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A. Introducción: Definición del objeto matemático 

En este trabajo se presenta una propuesta didáctica orientada a la enseñanza de la 

integral definida en el segundo curso de Bachillerato en la asignatura de Matemáticas II 

(según establece el Real Decreto 1105/2014, de 26 de diciembre, Boletín Oficial del 

Estado de 3 de enero de 2015). En la siguiente tabla (tabla 1) se resumen en términos de 

campos de problemas, técnicas y tecnologías los principales elementos en torno a los que 

se ha configurado la propuesta didáctica. 

Campo de problemas Técnicas Tecnologías 

-Cálculo de áreas limitadas 
por curvas 

-Aplicación a situaciones de 
la naturaleza y de la 
tecnología 

-Aplicación de la integral de 
Riemann al cálculo de áreas 
bajo curvas 

-Aplicación del cálculo de 
primitivas y de la regla de 
Barrow al cálculo de áreas 
bajo curvas 

-Integral de Riemann. 
Definición 

-Propiedades de la integral 
definida 

-Teorema fundamental del 
cálculo. Demostración. Regla 
de Barrow 

Tabla 1. Resumen de los campos de problemas, técnicas generales y tecnologías asociadas a la 

propuesta de enseñanza de la integral definida en la asignatura de Matemáticas II de 2º de 

Bachillerato. 
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B. Estado de la enseñanza-aprendizaje de la integral definida 

En esta sección se presenta una breve panorámica del estado actual de la 

enseñanza-aprendizaje de la integral definida. Ésta se ha elaborado a partir de distintos 

puntos de vista. En primer lugar, se ha examinado el currículo oficial, no sólo teniendo 

en cuenta la delimitación de contenidos sino identificando aquellos aspectos didácticos 

que subyacen en dicha formulación de contenidos y criterios de evaluación. Por otro lado, 

se ha realizado un breve análisis de las propuestas didácticas de una pequeña muestra de 

libros de texto. Finalmente, se ha hecho referencia al modo en que las pruebas de acceso 

a la universidad, que hasta ahora se han realizado al finalizar el curso académico en que 

se introduce la integral definida, han podido condicionar la enseñanza y el aprendizaje de 

dicho objeto matemático. 

En las versiones más recientes del currículo, desde el año 1992, la integral definida 

se asocia al problema del cálculo de áreas de regiones planas encerradas bajo funciones. 

Sin embargo, se han propuesto diferentes ordenaciones de los contenidos que desde el 

punto de vista didáctico pueden ser significativas. Tanto en la primera versión del 

currículo LOGSE, recogida en el Real Decreto 1179/1992 de 2 de octubre, como en el 

correspondiente a la legislación LOE (Real Decreto 1467/ 2007 de 2 de noviembre), se 

insta a introducir la integral definida a partir del concepto de área. Además, el cálculo de 

primitivas se sitúa después de esta introducción a la integral definida. En cambio, en la 

modificación del currículo LOGSE de 2001 (Real Decreto 938/2001, de 3 de agosto) y 

en el currículo LOMCE (Real Decreto 1105/2014, de 26 de diciembre, Orden de 26 de 

mayo de 2016, de la Consejera de Educación, Cultura y Deporte de la Comunidad 

Autónoma de Aragón), se introduce en primer lugar la función primitiva y las técnicas 

elementales de integración y, posteriormente, la integral definida. En ambos casos, el 

cálculo de áreas de regiones planas se recoge en los contenidos como una aplicación; no 

se hace, por tanto, explícita la sugerencia de utilizar este campo de problemas como razón 

de ser para la introducción del objeto matemático. 

Desde el punto de vista de los libros de texto, resultan interesantes los trabajos de 

Labraña (2001) y, por otra parte, de Contreras et al. (2010) y Ordóñez y Contreras (2011). 

En estos análisis se constata que, en la mayoría de casos, la integral definida se introduce 

después del cálculo de primitivas. De forma general, este objeto matemático se relaciona 

con el cálculo de áreas. Sin embargo, si se observan el tipo de ejercicios que proponen 
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los textos, se infiere que la mayor parte del esfuerzo se dedica a la práctica de las técnicas 

de cálculo. Pese a que predominan los ejercicios de aplicación de la integral definida en 

un contexto geométrico, en la mayoría de ellos, la resolución requiere únicamente la 

aplicación directa de la técnica  (Contreras et al. 2010). 

Por otro lado, estos autores son críticos con el tratamiento que en los textos se da 

a otras aplicaciones de la integral. Labraña (2001) señala que, así como el uso de la 

integral definida para el cálculo de áreas se suele introducir con cierto grado de rigor, la 

extensión a otras aplicaciones (p. ej. cálculo de longitudes de curvas, problemas físicos) 

no queda suficientemente justificado. Por su parte, Contreras et al. (2010) reclaman una 

mayor presencia en los libros de texto del campo de problemas relacionados con la 

aplicación de la integral en la evaluación del resultado de un proceso de cambio1. A su 

juicio, esta aplicación no se justifica en los textos, de modo que implícitamente se asume 

que el alumno es capaz de extrapolar la utilización de la integral a otros contextos. 

En la tabla 2 se recogen los principales aspectos de las propuestas didácticas 

relativas a la integral definida de una muestra de cinco libros de texto utilizados en el 

bachillerato desde el año 1999.  

                                                                    
1 Se ha mantenido la denominación de los autores (Contreras et al. 2010) que hace referencia al conjunto 
de problemas, generalmente provenientes de otros ámbitos de la ciencia, en los que se aplica la integral 
para analizar el cambio resultante en una magnitud resultante de un proceso del que se conoce la intensidad 
de la tasa de variación de dicha magnitud. Dentro de este campo de problemas, son frecuentes en los textos 
los relacionados con la cinemática. 
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Campo de problemas Técnica Tecnología 

Cálculo de área de regiones planas 
(Razón de ser) 

 Definición formal de área (Pastor et al. 1999) 

Cálculo de integrales a partir de la fórmula del 
área de figuras conocidas (Colera et al. 2003, 
Escoredo et al. 2009) 

Cálculo de integrales a partir del límite de 
sucesiones (Colera et al. 2003, Escoredo et al. 
2009) 

 

Presentación formal de la integral de Riemann 

Algunas transposiciones didácticas relevantes: 

-particularización para funciones continuas (Pastor et al. 1999, 
Monteagudo y Paz 2003, Colera et al. 2003, Escoredo et al. 
2009, Vizmanos et al. 2009) 

-sumas superiores e inferiores definidas a partir de concepto 
de máximo y mínimo de la función en un intervalo (Pastor et 
al. 1999, Colera et al. 2003, Escoredo et al. 2009) 

-No aparece la integrabilidad (Escoredo et al. 2009) 

Cálculo de integrales definidas de funciones 
continuas: 

-Cálculo de la función primitiva 

-Aplicación de la regla de Barrow 

Cálculo de integrales definidas de funciones 
discontinuas: 

-Descomposición del intervalo de integración 
en intervalos donde la función es continua 

-Aplicación de la técnica anterior  

Condiciones suficientes para la integrabilidad (sin demostración p. 
ej. Pastor et al. 1999, Colera et al. 2003) 

Propiedades de la integral definida (generalmente sin 
demostración p. ej. Pastor et al. 1999, Monteagudo y Paz 2003, 
Colera et al. 2003, Escoredo et al. 2009) 

Teorema del valor medio (generalmente demostrado p. ej. Pastor 
et al. 1999, Colera et al. 2003, Escoredo et al. 2009) 

1er teorema fundamental del cálculo integral (generalmente 
demostrado p. ej. Pastor et al. 1999, Colera et al. 2003, Escoredo 
et al. 2009) 
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Regla de Barrow (generalmente demostrada p. ej. Pastor et al. 
1999, Colera et al. 2003, Escoredo et al. 2009) 

 

Aplicación: cálculo de áreas -Procedimiento para el cálculo de áreas de 
regiones definidas por curvas 

 

Otras aplicaciones: 

-Volumen cuerpos de revolución 

 

-Fórmula dada (Pastor et al. 1999, Colera et al. 
2003, Escoredo et al. 2009) 

 

-Breve justificación (p. ej. a partir de las sumas de Riemann en 
Colera et al. 2003, Escoredo et al. 2009) 

-Volúmenes de sólidos, longitudes de 
arcos (f(x) derivable) 

- Fórmula dada (Vizmanos et al. 2009, 
Monteagudo y Paz 2003) 

- Breve justificación a partir de las sumas de Riemann (Vizmanos 
et al. 2009) 

-Problemas en el campo de la física: 
cinemática (Vizmanos et al. 2009, 
Monteagudo y Paz 2003), cálculo de 
fuerzas sobre superficies debidas a la 
presión hidrostática o cálculo de 
trabajo (Pastor et al. 1999) 

-Fórmula dada (Pastor et al. 1999) 

-Formulación a partir de un elemento 
diferencial (Vizmanos et al. 2009) 

-cinemática: a partir de sumas de Riemann (Vizmanos et al. 2009) 

Tabla 2. Aspectos generales de las propuestas didácticas que presentan habitualmente los libros de texto. 



