociadas a la primera parte del problema CP-1 (P-RS1-CP.1.a).
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En la segunda parte del problema (tabla 10) tiene como propdésito que los alumnos
extraigan conclusiones acerca de las propiedades de las particiones que articulan permiten

articular el discurso formal que caracteriza la integral definida.
M-(b—a)=U(P,f)=infU(P,f) = Area > supL(P,f) = L(P,f) >m- (b —a)
1)

En la tabla 11 se recoge la institucionalizacion de estas propiedades. Se tratara de

que los alumnos razonen acerca de la justificacion de estas propiedades.

CP.1.1b

En Geogebra puedes visualizar el resultado de las sumas superiores e inferiores. Contesta a las
siguientes cuestiones:

i) ¢Qué ocurre con las sumas superiores e inferiores cuando se afiaden puntos a una particion?
¢Puedes dar un razonamiento?

ii) ¢Qué relacion encuentras entre la suma superior y la suma inferior asociada a dos particiones
cualesquiera? ¢ Qué relacidn existe con el &rea que se pretende calcular?

Como has observado, el comando “sumasuperior” de Geogebra calcula dicha suma asociada a
una particion cuyos intervalos poseen una extension uniforme. Dentro de este tipo de
particiones, vamos a ocuparnos Unicamente de las que se obtienen dividiendo en dos cada
intervalo de la particion anterior (n=2°, p=0,1,2,..).

P, ={0,a}

_ a 2-a i-a 2"—1):a
Pp— 0’2_p’ P ) aeny oD ) aeny P ,a

i) A partir de qué particion la diferencia entre las sumas superior e inferior es menor que 10m?2.

ii) ¢Cuantas se necesitan para alcanzar un intervalo que acota el area que se desea calcular
menor a 1cm?? ¢y para Imm?? Completa la siguiente tabla en la que se relaciona la precision
del célculo, expresada como diferencia entre la suma superior menos la inferior y el nimero de
intervalos necesarios.

Precision | Primera | Namero | L(Pi,f) [m?] | U(Pi,f) [m?] | & [m?] Error
particion® | de nodos relativo [%]

10m?
1m?
1dm?
lcm?
1mm?

5 Dentro de la familia de particiones propuesta, aquella que tienen un menor niimero de nodos y satisface
la condicion de precisidn solicitada en la primera columna.
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Nota: puede ayudarte a completar la tabla una expresion que relacione la diferencia entre las
sumas con el nimero de intervalos de la particion.

3 2
(Ayuda: B n? = =+ =+ 5)

iii) ¢En algin momento se tiene que U(P, f) = L(P, f)? ¢Cuél es el menor nimero que acota
superiormente a U(P, f)? ¢ Y el mayor que acota inferiormente a L(P, f)? ¢Como se relacionan
ambos con el area que se desea calcular?

iv) Finalmente, como resultado del desarrollo anterior, proporciona una férmula general que
permita calcular de forma exacta el &rea de estos elementos.

V) El edificio A con la fachada parabdlica que has analizado, que esta orientada hacia norte, se
encuentra en la plaza cuyo plano se muestra en la figura. El edificio B es una torre mucho méas
alta que la construccion A. Exactamente en el mediodia—solar— en verano el edificio A proyecta
una sombra cuya longitud maxima es un tercio de la altura maxima de la fachada. En el mismo
momento del dia, en invierno, la longitud méxima de esta proyeccion sobre el suelo es tres
veces la altura del edificio. Calcula el &rea de todas las regiones sombreadas en ambas
situaciones.

/

vi) (Opcional) ¢Cual seria el area sombreada a la misma hora del dia en verano si la fachada
parabdlica del edificio A estuviera orientada al Noroeste?

Tabla 10. Segunda parte del problema CP-1.

Teorema 1. Sean dos particiones P y Q, tales que P < Q —la particion Q, al menos, contiene
todos los puntos de la particion P— entonces

up,f)zu@.f)
L(P,f) < L. f)
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Demostracion. Es suficiente con analizar el caso concreto en el que Q contiene todos dos
elementos de P méas uno, por ejemplo: Q = {to, ..., ti_1,t';, t;, ..., t, }, €ntonces la resta
UP,H-UWQN=0C—tic) Mi—(;—t') My — (' —tioq) My
= —t) - M —M)+ (" —tiq) - My — M)
Como se tiene que M'; < M; y M';_; < M; entonces U(P, f) —U(Q,f) = 0,luego U(P, f) =
U(Q, f). A partir de este resultado, se puede generalizar para cualquier particion Q que
contenga P.

Teorema 2. Sean P1 y P, dos particiones del intervalo [a, b] entonces
U(Pl'f) = L(Per)

Demostracion. Se puede tomar otra nueva particion P* que contenga los puntos de las dos
anteriores (P, y P,).
P*=P,UP,
En ese caso se tiene que (teorema 1):
UP,f) = UP", f)
Y que:
L(Py, f) < L(P%f)
Tal y como se ha definido U(P, f) y L(P, f) se tiene necesariamente que L(P*, f) < U(P*, f),
de modo que si se aplican las relaciones anteriores se obtiene que:
UP,f) 2 UPYf) 2 L(PY f) 2 L(Py, f)
Si se utilizan el resultado del teorema anterior y ademas se definen (para f acotada en [a,b])
M = sup{f(x):a < x < b}
m=inf{f(x):a <x < b}
Se puede obtener la siguiente relacion:
M-(b—a)=2UP,f)=2LQ,f)=zm-(b—a)

Para cualquier particion P y Q de [a, b]. De esta forma, se concluye que U(P,f) y L(P, f)
estan acotados. El teorema 1 muestra como es posible reducir y aumentar el valor,
respectivamente, de la suma superior y de la suma inferior a través de un refinamiento de la
particion. El interés, se centra, por tanto, en el infimo y supremo de sendos conjuntos de valores
-U(P,f) y L(P, f)-. En principio, para una funcién f definida y acotada en el intervalo [a, b]
sOlo se puede asegurar la siguiente relacion:

M-(b—a)=2U(P,f)=infU(P,f) = supL(P,f) = L(P,f) =2m-(b—a)
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Definicion 3. Sea f una funcion definida y acotada en [a,b] y P cualquier particiéon del
intervalo. Se dice que la funcion en Riemann-integrable si se cumple la siguiente relacion:

infU(P, f) = supL(P, f)
A este valor se denomina integral definida de f en [a, b] y se representa de la siguiente forma.

b
J fdx =infU(P, ) = supL(P, )

En el caso de que f(x) = 0 en el intervalo [a, b] el valor de la integral coincide con el area de
la region comprendida entre las rectas x = a, x = b, la funcion f(x) y el eje de abscisas.

Criterio de integrabilidad de Riemann

Teorema 3. Una funcion es Riemann integrable en [a, b] si y s6lo si se cumple que para todo
€ > 0 existe una particién P del intervalo tal que

U, f)—LPPf)<e
)
Demostracion. Si se cumple (2) se tiene que inf[U(P, f) — L(P, f)] = 0, lo cual implica que:
infU(P, f) — supL(P, ) < inf[UP,f) —L(P,f)] =0

Y por tanto, dado queinfU(P, f) = supL(P, f) (teorema 1), se tiene que infU(P,f) =
supL(P, f), que es precisamente la forma en que se define la integral definida.

Por otra parte, si f es integrable en [a, b] es posible encontrar P; y P, que cumplan

b &
U, f) — f fax <%

b &
[ rax-1enn <3
a 2
Para todo € > 0. Si ahora se toma la particion P que contiene los puntosde P, y P; (P = P, U
P,) se tiene que
&

b b
U(P,f)—f fdx < U(Pl,f)—f fdx <3

b b £
[ rax-r1@an < | fax-1ean <3

Luego
U(P'f)_L(P'f)<S

Se verifica, entonces la condicion (2).

Tabla 11. Institucionalizacién asociada al desarrollo de la segunda parte del problema CP-1 (CP-
1.b, tabla 10).

Una vez institucionalizadas las sumas superiores e inferiores, se pide que los
alumnos realicen averiguaciones acerca del proceso de convergencia. Mediante el

programa Geogebra podran realizar ciertas manipulaciones mediante las que se aprecia
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el efecto del refinamiento en las particiones en las sumas correspondientes. Sin embargo,
para evitar que la resolucion de la tabla del apartado (ii) se resuelva mediante el método
de prueba y error, se propone que los alumnos hagan uso de las sucesiones para obtener

una expresion algebraica general que facilite el proceso.

La cuestion (iii) tiene por objetivo que los alumnos apliquen el concepto de limite
a las sucesiones de sumas superiores e inferiores asociadas a la familia propuesta de
particiones. Dado que ambos limites coinciden, si se tiene en cuenta las relaciones
definidas en la expresion (1), necesariamente, el valor exacto area de la region debe ser
igual al de dichos limites. Estos son, respectivamente, la cota superior minima e inferior
minima de las correspondientes sumas. Es en este momento cuando se institucionaliza la

definicion de integral definida (definicion 3, tabla 11).

En el contexto de la pregunta (iv), que tiene un caracter generalizador, se puede
aprovechar para reflexionar sobre algunas propiedades de la integral definida relevantes
gue pueden resultar Gtiles para la resolucién de ejercicios. En primer lugar, se puede el
hecho de haber optado por el calculo de la aproximacién en una de las mitades de la
parabola, es interesante comprobar su validez para la integral definida. Por otro lado, en
la resolucidn del ejercicio a partir del uso de sucesiones se ha podido intuir la propiedad
de linealidad de las sumas superiores e inferiores, de modo que se puede cuestionar si
dicha propiedad también se verifica en la integral definida. En una linea similar, en la
pregunta (v) pueden surgir las propiedades de la integral que se institucionalizan en la
tabla 12 (teoremas 4, 5y 6).

Propiedades de la integral definida

Teorema 4. Si la funcidn f(x) es integrable en [a, b] y sea ¢ un nimero real perteneciente al
intervalo (a, b), entonces f(x) es integrable en [a, c] y en [c, b]. De forma reciproca, si f(x)
es integrable en [a, c] y en [c, b] entonces es integrable en [a, b]. Ademas se cumple la siguiente

igualdad:
b c b
ffdx=ffdx+f fdx
a a c

Demostracion: Si f(x) es integrable en [a, b] es posible encontrar una particion P que,
conteniendo a c, haga cumplir:

UP,f)—LPPf)<e
A su vez, con los elementos de P se pueden construir dos particiones P’y P” de los intervalos
[a,c]y [c, b] respectivamente, entonces:
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up,f)=u@,f)+ulP”,f)
L(P,f) =L, f)+L(P"f)
Entonces
UPH-LEPH=UP,-LEP,NI+UP"f)-LP" Hl<e
Dado que, segun el teorema 2, el valor de las expresiones entre corchetes son mayores o iguales

a cero, se tiene, a partir de la condicion de integrabilidad del teorema 4, que f(x) es integrable
en [a,c] yen [c, b]. A partir de esta relacién se puede probar la afirmacion reciproca.

Por otro lado, para cualesquiera particiones P’y P” se tiene que:

L(P,f) < fcfdx <UP,f)

b
L(P",f) < f fdx <U(P”,f)

Y, por tanto:

c b
L(P,f) Sf fdx+f fdx <U(P,f)

Como esta relacion se cumple para cualquier particion, se tiene que:

fabfdx = facfdx+ fcbfdx

En este punto, se completa la definicion de integral definida con los siguientes casos, que no
se habia contemplado en la presentacion anterior:

fabfdx = —fbafdx

fafdx=0

Teorema 5. Si las funciones f(x) y g(x) son integrables en [a, b], entonces la funcion f(x) +
g(x) es integrable en [a, b] y se cumple que:

fb(f + g)dx = bedx + Jbgdx

Demostracion. Si f'y g son integrables, por el resultado del teorema 4, se pueden tomar sendas
particiones P; y P, que hagan cumplir las siguientes relaciones:

UL = L) <5

€
U(P2,9) —L(Py,9) < 5

Para cualquier € > 0 (tan pequefio como se requiera).

Ambas condiciones se cumplen si se toma la particion P* = P, U P,, como prueba el teorema
1.
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Por otra parte, dadas las definiciones de las sumas superiores e inferiores, se tienen las
siguientes desigualdades:

LP,f+9) =L, f)+L(P,g)
up,f+9) <UPf)+UPg9)
De modo, que se satisface la siguiente desigualdad
uPrf+g9)—LP,f+g)<e
que demuestra que f + g es integrable.
Por otra parte se cumple que

b
UP*,f+g)= UPf)+U(P"9) Zf (f +g@)dx = L(P*,f) + L(P",g) =2 L(P",f + g)

a

Yy que

b b
UP f)+U(P,g) Zf fdx+f gdx = L(P*,f)+ L(P",g)

Como las relaciones se tienen que cumplir para cualquier valor de € > 0, tan pequefio como se
requiera, se tiene que:

jb(f + g)dx = bedx + Jbgdx

Teorema 6. Si las funcion f(x) es integrables en [a, b], entonces la funcién c - f(x), siendo ¢
un namero real, es integrable en [a, b] y se cumple que:

Lbc-fdx=c-Lbfdx

Demostracion. Si se analiza el caso ¢ > 0 se tiene que:
UP,c-f)=c-UP,S)
L(P,c-f)=c-L(P,f)

de modo que si f es integrable, y por tanto, supL(P, f) = infU(P, f), la relacion analoga se
debe cumplir para la funcion ¢ - f.

b
c-supU(P, f) = supL(P,c- f) = j c-fdx =infU(P,c-f)=c-infU(P,f)

En el caso opuesto, cuando ¢ < 0, se tiene que:
L(P,c-f)=c-U(P,f)
UP,c-f)=c-L(P,f)

asi que, de nuevo, si f es integrable, se cumple:

b
c-supL(P,f) =infU(P,c-f) = f ¢ fdx =supL(P,c-f)=c-infU(P,f)

El caso ¢=0, es trivial, ya que para cualquier particion se tiene que L(P,c - f) = U(P,c- f) =
0.

Tabla 12. Institucionalizacidon de las propiedades de la integral.
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La dltima cuestion del ejercicio (v) busca que los alumnos apliquen las
propiedades que se han institucionalizado de la integral definida y que, finalmente,
extraigan como resultado una expresion para el calculo de la integral de las funciones que
han surgido: cuadratica y constante. Asimismo, la descomposicion suma de funciones de

la expresion correspondiente a la curva que delimita la region, permite analizar el caso
b . Ly s
fa fdx con f(x) <0 cuando a < x < b. A partir de este andlisis se puede presentar la

relacion entre el area y la integral definida (tabla 13).

e Sif(x) <0cuandoa < x < b, entonces f: fdx es el area encerrada entre la curva
f(x),lasrectasx =ayx = byelejeOX.

e Sif(x) <0cuandoa < x < b, entonces f; fdx es el area encerrada entre la curva
f(x), lasrectasx = ayx = byelejeOX.

Tabla 13. Institucionalizacion de la relacidn entre el area y la integral definida.