Estado de la enseñanza-aprendizaje de la integral definida 

11 
 

En estas propuestas, es habitual que la unidad correspondiente comience con el 

planteamiento del problema del cálculo del área bajo una curva. En este punto, existen 

diferentes orientaciones en las propuestas en cuanto al tratamiento del concepto “área 

bajo una curva”. Según Labraña (2001) la mayoría de textos asumen que el objeto es 

intuitivo para los alumnos y, por tanto no proporcionan una formalización del concepto 

(p. ej. Colera et al. 2003, Escoredo et al. 2009, Vizmanos et al. 2009). 

Una vez se ha contextualizado el problema, los textos se centran en la presentación 

de la integral definida. Ésta se realiza en un lenguaje formalista y se basa en una 

trasposición didáctica de la integral de Riemann. Ésta se define a partir de la introducción 

de las sumas superiores e inferiores (Pastor et al. 1999, Escoredo et al. 2009), o bien a 

partir de las sumas de Riemann (Vizmanos et al. 2009). Por otra parte, el desarrollo 

teórico se suele particularizar para funciones continuas. De esta forma, el discurso 

didáctico se simplifica, ya que se puede eludir la introducción de definiciones auxiliares, 

tales como las de supremo e ínfimo. Sin embargo, este enfoque relega, desde el punto de 

vista didáctico, a un segundo plano –y en ocasiones obvia– las cuestiones relacionadas 

con la integrabilidad de funciones. En estas propuestas, la integrabilidad de funciones 

continuas se afirma pero no se demuestra (p. ej. Vizmanos et al. 2009, Escoredo et al. 

2009). La discusión acerca esta característica en otros tipos de funciones cuya aparición 

es frecuente en este nivel, tales como las funciones continuas a trozos, en los casos en que 

se aborda, se realiza a través de afirmaciones generales (Vizmanos et al. 2009) o por 

medio de la enunciación de algunas condiciones suficientes para la integrabilidad cuya 

demostración se omite (Pastor et al. 1999). 

A partir de esta presentación de la integral definida, en algunos textos se proponen 

algunos ejercicios para el cálculo de integrales en los que se utilizan técnicas, o bien 

basadas en su identificación con el área de figuras planas conocidas y la aplicación de las 

propiedades de la integral, o bien en el cálculo de límites de sucesiones (p. ej. Colera et 

al. 2003). Sin embargo, Contreras et al. (2010) señalan que la presencia de ejercicios que 

refuercen la concepción de la integral definida como el límite de una sucesión que 

aproxima el área bajo la curva es escasa en los textos y generalmente queda reducida a la 

articulación del discurso formal que presenta la integral definida. 

Finalmente, el discurso tecnológico concluye con la enunciación y demostración 

del primer teorema fundamental del cálculo integral (en cuya demostración se utiliza el 

teorema del valor medio integral) y de la Regla de Barrow. En este momento queda 
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justificada la técnica principal de la unidad para el cálculo de integrales definidas de 

funciones continuas. 

Una vez se han presentado esta técnica para el cálculo de integrales definidas, los 

textos retoman el problema del área y presentan distintos ejemplos. Además, se suelen 

incluir otras aplicaciones de la integral definida tales como el cálculo de volúmenes de 

cuerpos de revolución o en situaciones que provienen del campo de la física.  

Por último, algunos investigadores como Turégano (1997) y Ordóñez y Contreras 

(2011) han destacado la influencia que ejercen en la enseñanza las pruebas de acceso a la 

universidad, ya que reconocen que, en muchas ocasiones, el último curso se convierte en 

una preparación para éstas. Así, Turégano (1997) reclama que los ejercicios relacionados 

con la integral se centran principalmente en aspectos procedimentales en lugar de 

conceptuales. En una línea crítica similar, Ordóñez y Contreras (2011), tras realizar un 

análisis cuantitativo de los tipos de ejercicios sobre integral definida que aparecen en los 

exámenes propuestos en Andalucía, concluyen que predominan –con más de un 80% de 

frecuencia relativa– aquellos en los que se solicita la aplicación directa de la integral.  

Si se traslada el análisis a los exámenes propuestos en la comunidad de Aragón 

durante los años 2006 y 2016 se obtienen resultados similares. Aproximadamente, el 80% 

de los ejercicios que se relacionan con la integral definida son de aplicación directa y 

están planteados bien en un contexto geométrico o algebraico. En la siguiente tabla (tabla 

3) se muestran dos ejemplos de ambos tipos de ejercicios. En general, los ejercicios 

propuestos en un entorno algebraico requieren el cálculo de la primitiva y la aplicación 

de la regla de Barrow y, por tanto, están únicamente centrados en la evaluación de 

aspectos procedimentales. 

Ejemplo de ejercicio de aplicación directa planteado en un contexto geométrico 

Calcule el área de la región encerrada entre las curvas 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3 y 𝑔𝑔(𝑥𝑥) = 2𝑥𝑥2 − 𝑥𝑥 (junio de 
2016). 

Ejemplo de ejercicio de aplicación directa planteado en un contexto algebraico 

Para la función 𝑓𝑓(𝑥𝑥) = 2𝑥𝑥+1
𝑥𝑥−1

, calcular ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑3
2  (septiembre de 2011). 

Tabla 3. Dos ejemplos de los tipos de ejercicios más frecuentes en las pruebas de acceso para la 

universidad celebradas en la comunidad de Aragón durante los años 2006-2016. 
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Así pues, se puede concluir que, de forma general, en la enseñanza actual la 

integral definida se introduce a partir del problema del cálculo del área de la región 

encerrada bajo una curva. Además, ya que este objeto se presenta una vez se han trabajado 

las reglas para el cálculo de primitivas, el cálculo de áreas se puede percibir como una 

aplicación de las técnicas previamente asimiladas. En esta adquisición de destrezas 

algebraicas –relacionadas con el correcto uso de las reglas para el cálculo de primitivas– 

se invierten gran parte de los esfuerzos (Llorens y Santoja 1997 y Ordóñez y Contreras 

2011). 

B.1 Efectos en el aprendizaje de la integral definida 

Algunos autores han sido críticos con este método para la introducción de la 

integral definida en la enseñanza. El desequilibrio entre el significativo esfuerzo invertido 

en la asimilación de las técnicas para el cálculo de primitivas frente a la menor presencia 

de los aspectos conceptuales, es uno de los hechos que los investigadores han coincidido 

en señalar. Además, la presentación más frecuente de contenidos –cálculo de primitivas 

en primer lugar y, posteriormente, integral definida– se puede relacionar con algunos 

efectos negativos. Según Turégano (1998)  y Llorens y Santoja (1997) esta introducción 

de contenidos, unida al énfasis en el cálculo de primitivas, puede llevar a que los alumnos 

consideren la integración únicamente como operación inversa a la derivación. Asimismo, 

la presentación formal de la integral definida particularizada para funciones continuas, 

puede contribuir a la configuración de esta concepción parcial acerca de la integral 

definida. Se pueden relacionar con estos hechos algunos errores tales como la confusión 

entre la integrabilidad y la existencia de primitivas, tal como señalan Labraña (2001) y 

Ordóñez (2011), y la aplicación errónea de la regla de Barrow. Un ejemplo de este último 

caso, lo ilustra la cuestión que planteó Mundy (1984, apud. Llorens y Santoja 1997) en la 

que se preguntaba qué había de incorrecto en el siguiente cálculo: 

�
𝑑𝑑𝑑𝑑
𝑥𝑥2

1

−1
= � 𝑥𝑥−2𝑑𝑑𝑑𝑑

1

−1
= �

−1
𝑥𝑥
�
−1

1

= −1 − 1 = −2 

En la réplica del cuestionario que Llorens y Santoja (1997) realizaron a 198 

alumnos universitarios cursando la asignatura de Cálculo, se obtuvo alrededor de un 20% 

de éxito. En este sentido, Labraña (2001) considera escaso el énfasis que se realiza en 

señalar las limitaciones del cálculo de primitivas. 
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En relación con esta presentación de la integral definida, en que la visión de la 

integral como el límite de una aproximación se suele introducir exclusivamente dentro de 

su presentación formal, algunos autores han afirmado que los alumnos no la relacionan 

con un proceso de convergencia. Este hecho, según Llorens y Santoja (1997) puede 

constituir un obstáculo didáctico en el momento de abordar el estudio posterior de las 

integrales impropias. 

Por otro lado, pese a que los alumnos asocian la integral definida al cálculo de 

áreas (Ordóñez 2011), su práctica se centra casi exclusivamente en métodos algebraicos. 

Algunos autores han señalado (Llorens y Santoja 1997, Labraña 2001) o mostrado 

experimentalmente Ordóñez y Contreras (2011) que en las decisiones que los alumnos 

adoptan acerca del resultado de un ejercicio tienen prevalencia los cálculos que los 

razonamientos derivados de una interpretación gráfica. La integral definida, propuesta 

por Mundy (1984, apud. Llorens y Santoja 1997), ∫ |𝑥𝑥 + 2|𝑑𝑑𝑑𝑑3
−3 , se puede utilizar para 

diagnosticar este hecho. En el experimento original el 95% de los estudiantes respondió 

incorrectamente a la pregunta. 

Algunos autores han relacionado (p. ej. Labraña 2001, Ordóñez y Contreras 2011) 

algunos resultados negativos del aprendizaje actual en torno a la integral definida con la 

prácticamente exclusiva asociación de este objeto matemático al cálculo de áreas. De esta 

forma, es posible que los alumnos sólo reconozcan la aplicación de la integral definida al 

cálculo del área bajo la curva (Berry y Nyman 2003). Asimismo, se reconocen las 

dificultades, de forma inversa, para aplicar la integral definida en otros contextos (Artigue 

1991, apud. Muñoz 2000), Tall (1991), Labraña 2001). En los trabajos más recientes de 

Camacho et al. (2008) y Ordóñez (2011) se muestran evidencias empíricas de la dificultad 

de los alumnos para utilizar e interpretar la integral definida más allá del cálculo de áreas. 

Ordóñez y Contreras (2011) señalan que la ausencia –o  presencia residual–, tanto en los 

libros de texto como en las pruebas de acceso a la universidad, de campos de problemas 

en los que la integral se relacione con la noción de acumulación o con la evaluación de 

un proceso de cambio puede ser uno de los orígenes de este hecho. 
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C. Conocimientos previos 

En esta sección se realiza una recapitulación de los conocimientos y competencias 

que se consideran necesarios para la implementación en el aula de la propuesta didáctica 

que aquí se plantea. En la tabla 4 se recogen y organizan por bloques de contenidos, 

haciendo referencia al lugar que ocupan en el currículo.  

Bloque de contenidos Conocimientos y competencias (Lugar en el currículo) 

Funciones -propiedades: continuidad, monotonía y acotación (1º y 2º Bach.) 

-representación gráfica de funciones elementales (1º y 2º Bach.) 

-uso de las funciones para analizar, describir, interpretar y resolver 
fenómenos naturales, económicos y sociales (1º y 2º Bach.) 

Límites -concepto de límite de una función (1º y 2º Bach.) 

Derivada -concepto de tasa de variación media e instantánea (1º y 2º Bach.) 

-definición de derivada de una función en un punto. Función 
derivada (1º y 2º Bach.) 

-significado geométrico de la derivada. Aplicación de la derivada a 
otros ámbitos del saber (1º y 2º Bach.) 

-derivada de funciones elementales. Dominio de las técnicas de 
derivación (1º y 2º Bach.) 

Sucesiones -uso del lenguaje algebraico para expresar la ley de formación de 
sucesiones (3º ESO) 

-sucesiones de números reales: monotonía y acotación (1º Bach.) 

-límite de sucesiones (1º Bach.) 

Área -noción de área 

-técnicas para el cálculo de áreas de figuras planas 

Tabla 4. Relación de conocimientos previos necesarios para la introducción de la integral definida 

según la propuesta didáctica. 

Una buena parte de los contenidos la forman los relacionados con el análisis que 

se imparte en los dos cursos de Bachillerato. Es preciso que los alumnos conozcan algunas 

propiedades como la continuidad, monotonía o acotación. Además es, por una parte, 

necesario que posean cierta destreza en la representación de funciones elementales y, por 

otra parte, deseable que sean competentes en la utilización de las funciones para abordar 

o analizar situaciones problemáticas. 
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Se considera importante que el alumno haya adquirido el concepto de límite y la 

forma en que se ha definido formalmente. Por último, en relación a la introducción del 

teorema fundamental de cálculo, es necesario cierto dominio de los conceptos de tasa de 

variación media e instantánea de una función y de derivada. Dado que estos contenidos 

del bloque de análisis se han abordado recientemente, se considera que el proceso de 

evaluación llevado a cabo durante el curso es suficiente para conocer el nivel general del 

grupo. 

En lo que atañe a los contenidos del bloque de geometría, se considera suficiente 

que el alumno posea una noción de área y que sea capaz de aplicar las técnicas básicas 

para el cálculo de áreas de figuras geométricas planas básicas. Se ha asumido que estos 

contenidos se han trabajado en los cursos tempranos de la educación secundaria. No 

obstante, en la primera actividad dedicada al repaso de algunos contenidos se incluyen 

algunos ejercicios en los que se pueden aplicar algunas técnicas para el cálculo de áreas. 

Por último, los contenidos relacionados con las sucesiones se consideran 

necesarios para abordar la introducción a la integral definida. Principalmente, se requiere 

cierta destreza en el manejo algebraico de sucesiones, así como conocer algunos 

conceptos como monotonía y acotación. Dado que estos contenidos se abordan en el 

tercer curso de la Educación Secundaria Obligatoria y que su presencia en el Bachillerato 

es escasa, se ha considerado conveniente la realización de una actividad inicial que tenga 

por objetivo retomar los aspectos principales de estos contenidos y poder corregir algunas 

concepciones erróneas. 

C.1 Actividad inicial 

Se propone realizar una actividad inicial que consistirá en la realización, por 

parejas o grupos, de los ejercicios que se muestran en la tabla 5. La sesión tiene dos 

principales objetivos, por un lado se pretende realizar un diagnóstico general acerca de 

los conocimientos de los alumnos acerca de las sucesiones y, por otro lado, revisar los 

conceptos y técnicas que se consideran más relevantes desde el punto de vista de esta 

propuesta para la enseñanza de la integral. 
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AI-1. Ejercicio 1 

Al dejar caer –en dirección vertical– una pelota desde una altura H el rebote hace que siempre 
alcance una altura máxima de 𝐻𝐻 2⁄ .  

i) Imagina ahora que esta pelota de deja caer y rebotar libremente. Calcula la distancia que 
recorre la pelota hasta que se produce el primer, segundo y tercer impacto con el suelo. ¿Puedes 
obtener una expresión algebraica que permita calcular dicha distancia en función del número 
𝑛𝑛 de impactos? 

ii) Si se prolonga indefinidamente el proceso, ¿qué distancia recorre la pelota?, ¿cuál es el 
número de rebotes? 

AI-2. Ejercicio 2 

Observa las dos familias de figuras geométricas que se muestran en el dibujo. En cada una de 
ellas, las sucesivas figuras se crean mediante una ley de recurrencia de tal forma que se pueden 
ordenar según el número 𝑛𝑛 como se indica en el gráfico.  