Una vez concluida la actividad relacionada con el problema RS-1/CP-1, se
proponen los ejercicios que se muestran en la tabla 14. Los ejercicios CP-1.2 y CP-1.3 se
han disefiado en torno identificacion entre area e integral definida. A partir de esta
relacion y de la aplicacion de las propiedades de la integral definida pueden los alumnos
completar las cuestiones que se plantean. Los ejercicios CP-1.4 y CP-1.5 acercan a los
alumnos a la problemaética de la integracion numérica. Dentro de la secuencia didactica,
el principal objetivo es suscitar de nuevo la reflexion acerca del proceso de convergencia

al valor de la integral definida.

CP-1.2. A partir de las técnicas que conoces para el calculo de reas de figuras planas y de las
propiedades de la integral definida, representa las funciones y resuelve las siguientes
cuestiones:

i) [ x dx ii)— [ x dx i) 2, x| dx
iv) [/ —(3+2 - x)dx V) [23+2 x| dx vi) [V k - x dx
vii) [7" sen(x) dx viiiy 2 [L VI—xZdx iy [T ax

x) [* VRZ=xZdx b € [-R,R] xiyk - [* VRE=xZdx  Xii) [} (x — E(x)) dxo

A partir de los resultados anteriores ¢Sabrias obtener una formula general para calcular el area
de la elipse?

6 E(x): funcion parte entera de X.
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CP-1.3. Calcular el area de las siguientes regiones:
i) la que encierran la parabolay = 9 — x? y larectay = 6 — 2x.
ii) la que encierran la pardbolay = x> — 4y larectay = x + 2.

iii) si fon sen(x) dx = 2, calcular el &rea de la region encerrada por la funcion f(x) = sen(x)
y el eje OX dentro del intervalo [—, ].

Si f(x) y g(x) son funciones continuas en [a,b], tal que f(x) = g(x) ¢qué significado
geomeétrico tiene las siguientes integrales definidas?

o [If(0) - g dx
o [fG]-dx

CP-1.4 (Opcional). En ocasiones so6lo se calculan valores numéricos aproximados a los
integrales definidas mediante procedimientos numéricos basados en técnicas similares a la
utilizada en el problema RS-CP1.1. En estos casos es importante la eficiencia del
procedimiento numérico, interesa alcanzar un resultado preciso con un nimero lo mas reducido
posible de calculos aritméticos. ¢Puedes proponer alguna modificacion del procedimiento
basado en sumas superiores e inferiores que permita acelerar el proceso de convergencia al
valor exacto de la integral que ejemplifica la tabla que has construido?

CP-1.5 (Entrega)’. A partir del resultado de la integral CP-1.2.viii, utiliza un procedimiento
para aproximar el nimero 7 con un error menor a 0,01, ;Cuéantas veces necesitas evaluar la
funcién f(x) = V1 — x2?. i) (opcional) si aplicas el procedimiento que has propuesto en el
gjercicio anterior, ¢se reduce el namero de evaluaciones? Representa en un gréafico la relacion
precision-nimero de evaluaciones

Nota: es conveniente que utilices una herramienta informéatica Geogebra o una hoja de célculo
para resolucion.

Tabla 14. Conjunto de ejercicios relacionados con la utilizacion de la integral definida para el

calculo de éareas.

Una vez realizada la practica de los ejercicios CP-1.2 y CP-1.3, se retomaréa en
clase la cuestion de la integrabilidad. Hasta ahora, s6lo se ha presentado la definicion de
integral definida (Riemann) y la condicién de integrabilidad. En este momento, se puede
recordar a los alumnos que mientras se ha trabajado con funciones continuas no ha habido
problemas en el momento de integrar. En estos casos, la identificacidn area-integral era
sencilla. No se plantea en esta propuesta la demostracion de la integrabilidad para
funciones continuas ya que requiere del concepto de continuidad uniforme. Asi, el
gjercicio CP-1.6 (tabla 15) propone realizar algunas averiguaciones acerca de la
integrabilidad de algunas funciones. Como conclusién de este trabajo se enuncian, sin

demostrar, algunas condiciones suficientes de integrabilidad (tabla 16).

" Redondo y Haro (2002) proponen una actividad similar para la aproximacion del nimero .
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CP-1.6. Conocida la definicion formal de integral definida, razonar si las siguientes funciones
son integrables o no en el intervalo que se indica:

. 2, x<0 .. 1, x €
V@ ={ 330, 22 e ={ ST, o

2, x<0 iv) una funcidn acotada y estrictamente creciente
i) f(x) =40, x =0, [-2,2] en [a, b]

2, x>0

CP-1.7. (Opcional) Sea la funcion f(x) que se representa graficamente en la siguiente figura:

1] ¢ f
1/2 1 —

() | |

1/8  1/4 1/2 1

Calcular el area de las siguientes regiones:
i) Calcular el area de la region sombreada.

ii) ¢Es posible encontrar una particion del dominio de la funcion que permita reducir la
diferencia entre las sumas superior e inferior asociadas—-U (P, f) y L(P, f)- hasta un cierto nivel
¢ dado? En ese caso, trata de proponer una regla para la formacién para dicha familia de
particiones. ;Qué condiciones debe cumplir? ¢ Cuantos elementos se necesitan en P?

Nota: no es necesario utilizar una particion con intervalos de longitud uniforme. Puedes probar
con particiones que se adapten a las caracteristicas especificas de la funcion.

iii) A partir de los resultados anteriores ¢se puede concluir algo acerca de la integrabilidad de
f(x) enelintervalo [0,1]? ;Cudl es el valor de dicha integral?

Tabla 15. Ejercicios relacionados con la integrabilidad de las funciones.

e Si f(x) es monétona en [a, b] entonces f(x) es integrable en [a, b].
e Si f(x) es continua en [a, b] entonces f (x) es integrable en [a, b].

e Si f(x) es acotada y tiene un nimero finito de discontinuidades en [a, b]
entonces f(x) es integrable en [a, b]

Tabla 16. Condiciones suficientes de integrabilidad.

Los siguientes ejercicios (CP-1.8 y 1.9, tabla 17) tienen el objetivo de ampliar el
campo de aplicaciones de la integral, dentro del significado general de la cuantificacién
de magnitudes estaticas. En primer lugar, se proponen dos ejercicios relacionados con la

aplicacion de la integral para el calculo de fuerzas hidrostaticas. Se asume que el alumno
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estd familiarizado con el concepto presion. EI problema CP-1.9 sélo se planteara en el
caso de que los alumnos estén familiarizados con la nocién de momento estatico y con la
idea de equilibrio asociada a dicha magnitud. En todo caso, se plantea como ejercicio

opcional.

CP-1.8. Un recipiente con forma de prisma de base cuadrada de lado A y altura H contiene
agua hasta un nivel h (h<H). Se desea conocer la fuerza que ejerce el liquido sobre la basa y
sobre cada una de las paredes laterales. La presion hidrostatica del agua en cada punto
depende Unicamente de la profundidad de dicho punto (z).

p(z)=pa-g-z
Donde p, es la densidad del agua y g la constante de gravitacion terrestre.
i) Representa la funcion p(z).

ii) Plantea un procedimiento para aproximar el calculo de la fuerza resultante. ;Se puede
alcanzar el valor exacto.

iii) Si el aire del depdsito p, Se encuentra a una presion barométrica negativa p, = —p, tal que
P = pg - g - h. ¢Cudl es el signo del resultado de la integral? ;Como interpretas el resultado?

CP-1.9 (Opcional) Cuando se disefia una presa como la que muestra la figura, una condicion
de disefio frecuentemente utilizada se basa en asegurar que la fuerza que ejerce el agua sobre
la presa no hace volcar a dicho elemento de contencidn. ¢Qué condicion deben cumplir las
dimensiones de la presa para impedir esta situacion?

'y

Ppresa Pagua

Ayuda:

e se puede asumir que cualquier seccién de la presa por el plano perpendicular al dibujo
es rectangular de anchura A.

o se debe analizar el momento que generan, respectivamente, la fuerza de la gravedad y
la hidrostética sobre el eje perpendicular al plano del dibujo. Recuerda que el momento

que genera un conjunto de n fuerzas (fi) aplicadas en P; referido al punto O se calcula
mediante la siguiente formula.

M:Zﬁ}/\ i

n
i=1

4

~

Tabla 17. Ejercicios relacionados con la integrabilidad de las funciones.
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Finalmente, se presenta la aplicacion de la integral definida para el célculo de
volimenes de cuerpos de revolucién (tabla 18). La idea es que los alumnos reconozcan
la manera en que se puede utilizar la integral para este propoésito. Por otra parte, el
ejercicio CP-10 prepara la aparicion de la funciéon integral (tabla 20). Pese a que no es
necesario su uso, el hecho de que se solicite un célculo repetitivo (apartados ii y iii) que
implique conocer la relacion nivel de liquido-volumen contenido, puede suscitar la idea
de recurrir a una funcion. Por altimo, la pregunta sobre la precision en la medida pretende
que los alumnos reflexionen acerca de la influencia que tiene la funcion nivel de liquido-

volumen —concretamente, su tasa de crecimiento— en esta cuestion.

CP-1.10

Se dispone de un recipiente con forma de paraboloide de revolucion. Es decir, la superficie
interior se engendra a girar en torno al eje OY la pardbola y = a - x2. Si laaltura del recipiente
es 8 cmy el radio maximo 10 cm,

i) ¢qué volumen maximo de liquido se puede contener en el recipiente?

Se desea inscribir en la pared del recipiente cierto nimero de sefiales que permitan medir
distintos volimenes de liquido. Determinar la altura de las mismas en los siguientes casos:

ii) 1/4, 1/2, 3/4 y 1 | de liquido. Proporcionar la cota mas aproximada a la solucién exacta
medida en milimetros.

iii) 5, 10, 15,.., 95, 100 cl liquido.®

iv) ¢Qué distancia —en vertical- separa dos marcas consecutivas? ¢Puedes obtener una
expresion general? ¢En qué zona crees que se puede medir volimenes con més precision?
CpP-1.11

¢Hasta qué profundidad se sumerge en el agua un sdlido de densidad p; < pggy, cOn forma
de cono de altura H9? ¢y una esfera de radio R?

Propon un procedimiento gréafico para calcular la profundidad a la que se sumerge el sélido
engendrado al rotar la curva que se muestra en la figura. ;Observas alguna caracteristica
significativa de la funcién volumen desalojado-profundidad sumergida?

8 No es necesario presentar la lista de los veinte datos. Es suficiente con presentar un procedimiento que
permita obtener la cota de cada uno de los mencionados puntos.

® Asiimase en el ejercicio CP-1.11 que en las figuras con simetria de revolucion, dicho eje se sitlia en
posicion vertical.
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- — . —. >
H

Nota: Recuerda el principio de Arquimedes: todo cuerpo solido, al ser sumergido en un liquido,
experimenta una fuerza de flotacion que es igual al peso del liquido que desaloja.

Tabla 18. Ejercicios relacionados con el calculo de volimenes de revolucion.

Calculo del volumen de cuerpos de revolucién

Sea f(x) una funcidn integrable en [a, b] el volumen V del cuerpo delimitado por la
superficie que resulta de revolucionar la curva f(x) en torno al eje OX y los planos x = a 'y
x = b se puede calcular mediante la siguiente integral definida:

b
V=T[f f(x)? - dx

Justificacion: si se utiliza una particion P del intervalo [a, b], se puede acotar el volumen del
cuerpo mediante las siguientes sumas, que corresponden al volumen de los cilindros:

UPV) =7 ) (= xi0) - suplf (0 kg < % < )
i=1

L(P,V) = T[Z(xi —x;—q) - inf{f(x):x;_q < x < x;)?
i=1

En este momento, se puede dividir el dominio en las zonas donde f(x) > 0 y donde f(x) <
0. En el primer caso se tiene que;

Up,v) = T[Z(xi —x;_q1) - sup{f(x)*: x;_1 < x < x;}
i=1

L V) =7 ) (= 310 - inf(F (0% 2y < x < )
i=1

Mientras que en el segundo:

upr,v) = ﬂZ(xi —Xi—q) - inf{f(x): %1 S x < x}° =
i=1

=m ) (x; —xi-1) - sup{f (X)*: x4 < x < x;}
; 1 1
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n

L, V) =7 ) (= xi0) - sup{f(0: 2y < x < )7 =

=1
=1 ) (x;—x;-1) - inf{f(0)* x4 < x < x;}
; 1 1

De modo que:
UP,V)=UP,V)+UP", V)=V =L/P,V)+LP",V)=UP,V)

Con lo que se tiene que:

b
V =infU(P,V) = supL(P,V) = rtf f(x)? - dx

Tabla 19. Institucionalizacion: céalculo del volumen de cuerpos de revolucion.

Funcion integral

Definicion 4: Sea f(x) una funcion integrable en [a, b]. Se define en el intervalo [a, b] la
funcion integral F(x) de la siguiente forma:

F(x) = f F(O) - dt

Teorema 8. La funcion integral F(x), tal y como se ha definido (def. 4), es continua en el
intervalo [a, b].

Tabla 20. Institucionalizacion: funcidn integral.

E.2 Segundo campo de problemas: analisis del resultado de procesos de cambio y

teorema fundamental del calculo

Este blogue de ejercicios tiene por objetivo acercar a los alumnos, a través de unas
primeras indagaciones sobre la relacion entre integral y derivada, al primer teorema
fundamental del calculo. En este contexto de analisis de procesos de cambio en el tiempo,
a partir de los conceptos de tasa instantanea y variacién acumulada, los alumnos pueden

alcanzar ciertas ideas intuitivas sobre el caracter inverso de la derivada e integral.

El problema CP-2.1 (tabla 21) plantea, en la primera parte, la aplicacion de la
integral para calcular el resultado al final de un proceso de cambio en el tiempo a partir
de una funcidn de tasa instantanea de variacion. En la segunda seccion, se presenta el caso
inverso, con el objetivo de que se aprecie el caracter inverso de las operaciones de
derivacion e integracion. Se ha utilizado una funcién V (t) no derivable con el propdsito
de se pueda observar la influencia de la continuidad de la funcidon tasa instantanea de
variacion en la mencionada relacion inversa entre las dos operaciones. Por dltimo, se

introduce la necesidad de integrar una funcion senoidal (apartado iv) de tal manera que
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se aprecie la utilidad del resultado del primer teorema fundamental del céalculo y de la
regla de Barrow. Se propone institucionalizar dicho teorema (tabla 22) una vez los
alumnos hayan analizado los resultados correspondientes a las cuestiones (i), (ii) y (iii)

de segunda parte (B) del ejercicio.