 
Encuentra dicha ley y obtén una expresión general para el cálculo del área de la región 
coloreada en azul de ambas familias de figuras en función de dicho número 𝑛𝑛. ¿Qué ocurre con 
el área de las figuras que resultan de la aplicación de sendas leyes de formación un número 
infinito de veces? ¿Y con el perímetro2? 

Tabla 5. Ejercicios propuestos para la actividad inicial previa a la introducción de la unidad 

didáctica acerca de la integral definida. 

El primer ejercicio fue utilizado por Garbin y Azcárate (2001) para el análisis 

acerca de las concepciones de los alumnos acerca del infinito. En el segundo, se propone 

el uso de la geometría fractal para combinar la revisión de los contenidos relativos a 

sucesiones con la práctica de algunas técnicas para el cálculo de área. Los ejemplos que 

se han escogido –triángulo de Sierpinski y curva de copo de nieve de Koch– han sido ya 

                                                                    
2 Se debe contabilizar tanto el perímetro interior como el exterior en la primera familia de figuras. 
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propuestos por Figueiras et al. (2000) o Moreno-Marín (2002) para el tratamiento de los 

contenidos relacionados con la Geometría y las sucesiones en secundaria y bachillerato.  

Los objetivos de estos ejercicios son los siguientes: 

• Evaluar y practicar la destreza de los alumnos en la utilización del lenguaje 

algebraico para expresar leyes de recurrencia 

• Revisión de los conceptos monotonía de una sucesión y límite de una 

sucesión 

• Introducción de la suma de infinitos términos. Algunos investigadores 

(Labraña 2001, Ordóñez y Contreras 2006) han señalado un obstáculo 

epistemológico en el aprendizaje de la integral definida relacionado con la 

suma de infinitos términos. La observación experimental realizada de 

Orton (1983, apud. Contreras et al. 2010) de que los alumnos no reconocen 

que a través del proceso de aproximación se pueda calcular el valor exacto 

del área o la integral, se puede relacionar con el mencionado obstáculo. 
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D. Sobre las razones de ser de la integral definida 

D.1 Razones de ser históricas 

Se realiza en esta sección un breve repaso acerca de los campos de problemas 

relacionados con el desarrollo, hasta nuestros días, de la integral definida. En la tesis 

doctoral de Ordóñez (2011) se puede encontrar un análisis detallado de la evolución 

histórica de los significados asociados a la integral definida. 

En la cultura griega, la existencia de inconmensurables constituía un obstáculo 

para la unión entre número y geometría. Eran conscientes de que ciertas magnitudes no 

pueden expresarse en términos de una cantidad entera de veces una unidad básica. De este 

modo, el propósito principal era el de establecer razones entre longitudes, áreas y 

volúmenes de unos figuras y cuerpos con otros (rectificación, cuadratura y cubatura).  

Eudoxo (s. IV a. C.), que había formulado la teoría griega de proporciones para 

razones conmensurables e inconmensurables, propuso el método de exhausción para 

hallar áreas y volúmenes de figuras curvilíneas. A partir de éste principio, demostró, por 

ejemplo, que la relación entre las áreas de dos círculos es igual al cuadrado de la relación 

de sus radios, que la relación entre los volúmenes de dos esferas se corresponde con el 

cubo de la razón de sus radios y que es un tercio la relación entre el volumen de una 

pirámide y el de un prisma con igual base y altura. 

Arquímedes (s. III a. C.) utilizó el método de exhausción para el cálculo de áreas 

y volúmenes. Por ejemplo, obtuvo una aproximación del número 𝜋𝜋 y calculó el volumen 

de esferas y paraboloides de revolución y el área bajo un segmento parabólico. En el 

ámbito de la mecánica, obtuvo la posición del centro de gravedad de algunas figuras. 

En la baja edad media, en torno al estudio de la variación temporal de las 

magnitudes físicas se realizan algunos desarrollos que se pueden  relacionar con el cálculo 

integral. Oresme (1323-1382) aplica la representación gráfica estos los problemas en los 

que interviene la variación temporal. Con esta metodología, aborda el problema del 

movimiento uniforme y uniformemente acelerado. Según su representación, la velocidad 

de un movimiento uniforme queda representada por un segmento horizontal cuya altura 

indica la intensidad de dicha magnitud. En este entorno de representación, llegó a la 

conclusión que el desplazamiento de un móvil que se mueve con aceleración uniforme 

desde el reposo hasta una cierta velocidad es equivalente al efectuado a una velocidad 
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constante igual a la mitad de dicha velocidad máxima. Dado que la justificación de este 

resultado se basó en la congruencia del triángulo y rectángulo asociados a cada uno de 

los movimientos, se puede considerar, según Boyer (1959), la primera asociación del área 

bajo una curva con el resultado del cambio de una magnitud física –en este caso, el 

desplazamiento–. Por su parte, Suiseth y Hentisbery (s. XIV) habían demostrado de forma 

dialéctica este hecho, utilizando series infinitas. 

En el renacimiento, la difusión de la obra traducida de Arquímedes tuvo una 

importante influencia. A raíz de ésta, por ejemplo, Stevin (1548-1620) utilizó el método 

de exhausción mediante la aproximación mediante paralelogramos inscritos para calcular 

el centro de gravedad de triángulos y figuras curvilíneas. Además, proporcionó una 

justificación al problema de la presión hidrostática media ejercida en una pared cuadrada 

basada en la sucesiva división, en dirección vertical, del cuadrado en rectángulos cada 

vez más pequeños. 

En el siglo XVII, una vez que se adoptó el concepto de función, la creación y 

desarrollo del cálculo estuvo motivada por dar repuesta a los problemas que, si bien ya 

habían interesado en la cultura griega, suscitaba en ese momento la labor científica. En 

relación al cálculo, Kline (2012) identifica cuatro grandes familias de problemas: estudio 

del movimiento –interesaba tanto la determinación de velocidades y aceleraciones a partir 

de un desplazamiento, como el problema inverso–, determinación de tangentes de curvas, 

cálculo de máximos y mínimos y el relacionado con el cálculo de longitudes de curvas, 

áreas, volúmenes, centros de gravedad y fuerzas gravitatorias entre cuerpos. 

En este periodo, la actividad matemática se caracteriza por el intento de liberar el 

método de exhausción mediante la utilización de distintos procedimientos intuitivos. 

Existe disparidad –e incluso ambigüedad– de visiones en la concepción de los 

infinitésimos. Cavalieri (1598-1647), en su trabajo sobre cuadraturas, y Galileo (1564-

1642), en el análisis del movimiento uniformemente acelerado, utilizan los indivisibles. 

Desde este punto de vista, una superficie plana se considera compuesta por infinitas 

rectas. Roberval (1602-1675), en cambio, consideraba que la superficie está compuesta 

por una infinidad de superficies. 

Uno de los resultados de la primera parte del siglo XVII, obtenido mediante 

distintos métodos por Cavalieri, Torricelli y Roberval, es el equivalente en notación actual 

a ∫ 𝑥𝑥𝑛𝑛 · 𝑑𝑑𝑑𝑑𝑎𝑎
0 = 𝑎𝑎𝑛𝑛+1

𝑛𝑛+1
, para 𝑛𝑛 racional distinto de −1. 
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A partir del método de los infinitésimos, Fermat (1601-1665) lograr cuadrar, 

usando una progresión geométrica, parábolas e hipérbolas. Planteó estos problemas de 

cuadratura en un entorno algebraico, lo que le permitió dotar de mayor generalidad a sus 

resultados. 

Barrow (1630-1677), siguiendo la tradición euclidiana, abordó el problema de la 

cuadratura en un entorno puramente geométrico. A él se atribuye el reconocimiento del 

carácter inverso del problema de las tangentes y la cuadratura. 

Se puede considerar que este proceso de origen y primer desarrollo del cálculo 

culmina con los trabajos de Newton (1642-1727)  y Leibniz (1646-1716) (Kline 2012). 

El primero, advirtió el carácter inverso del problema de la derivación e integración. 