P-RS.2/CP-2.1

A. El recipiente del problema CP-1.10 se encuentra inicialmente vacio. ¢ Cual sera la evolucién
temporal del volumen contenido si se llena de las siguientes formas? Represéntalo en forma de
funcion. ¢En qué momento rebosara?

i) A un caudal fijo q = < 1/min

1 t . .
i) A un caudal variable con el tiempo (t [min]) ¢, (¢) {E ~ g0 L/min t < 4min
0 t = 4min

iii) El caudal presenta una evolucién periddica que se repite cada 3 minutos

02 m—mm—o @ ® @ ®
< 5 ;
S :
= : H
©
© : :
=] : :
T H :
o : i

0 S o e o & °

0 3 Tiempo [min] 6 o

iwﬂﬂ=ﬁ%¥ﬂumm

B. En una nueva situacion se desconoce el caudal que entra pero, ya que se dispone de
crondémetro y el recipiente esta graduado, se puede medir la evolucion temporal del volumen
de liquido. En este caso, la evolucion del volumen de liquido con el tiempo se corresponde con
la siguiente funcion V (t).

t2
. 0<t<2
10 =
2
g 2<t<4
V(t) =
“ 2+(t_4)2 4<t<6
5 10 -
4 <
\ z 6=t

i) ¢Cuél es el caudal promedio de liquido que entra entre los instantes t = 0 miny t = 2 min?
Jyentret =6minyt =8 min?
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ii) A partir del procedimiento de calculo que has utilizado en el apartado anterior, ¢puedes
realizar una aproximacion al caudal que entra en el instante t = 1 min? ;Cuan precisa puede
llegar a ser? ¢Es posible, entonces, calcular el valor exacto? ¢Ocurre lo mismo en instante t =
2 min? Completa la siguiente tabla y representa los valores de la derivada calculados.

t q(t)
0

a 0<ax<?2

a 2<a<4

4

a 4<a<é6

iii) Compara el procedimiento de calculo que has utilizado en el apartado anterior para evaluar
el valor exacto del caudal con el empleado en la primera parte del problema. ;Qué caracteriza
a los puntos en los que no se puede calcular el caudal instantaneo?

iv) Aprovecha el resultado anterior para calcular la evolucion del volumen en el caso A.iv.

Tabla 21. Problema CP-2.1 con el analisis del resultado de procesos de cambio.

Teorema fundamental del célculo integral
Teorema 9. Sea f (x) una funcion integrable en [a, b] y ¢ un punto del intervalo (a, b) en
que la funcion f(x) es continua. Entonces se tiene que:
F'(c) = f(c)
Siendo F'(c) la derivada en el punto c de la funcion integral F(x) = f;cf(t) - dt.

Demostracion: Se puede realizar el andlisis de la tasa de variacion media de la funcion
integral entre cy ¢ + h.
F(c+h)— F(c)
h
Si se aplican las propiedades de la integral definida se tiene la siguiente relacion (1):

c+h
F(c+h) — F(c) =f £ - dt

Si en (1) se aplica la siguiente manipulacion algebraica f(t) = f(x) + (f(¢) — f(x)), queda
la siguiente expresion (2).

c+h
Fe+m = F@O=f@-h+ [ (F0) - f©)-de
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Si utilizamos esta Ultima expresion (2) en la correspondiente a la tasa de variacion media se
obtiene:

F(c+ h)— F(c)
h

Con lo que la demostracién del teorema es equivalente a demostrar que

1 c+h
e CR INGORY O

1 c+h
ima- [ (O -f@)-de=0 @

si f(x) es continua en c. Si se aplica, entonces, la definicion de continuidad, es decir que para
todo £ > 0 existe § > 0 tal que

lf@®) - fll<e
Con-d6<t<é.

Si se escoge un h de manera que 0 < h < 6 de tal forma que |f(t) — f(c)| < % se tiene que:

£ c+h€ c+h c+h€ €
—s-h<——-h=—f —-dtsf (f(t)—f(c))~dtsf —-dt==-h<e-h
2 . 2 . . 2 2

Si se divide entre h, se obtiene que

fcc+h(f(t) - () - dt| se puede hacer tan pequefio
como se quiera, con lo que queda demostrado (1) y, en consecuencia, el teorema 9.

Regla de Barrow: Sea f(x) una funcion continua en [a, b] y G(x) una funcion que cumple
G’(x)=f(x) en [a, b]. Entonces se tienen que para todo x € [a, b]:

| F©) - dt = 60 - G(a)

Tabla 22. Institucionalizacion relacionada con el primer teorema fundamental del calculo.

El problema CP-2.2 (tabla 23), que se plantea como tarea voluntaria, es una
continuacion de la pregunta (iv) del problema CP-1.10. En él la relacién inversa entre la
integral y derivada surge en un entorno geométrico. En el problema CP-2.3 aparece, por
primera vez en la propuesta, la integral definida de una funcidén exponencial. En el
problema CP-2.4 ya introduce una situacion propia de la cinematica. Se hace referencia
expresa a que los alumnos abandonen el uso de las formulas del movimiento
uniformemente acelerado y que lo resuelvan a partir de las nuevas herramientas analiticas
adquiridas. En el enunciado se realiza la distincion entre posicion y desplazamiento, de
tal forma que los alumnos puedan relacionarlo con las correspondientes formulaciones
integrales. En los experiencia de Camacho et al. (2008) algunos mostraron cierta
confusion en el momento de para distinguir y relacionar con funciones integrales ambas

magnitudes cinematicas.
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CP-2.2 (Opcional)

Cuando se miden magnitudes fisicas es interesante realizar un andlisis critico de la influencia
que poseen los diferentes errores que se producen en el proceso de medicion en el resultado
global. Se suele denominar a este efecto sensibilidad de la medida con respecto a un
determinado tipo de error.

En el caso del recipiente para medir volimenes de liquido del problema CP1.10, se considera
que, si éste se ha graduado bien, el principal error de medida es el asociado a la lectura del nivel
de liquido (p. €j. error de paralaje o interpretacion del menisco, ver figura inferior).

L 5h Z>

i) ¢Se te ocurre alguna forma de obtener una cuantificacion de la sensibilidad de la medida de
volumen de liquido?

i) Ya que se desconoce el error de lectura que se comete pero se puede, en cualquier caso,
asumir que es muy pequefio en términos relativos, ¢se podria obtener una cuantificacion de la
sensibilidad eliminando la dependencia con el nivel de error?

iii) ¢Qué relacion observas entre la sensibilidad y la geometria del recipiente?

iv) ¢En qué zonas del recipiente crees que se obtiene una medida de peor calidad? ¢Es igual la
conclusion si se tiene en cuenta la sensibilidad expresada en términos absolutos y relativos?

En el disefio de instrumentos de medida se trata en ocasiones de obtener medidas cuya
sensibilidad se uniforme en todo el rango de medida.

vi) ¢Qué cuerpo de revolucidn produce una lectura cuya sensibilidad, expresada en términos
absolutos, es uniforme? ;Y en términos relativos?

CP-2.3 Se dispone del recipiente del problema C-1.10 completamente lleno de liquido. En
cierto instante, por efecto de una fuga en su base comienza con un caudal que se puede
aproximar por la siguiente funcion exponencial:
8m _t
9(®) =ﬁ'e 10 l/min

donde la variable t estd expresada en minutos. Aproximadamente, ¢cuénto tiempo le cuesta
vaciarse hasta la mitad de su contenido original? ;Y vaciarse completamente?
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CP-2.4 Un objeto se lanza hacia arriba en direccion vertical a una velocidad de v,. ¢Cuéanto
tiempo le costard caer de nuevo hasta su posicion original? Representa las funciones
aceleracion, velocidad, distancia recorrida y posicion (puedes particularizar para el caso v, =
50m/sy vy, = 10m/s?. ;Qué altura alcanza? (Opcional: utiliza este resultado para calcular
el tiempo que ocupa el proceso que describe el problema Al.1. ¢(Es éste de duracién temporal
finita?)

Nota: Puedes suponer tnicamente el efecto de la gravedad (asumiendo, de esta forma, que no
existe rozamiento con el aire), constante y de valor g. Ya que dominas algunas aplicaciones de

la integral definida, evita el uso de las férmulas que recuerdes de fisica para el movimiento
uniformemente acelerado.

CP-2.5 Como ya has comprobado, el teorema fundamental del calculo y la regla de Barrow
proporcionan una potente técnica para resolver integrales definidas. En aquellos casos en los
que puede aplicarse dicha regla, el principal esfuerzo consiste en encontrar una funcion cuya
derivada sea la funcion que se necesita integrar. Asi pues, completar la siguiente tabla puede
resultar una ayuda Util para la resolucién de estos problemas.

Encuentra la funcion F(x) tal que se cumpla d';—;x) = f(x) en el intervalo dado para cada una

de las funciones que se indican en la tabla. Indica los puntos donde, desde el punto de vista de
la integracion, esta relacion inversa puede presentar problemas.

f) F(x) f) F(x)
k ke b*
k-(b-x)™ m=+-1 k-sen(b-x)
1 k-cos(b-x)
b-x+a

Tabla 23. Problemas y ejercicios relacionados con el teorema fundamental del célculo.
E.3 Resumen de la propuesta didactica: recopilacion de técnicas y tecnologias

La tabla 24 resume los principales elementos de la propuesta didactica. En ella,
los elementos de las columnas —problemas, técnicas y tecnologia— se ordenan segun la
secuencia de la propuesta. Asi, cada problema o conjunto de problemas se relaciona con
el conjunto de técnicas y tecnologias que, o bien, propicia que emerjan o bien se utilizan,
a modo de préactica, en su resolucion. Las técnicas (Tc.) y tecnologias (Tclg.) se numeran
en la tabla, a fin de aligerar la notacién en sus respectivas referencias. Del mismo modo,
se han utilizado abreviaturas para caracterizar el contenido o contexto de los problemas,

el modo de presentacion y su funcion dentro de la propuesta.

Dentro del discurso tecnoldgico, se ha optado por la introduccion formal de la
integral de Riemann y la justificacion analitica de sus propiedades mas utiles para la

resolucion de los ejercicios que se introducen en este nivel. Asimismo, se ha introducido
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el criterio de integrabilidad de Riemann. Se ha estimado relevante hacer énfasis en esta
caracteristica de las funciones, ya que algunos autores evidencian cierta confusion en los
alumnos entre integrabilidad y existencia de primitiva (Labrafia 2001, Ordofiez 2011). A
partir del mismo, los alumnos pueden justificar la integrabilidad de funciones sencillas
(ejercicio CP-1.6). Para cerrar la cuestion que atafie a la integrabilidad, se proporcionan
las condiciones suficientes (tabla 13), en este caso sin demostrar, que cubren todo el
conjunto de funciones que aparecen en la propuesta. Finalmente, se presentan el teorema
fundamental del célculo y la regla de Barrow, con sus respectivas demostraciones,
después de que los alumnos hayan realizado algunas indagaciones dentro del contexto del
andlisis de un proceso de cambio de en tiempo.

Es preciso sefialar que no se ha realizado en la propuesta una formalizacion del
concepto de area. Se asume que la idea de los alumnos que subyace del conjunto de
técnicas que conocen para el célculo de areas de figuras planas elementales y de la
aceptacion de las nuevas —aplicacién del principio de exhauscién en el problema RS.1y,

en cierto modo, en el problema Al-2- es suficiente para articular la propuesta.

Aunque en algunos casos la justificacion que aporten los alumnos pueda acercarse
a la demostracion formal (por ejemplo, las propiedades de las sumas superiores e
inferiores en el problema RS-1/CP-1.1), es mas habitual que se requiera una
formalizacion propuesta por el profesor (p. ej. propiedades de la integral, tabla 11). Se
considera interesante que los alumnos aprecien la necesidad de ordenar y justificar, en
torno a un discurso logico-deductivo formal, el conjunto de experiencias e intuiciones que

surgen de su préactica relacionada con esta unidad didéactica.

Dentro de los ejercicios y problemas propuestos, segun la forma en que se
presentan, se pueden distinguir varios tipos. En primer lugar, aquellos que constituyen la
actividad programada para cada sesion. Durante su desarrollo, los alumnos abordaran la
resolucion y a partir de las indagaciones y conclusiones que se obtengan se podran
consolidar los elementos del discurso técnico-tecnoldgico asociado. Por otro lado, se
presentan tareas de trabajo personal que, en la mayor parte de los casos tiene por objeto
que el alumno afiance las técnicas y reflexione sobre las tecnologias que han surgido en
las sesiones. Por Gltimo, se han sefialado una serie de cuestiones “opcionales” que los
alumnos pueden, si les interesa resolver. Se les ha otorgado este caracter libre ya que, o

bien constituyen una profundizacion mas alla de los contenidos fijados en la propuesta o
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su resolucidn se considera mas dificil. La entrega de dos de estos ejercicios sera valorada

en la evaluacion con medio punto extra.
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Problemas / ejercicios / actividades'® | Técnicas

Tecnologias

P-RS1-CP.1.1.a (Geo. éreas) (Int. técn.) | -Aproximacion al valor del area mediante sumas superiores e
(act. clase) inferiores (Tc. 1)

- Particidn (Def. 1), sumas superiores e inferiores
(Def. 2)

-Propiedades sumas superiores e inferiores (Teor. 1
y 2) (dem.1) (Tclg. 1)

P-RS1-CP.1.1.b (Geo. areas) (Int. técn.) | -Célculo exacto del area a partir del limite de las sumas de una
(act. clase) familia de particiones (Tc. 2)

-Definicion de la integral definida (Def. 3)

-Criterio de integrabilidad de Riemann (Teor. 3)
(dem.) (Tclg. 2)

-ldentificacion area-integral (Tc. 3)

-Propiedades integral definida (Teor. 4-6) (dem.)
(Tclg. 3)

-Integral funcion constante y cuadratica (Tc. 4)

-Relacion entre el &rea y la integral definida (Tabla
11) (Tclg. 4)

CP-1.2, CP-1.3 (Geo. areas) (pract. (Tc. 3,4)

tecnicas) (act. clase/ trabajo personal) -Aplicacion de las propiedades de la integral definida (Tc. 5)

-Integral funcion lineal (Tc. 6)

(Tclg. 1-4)

10 Se han utilizado las siguientes abreviaturas para caracterizar los problemas. Segln su contenido o contexto: geométrico-areas (Geo. areas), numérico (Num.),
intramatematico (Mat.), calculo de volimenes (Vol.), magnitudes fisicas estaticas (Mag. estat.), analisis del resultado de un proceso de cambio (RPC). Segun su funcion
dentro de la propuesta didactica: contexto propicio para que emerjan o se introduzcan técnicas y tecnologias (int. técn.), practica de las técnicas (pract. técnicas). Segln su

forma de presentacion: actividad de clase (act. clase).

11 La aparicion de la abreviatura (dem.) en los teoremas o resultados indica que se aparecen demostrados en la secuencia didactica.
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(trabajo personal opcional)

CP-1.4, (Num.) (trabajo personal (Tc. 1,3)

opcional)

CP-1.5, (Geo. Areas, Num.) (trabajo

personal)

CP-1.6 (Mat.) (Int. técn.) (act. clase) (Tclg. 2) -Condiciones suficientes de integrabilidad (Tclg. 5)
CP-1.7 (Mat.) (Ejerc. pract. técnicas) (Tclg. 4)

CP-1.8 (Mag. estat.) (Int. técn.) (act.
clase)

-Aplicacion de la integral definida al célculo de magnitudes
estaticas (Tc. 7)

(Tclg. 2)

CP-1.9 (Mag. estat.) (Ejerc. pract.
técnicas) (trabajo personal opcional)

(Tc. 7)

CP-1.10 (Vol.) (Int. técn.) (act. clase)

-Aplicacién de la integral definida para el calculo de volimenes
de cuerpos de revolucién (Tc. 8)

-Formulacién integral del volumen de un cuerpo de
revolucion (tabla 15) (Tclg. 6)

-Funcion integral (Def. 4) (Tclg. 7)

CP-1.11 (Vol.) (Ejerc. préact. técnicas/
Int. técn.) (act. clase/ trabajo personal)

-Continuidad de la funcién integral (Teor. 8) (Tclg.
7)

P-RS2/CP-2.1 (RPC) (Int. técn.) (act.
clase)

-Aplicacion de la integral definida para el analisis de resultados
de procesos de cambio (Tc. 9)

-Regla de Barrow, relacion inversa integracion-derivacion (Tc.
10)

-Teorema fundamental del célculo integral y regla
de Barrow (Teor. 10) (Tclg. 8)

CP-2.2 (Vol.) (Ejerc. pract. técnicas)
(trabajo personal opcional)

(Tc. 8-10)
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Praxeologia: campos de problemas, técnicas y tecnologias

CP-2.3 (RPC) (Ejerc. préact. técnicas)
(trabajo personal)

CP-2.4 (RPC) (Int. técn.) (trabajo
personal)

CP-2.5 (RPC) (Int. técn.) (trabajo
personal/actividad de clase)

-Tabla de primitivas de funciones elementales (Tc. 11)

(Tclg. 8)

Tabla 24. Resumen de la praxeologia de la propuesta didactica.
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F. Cronograma

En la tabla 25 se resume la secuencia de actividades de la propuesta didactica y su
distribucion a lo largo de trece sesiones. Se propone dedicar una Gltima hora para la

correccion del examen y revision de las calificaciones.