Además propuso un método general para el cálculo de áreas basado en realizar en sentido 

contrario las operaciones de diferenciación. Aunque había partido del uso de los 

infinitesimales, Newton los optó por la descripción de las figuras a partir del movimiento 

continuo. Así, una superficie se engendra por el movimiento continuo de una recta. Desde 

este punto de vista, utilizó el término fluxión para designar la razón primera de los 

incrementos emergentes. 

Por su parte, de forma paralela, Leibniz establece que la integración es el proceso 

inverso a la diferenciación. Aunque el carácter inverso de los problemas del cálculo del 

área y determinación de la tangente había sido señalado por Barrow y Newton, Leibniz 

es el primero que la expresa como una relación entre sumación y diferenciación (Kline 

2012).  

Por último, en el siglo XIX, una de las principales preocupaciones de los 

matemáticos consistía en dotar de rigor a los desarrollos realizados en las distintas ramas 

del análisis. Hasta el momento, no habían sido rigurosamente definidas las nociones de 

integral y derivada. Cauchy (1789-1857) proporciona la primera definición precisa de 

integral definida a partir del significado otorgado por Leibniz de suma y utilizando el 

concepto de límite. La integral definida se asocia al límite de la suma cuando la longitud 

de los subintervalos tiende a cero. Pudo demostrar la existencia de dicho límite para 

funciones continuas. En ese momento, la integral definida se extiende a funciones 

continuas a trozos o con un número finito de puntos de discontinuidad. Por su parte, 

Riemann (1826-1866) desarrolló una teoría más amplia de integración para poder 

incorporar funciones con infinidad de discontinuidades. 



Javier Mazo Olarte 
 

 22 

Así pues, algunos autores (Labraña 2001, Ordóñez 2011) coinciden en señalar tres 

principales situaciones que dieron origen a la integral definida. En primer lugar, 

reconocen el cálculo de longitudes de curvas, áreas y volúmenes, en general ligado a una 

percepción estática. Dentro del ámbito científico, se pueden encontrar problemas de esta 

naturaleza en el cálculo de centros de gravedad, fuerzas gravitacionales o fuerzas 

hidrostáticas. Según Labraña (2001) esta problemática conecta –una vez superadas las 

barreras epistemológicas necesarias– con la idea de suma de pequeñas cantidades.   

Por otra parte, señalan los problemas relacionados con el análisis de la variación 

en el tiempo de la intensidad de las magnitudes físicas. Ordóñez (2011) señala que, 

precisamente la idea de tiempo puede producir un acercamiento intuitivo a la noción de 

continuidad. Asimismo, este campo de problema, según Labraña (2001), permite conectar 

la idea de acumulación, o de resultado de un proceso de cambio en el tiempo, con el 

proceso de cálculo inverso de derivadas. 

Por último, reconocen una última la motivación relacionada con la necesidad de 

dotar de rigor y fundamentación teórica a los desarrollos efectuados en el ámbito del 

cálculo. 

D.2 Razón de ser en la propuesta didáctica 

Los problemas que constituyen la razón de ser de la propuesta didáctica 

pertenecen a los dos primeros campos de problemas o situaciones que a través de la 

historia de las matemáticas motivaron el origen y el desarrollo de la integral definida. En 

primer lugar, el cálculo de áreas de figuras curvilíneas se utilizará como situación 

problemática que induzca la aparición de la integral definida. En segundo término, se 

utilizará un problema relacionado con el análisis de los procesos dinámicos que permita 

realizar las primeras indagaciones acerca del carácter inverso de la integración y 

derivación. 

En la elaboración de la propuesta didáctica se han tenido en cuenta las siguientes 

recomendaciones realizadas por los investigadores: 

• Turégano (1992) y Azcárate (1996) proponen introducir la integral 

definida independientemente de la derivada, previamente al cálculo de 

primitivas. 

• Labraña (2001) sugiere ampliar a través de la variedad de campos de 

problemas la fenomenología de la integral en las propuestas didácticas. 
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Ordóñez y Contreras (2011) reclaman una mayor presencia del campo de 

problemas relacionado con el análisis de los procesos de cambio en los 

textos actuales. La utilización y el reconocimiento en la secuencia 

didáctica como campos de problemas específicos de estas situaciones 

pueden contribuir  a ampliar el significado de los alumnos del objeto 

matemático así como puede aumentar su nivel de competencia para aplicar 

la integral en distintos contextos. 

Es habitual, cuando se introducen situaciones para la aplicación de la integral 

dentro del campo del análisis del resultado de un proceso de cambio, utilizar problemas 

relacionados con la cinemática. Sin embargo, algunos autores han señalado (Azcárate 

1990, apud. Labraña 2001) o mostrado empíricamente (Ordóñez 2011) cierto obstáculo 

didáctico asociado a la propensión de los alumnos a utilizar las relaciones que conocen 

del movimiento uniforme y que han trabajado durante su instrucción anterior con cierta 

frecuencia. De este modo, se ha optado por introducir primero, dentro de este campo, 

problemas acerca del llenado de depósitos. 

En el primer problema que se ha utilizado como razón de ser se propone una 

situación en la que se necesita calcular el área bajo una parábola (tabla 6). Se tratará de 

que los alumnos propongan algún método para obtener una aproximación de dicha 

magnitud. El ejercicio continúa con la secuencia de preguntas cuyo objetivo es hacer 

emerger los principales elementos que configuran la definición de la integral de Riemann. 

Dicha actividad posterior, se detalla en la sección dedicada a la praxeología de la 

propuesta. 
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P-RS1. En algunos edificios singulares se pueden encontrar elementos constructivos, tales 
como cubiertas o paños de fachada, con formas especiales. En concreto, este ejercicio se centra 
en fachadas con forma de parábola. En la puedes ver algunos ejemplos.  

 
Fig. Ejemplos de edificios con fachadas con forma parabólica. a) Palacio Güell (A. Gaudí, Barcelona), 
b) Edificio Berliner-Bogen (A. Maul, M. Horn / BRT Architekten, Hamburgo). c) Centro de Barcos de  
Madera (Architects Lahdelma and Mahlamaki, Kotka, Finlandia) 

Una de las medidas que desde el punto de vista práctico interesa conocer es el área de estos 
elementos. Con ella se pueden relacionar muchos aspectos que afectan al proceso de diseño y 
construcción (cantidad de material que se necesita, peso del elemento, fuerza que ejerce el 
viento sobre el mismo). 

i) ¿Recuerdas alguna fórmula que permita hallar el área de estas figuras del plano? En el caso 
contrario, idea un procedimiento que, al menos, permita realizar una evaluación aproximada 
del área. Puedes aplicarlo al caso concreto en el que la altura de la fachada es 20 m y su anchura 
máxima es de 60 m. 

Tabla 6. Problema-razón de ser relacionado con el cálculo de superficies de figuras planas. 

El segundo problema planteado como razón de ser (tabla 7), pretende que los 

alumnos realicen, a través del análisis de una situación de variación en el tiempo, unas 

primeras indagaciones acerca del carácter inverso de la derivación e integración. Para 

evocar las ideas de tasa media en instantánea de cambio, así como la de acumulación, se 

ha optado por la selección de un sistema físico sencillo, como lo es un depósito que se 

llena a diferentes ritmos. 
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P-RS2.A. El recipiente del problema CP-1.10 se encuentra inicialmente vacío. ¿Cuál será la 
evolución temporal del volumen contenido si se llena de las siguientes formas? Represéntalo 
en forma de función. ¿En qué momento rebosará? 

i) Con un caudal fijo 𝑞𝑞 = 1
5
𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

ii) Con un caudal variable (𝑞𝑞(𝑡𝑡), expresado el litros por minuto) con el tiempo expresado en 
minutos, cuya evolución describe la siguiente función: 

 𝑞𝑞(𝑡𝑡) = �
1
5
−

𝑡𝑡
20

               𝑡𝑡 < 4 𝑚𝑚𝑚𝑚𝑚𝑚
0                            𝑡𝑡 ≥ 4𝑚𝑚𝑚𝑚𝑚𝑚        

 

iii) Con el caudal presenta una evolución periódica que se repite cada 3 minutos 

 
iv) Con el caudal cuya evolución temporal describe la siguiente función: 

 𝑞𝑞(𝑡𝑡) = 1+𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋·𝑡𝑡)
8

 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

B. En una nueva situación se desconoce el caudal que entra pero, ya que se dispone de 
cronómetro y el recipiente está graduado, se puede medir la evolución temporal del  volumen 
de líquido. En este caso, la evolución del volumen de líquido con el tiempo se corresponde con 
la siguiente función 𝑉𝑉(𝑡𝑡). 

𝑉𝑉(𝑡𝑡) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑡𝑡2

10
        0 ≤ 𝑡𝑡 < 2

2
5

        2 ≤ 𝑡𝑡 < 4

2
5

+
(𝑡𝑡 − 4)2

10
        4 ≤ 𝑡𝑡 < 6

4
5

        6 ≤ 𝑡𝑡

 

 

i) ¿Cuál es el caudal promedio de líquido que entra entre los instantes 𝑡𝑡 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 y 𝑡𝑡 = 2 𝑚𝑚𝑚𝑚𝑚𝑚? 
¿Y entre 𝑡𝑡 = 6 𝑚𝑚𝑚𝑚𝑚𝑚 y 𝑡𝑡 = 8 𝑚𝑚𝑚𝑚𝑚𝑚? 

ii) A partir del procedimiento de cálculo que has utilizado en el apartado anterior, ¿puedes 
realizar una aproximación al caudal que entra en el instante 𝑡𝑡 = 1 𝑚𝑚𝑚𝑚𝑚𝑚? ¿Cuán precisa puede 
llegar a ser? ¿Es posible, entonces, calcular el valor exacto? ¿Ocurre lo mismo en instante 𝑡𝑡 =
2 𝑚𝑚𝑚𝑚𝑚𝑚? Completa la siguiente tabla y representa los valores de la derivada calculados. 
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𝑡𝑡  𝑞𝑞(𝑡𝑡) 

0  

a         0 ≤ 𝑎𝑎 < 2  

2  

a        2 ≤ 𝑎𝑎 < 4  

4  

a        4 ≤ 𝑎𝑎 < 6  

iii) Compara el procedimiento de cálculo que has utilizado en el apartado anterior para evaluar 
el valor exacto del caudal con el empleado en la primera parte del problema. ¿Qué caracteriza 
a los puntos en los que no se puede calcular el caudal instantáneo? 

iv) Aprovecha el resultado anterior para calcular la evolución del volumen en el caso A.iv). 

Tabla 7. Problema-razón de ser relacionado con el análisis del resultado de procesos de cambio. 

D.3 Metodología de implementación en el aula 

La metodología de implementación en el aula persigue el objetivo de que a través 

de los ejercicios o problemas que se plantean surjan los elementos que componen los 

contenidos de la unidad. En general, los ejercicios están formulados de manera que 

puedan realizar la función de guía que encauce las reflexiones de los alumnos hacia dichos 

conceptos.  

Se propone la realización de los problemas o ejercicios planteados para las 

distintas sesiones3 en grupos o parejas. Las primeras actividades, destinadas al estudio 

del proceso de convergencia de las sumas superiores e inferiores en la integral definida, 

se apoyarán en el uso de la herramienta informática Geogebra. 

 

                                                                    
3 En la tabla 24, de la sección E.3, donde se recoge la planificación de las sesiones, se las actividades de 
este tipo. 
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E. Praxeología: campos de problemas, técnicas y tecnologías 

En esta sección se realiza la exposición de los elementos que caracterizan la 

praxeología de la propuesta didáctica. Se ha optado por respetar el orden de presentación 

de dichos contenidos en la secuencia didáctica. De esta forma, las técnicas y tecnologías 

se articulan en torno a los campos de problemas con los que se proponen. Con el objetivo 

de clarificar estos aspectos, que al ser presentados dentro de un discurso didáctico han 

podido dispersarse, en la tabla 24 del final de esta sección se reúnen y resumen los 

principales aspectos de la secuencia didáctica. 

E.1 Primer campo de problemas: cálculo de áreas y volúmenes 

El primer campo de problemas está relacionado con la aplicación de la integral 

para el cálculo de magnitudes estáticas. Se parte del problema del cálculo del área de 

regiones encerradas por curvas y, posteriormente, se amplían las situaciones a otras que 

se pueden englobar dentro de este campo: cálculo de volúmenes y, dentro de las 

aplicaciones del ámbito científico, el cálculo de fuerzas resultantes de la presión 

hidrostática. 

No se ha incluido la aplicación del cálculo de longitudes de curvas, en cuya 

justificación podrían invertirse más tiempo del disponible. Asimismo, dentro de las 

aplicaciones de la integral en el ámbito científico, se ha evitado utilizar problemas que 

hagan referencia a magnitudes físicas sobre los cuales los alumnos puedan carecer de 

intuiciones arraigadas. Así, el problema del cálculo de centro de gravedad, que implica la 

comprensión de la noción de momento estático no se incluirá en el bloque de problemas 

principales. 

La primera actividad, dentro de este campo de problemas, parte de la primera 

razón de ser presentada en la sección anterior. En ella se recurrirá al uso de herramientas 

informáticas. El principal objetivo es que a través del programa Geogebra puedan 

visualizar las sumas superiores, inferiores y el proceso de convergencia hasta el área. El 

enunciado de la actividad se recoge en la tabla 8. 
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P-RS.1-CP.1.1.a4 

En algunos edificios singulares se pueden encontrar elementos constructivos, tales como 
cubiertas o paños de fachada, con formas especiales. En concreto, este ejercicio se centra en 
fachadas con forma de parábola.  

i) Idea un procedimiento que permita realizar una evaluación aproximada del área. Puedes 
aplicarlo al caso concreto en el que la altura de la fachada es 20 m y su anchura máxima es de 
60 m. 

ii) ¿Puedes de alguna forma cuantificar la calidad de tu aproximación? Una manera de obtener 
información acerca de la aproximación asociada a cada partición es conseguir acotar el 
resultado que se busca. Propón un procedimiento que permita evaluar este aspecto. 

En Geogebra puedes visualizar el resultado de las sumas superiores e inferiores. Contesta a las 
siguientes cuestiones: 

i) ¿Qué ocurre con las sumas superiores e inferiores cuando se añaden puntos a una partición? 
¿Puedes dar un razonamiento? 

ii) ¿Qué relación encuentras entre la suma superior y la suma inferior asociada a dos particiones 
cualesquiera? ¿Qué relación existe con el área que se pretende calcular? 

Tabla 8. Primera parte del problema CP-1.1. 

Se procurará que los alumnos aborden el problema usando las herramientas 

analíticas que conocen (ecuación de la parábola, representación gráfica). Dentro de este 

entorno, la cuestión tiene por objetivo que surja la idea de obtener una estimación del área 

de la parábola a partir de la división de la región en un cierto número de partes cuya área 

se puede aproximar mejor a la de elementos ya conocidos. Asimismo, se les indicará que, 

ya que se va a trabajar con ordenador, es deseable que el método de obtener una 

aproximación se pueda sistematizar de tal manera que se puedan obtener aproximaciones 

tan precisas como se requiera. En este sentido, si los alumnos poseen cierta destreza en el 

uso de hojas de cálculo, se puede proponer que implementen el procedimiento con el 

objetivo de obtener un valor numérico de la estimación. Aunque ésta es una situación 

interesante, pues acerca a los alumnos al contexto de la integración numérica, no se 

considera prioritaria, de modo que no se invertirá mucho tiempo en esta parte de la 

actividad. 

Así, en torno a la problemática que plantea la cuestión (i) del problema (tabla 8) 

puede surgir la estrategia de dividir la región de tal manera que se pueda obtener una 

                                                                    
4 Se ha utilizado la siguiente nomenclatura para ordenar los problemas o ejercicios. Se particulariza la 
aclaración para el ejemplo al que hace referencia: 
P-RS1-CP.1.1.a: Problema, primero dentro de la categoría “razón de ser” (RS) y ordenado como 1.a dentro 
del conjunto global correspondiente al primer campo de problemas (CP.1). 
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aproximación sencilla de cada región. Una vez que se haya generalizado la idea, se puede 

institucionalizar el concepto de partición (tabla 8). Seguidamente, se introducen las sumas 

superiores e inferiores justificadas, en primera instancia, como una estrategia para poder 

estimar la calidad de la aproximación (cuestión ii, tabla 8). Su función dentro del discurso 

deductivo-formal, se trata de aclarar con la respuesta a las preguntas (i) y (ii) de la segunda 

parte del problema (tabla 10). 