Sesion | Contenidos Actividades

1 -Sucesiones Actividad inicial

-Calculo de areas

2-3 -Célculo aproximado del area: sumas superiores e P-RS1-CP.1.1.a-b
inferiores

-Integral de Riemann

4 -Propiedades de la integral definida P-RS1-CP.1.1.a-b
5-6 -Célculo de &reas CP-1.2,CP-1.3
-Integrabilidad CP-1.6
7-8 -Ampliacién aplicacion integral: volimenes y magnitudes | CP-1.8
estaticas CP-1.9

-Funcion integral

9-10-11 | -Aplicacidn de la integral al analisis de resultados de P-RS2/CP-2.1 (RPC)
procesos de cambio (Int. técn.) (act. clase)

-Teorema fundamental del célculo y regla de Barrow

12 Evaluacion

13 Correccion

Tabla 25. Secuencia y planificacién de las actividades que componen la propuesta didactica.
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G. Evaluacion

Se presenta a continuacion la prueba para la evaluacion del aprendizaje asociado

de la propuesta didactica presentada.

G.1 Disefio de la prueba escrita

En la siguiente tabla (tabla 26) se recoge la prueba escrita. Ya que dos los
gjercicios 2 y 3 poseen enunciados extensos y en algunos ejercicios se plantear ciertas
situaciones problematicas que requieren la reflexion del alumno (2.ii y 3), se estima una

duracion aproximada de dos horas.

Ejercicio 1. (2,5+0,5 puntos)

Un automovil circula a una velocidad v,. En el instante t,, el motor deja de impulsar coche por
lo que, si no se acciona el freno, es la fuerza del rozamiento equivalente el Unico efecto que
provoca una reduccion en la velocidad.

En esta situacion, la evolucion de la velocidad con el tiempo v(t) se puede modelizar mediante
la siguiente funcion?2,

25 0<t<20
v(t) = _ (t—20)
25-e7 760 20<t

En ella, la velocidad se expresa en metros por segundo y el tiempo en segundos.

i) Representa dicha evolucion temporal de la velocidad y calcula el area bajo la funcion v(t)
en los intervalos [0,20] y [0,80]. ¢Cual es su significado fisico? ;Puedes generalizar la
expresion para cualquier intervalo [0, t] t € [0, )? (2 puntos)

ii) Si en el instante t = 20s se encuentra el coche a 1 km de un &rea de servicio, ¢podra
alcanzarla sin que los ocupantes se bajen a empujarlo? ¢y si estuviera a 1,5 km? (0,5 puntos +
0,5 puntos de bonificacion)

Ejercicio 2. (3,5 puntos)
i) Hallar el 4rea de la region comprendida entre la parabolap: y = 1 — x2 y las siguientes rectas
(rys) (2,5 puntos):

rry=-3-3-x
s:y=-3

ii) Determinar la recta que pasa por el vértice de la parabola y divide la region en otras dos de
igual &rea (1 punto).

2 En la elaboracion del modelo matematico que representa la dinamica del coche se ha asumido que la
fuerza de rozamiento equivalente es de tipo viscoso F. = u - v. Se obtiene, por tanto, al resolver la

., . - dv
ecuacion diferencial m i
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Problema 3. (5 puntos)

Cuando se hace girar a un vaso de agua cilindrico por su eje de simetria axial a una velocidad
angular constante (o [rad/s]), la superficie del liquido en contacto con el aire adopta la forma
de un paraboloide de revolucion. Esta forma geométrica hace que se equilibren los efectos, por
un lado, el de la fuerza centrifuga, y, por otro lado, de la presidn hidrostatica (altura de la
columna de liquido) y de la presion atmosférica en dicha superficie®.

La siguiente expresion general relaciona el radio () de cada punto de la superficie del
paraboloide de revolucidon con la coordenada axial (z):
r(z)=Vvk-z z=20

Donde, en este caso, el origen de z, la coordenada correspondiente al eje vertical de giro, se ha
situado en el vértice del paraboloide y el parametro k se relaciona con la velocidad angular de
giro w [rad/s] y la constante de gravitacion universal g [m/s?] mediante la siguiente expresion:

29
T w?

La figura muestra una representacion de sistema fisico.

k

Zmax

Zinin

'2-R

i) En la situacién que describe la figura 1, a partir de la cual se puede conocer el nivel méximo
(Zmax) Y minimo del liquido (z,,;,) en el cilindro de radio R,

i.1) ¢a qué velocidad angular esta girando? (Sugerencia: prueba a expresar el parametro
k en funcidn de las cotas z,,4x Y Zmin)

i.2) hallar el volumen de liquido que contiene el vaso. ;Qué nivel tendria el vaso en
reposo (z,)?

ii) Si se mantiene el mismo volumen de liquido, ;A qué velocidad angular comenzaria a escapar
el fluido del vaso? ¢ Cudles serian en dicha situacion los niveles maximo y minimo de liquido?
Exprésalas en funcion del nivel en reposo (z,) y de la altura del vaso (k).

13 Se obtiene al resolver, en primer lugar, la ecuacion en derivadas parciales que surge de la aplicacion de
la ley fisica asociada al equilibrio de fuerzas para la particula fluida (White 2009):

V-p(r,z) = (w* 1,0,—9)
Posteriormente, se debe imponer p(r, 2) |superficie = Patmosférica
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Evaluacion

iii) Si analizas las relaciones obtenidas en el apartado anterior, ¢se pueden alcanzar valores
negativos del nivel minimo de liquido (z,,,;,,)? ¢ Tiene algun significado fisico?

iv.a) En ese caso, analiza la nueva situacion para obtener la velocidad angular que hace que el
liquido comience a escapar.

iv.b) Si el nivel de liquido no alcanzara valores negativos, resolver la siguiente integral
definida, ¢se te ocurre alguna situacion anéloga a la del problema que se pueda modelizar
mediante dicha integral?*

0 x <3

f(x):{z-,/(x—g) x>3

) =241

x=4
f n(g(x)? - F()?) - dx

x=0

Tabla 26. Prueba para la evaluacion del aprendizaje de la unidad didactica dedicada a la integral
definida.

G.2 Anélisis de la prueba

Esta seccion se ha estructurado de tal forma que en los tres principales apartados
se analizan los principales aspectos de cada uno de los ejercicios planteados. En la tabla
27 se caracterizan estos ejercicios en términos de los aspectos que evallan, a partir de las
técnicas que evallan, las tecnologias que las justifican y el campo de problemas asociado.
Asimismo, se recogen en la tabla los estandares de evaluacion segln el Real Decreto
1105/2014, de 26 de diciembre (Boletin Oficial de Estado, 3 de enero de 2015).

Ejercicio 1

Campo de problemas: célculo de &reas bajo curva, ampliacion de la aplicacion de la integral
definida.

Técnicas gue evalua:

e Calculo de areas bajo curvas a través de la integral definida

e Uso de la nocion de area para el célculo de integrales definidas de funciones sencillas
(opcional)

e Aplicacion de la regla de Barrow
e Integracion de funciones sencillas

e Calculo de limites (pregunta adicional ii)

14 Se proporciona la opcion de resolver el apartado iv.b en lugar del iv.a en el caso de que no se hayan
abordado, o resuelto con garantias, los apartados ii y/o iii.
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Tecnologias involucradas:

e Teorema fundamental del calculo

e Propiedades de la integral definida

e Nocidn de area y sus propiedades

e Definicién de limite (pregunta adicional ii)

Estandares de aprendizaje:

e Calcula el area de recintos limitados por rectas y curvas sencillas o por dos curvas
(Bloque 3, 3.1)

e Conoce las propiedades de las funciones continuas, y representa la funcién en un
entorno de los puntos de discontinuidad (Blogue 3, 1.1)

e Aplica el concepto de limite a la resolucion de problemas (Bloque 3, 3.2)
e Analiza'y comprende el enunciado (Bloque 1, 2.1)

e Interpreta la solucién matematica del problema en el contexto de la realidad (Bloque
1,8.4)

Ejercicio 2

Campo de problemas: célculo de &reas bajo curvas

Técnicas gue evalua:

e Caélculo de éreas bajo curvas a través de la integral definida

e Uso de la nocién de area para el célculo de integrales definidas de funciones sencillas
(opcional)

e Aplicacion de la regla de Barrow
e Integracidn de funciones sencillas

e Uso de expresiones algebraicas para transcribir la situacion problematica que se
plantea

Tecnologias involucradas:

e Teorema fundamental del célculo
o Propiedades de la integral definida
e Nocidn de area y sus propiedades

Estandares de aprendizaje:

e Calcula el area de recintos limitados por rectas y curvas sencillas o por dos curvas
(Bloque 3, 3.1)

e Conoce las propiedades de las funciones continuas, y representa la funcién en un
entorno de los puntos de discontinuidad (Blogue 3, 1.1)

e Analizay comprende el enunciado (Bloque 1, 2.1)
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Problema 3

Campo de problemas: célculo de areas bajo curvas, ampliacién de la aplicacion de la integral
definida para el calculo de volimenes de cuerpos de revolucion

Técnicas gue evalua:

e Célculo de volimenes de revolucion a partir de la integral definida

e Uso de la nocion de volumen para el célculo de integrales definidas de funciones
sencillas (opcional)

e Aplicacion de la regla de Barrow
e Integracion de funciones sencillas
e Uso de la vision espacial para comprender las situaciones que el problema plantea

e Uso de expresiones algebraicas para transcribir la situacion problematica que se
plantea

Tecnologias involucradas:

e Teorema fundamental del célculo
o Propiedades de la integral definida
e Nocidn de area y sus propiedades

Estandares de aprendizaje:

e Calcula el &rea de recintos limitados por rectas y curvas sencillas o por dos curvas
(Bloque 3, 3.1)

e Conoce las propiedades de las funciones continuas, y representa la funcién en un
entorno de los puntos de discontinuidad (Blogue 3, 1.1)

e Analizay comprende el enunciado (Bloque 1, 2.1)

e Interpreta la solucién matematica del problema en el contexto de la realidad (Bloque
1,8.4)

Tabla 27. Resumen de los aspectos que se evalUan en la prueba.
G.2.1 Ejercicio 1

G.2.1.a Solucion

En la tabla 28 se propone una solucion para el primer ejercicio. Como criterio
general, pese a que existan en algunos casos otras técnicas para la resolucion de los
ejercicios/problemas, se ha optado por la utilizacion de aquellas especificas de la unidad
didactica dedicada a la integral definida. No obstante, el hecho de que los estudiantes
utilicen cualquier técnica valida en sus resoluciones (p.ej. uso de la férmula para el

calculo de area de un triangulo), no penaliza la nota numérica.
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i) Representacion gréfica:
30
25
20

15

v [m/s]

10

0 50 100 150 200 250
tiempo [s]
ii) El area bajo la curva corresponde a los metros que ha recorrido el coche a partir del instante
t=0, ya que elemento diferencial de &rea coincide con el elemento diferencial de espacio.

En primer lugar, se solicita el célculo de la integral definida en dos intervalos. El principal
objetivo de este célculo repetitivo es evitar que los alumnos caigan en algin error en la
aplicacién de la regla de Barrow al resolver la siguiente cuestion.

A = fttjozov(t) dt = ftt:OZOZS - dt = 500m, espacio que recorre desde el instantet = 0 a

t = 20.

— — — (t—20)
Ay =[50 de+ [ v(t) - dt = A+ [ 25+ e - dt =500+ 1500

(e;) m, espacio que recorre desde el instante t = 20 a t = 80.

Se ha asociado dicha expresion general del espacio recorrido a la funcion s(t) que queda definida
a trozos:

{ t
! f 25 . dt 0<t<20
_ t=0
S(t) - t=20 t (t—ZO)
f 25-dt+f 25-e7 60 -dt 20<t
t=0 t=20
25t 0<t<20
_ (t=20)
s(t) {500 +1500 - (1 e 0 ) 20 <t

Posibles respuestas correctas:

e En larepresentacion gréfica se considera valida cualquier representacion aproximada
de la exponencial. Los aspectos que se consideran esenciales son: el recorrido de la
funcidn, la asintota horizontal y la concavidad/convexidad. No es necesario que el
tiempo de decaimiento (60s) quede fielmente reflejado en la grafica.

e Calculo del area de la primera region a partir de la formula del rectangulo

o No es necesario que los alumnos presenten el resultado del espacio recorrido en
funcidn del tiempo como funcion definida a trozos, es suficiente que tengan en cuenta
los dos casos, t € [0,20] y t € (20, )
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Posibles errores:

e Erroren laaplicacion de la regla de Barrow, por ejemplo:

t=80 _ (80-20)
A2=f v(t)-dt=1500-<1—e 60 )—25-0
t=0

ii) Es suficiente con analizar si la funcion s'(t) = s(t) — s(20) o la integral

t _ (t—20) _(t=20)
S,(t) = f 25 - e 60 . dt = 1500 * (1 —e 60 )
t

=20
Se pueden igualan en algn momento a las distancias gque se solicitan.

Caso 1:

_ (t=20)
1500 - (1 —e 60 ) = 1000

Dado que 0 < 1000/1500 < 1, existe un valor de t € [0, ) que cumple la ecuacion. En ese
instante el coche habréa alcanzado el area de servicio.

Caso 2:

_(t=20)
1500 - (1 —e 60 ) = 1500

No existe un valor de que haga que se verifique la ecuacién, pero ya que

_(t=20)
lim 1500 - (1 —e 60 ) = 1500

t—co
Es posible, si se espera lo suficiente, acercarse tanto como se quiera al area de servicio.
Posibles errores:
e Error al situar el origen en el desplazamiento o en el tiempo

e Error en la utilizacion del concepto de limite

Tabla 28. Solucion del primer ejercicio.
G.2.1.b Clasificacion de las tareas

En latabla 29 se recogen y clasifican las tareas asociadas a la resolucion del primer
gjercicio de la prueba. En esta recopilacion de tareas y en las siguientes, se han omitido

las tareas auxiliares generales (T.A.G.) mas frecuentes en este tipo de ejercicios:
e Calculos aritmeticos
e Simplificacion de expresiones algebraicas

Se han hecho explicitas en aquellos casos en los que se ha considerado oportuno

para aclarar los criterios de correccion.
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Apartado i)

1. Representacion gréafica de la funcién (T.A.E.X)
2. Aplicacion de la integral definida para el calculo de éreas (T.P.1°)

3. ldentificacidon del area bajo la curva con la magnitud fisica del problema que se
modeliza (T.P.)