Las tablas en las que se refleja la institucionalización de los contenidos están 

enunciadas en un lenguaje formal que en clase deberá ser adaptado hasta que resulte 

asequible para los alumnos. En esta primera actividad, se puede utilizar una definición 

preliminar de las sumas superiores e inferiores a partir de los valores máximos y mínimos 

de la función. Más adelante, a través de algunos ejemplos de funciones discontinuas se 

puede justificar la necesidad de recurrir a las cotas superiores mínimas e inferiores 

máximas. 

Definición 1. Partición  

Dado el intervalo [𝑎𝑎, 𝑏𝑏] (siendo 𝑎𝑎 < 𝑏𝑏) se denomina partición (𝑃𝑃) a toda colección finita de 
puntos de los cuales uno es 𝑎𝑎 y otro es 𝑏𝑏. 

Así, dicha colección de puntos se puede expresar de la siguiente forma 

𝑃𝑃 = {𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥𝑛𝑛} 

De tal manera que los puntos 𝑥𝑥𝑖𝑖satisfagan las siguientes relaciones: 

𝑎𝑎 = 𝑥𝑥0 < 𝑥𝑥1 … 𝑥𝑥𝑛𝑛−1 < 𝑥𝑥𝑛𝑛 = 𝑏𝑏 

Definición 2. Sumas superiores e inferiores 

Supongamos que la función 𝑓𝑓 está acotada en el intervalo [𝑎𝑎, 𝑏𝑏] y 𝑃𝑃 = {𝑥𝑥0, … , 𝑥𝑥𝑛𝑛} es una 
partición de dicho intervalo. Se definen 𝑚𝑚𝑖𝑖 y 𝑀𝑀𝑖𝑖, respectivamente, como la máxima cota 
inferior (ínfimo) y la mínima cota superior (supremo) de la función f en cada subintervalo 
[𝑥𝑥𝑖𝑖−1,𝑥𝑥𝑖𝑖] asociado a la partición 𝑃𝑃. O, expresado de otra manera: 

𝑚𝑚𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}  

𝑀𝑀𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}  

La suma inferior de f para P de la siguiente forma 

𝐿𝐿(𝑃𝑃,𝑓𝑓) = �𝑚𝑚𝑖𝑖 · ( 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

 

Análogamente, la suma superior se define: 

𝑈𝑈(𝑃𝑃,𝑓𝑓) = �𝑀𝑀𝑖𝑖 · ( 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

 

Tabla 9. Institucionalizaciones asociadas a la primera parte del problema CP-1 (P-RS1-CP.1.a). 
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En la segunda parte del problema (tabla 10) tiene como propósito que los alumnos 

extraigan conclusiones acerca de las propiedades de las particiones que articulan permiten 

articular el discurso formal que caracteriza la integral definida. 

𝑀𝑀 · (𝑏𝑏 − 𝑎𝑎) ≥ 𝑈𝑈(𝑃𝑃,𝑓𝑓) ≥ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) ≥ Á𝑟𝑟𝑟𝑟𝑟𝑟 ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) ≥ 𝐿𝐿(𝑃𝑃,𝑓𝑓) ≥ 𝑚𝑚 · (𝑏𝑏 − 𝑎𝑎) 

(1) 

En la tabla 11 se recoge la institucionalización de estas propiedades. Se tratará de 

que los alumnos razonen acerca de la justificación de estas propiedades. 

CP.1.1.b 

En Geogebra puedes visualizar el resultado de las sumas superiores e inferiores. Contesta a las 
siguientes cuestiones: 

i) ¿Qué ocurre con las sumas superiores e inferiores cuando se añaden puntos a una partición? 
¿Puedes dar un razonamiento? 

ii) ¿Qué relación encuentras entre la suma superior y la suma inferior asociada a dos particiones 
cualesquiera? ¿Qué relación existe con el área que se pretende calcular? 

Como has observado, el comando “sumasuperior” de Geogebra calcula dicha suma asociada a 
una partición cuyos intervalos poseen una extensión uniforme. Dentro de este tipo de 
particiones, vamos a ocuparnos únicamente de las que se obtienen dividiendo en dos cada 
intervalo de la partición anterior (n=2p, p=0,1,2,..). 

𝑃𝑃0 = {0,𝑎𝑎} 

𝑃𝑃1 = �0,
𝑎𝑎
2

,𝑎𝑎� 

𝑃𝑃2 = �0,
𝑎𝑎
4

,
𝑎𝑎
2

,
3 · 𝑎𝑎

4
,𝑎𝑎� 

𝑃𝑃𝑝𝑝 = �0,
𝑎𝑎

2𝑝𝑝
,
2 · 𝑎𝑎
2𝑝𝑝

, … ,
𝑖𝑖 · 𝑎𝑎
2𝑝𝑝

 , … ,
(2𝑛𝑛 − 1) · 𝑎𝑎

2𝑝𝑝
,𝑎𝑎� 

i) A partir de qué partición la diferencia entre las sumas superior e inferior es menor que 10m2.  

ii) ¿Cuántas se necesitan para alcanzar un intervalo que acota el área que se desea calcular 
menor a 1cm2? ¿y para 1mm2? Completa la siguiente tabla en la que se relaciona la precisión 
del cálculo, expresada como diferencia entre la suma superior menos la inferior y el número de 
intervalos necesarios. 

Precisión  Primera 
partición5 

Número 
de nodos 

L(Pi,f) [m2] U(Pi,f) [m2] ε [m2] Error 
relativo [%] 

10m2       
1m2       
1dm2       
1cm2       
1mm2       

 

                                                                    
5 Dentro de la familia de particiones propuesta, aquella que tienen un menor número de nodos y satisface 
la condición de precisión solicitada en la primera columna. 
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Nota: puede ayudarte a completar la tabla una expresión que relacione la diferencia entre las 
sumas con el número de intervalos de la partición. 

(Ayuda: ∑ 𝑛𝑛2𝑛𝑛
𝑖𝑖=1 = 𝑛𝑛3

3
+ 𝑛𝑛2

2
+ 𝑛𝑛

6
) 

iii) ¿En algún momento se tiene que 𝑈𝑈(𝑃𝑃,𝑓𝑓) = 𝐿𝐿(𝑃𝑃,𝑓𝑓)? ¿Cuál es el menor número que acota 
superiormente a 𝑈𝑈(𝑃𝑃,𝑓𝑓)? ¿Y el mayor que acota inferiormente a 𝐿𝐿(𝑃𝑃,𝑓𝑓)? ¿Cómo se relacionan 
ambos con el área que se desea calcular? 

iv) Finalmente, como resultado del desarrollo anterior, proporciona una fórmula general que 
permita calcular de forma exacta el área de estos elementos. 

v) El edificio A con la fachada parabólica que has analizado, que está orientada hacia norte, se 
encuentra en la plaza cuyo plano se muestra en la figura. El edificio B es una torre mucho más 
alta que la construcción A. Exactamente en el mediodía –solar– en verano el edificio A proyecta 
una sombra cuya longitud máxima es un tercio de la altura máxima de la fachada. En el mismo 
momento del día, en invierno, la longitud máxima de esta proyección sobre el suelo es tres 
veces la altura del edificio.  Calcula el área de todas las regiones sombreadas en ambas 
situaciones. 

 
vi) (Opcional) ¿Cuál sería el área sombreada a la misma hora del día en verano si la fachada 
parabólica del edificio A estuviera orientada al Noroeste? 

Tabla 10. Segunda parte del problema CP-1. 