4. Utilizacion de la integral definida para proporcionar una expresion general que
proporciona el calculo del area bajo la curva en el intervalo [0, t] t € [0, ) (T.P.)

5. Integracion (T.A.E.)

Apartado ii)
1. Utilizacidn de la expresion general para analizar los aspectos que se solicitan (T.A.E.)
2. Caso 1: conocer el recorrido de una funcion exponencial (T.A.E.)

3. Caso 2: aplicacion del concepto de limite (T.P.)’

Tabla 29. Clasificacion de las tareas del ejercicio 1.

15 T.AE.: Tarea auxiliar especifica.

16 T.P.: Tarea principal.

17 La utilizacion del concepto de limite para analizar e interpretar la asintota se considera una tarea
principal asociada al medio punto de bonificacion.
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G.2.2 Ejercicio 2
G.2.2.a Solucién

La solucidn propuesta para el segundo ejercicio se recoge en la tabla 30.

i) En primer lugar, es conveniente hacer una representacion de la region propuesta.

D

Los puntos de interseccion son los siguientes:

pnr:(—=1,0)
pNns:(2,—-3)
rns:(0,—-3)

Una vez caracterizada la region, se puede calcular el &rea a partir de la siguiente suma de
integrales definidas.

0 2 13 16 15
A=f [1—x2—(—3—3x)]dx+J [1-x2=(-3)]dx=—+—==—
x=-1 x=0 6 3 2

Posibles respuestas correctas:
e Yaque no se ha solicitado, no se exige la representacion grafica de las funciones

e Cualquier division de la region alternativa valida para el calculo del &rea se evaluara
con la méaxima calificacion

e El calculo del area de regiones triangulares a través de la formula se considera valido
Posibles errores:

e Errores en la visualizacion de la region o en el calculo de intersecciones. En el caso de
los haya, se deberéa valorar la coherencia en los siguientes pasos.

e Error en la division de la region para realizar el célculo del area mediante integrales
definidas.
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ii) A partir de la representacion gréafica de las funciones, se ve de forma intuitiva que la
coordenada horizontal del punto de interseccion entre la nueva recta t, que divide la region en
dos de igual area, y se debe encontrar en el intervalo (0,2]. Se puede utilizar cémo incdgnita
dicha coordenada P (x,, —3).

La recta t tendrd la siguiente ecuacion:

—1-4.2
y= -

El &rea de la region 1 (izquierda) se puede calcular con mediante las siguientes integrales.

0 5 o X 13 15
A1=f [1—x —(—3—3x)]dx+f [1—4-——(—3) dx =—+2-xy =—
x=-1 x=0 X0 6 2

Por Gltimo, se debe imponer la condicion que se exigia para la nueva region: 2 - 4, = A

13 15
?+4-x0 =7
19
onﬁ

La recta t es la que pasa por los puntos (0,1) y (g —3).

t o6 +1
y=—-———x
Y= 19
Posibles respuestas correctas:
e Cualquier division de la region alternativa valida para el calculo del &rea se evaluara

con la mé&xima calificacion
o El calculo del area de regiones triangulares a través de la formula se considera valido

e Yaque no se especifica la forma en la que debe definirse la recta t, se acepta cualquier
forma de especificar dicha recta entre el conjunto de las rectas plano (p. €j. ecuacion
en cualquiera de sus formas, dos puntos, punto y una direccion)

Posibles errores:

e Errores derivados de la dificultad en la visualizacion o transcripcion a lenguaje
algebraico de la condicién que expone el enunciado

Tabla 30. Solucidn del ejercicio 2.
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G.2.2.b Clasificacion de tareas

En la tabla 31 se desglosan y clasifican, siguiendo la secuencia para la realizacion

del ejercicio de la solucion propuesta, las tareas de la segunda pregunta de la prueba.

Apartado i)
1. Representacion de la region delimitada por las curvas (T.A.E.)

2. Fraccionamiento de la region en intervalos en los que se pueda aplicar la regla de
Barrow (T.P.) o cuya area se pueda calcular mediante formulas

3. Uso de la integral definida o de formulas para el célculo de areas (T.P.)
4. Integracion (T.A.E.)

Apartado ii)

1. Representacién geométrica de la situacion que se plantea y algebrizacion (T.P.)

2. Evaluacion del rea de la region aplicando las propiedades del célculo de &reas o de la
integral definida (T.P.)

3. Resolucion de la ecuacion algebraica (T.A.G.)

4. Definir la recta que se solicita (T.A.E.)

Tabla 31. Clasificacion de las tareas del ejercicio 2.
G.2.3 Problema 3
G.2.3.a Solucion

La solucién propuesta para el problema 3 se muestra en la tabla 32.

En primer lugar, resulta comodo expresar el parametro k en funcién de Zmax ¥ Zmin. Si se
mantiene el origen en el vértice del paraboloide, se tiene la siguiente relacion:

R = \/k : (Zmax - Zmin)

RZ
k =

Zmax ~ Zmin

A partir de esta expresion se puede calcular la velocidad angular
29 R?

2, g
w Zmax — Zmin

Zmax — Zmin
=129

De tal manera que el radio de cada punto de la superficie del liquido se puede expresar como:
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zZ

r(z)=R- YALS [Zminr Zmax]

Zmax — Zmin
El volumen de liquido se puede calcular entonces mediante a partir de la suma de dos integrales
definidas:

z=0 Z=Zmax~Zmin VA
V=J rc-RZ-dz+J TL'-(RZ—RZ-—)-dZ
zZ

— i — Z. — Zmi
=—Zmin z=0 max min

Si se iguala la expresion anterior a la correspondiente al volumen en reposo, se pude obtener la
expresion para calcular el nivel en dicha situacién.
. Zmax t Zmin
2

Zmax t Zmin

2
ii) La condicion para que escape el liquido se corresponde al momento en el que su nivel
méaximo alcanza el borde del recipiente:

- R?

m-R% -z

ZO=

h = Znax
En ese caso el nivel liquido de liquido se puede expresar de la siguiente manera:
Zmin =229 —h

En este caso la velocidad angular se calcularia

., . . . h
iii) En la expresion obtenida, zmin alcanza valores negativos si z; < > Se corresponden a los

casos en los que la superficie del paraboloide interseca con la base del recipiente. En este caso,
se utilizara la denominacion z, (cota del vértice de la parabola), ya que zmin, Si se define como
la cota minima del liquido en este caso es igual a cero. En esta nueva situacién, el volumen de
liquido se puede calcular con la siguiente integral.

z=h zZ—2z h?
V=f ﬂ-(RZ—RZ-—v)-dZ=n'-R2-—
z=0 h -z, 2-(h—2z,)

El objetivo principal de esta pregunta es guiar a los alumnos en la resolucion del problema, de
manera que se Ilame su atencion sobre esta situacion, que a partir de la representacion gréfica
que del enunciado podria pasar desapercibida. De este modo, se considera valido cualquier
razonamiento por el cual el alumno en cuenta las dos situaciones que se dan en el problema.

De nuevo, se aplica la condicion para que se produzca el escape de liquido:
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h
Zv=z'(2'20—h)

De esta forma, la velocidad angular quedaria:

h
=g (2 2= h)

= |29- RZ = |29 -

Zmax — Zy
Y, R —

R2

w = '(h_ZO)

2.
R4 -z,

Posibles respuestas correctas:

o Sise utiliza la relacion entre el volumen del paraboloide de revolucion y el del cilindro
gue lo contiene, el problema se simplifica al planteamiento de las ecuaciones
algebraicas equivalentes

¢ Si el alumno tiene en cuenta los dos posibles casos del problema, dependiendo de si el
paraboloide de revolucién interseca a la base del recipiente o no, sin necesidad de hacer
el apartado iii se evaluara con la maxima calificacién

Posibles errores:
o Derivados del uso del lenguaje algebraico
e Errores en la ubicacién de los sistemas de referencia

o Derivados de dificultades para la visualizacion o para la transcripcion a lenguaje
algebraico de las condiciones gue se plantean

Tabla 32. Solucion del problema 3.
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G.2.3.b Clasificacion de las tareas

Las tareas que implica la resolucion de los distintos apartados del problema tres
se listan y clasifican en la tabla 33.

Apartado i)

1. Manipulacidn algebraica para expresar el parametro k en funcion de los datos
conocidos del problema (T.A.G.)

2. Aplicacion de la integral definida para el célculo de volimenes de cuerpos de
revolucion (T.P.)

3. (Opcional) Aplicacion correcta de las propiedades en el calculo de volumenes asi
como el célculo de volimenes de cuerpos cuya formula sea conocida. (T.A.E.)

4. Integracion (T.A.E.)

5. Algebrizacion: planteamiento de las ecuaciones que permiten obtener la expresion de
las magnitudes que el problema solicita (zo y ) (T.A.E.)

Apartado ii)

1. Visualizacion (o representacion) de la situacion gque se plantea (T.P.)

2. Transcripcidn de dicha situacion al lenguaje algebraico (T.P.)

3. Resolucidn de la ecuacion (T.A.G.)

Apartado iii)

1. Interpretacion del lenguaje algebraico y/o visualizacion de la nueva situacion que se
plantea (T.P.)

Apartado iv.a)

1. Algebrizacion de la nueva situacion (T.A.E.)

2. Aplicacion de la integral definida para el célculo de volimenes de cuerpos de
revolucion (T.P.)

3. (Opcional) Aplicacion correcta de las propiedades en el calculo de volimenes asi
como el célculo de volimenes de cuerpos cuya formula sea conocida. (T.A.E.)

4. Integracion (T.A.E.)

Apartado iv.b)

1. Aplicacion de las propiedades de la integral definida y de la regla de Barrow para el
calculo de la integral (T.P.)

2. Integracion (T.A.E.)

3. Interpretacion de la integral definida (T.P.)

Tabla 33. Clasificacion de las tareas del ejercicio 3.
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G.3 Criterios y guia para la calificacion

En primer lugar, se ha realizado un reparto de puntos con el objetivo de ajustar la
calificacion numeérica a unos determinados grados de desarrollos del aprendizaje. De este

modo, se pueden diferenciar dos niveles principales:

e El alumno es capaz de aplicar la integral definida al calculo de areas bajo
curvasy, en general, extender este uso a un conjunto limitado de contextos.
Con este grado de desarrollo la nota maxima que se puede alcanzar se sitla
en torno al siete (apartados: 1.i, 2.i, 3.i, 3.iv.b)

e Si ademaés, el alumno es competente para utilizar la integral definida en
ciertas situaciones problematicas (apartados 2.ii, 3.ii, 3.iii y 3.iv.b) optara
a la maxima calificacion en la prueba

e Por ultimo, se ha concedido medio punto adicional para la calificacion a

la aplicacion del concepto de limite en el primer ejercicio (1.ii)

.Los criterios se alinean con los siguientes que se indican en la Orden de 1 de julio
de 2008 (Boletin Oficial de Aragon de 17 de julio)*®:

e Calcular areas de regiones limitadas por rectas y curvas sencillas
facilmente representables, y aplicar este calculo a situaciones de la
naturaleza o la tecnologia.

e Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas
matematicas apropiadas en cada caso para resolverlos e interpretar las

soluciones de acuerdo con el enunciado.

La metodologia adoptada para otorgar la calificacion numérica a cada ejercicio
sigue el modelo de penalizacion de errores propuesto por Gairin et al. (2012). La
penalizacion asociada a cada error esta condicionada por el tipo de tarea en la que ha
surgido. Asi pues, en la guia para la calificacion elaborada (tabla 34), se ha sefialado la

penalizacion maxima atribuible a los errores vinculados a cada una de las tareas.

18 Estos criterios se recogen, a su vez, en la programacion de la asignatura de Matematicas para la prueba
de acceso a la universidad elaborada por la Universidad de Zaragoza.
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Ejercicio 1.

Apartado i) (2 puntos)

Tarea Penalizacion
T.A.E. Representacion gréafica de la funcion <1/3

T.P. Aplicacion de la integral definida para el célculo de areas <1

T.P. Identificacion del &rea bajo la curva con la magnitud fisica del problema | <1/3

que se modeliza®®

T.P. Utilizacion de la integral definida para proporcionar una expresion <1/3

general que proporciona el calculo del area bajo la curva en el intervalo

[0,t] t € [0,0)

T.A.E. Integracion <1/3

T.A.G. Simplificaciones algebraicas <1/
Apartado i) (0,5+0,5 puntos)

Tarea Penalizacion
T.A.E. Utilizacion de la expresion general para analizar los aspectos que se <1/3
solicitan (T.A.E.)

T.A.E. conocer y aplicar el recorrido de una funcion exponencial (T.A.E.) <1/3

T.P. aplicacion del concepto de limite (T.P.) 1

T.A.G. Simplificaciones algebraicas, calculos aritméticos <1/6
Ejercicio 2

Apartado i) (2,5 puntos)

Tarea Penalizacion
T.A.E. Tareas relacionadas con la determinacion o visualizacion de la <1/3
region?

T.P. Fraccionamiento de la region en intervalos en los que se pueda aplicar la | <1/5

regla de Barrow o cuya area se pueda calcular mediante férmulas

T.P. Uso de la integral definida o de férmulas para el calculo de areas <1/5

19 Se rebaja la repercusion de la falta de identificacion de la integral definida con el espacio recorrido ya
que se considera que una dificultad de este tipo acarrea necesariamente una penalizacion significativa en

el siguiente apartado del ejercicio.

20 Se penalizara los fallos derivados de una delimitacion errénea de la regidn, en ninglin caso la ausencia

de representacion gréfica, pues el enunciado no lo pide.
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T.A.E. Integracion <1/3

T.A.G. Simplificaciones algebraicas, calculos aritméticos <1/6
Apartado ii) (1 punto)

Tarea Penalizacion

T.P. Representacion geométrica de la situacion que se plantea y algebrizacion | <1/5
(T.P)

T.P. Evaluacion del area de la region aplicando las propiedades del calculo de | <1/5
areas o de la integral definida (T.P.)

T.A.E. Definicion de la recta que se solicita <1/3

T.A.G. Resolucion de la ecuacion de primer grado, célculos aritméticos y <1/6
simplificaciones algebraicas

Problema 3

Apartado i) (1,5 puntos)

Tarea Penalizacion
T.A.G. Ajuste de la expresion general del paraboloide presentada a las <1/6

condiciones gue especifica el enunciado

T.P. Aplicacion de la integral definida para el calculo de volumenes de <1
cuerpos de revolucién

T.A.E. Aplicacion correcta de las propiedades en el célculo de volimenes asi | <1/3
como el célculo de volimenes de cuerpos cuya formula sea conocida

T.A.E. Integracion <1/3

T.A.E. Algebrizacion: planteamiento de las ecuaciones que permiten obtener | <1/6%
la expresion de las magnitudes que el problema solicita (zo y o)

T.A.G. Simplificacion de expresiones algebraicas (T.A.G.) <1/6
Apartado ii) (1 punto)

T.P. Visualizacion (o representacidn) de la situacion que se plantea (T.P.) <1/5
T.P. Transcripcion de dicha situacion al lenguaje algebraico (T.P.) <1/5
T.A.G. Resolucion de la ecuacion de primer grado, simplificacion de <1/6

expresiones algebraicas (T.A.G.)

21 Se rebaja la penalizacion de esta T.A.E al considerar que acarrea suficiente penalizacion en los
siguientes apartados.
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Apartado iii) (0,5 puntos)

T.P. Interpretacion del lenguaje algebraico y/o visualizacion de la nueva <1
situacion que se plantea

Apartado iv.a) (1 punto)

T.A.E. Algebrizacion de la nueva situacion <1/3
T.P. Aplicacidn de la integral definida para el calculo de volimenes de <1
cuerpos de revolucién

T.A.E. (Opcional) Aplicacion correcta de las propiedades en el calculo de <1/3
volimenes asi como el célculo de volimenes de cuerpos cuya férmula sea

conocida

T.A.E. Integracion <1/3
T.A.G. Simplificacion de expresiones algebraicas (T.A.G.) <1/6
Apartado iv.b) (1 punto)

T.P. Aplicacidn de las propiedades de la integral definida y de la regla de <1
Barrow para el célculo de la integral

T.A.E. Integracion <1/3
T.A.G. Calculos aritméticos <1/6

Tabla 34. Guia para la calificacion de la prueba de aprendizaje.

Por ultimo, para finalizar el proceso de evaluacion, se dedicaria una sesion a la
resolucion de las cuestiones que hayan generado mayores dificultades a los estudiantes.
Asimismo, con el objetivo de que los alumnos puedan mejorar su calificacion, o para
aquellos interesados, se puede plantear la actividad voluntaria de continuar el estudio del
problema tres del examen. Podria ésta consistir en el analisis de como variaria el problema
si el recipiente tuviera forma de cono o de tronco de cono. En este nuevo caso surgen
situaciones en las que se integran los contenidos relacionados con interpretacion
geomeétrica de la derivada. Ademas, proporciona la oportunidad a los alumnos de abordar

una actividad cercana a la resolucién de problemas en un contexto mas comodo que el de

una prueba escrita.
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Anexo. Resolucion de ejercicios

I.1 Actividad inicial
Ejercicio Al-1
Los alumnos pueden comenzar analizando la recurrencia para los primeros casos:

d1)=1-H=H

d(2)=<1+2-l)-H=2-H

2
d(3)—(1+21 211> H—SH
N 2 2 2 2
d(4)—<1+2 1+2 1 1+2 11 1) _u H
N 2 2 2 2 2 2 4

El término general se puede expresar de la siguiente forma:

d()—(1+2 LIPS S S ) H
= 2 22 -1

O, mas formalmente:

d(n) =< Z——1)

En este momento, si los alumnos no recuerdan, se puede mostrar que la distancia

recorrida en cada rebote sigue una progresion geométrica de razon 1/2 y se les

proporciona por tanto la ayuda.

n
Z i1 1-—7r"
a,-r*1t=a,-
1 R

i=1

En este caso, si este resultado se aplica al ejercicio se obtiene:

0= (2 s =1) = [o- (1)< = o ]

=1

En clase se mostrara que, pese a que la sucesion d(n) es creciente, pues la

distancia entre dos rebotes es siempre mayor que cero, dicha sucesion es convergente ya

que:
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limd(n)=3-H
n—->oo

Por lo tanto, si el proceso se prolonga indefinidamente, aunque la pelota realiza

infinitos rebotes recorre una distancia 3 - H.
Ejercicio Al-2

La primera de familia de figuras —tridngulo de Sierpinski?’~ se construye, de
forma recurrente, eliminando en cada uno triangulo equilatero otro cuya area es la cuarta
parte. Puede ayudar a construir las expresiones algebraicas correspondientes al perimetro
y el &rea la siguiente tabla 1.1. Para abreviar la notacion, se utilizan P; y A, para designar

el perimetro y el area de la primera figura.

Plz?)l
V3
Alz—-lz
4
Figura | Triang. Perimetro, P(n) Area, A(n)
*)
1 0 P, Ay
2 1 1 3
Po(1+g) =3P 4 (1-3) =54
L B S A N Y R S
! 2 22) 4 1 ! 4 42) 16 1
4 32 o (1 3 2_27P 4 1332_27A
Mttt )T T TE) T
n 371—2 1n_13i—1 371—1 1 3 32 _ 311—1
P1-<1+§ ﬂ)z(ﬁ>1’1 Aty ) o) 4
i=1

Tabla I.1. Construccidn de una tabla para la obtencion de los términos generales correspondientes
al perimetro y &rea de la primera figura. (*) Tridngulos que se eliminan para la construccion de

cada figura.

Se puede observar que tanto cada incremento en el perimetro como el decremento
en el area siguen sendas sucesiones geométricas. Ambas sucesiones son monotonas y, sin
embargo, mientras la correspondiente al perimetro no esta acotada la correspondiente al

area converge a cero.

22 Durante la sesion se puede hacer una breve referencia a la geometria fractal ya que puede suscitar el
interés de los alumnos.
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lim P(n) = oo
n—->oo

lim A(n) =0

n—-oo

En el caso de la segunda figura —copo de nieve de Koch—, se forma por afiadir en
cada lado un triangulo equilatero cuyo lado es la tercera parte aquél en el que se integra.
De forma analoga se puede elaborar una tabla (tabla 1.2) para observar la recurrencia en
el término general.

Figura Lados Perimetro, P(n) Area, A(n)
1 3 3-1 Ay
2 3-4 4-1 ( _) S
5)=3 M
3 342 42 l 4 ( 3+3 4)_22-5A
3 ! 9" 92 33 1
4 343 43 3 3-4 3-42\ 23.47
?-l Ay - 1+9+ 92+ 3 =38 - Aq
n 371—2 4n- 1 .3 1 i 4Tl—1
3n-1 52 8—3-911_1 <Ay

Tabla 1.2. Construccidn de una tabla para la obtencion de los términos generales correspondientes
al perimetro y &rea de la segunda figura.

En este caso se tiene que:

lim P(n) = oo
n—-oo

8 2V3
11mA(n)—§ 1:T lz

Por tanto, el &rea de la figura coloreada resultante de un proceso infinito es un
namero real finito.
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1.2 Ejercicios del primer campo de problemas
Ejercicio RS-CP-1.1

En primer lugar, se tratara de que los alumnos utilicen las herramientas que poseen
de geometria analitica. Asi, la curva que delimita superiormente la fachada parabdlica

puede expresarse mediante la funcion.

h
) == (@ = 2?)

aZ
Donde h es la altura maxima de la fachada y a la mitad de la su anchura maximaZ.
Dado que la funcion es simétrica, si se aplican las propiedades que los alumnos

conocen del area, el problema se puede reducir al calculo del area en la regién donde 0 <

x < a. En términos de integral definida, que todavia no ha sido introducida, este paso
implicaria la aceptacion de la propiedad por la que f: fdx = fac fdx + fcb fdx cona <
¢ < b. Méas adelante, se puede aprovechar este paso para justificar, en base a su utilidad
en la resolucion de los ejercicios, la institucionalizacion de esta propiedad.

La familia de particiones propuesta P, divide el intervalo en n = 2P subintervalos
de igual amplitud x; — x;_, = %

a?2-a i-a n—1)-a
B, = 0,—, R ) e, ,a
n o n n n

Asi, la suma inferior se puede expresar de la siguiente forma:

n h . 2 n n
a L-a a a
W)= moa (- (5) ) =an i mh ) o
i=1 1 i=1

i=

Si se aplica la férmula para la suma de los elementos de la sucesion Y- - i =

nd n? n . . . - . .
Tt5to las sumas inferiores asociadas a la familia de particiones propuestas se

pueden expresar mediante la siguiente férmula general.

L(Pp'f)=h~a(1_%_%_ .1 )

2323 En la resolucion que se presenta del ejercicio se ha optado por mantener los parametros h y a sin
sustituir por los datos del problema. En la resolucién de clase, dependiendo de la destreza de los alumnos
para el manejo de expresiones algebraicas, se puede utilizar desde el principio dichos valores numéricos.
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De la misma forma, si se aplican analogas operaciones algebraicas a la suma

superior, se puede obtener la siguiente expresion:

o)=Y 5 (e[ 2 ) = ha(i- B )

i=1

La diferencia entre ambas aproximaciones proporciona informacion acerca de la

calidad de la estimacion del area.

=2-[U(B,f) = L(P,f)] = 2" ha

A partir de este desarrollo se puede completar la tabla I.3:

Precision | Particion | Namero | L(Pi,f) [m?] | U(P.f) [m?] e [m?] Error relativo
de nodos [%]
10m? P; 128 795,300 804,675 9,375 1,17189%
1m? P11 2048 799,707 800,293 0,586 0,07324%
1dm? P17 21 799,995 800,005 9,16-10°% 0,00114%
lcm? P24 2% 800,000 800,000 7,15-10°% 0,00001%
1mm? Pa1 23 800,000 800,000 5,59-107 0,00000%

Tabla 1.3. Proceso de convergencia asociado a la familia de particiones Pp.

Una vez que los alumnos han avanzado hasta este punto, pueden observar que no
existe ninguna particion finita de elementos que verifique U(P,f) = L(P,f). Sin

embargo se puede comprobar que el limite de las sucesiones asociadas a cada suma

coincide.
lim J - (1 1+ 1 1 )_1_ B (1 1 1 1 )_Z-h-a
nl—l;go a 3 2-n 6-n2 _nl—l;go a 3 2-n 6-n2) 3

Y dado, que, a partir del desarrollo deductivo, se habia establecido que:

s

Area
UP,f) = — >L(P,f)
Se tiene que el valor exacto del area coincide con dicho limite.
“h-a=

Area = -h-A

wl-{>
wl N

83



Javier Mazo Olarte

En la resolucién del apartado (v), los alumnos pueden comprobar que la
proyeccion de la figura sobre el suelo produce una transformacion de la siguiente forma

en la curva.

g(x) =k - f(x)

Es un buen momento para reflexionar acerca de la linealidad de la integral, que
facilitaria el proceso de resolucion. En efecto (teorema 6, tabla 10), el area sombreada en

el suelo en verano es igual a:

30

A b —1f 20 [1 (x)z] dx = 200 .
rea som Ta—3 . 30 X = m

-3

En invierno, el problema se complica, ya que aparecen proyecciones sobre el
edificio B (fig. 1.1). Los alumnos pueden empezar por la superficie més sencilla: la
correspondiente a la fachada este del edificio B. La altura (h) del tridngulo se puede

calcular aplicando el teorema de tales:

. _ 40 - 10)_320
=60 S = —o7 M

La base (b) se puede calcular mediante la siguiente relacion:

100
b=g(x=—10)—20=Tm

Luego el area sombreada sobre esta superficie es:

. h-b 2* 5
Areap)p = —— = FER 1000m
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Fig. I.1. Representacion de la proyeccion de la sombra del edificio A sobre las distintas superficies

en el mediodia del dia estival.

La resolucion puede seguir por la region sombreada en el suelo. Pueden
aprovechar la técnica de descomposicion de la figura para calcularla. Mas adelante,
podremos aprovechar este procedimiento para cuestionar su validez en términos de
integrales (que establecera el teorema 4, tabla 10). Es necesario, primero, calcular la

interseccion de la curva g(x) con la recta y = 20, (—20+/3,20). Utilizando la nueva
herramienta que supone la integral definida, los alumnos podrian expresar el area de la

siguiente forma.

-20V3 30
Areas = j g(x) -dx + g(—20v3) - (203 -10) + [ g(x)-dx
0

-30 -1
El hecho de que aparezcan nuevos intervalos de integracion puede ser motivo para
que se realicen indagaciones para obtener una férmula general de integracion de la
funcion. Asi, se puede completar el trabajo relativo a las propiedades de la integral (tabla
12), asi como extraer sendas formulas generales para la integracion de la funcién
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cuadratica y constante. Por ejemplo, para el caso de la funcion cuadratica se puede
plantear el procedimiento similar al aplicado en la primera parte del ejercicio.

L(p z)_znb (i'b>2_<b)3zn Sl Cr
¥ __1n n/) \n/ s b= 3 2:n 6-n?
=

=1

jb ?dx = lim b* (1+ L )—b3
SR 3T e e 2 T3

Por ultimo, el area de la regién sombreada en la superficie sur del edificio B se
puede calcular de la siguiente forma. Una manera sencilla de representar la zona
sombreada, aunque intuitivamente pueda no ser inmediata para los alumnos, es proyectar

la arista horizontal inferior del edificio B sobre la fachada del edificio A. De nuevo, es

. . .. . 20
necesario haber calculado la interseccion entre la curva f(x) y la recta horizontal y = —

(-252)

3 3
. -10 20
Areag;s = f f(x) - dx — f(——\/g) . (20\/§ —10)
_23_0\/§ 3
El apartado que se plantea como resolucién opcional requiere un andlisis mas
detallado de la proyeccion de la sobra del edificio. En principio, en los laterales del
edificio se puede proyectar sombra. Se plantea comenzar por el analisis de esta region (en

la figura 1.2 se representa una proyeccion de la sombra en el lateral).

Asi pues, es necesario primero determinar el punto de tangencia entre la recta
correspondiente a la direccion de los rayos del sol proyectada sobre el plano de la fachada
y la parabola.

f'lx) = —g-xz 3v2

. .y o9vV2 . .
Sin embargo la soluciéon x = — Tf < —3 no se corresponde con ningun punto de

la fachada, de modo que no se proyecta sombra. La fachada noroeste es, por tanto, la
unica que proyecta sombra sobre el suelo. En la figura 1.3 se muestra la proyeccion de
esta fachada. Asimismo, en ella se representa la relacion entre las sumas superiores e
inferiores para una particion dada asociadas al area de la fachada y de su sombra. De esta

manera se tiene que:
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03 vz (o  , V2
?f(x)-dx=— f(x)-dx=?-AreaA,N0 =?-400m2

AreaA‘No/S = j 6
-30

-30

tg(a) = 3V2

Figura 1.2. Proyeccion de la sombra en la zona lateral del edificio.

—

—

—
o ael
A ! !

Aiu(P,g) = % A (P, f)

Figura 1.3. Proyeccion de la sombra de la fachada noroeste.
Ejercicio CP-1.6

A continuacion se presenta una tabla (tabla 1.4) con las soluciones al ejercicio CP-
1.6. En ella se indican las propiedades de la integral definida que los alumnos pueden

utilizar, en este momento del desarrollo de la unidad, para resolverlas.
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. . 2
1)f02xdx=%=2 ii)—fobxdxz—b?
* Identificacion integral-area (tabla 13) e Propiedad linealidad integral (tabla 12, teor.
6)
iit) % x| dx =22+ 22 = 4 iv) f;~@+2-x)dx=-3-2-22 = -10
e Propiedad aditividad en el intervalo de e Propiedad linealidad integral (tabla 12, teor.
integracion (tabla 12, teor. 4) 5)
2 7 3\ , 9 b
v 2B3+2oxlde=1(2+3)+2-(6— | vi) [ k-xdx=k-(b?—a?)
3 —
2=
=63
vii) fozn sen(x)dx =0 viii) 2 - f_11v1 —x2dx=m
e sen(x) = —sen(x +m)
. V2/2 _ (1,1 12 2 _ b arccos(_—b) bJR2—D2
lX)sf_l1 1-x*dx=m (4+8)+2(2) - X)f_R“RZ_xzdeTR'RZ-FT
Y3
T8 4
. K _E(0)]2
Xi) k - f_RR VR? —x*dx =2 -m-R? xii) foa[x —E()]dx = %a)—i- LaiClis Ez(x)]

Tabla 1.4. Solucidn del ejercicio CP-1.2.

A partir de estos resultados se puede obtener el area de una elipse con didmetros

a 'y b. Una expresion analitica explicita de dicha figura es la siguiente:

a2 — x2

El area de la figura se puede calcular a partir de la siguiente integral:

a
b
2f E-\/az — x2dx
—-a

y==%

Q=

Si se aplican las propiedades de la integral definida y la identificacion de esta

operacion con el &rea, se obtienen que:

b b (¢ b
2[ —-Va? — x%dx =-—-f 2-Ja?—x%dx=—-m-a*=m-a-b
—aa a J_, a
Ejercicio CP-1.3

i) y ii) En primer lugar, conviene representar la region delimitada por sendas
parejas de funciones. En la siguiente figura (fig. 1.4) se muestra la region correspondiente

al primer caso (i):
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10 A
- — — 2
- - y=9—x
N &1 \\\
(-1,8)~ o N
~ N\
N N
6 N N
S \
\\ \
4 S \
4 Se \
~ \
~
y=6—2x ~ \
2 1 g \
RS
<o (30
" T & T T T
2 1 1 2 3 4
2
-4

Figura 1.4. Representacion de la region.

Los puntos de corte entre las dos curvas se pueden calcular mediante la resolucion

de los siguientes sistemas de ecuaciones de dos incognitas:

: y=9—x?
) Iels 18 GO

i 250 20 69

El area de ambas regiones se puede calcular mediante la sustraccion del area bajo
cada par de curvas. En este momento, se puede aprovechar las propiedades conocidas de
la integral definida (teor. 5, tabla 12) para simplificar las operaciones algebraicas:

32 5

i) Agy = f_31(9 — x%)dx — f_31(6 — 2x)dx = f_31(3 +2x —x%)dx =u

ii) Ay = f_32(x + 2)dx — f_32(x2 —4)dx = f_32(6 +x —x?)dx = %uz

iii) En primer lugar, hay que observar que la funcién cumple las siguientes
relaciones:

sen(x) 20, 0<x<m

sen(x) <0, —m1<x<0
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Una vez que se ha analizado el signo de la funcion y conocida la relacién entre la
integral y el area (tabla 13), se puede calcular la integral por medio de la siguiente suma

de integrales definidas:

0 T
Agipy = —f sen(x)dx + f sen(x)dx
-7 0

Por otra parte se tiene que sen(x + m) = —sen(x), de modo que el area de la
region comprendida entre x = —m y x = 0 es igual a la de la region comprendida entre

x=0yx=m.
s
A(iii) =2 f Sen(x)dx =4
0

Tras la realizacion del ejercicio se pueden extraer las siguientes conclusiones
(tabla 1.5):

Si f(x) y g(x) son funciones continuas en [a, b], tal que f(x) = g(x), entonces:

e El valor de la integral definida f:[ f(x) — g(x)] - dx se corresponde con el area de
la region delimitada por las funciones f(x), g(x) y lasrectasx = ay x = b.

e Elvalor de la integral f;lf(x)l - dx se corresponde con el area de la region
delimitada por la funcion f(x), lasrectas x = ay x = b y el eje OX.

Tabla 1.5. Relaciones entre el rea y la integral definida obtenidas a partir de los resultados del

ejercicio CP-1.3.
Ejercicio CP-1.4

El ejercicio tiene como objetivo acercar a los alumnos a la problematica de la
integracion numeérica. Aunque el enunciado no acota el tipo de formula de integracion
gue puede analizar en el ejercicio, los resultados del problema CP-1.1 orientan a la

utilizacion de la regla del trapecio. Como se ha visto, las sumas superiores e inferiores

aplicadas a la funcion del problema anterior se podian expresar de la siguiente forma:
n 2
a h (i-1)-a 1 1 1
= —_— — 2 — | —— = . _—— —_—
U(Pp'f) Zln a? (a l n l ) h a<1 3+2-n 6-n2>
L=
n 2
a h (i-1)-a 1 1 1
= _— 2 —_ | —/ = . —_————_—
L(Pp'f)_zl:n a? <a [ n l > h a<1 3 2'n 6-n2>
1=
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Se puede ver, por tanto, que si se hace la media entre ambos valores aproximativos

de la integral definida se elimina el término inversamente proporcional a n —nimero de

subintervalos de la particion— del error asociado.

V(B )+ LB ) = 2[5O £ 4 Fon) +53- (@)

1 1
S5 r@ 4 )+ ) 5 F@] = e

= )
3 6-n?

1

A continuacion se completa la tabla 1.3 con la nueva formula de integracion (tabla

1.6).
Precision | P; n L(Pi,f) | U(PiT) € Pi [n Trapecio | &
[m?] [m?]
10m? P; | 128 | 795,300 | 804,675 | 9,4m*> |Ps; |8 796,8750 | 3,1 m?
1m? P | 2048 | 799,707 | 800,293 | 0,59m? | P, | 16 799,2188 | 0,78 m?
1dm? | Py7 | 2% | 799,995 | 800,005 | 0,92dm? | Pg | 256 799,9969 | 0,31 dm?
lcm? | P,s | 22* | 800,000 | 800,000 | 0,71cm? | Py | 2048 | 800,0000 | 0,48 cm?
1mm? | Py | 23 | 800,000 | 800,000 | 0,56mm? | P14 | 16384 | 800,0000 | 0,75 mm?

Tabla 1.6. Proceso de convergencia asociado a la familia de particiones Pp.
Ejercicio CP-1.5

El nimero m se puede aproximar a partir de siguiente integral definida:

flw/1 2dx = =
— x2dx = —
, )

Si se utiliza una particion uniforme P, las sumas superior e inferior proporcionan
una aproximacioén a dicho numero (4 - U(P, f), 4 - L(P, f)). En la siguiente figura (fig.
I.5) se muestra la evolucién del valor absoluto del error asociado a la estimacion del
nimero m que producen dichas sumas. En esta representacion se ha afiadido la
aproximacion que se obtiene de aplicar la regla del trapecio que se ha analizado en el
ejercicio anterior (CP-1.4). Son necesarias unas particiones de 24, 192 y 209 subintervalos
para obtener una aproximacion con un error menor a la centésima del nimero m en el caso

de aplicar, respectivamente, la regla de trapecio, la suma superior y la suma inferior.
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Numero de subintervalos

1

100 1000 10000 100000

0,1
001 fomomeeee e m - WP -mmmmmmmmmeemeeee oo
0,001

0,0001

|error|

0,00001

0,000001 U(P.f)
ceedees L(P,)
0,0000001
—— Regla del trapecio

1E-08

Fig. 1.5. Evolucion del error asociado a la estimacién del numero pi de las distintas sumas
aproximativas.

Ejercicio CP-1.6

i) y iii) Para ambas funciones se puede tomar la siguiente particion:

pof2-222)
- ) 2725

Donde el numero § verificaque 0 < § < %

A continuacion se calculan las sumas superiores e inferiores asociadas:
U(P, fw) =0 (2 5)+2 §+2 (2 5)
Jay) = > >
L(P,fw) =0 (2 6>+0 5§42 (2 6)
Jo) = > :
4 8
U(P'f(iii)) = 2'<2—§)+2-6+2.(2_E>

4 8
L(P'f(iii)) = 2'<2—§)+0-6+2-(2_E>
Ambas parejas de sumas, verifican que:
UP,f)—L(P,f)=2-6<¢

De modo que ambas funciones son integrables.
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ii) Se puede ver que en cualquier intervalo [x;, x;,,] de cualquier particién se

cumple que:
m; = inf{fu (X)/ xe[x;, %111} = 0
M; = sup{fup(x)/ x€[x;, xi41]} = 1
De modo que, necesariamente, se tiene que:
infU(P, fup) = 1
SupL(P,f(il-)) =0
Por lo que la funcion no es integrable en el sentido Riemann.

iv) En primer lugar, se puede observar la siguiente relacion til asociada a las

sumas superiores e inferiores de la funcion iv).
m; = inf{fuw) )/ xe[xi—1, %1} = faiw)(xi-1)

M; = sup{fiivy (x)/ xe[xi_1, %1} = flimy ()

De modo que se tiene que: m; = M;_,. Si se toma una particion P uniforme (es
decir compuesta por subintervalos de igual longitud), las sumas de Darboux asociadas

guedan de la siguiente forma:

b_ n
U, f) = Ta'Zf(iv)(xi)

b—a ~
L(P,f) = — z feivy(Xi-1)
i=1
Y, por tanto, la diferencia entre ambas:

b—a
UCP,f)—L(P,f) = — [y (D) — frivy(@)]

De modo que si se toma un numero de intervalos que cumpla:
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b—a
n > T : [f(iv) (b) - f(iv)(a)]

Se verifica la siguiente condicion necesaria y suficiente de integrabilidad para
cualquier € > 0.

U, f)—L(P,f)<e
Ejercicio CP-1.7

i) El area se puede calcular mediante la suma de los infinitos terminos de la

siguiente progresion geomeétrica:

ii) Una posible particion es la siguiente:

P = {ty, ty, ...t}

to = 0
1

t; = Z_m

1
t = om—1~ 01

1

tz = om-1
t, =1

De esta forma, el dominio se divide en 2m subintervalos y la particion consta de

2 -m + 1 puntos.

La diferencia entre las sumas superiores se puede calcular de la siguiente forma:

m-1 m-1
1 (1 1 1 1
i=1 i=1

2m 22

Ante esta situacion, se pueden optar por distintas opciones para definir §;. Una de

- 1
ellas es tomar un valor constante § que, por supuesto debe cumplir § < Pyt

Entonces quedaria de la siguiente manera la diferencia entre las sumas:
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m-—1

1 1
UGP,f) = LP,f) = 5= (——o)+ 5 - 2——22m+5-

i=1

1_
2

1 1
=@mto (1 _2m-2>
Las condiciones que se deben cumplir § y meN, por tanto son
1 1
gzm T O (1 B zm-2> <€

1
0<5<2—m

Otra opcion, es tomar una razon constante r entre cada 6 y su subintervalo

asociado. Entonces quedaria:

m—-1 1 1 1 1 1
_ _ r 4 22m-2
VPN ~LP) =gt ) g gy g

0<r<i1

O, si se quiere expresar en funcion del mayor §,
1 & 1
ot ag (1= gmes) <
Ejercicio CP-1.8

El ejercicio plantea la situacion problematica de evaluar la acumulacion de cierta
magnitud fisica, en este caso la fuerza. Dado que la presion varia con la posicién de cada
punto de la superficie horizontal, los alumnos pueden recurrir a la estrategia del problema

anterior para obtener una aproximacion.

n
U(P,A p(2) = ZA‘Pa‘g (zi—zi-q) -sup{zizi 1 Sz < 7}

i=1

L(P,A-p(2)) = ZA Pa g (zi—zi_q) inflziz; y <z <z}
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De modo que la fuerza resultante F queda acotada entre las dos aproximaciones.
L<F<U

Asi, se puede identificar el calculo exacto de la resultante con la evaluacion de la

integral.
F=A-pg-g- supL(P,A-p(z))=A-pg-g- infU(P,A-p(2))

h
:fA.pa.g.Z.dZ
0

En este momento, se puede optar por dos alternativas que permiten calcular la
integral. En primer lugar, se puede aprovechar el resultado de los problemas, es decir, que
el valor de la integral se corresponde al area bajo la funcién. En este caso, dado que la
region forma un triangulo rectangulo se puede de forma inmediata obtener el valor.

A-h?
2

h
F=f A-pg-g-z-dz=pg-g-
0

Por otra parte, se puede, de nuevo plantear una particion uniforme de n intervalos

y evaluar la suma de los términos de la sucesion.

n
b\* b n-(n+1)
i=1
B A-b* (n+1)
=Pa"9 2 "
n
N b n-(n—1)
i=1
B A-b?> (n—1)
=Pa"9 2 "

iii) En el tercer apartado se obtiene un valor negativo de la integral. El objetivo
es, por un lago, que los alumnos vuelvan a encontrarse con un resultado negativo en el
calculo de una integral y, por otro lado, que a partir del modelo utilizado, interpreten los
resultados.

h h
F=—f A-(p—pa-g-Z)-dz=—A-h-(p—pa-g;)
0
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Problema CP-1.9

La resolucion del problema se fundamenta en la comparaciéon de los momentos
estaticos resultantes, respectivamente, de la fuerza de gravedad y la presion sobre la presa.
De esta forma, para que no vuelque la presa se tiene que asegurar que el momento estatico
causado por su propio peso es superior al correspondiente a la presion del agua cuando

ésta se encuentra en su nivel maximo (h).

Si se aplica una estrategia similar a la del ejercicio anterior (CP-1.8) se pueden

calcular sendos momentos estaticos a partir de las siguientes integrales.

ap , 1 )
Me,pesozpp‘g'f Ex -dng.pp.g.a -h

0

h
1
Me,presién:pa'g'f (h—x)-x-dx=g-pa'g'h3
0

Me,peso > Me,presi()n =

S Q
Vv
N| =
‘Dl‘b
< |

Problema CP-1.10

La primera pregunta enfrenta a los alumnos a la problemética del calculo del
volumen de un cuerpo cuya formula general asociada, en principio, desconocen. Una vez
que sean conscientes de dicha situacion se les inducira a que recurran a una estrategia
similar a la utilizada en el problema P-RS1. Esta consistira en aproximar el volumen del
cuerpo a partir de las cotas superiores e inferiores que se obtienen en cada particién que
se realiza del mismo. Es importante que los alumnos aprecien la necesidad de construir
particiones que les permitan de forma inmediata —utilizando férmulas conocidas— acotar

el volumen del cuerpo.

El volumen del paraboloide se puede acotar mediante la siguiente suma superior

e inferior.

U= 7 (= xi0) - Gup{f(0):xis < x < x))°
i=1

L= me (=) - Gnf{f (0 < x < 1))’

i=1

U 2 Voar 2 L
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Dado que en este caso f(x) = 0 se tiene que (sup{f(x):x;_4 < x <x;})? =
sup{f(x)%*:x;_; <x<x;} vy, andlogamente, (inf{f(x):x;_1 <x<x}?*=
inf{f(x)?%:x;_; < x < x;}. De la misma forma, el nimero es factor comdn de ambas
sumas. De este modo, las expresiones anteriores se pueden presentar de la siguiente
forma.

n

U=m- Z(xi —xi—1) - sup{f ()% x4y S x < x;} = U(P, f(x)?)

i1
L=m- Z(xi —xi—1) - inf{f ()% %y <x < x} =7 L(P, f(x)?)
i=1

De esta forma, el volumen del cuerpo de revolucion que se engendra a girar f(x),
definida en el intervalo [a, b], en torno al eje de abscisas, se puede calcular mediante la

integral definida.
b
V=7t-f f(x)? - dx
a

En el caso concreto que se presenta en el problema (f(x) = @ Wx 0<x<

10), el volumen del cuerpo se calcula de la siguiente forma:

—x-dx=m -—- x-dx=m -—+ -——=320m cm?

. floaz 32 (10 32 100
par =) g 5 ), 5 2

ii y iii) Ahora el problema solicita un calculo inverso: dado un cierto volumen
determinar el volumen de liquido asociado. Los alumnos pueden razonar que se puede

resolver el problema estableciendo como incognita h el limite superior de integracion.

32 (M 16
m-—-| x-dx=m-—-h?
5 J, 5

Asi, para el primero de los resultados que se solicitan:

h= [1000 > _ |82
N 16w .| 27

h =99,7mm
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El hecho de que se les haya solicitado un calculo repetitivo en estos apartados
tiene por objeto que los alumnos aprecien la utilidad de definir una funcion que relacione

el nivel de liquido con el volumen.

V() = 32 fh dx = h?
=T 5 Ox X =T 5

En este momento se puede institucionalizar la funcién integral.

Asi, la funcion F (h) relaciona el nivel de liquido con el volumen contenido en el

recipiente.

32 (M 16
F(h)=7t-?-jx-dx=n-?-h2 0<h<10
0

La solucidn al apartado (iii) se puede proporcionar a traves de la evaluacion de la
funcion inversa de la anterior:
hy = F~Y (V)

Donde
1 |5
F'fW)y == |-V
4 T

Una representacion grafica como la siguiente (fig. 1.6) puede ayudar a los

alumnos.

La separacion entre dos marcas Vi1 y Vi se puede calcular a partir de la funcion
FL(V).

1 ’5
i_ a — P — — a — i
Ah; = h; —hj_1 = 1 |7 (\/hl Vhi 1)
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Fig. 1.6. Representacion gréfica de la graduacion del recipiente.
Ejercicio CP-1.11

En el caso del cono, el enunciado del problema da —de forma intencionada— una
descripcion incompleta de la posicion en que dicho cuerpo se sumerge. De esta forma,
se pueden analizar los dos casos segun esta inmersion se dé a partir del vértice (a) o la
base (b).

(@) Inmersion a partir del vértice

Se puede plantear por medio de una integral el volumen del agua que desaloja un
cono sumergido hasta una profundidad h.
h R? m R?

V(h):fO n.ﬁ.xz.dng.ﬁ'hg

De este modo, si se impone el principio de Arquimedes a partir del resultado

anterior, se obtiene la profundidad de inmersion.

T R? 13 = T R2. g
pa 3 Hz pS 3
h="1%n
Pa

(b) Inmersion a partir de la base
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El volumen del agua desalojada se puede calcular mediante la siguiente integral:

H RZ T 2
— 2 — 3 31 —
V(h)—fH_hT['ﬁ‘x dx—gm[H —(H—h)]—
_m R?

_§'ﬁ'[3'H2'h_3'h'H2+h3]

Si se impone la condicién correspondiente al principio de Arquimedes:

P = —" [3-H2-h—3-h-H2+h3]=p-E-RZ-H
¢ 3 HZ 5 3
La profundidad h a la que flota el cuerpo es la que satisface la siguiente ecuacion:
hy\> h\? R\ ps
(7) -3 (&) +3'(ﬁ)‘p—a—°
Por otro lado, si se representa la funcion V(h), se puede obtener graficamente la

solucién a ambas situaciones como muestra la figura 1.7.

V_ono=R2H/3
ANty e e e e e e ey
ps/pa'vcono
Caso (b)
O SGGECREETEEETEEEEEEEE TR R LR *----
[}
€
=}
K}
>
............................ S
Caso (a
pS/pa.VCOI’IO ( )
H/4 H/2 3/4-H H
Profundidad (h)

Fig. 1.7. Representacion grafica de la solucion del problema CP-1.11.

En el caso de la esfera, se puede calcular el volumen del agua desalojada se puede

calcular a través de la siguiente integral:
R h3
V(h)=] 7 -(R2—x%)-dx=mn-(R-h%?——
R-h 3

De forma analoga, se puede calcular la profundidad a la que se sumerge para flotar

dicho cuerpo mediante la resolucion de la siguiente ecuacion:
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3 2
) > G -+ 2
Por altimo, se puede aplicar para el cuerpo engendrado por la curva que muestra
la figura del enunciado del problema CP-1.11 el método grafico que presentado
anteriormente (fig. 1.7). Asi pues, es necesario calcular cual es el volumen de agua
desalojado en funcion de la profundidad sumergida. Conviene, por tanto, obtener una
expresion analitica de la curva R(x). En la figura 1.8 se muestra la curva del volumen
desalojado en funcion de la profundidad del cuerpo que se sumerge. Es interesante que
los alumnos adviertan que, pese a que la funcién R(x) no es continua en el punto x =

H /3 la funcion volumen desaloja si lo es.

R 3-x 0<x< H
— — <S x <S —
R(x) = 2 H 3
> R (H—-x) <x<H
kz H X X
h 2-H
nf R(x)%dx 0<x<——
h 0 3
0 =nj RGdx =1 [ 2w ) .
0 ln j R(x)%dx +f R(x)%dx —<x<H
2.H 3
0 3
3T R2 h? 0<x< 2-H
)16 H =Y=73
VW= R*-H—1-R? (h Z'H) 2t <n
|12 & 3 3 ~*=
cherpozs/lz'Rz'H
} ps/pa'vcuerpo Caso (b)
R + _________
b e _ e e - - = ——— - + _____________
ps/pa.VCUer [o]
} P Caso (a)
H

Fig. 1.8. Representacion gréfica de la solucion del problema CP-1.11.
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1.3 Ejercicios del segundo campo de problemas
Ejercicio CP-2.1

El objetivo de la primera parte del problema es la aplicacion de la funcion integral

a la cuantificacion de la variacion dentro de un proceso de cambio. Asi, el volumen de

liquido que ha entrado en un intervalo de tiempo [0,t] se puede aproximar mediante las
sumas superior e inferior.

L(P,q) <AV()=V(®t)-V(t=0)<U(P,q)
Donde

U(P,6) = ) (= ti-s) - sup{(e) iy < £ < 1)
i=1

L, = ) (6= ti) - infla(D, iy S £ < 1)
i=1

Asi pues, el volumen en cada instante se puede calcular por medio de la integral
definida.

V(E) = V(t=0) = V() = f @) - dr

0

Ahora bien, el volumen que contiene el recipiente no puede superar su capacidad
maxima.

Las integrales correspondientes a las tres primeras funciones de caudal propuestas

se pueden calcular a partir de los resultados previos y de algunas propiedades de las
integrales. Por ejemplo:

i) [ qo-dr=qo- [,dt =gt

2
ii)fotqo—k'T'dT=q0-f0tdr—k-f0tf.d1=qo.t_k.%

iii) [ q(0) - dr = [ q(x) - dr+ [}, q(2) - de

Analiticamente, las funciones V;(t) quedan:

t ‘<
no =43

. t
257‘[ >
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t t? f<4
AGERE
- t>4
5
(t
hd t<?2
: <
2 2<t<3
: <
L ! 3<t<5
5 5 =
V3(t):< 4
- 5<t<e6
5
‘ 2 5<t<8 + 2
55 =5 "
8 .8
.25 " 5 "

1,2

Volumen [l]
o o o
B~ [e)] o] =

0 3 6 9
Tiempo [min]

12

Nivel [cm]
N H [e)]

0 3 6 9
Tiempo [min]

Fig. 1.9. evolucidn temporal del volumen (sup.) y el nivel (inf.) de liquido.
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En las primeras secciones de la segunda parte del problema se orienta a los
alumnos hacia el céalculo de la derivada. En primer lugar, se solicita el calculo de caudal
medio en dos intervalos de tiempo distintos. Si se aplica la ley de conservacion de la masa,
siempre que se desprecien las variaciones de densidad en el fluido, dicho caudal
volumétrico coincide con la tasa media de variacion del volumen de liquido que contiene
el recipiente.

G RCY)
t; — Uy

La siguiente cuestion orienta el calculo del caudal instantaneo a través de la

derivada. Se solicita el calculo en las distintas regiones del dominio de la funcién V (t).

Se ha escogido una funcion con puntos en los que la derivada no existe, con el objeto de

que los alumnos puedan observar algunas condiciones para que se cumpla el principal

resultado del primer teorema fundamental de célculo.

q(t)=d];g)

t q(®)

0 0

a 0<a<2 t
5

2 n.e

a 2<a<4 0

4 0

a 4<a<6 ﬂ
5

A partir de los resultados del ejercicio, los alumnos pueden observar que asi como

el volumen que contiene el deposito se calcula a través de la funcion integral:

V() = f q(t) -dt
0

De forma inversa el caudal se puede calcular, en los puntos donde q(t) es

continua, mediante la derivada.

dv(t)
dt

q(t) =
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En este momento se propone institucionalizar el primer teorema fundamental del

calculo.

El apartado 1.iv, que habia quedado sin resolver, se puede abordar en este

momento utilizando la regla de Barrow.

t 1+ sen(m-t) 1 cos(m-t)—1
V(t) = _— dt=—-t—————
© —[tzo 8 8 81

Problema CP-2.2

La desviacion que produce un error Ah de lectura del nivel de liquido, se relaciona,

a través de la funcion F(h), con la desviacion en la estimacién del volumen de liquido.
16
AV = F(h + Ah) — F(h) =n-?-(2-h-Ah+Ah2)

La razon entre la desviacién en el resultado global y el error de lectura da una

buena cuantificacion de la sensibilidad.

_A_q ke (2-h+ Ah)
STAa TS
Sin embargo esta expresion tiene la desventaja de depender del nivel de error. Ya

gue éste es pequefio se puede aprovechar la derivada para cuantificar la sensibilidad.

AV _dF 32

=M AR an S

Ya que la funcién F(h) habia quedado definida como:

h

F(h) = f A(x) - dx
0

Si se aplica el teorema fundamental del calculo, se obtiene que la sensibilidad es
igual al area de la seccién, A(h).

dF

S=E

= A(h)

Ahora bien, la sensibilidad se puede analizar, dependiendo de las exigencias de la

medida, en términos relativos.
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En el caso del recipiente que se proponia quedan ambas:

32
S=T1 5
5_2
V h

Luego la conclusion del apartado iv varia dependiendo si se fija la atencion en la
sensibilidad absoluta o relativa. En términos absolutos, se obtiene una mejor medida para

valores bajos del nivel de liquido, mientras que, en dicha zona, aumenta el error relativo.

Los recipientes que cumplan que en todo el rango de medida tienen una

sensibilidad relativa idéntica deben verificar la siguiente condicion:

Py =k

El cilindro cumple esta condicion.

En el caso de exigir una sensibilidad relativa uniforme en el rango de medida la
condicidn es la siguiente:
dF
dh
Fwy
Se puede ver que las funciones exponenciales satisfacen esta ecuacion?.

F(h) =V,-ekh

Sin embargo, desde el punto de vista practico, la construccion de un recipiente con

esta forma no es posible debido a que ningun punto de la curva verifica que R(h) = 0.
Ejercicio CP-2.3

En primer lugar, se puede calcular la cantidad de liquido, V,(t), que ha escapado

hasta un tiempo t mediante la siguiente integral:

t 8r T 4 8r T47T=t 8 t
V.(t) = ——.e 10 =—.|—e 10 :—(1— _E)
«(6) jO250 T [ L:o 25 ¢

Asi pues, se trata de igualar esta funcion a la mitad del volumen del recipiente
160mcm3 (ejercicio CP-1.10).

24 No se introducirfa ningtin comentario acerca de la unicidad de la solucién de la ecuacion diferencial.
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1—e 10

25

8 ( t ) _ 16071
~ 1000

t=10-In(2) = 6'56"
En el segundo caso, la igualdad se plantea utilizando el volumen total del
recipiente: 320mcm3

8 <1 _%) _ 320w
25 ¢ )~ 1000

t
Dado que no existe un valor de t que verifique: e 10 = 0, pero ya que

t
lime 10=0

X—00

Se concluye que el depdsito nunca llega quedar vacio. Sin embargo, puede llegar

a tener un volumen de liquido tan pequefio como se quiera si se espera lo suficiente.
Ejercicio CP-2.4

Ya que la aceleracion se define como la tasa de variacion instantanea de la
velocidad y, andlogamente, esta Gltima como la tasa de variacion instantanea del
desplazamiento. Se pueden definir de la siguiente forma las correspondientes funciones
(a(t): aceleracion; Av(t): variacién acumulada de la velocidad; v(t): velocidad; y(t):

posicion; d(t): despladamiento).

a(t) = -g
Av(t) = fota(r) dr=—-g-t v(t) =v(0) —Av(t) =vy—g-t

tZ
2

y(©) = [y v(@) -dt=v,-t—g- d(®) = [;lv(0)| - dr

El tiempo que le cuesta volver a la posicion original es 2 - %.

Se puede aprovechar este resultado para calcular el tiempo de ocupa el proceso
descrito en el problema Al-1. Del sistema fisico que describe dicho ejercicio se conoce la
altura maxima que alcanza la pelota en cada rebote, que se puede relacionar con la
velocidad v ,,, es decir aquella que tiene el objeto en el instante del rebote, mediante la

siguiente ecuacion.
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H 1
==y
Luego el tiempo (At,, n = 1,2 ...) que duran el proceso de rebote n, se puede

expresar relacionar con la altura H,,.

H, H
Btn=2- [2:—= |2

Es preciso tener en cuenta que At,, el tiempo que transcurre desde que se deja caer

la pelota hasta que impacta con el suelo, no sigue la misma ley general.

e [2H
0 g

Asi pues, el tiempo hasta el rebote n (t,, n = 0,1,2...) se puede expresar de la

siguiente forma:

. 2-H - H 2-H 1
tn=At0+ZAtn= —+Z 2o = : 1+x/iz —
i=1 g g g i=1\/§

i=1

De nuevo, se tiene la suma de los términos de una sucesion geométrica. En la

siguiente expresion se han realizado ya las operaciones y racionalizado:

2-H =1 v2\"
n= |—1+V2 —|=2-(V2+1)- 1—<—> :
t\/9(+;ﬁ‘) (V2+1)

2
De modo que se puede calcular el tiempo que ocupa el proceso infinito (t), ya que

vZ\" fH ,H
1—(7> ] Ezz-(\/2+1)- 7
Ejercicio CP-2.5

A continuacion se completa la tabla (tabla 1.7) que propone el ejercicio CP-2.5.

En ella se indican los puntos en los que no se cumplen las condiciones que sefiala el

H

g

la sucesion t,, es convergente.

t=1lim2-(V2+1)-

n—->0oo

teorema fundamental del célculo.
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(Six#—2)

fx) F(x) fx) F(x)
eb-x
k k-x+C k- el k.T+C
k-(b-x)m k G-0™ k
b m+1 k-sen(b - x) ——-cos(b-x)+C
m+ —1 . b
(Sim<0,x #0)
k
k E-lnlb-x+a|+C k
k-cos(b-x) —-sen(b-x)+C
b-x+a b

Tabla 1.7. Tabla con las funciones primitivas que solicita el ejercicio CP-2.5.
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