Teorema 1. Sean dos particiones 𝑃𝑃 y 𝑄𝑄, tales que 𝑃𝑃 ⊆ 𝑄𝑄 –la partición 𝑄𝑄, al menos, contiene 
todos los puntos de la partición 𝑃𝑃– entonces 

𝑈𝑈(𝑃𝑃,𝑓𝑓) ≥ 𝑈𝑈(𝑄𝑄,𝑓𝑓) 

𝐿𝐿(𝑃𝑃,𝑓𝑓) ≤ 𝐿𝐿(𝑄𝑄,𝑓𝑓) 
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Demostración. Es suficiente con analizar el caso concreto en el que Q contiene todos dos 
elementos de P más uno, por ejemplo: 𝑄𝑄 = {𝑡𝑡0, … , 𝑡𝑡𝑖𝑖−1, 𝑡𝑡′𝑖𝑖, 𝑡𝑡𝑖𝑖, … , 𝑡𝑡𝑛𝑛}, entonces la resta  

𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝑈𝑈(𝑄𝑄, 𝑓𝑓) = (𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) · 𝑀𝑀𝑖𝑖 − (𝑡𝑡𝑖𝑖 − 𝑡𝑡′𝑖𝑖) · 𝑀𝑀′
𝑖𝑖 − (𝑡𝑡′𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) · 𝑀𝑀′

𝑖𝑖−1

= (𝑡𝑡𝑖𝑖 − 𝑡𝑡′𝑖𝑖) · (𝑀𝑀𝑖𝑖 −𝑀𝑀′
𝑖𝑖) + (𝑡𝑡′𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) · (𝑀𝑀𝑖𝑖 −𝑀𝑀′

𝑖𝑖−1) 

Como se tiene que 𝑀𝑀′𝑖𝑖 ≤ 𝑀𝑀𝑖𝑖 y 𝑀𝑀′𝑖𝑖−1 ≤ 𝑀𝑀𝑖𝑖 entonces 𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝑈𝑈(𝑄𝑄,𝑓𝑓) ≥ 0, luego 𝑈𝑈(𝑃𝑃,𝑓𝑓) ≥
𝑈𝑈(𝑄𝑄,𝑓𝑓). A partir de este resultado, se puede generalizar para cualquier partición Q que 
contenga P. 

 

Teorema 2. Sean P1 y P2 dos particiones del intervalo [𝑎𝑎, 𝑏𝑏] entonces 

𝑈𝑈(𝑃𝑃1,𝑓𝑓) ≥ 𝐿𝐿(𝑃𝑃2,𝑓𝑓) 

Demostración. Se puede tomar otra nueva partición 𝑃𝑃∗ que contenga los puntos de las dos 
anteriores (𝑃𝑃1 y 𝑃𝑃2).  

𝑃𝑃∗ = 𝑃𝑃1⋃ 𝑃𝑃2 

En ese caso se tiene que (teorema 1): 

𝑈𝑈(𝑃𝑃1,𝑓𝑓) ≥ 𝑈𝑈(𝑃𝑃∗,𝑓𝑓) 

Y que:  

𝐿𝐿(𝑃𝑃1,𝑓𝑓) ≤ 𝐿𝐿(𝑃𝑃∗,𝑓𝑓) 

Tal y como se ha definido 𝑈𝑈(𝑃𝑃,𝑓𝑓) y 𝐿𝐿(𝑃𝑃,𝑓𝑓) se tiene necesariamente que 𝐿𝐿(𝑃𝑃∗,𝑓𝑓) ≤ 𝑈𝑈(𝑃𝑃∗,𝑓𝑓), 
de modo que si se aplican las relaciones anteriores se obtiene que: 

𝑈𝑈(𝑃𝑃1,𝑓𝑓) ≥ 𝑈𝑈(𝑃𝑃∗,𝑓𝑓) ≥ 𝐿𝐿(𝑃𝑃∗,𝑓𝑓) ≥ 𝐿𝐿(𝑃𝑃2,𝑓𝑓) 

Si se utilizan el resultado del teorema anterior y además se definen (para f acotada en [a,b]) 

𝑀𝑀 = 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥): 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏} 

𝑚𝑚 = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥): 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏} 

Se puede obtener la siguiente relación: 

𝑀𝑀 · (𝑏𝑏 − 𝑎𝑎) ≥ 𝑈𝑈(𝑃𝑃,𝑓𝑓) ≥ 𝐿𝐿(𝑄𝑄,𝑓𝑓) ≥ 𝑚𝑚 · (𝑏𝑏 − 𝑎𝑎) 

 

Para cualquier partición 𝑃𝑃 y 𝑄𝑄 de [𝑎𝑎, 𝑏𝑏]. De esta forma, se concluye que 𝑈𝑈(𝑃𝑃,𝑓𝑓) y 𝐿𝐿(𝑃𝑃,𝑓𝑓) 
están acotados. El teorema 1 muestra cómo es posible reducir y aumentar el valor, 
respectivamente, de la suma superior y de la suma inferior a través de un refinamiento de la 
partición. El interés, se centra, por tanto, en el ínfimo y supremo de sendos conjuntos de valores 
-𝑈𝑈(𝑃𝑃,𝑓𝑓) y 𝐿𝐿(𝑃𝑃,𝑓𝑓)-. En principio, para una función 𝑓𝑓 definida y acotada en el intervalo [𝑎𝑎, 𝑏𝑏] 
sólo se puede asegurar la siguiente relación: 

𝑀𝑀 · (𝑏𝑏 − 𝑎𝑎) ≥ 𝑈𝑈(𝑃𝑃,𝑓𝑓) ≥ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝑃𝑃,𝑓𝑓) ≥ 𝐿𝐿(𝑃𝑃,𝑓𝑓) ≥ 𝑚𝑚 · (𝑏𝑏 − 𝑎𝑎) 
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Definición 3. Sea 𝑓𝑓 una función definida y acotada en [𝑎𝑎, 𝑏𝑏] y 𝑃𝑃 cualquier partición del 
intervalo. Se dice que la función en Riemann-integrable si se cumple la siguiente relación: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) 

A este valor se denomina integral definida de 𝑓𝑓 en [𝑎𝑎, 𝑏𝑏] y se representa de la siguiente forma. 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) 

En el caso de que 𝑓𝑓(𝑥𝑥) ≥ 0 en el intervalo [𝑎𝑎, 𝑏𝑏] el valor de la integral coincide con el área de 
la región comprendida entre las rectas 𝑥𝑥 = 𝑎𝑎, 𝑥𝑥 = 𝑏𝑏, la función 𝑓𝑓(𝑥𝑥) y el eje de abscisas. 

 

Criterio de integrabilidad de Riemann 

Teorema 3. Una función es Riemann integrable en [𝑎𝑎, 𝑏𝑏] si y sólo si se cumple que para todo 
𝜀𝜀 > 0 existe una partición 𝑃𝑃 del intervalo tal que  

𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝐿𝐿(𝑃𝑃,𝑓𝑓) < 𝜀𝜀 

(2) 

Demostración. Si se cumple (2) se tiene que 𝑖𝑖𝑖𝑖𝑖𝑖[𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝐿𝐿(𝑃𝑃,𝑓𝑓)] = 0, lo cual implica que: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓)− 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) ≤ 𝑖𝑖𝑖𝑖𝑖𝑖[𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝐿𝐿(𝑃𝑃,𝑓𝑓)] = 0 

Y por tanto, dado que 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) (teorema 1), se tiene que 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) =
𝑠𝑠𝑢𝑢𝑝𝑝𝑝𝑝(𝑃𝑃,𝑓𝑓), que es precisamente la forma en que se define la integral definida. 

Por otra parte, si 𝑓𝑓 es integrable en [𝑎𝑎, 𝑏𝑏] es posible encontrar 𝑃𝑃1 y 𝑃𝑃2 que cumplan  

𝑈𝑈(𝑃𝑃1,𝑓𝑓) −� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
<
𝜀𝜀
2

 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
− 𝐿𝐿(𝑃𝑃2,𝑓𝑓) <

𝜀𝜀
2

 

Para todo 𝜀𝜀 > 0. Si ahora se toma la partición 𝑃𝑃 que contiene los puntos de 𝑃𝑃1 y 𝑃𝑃1 (𝑃𝑃 = 𝑃𝑃1 ∪
𝑃𝑃2) se tiene que 

𝑈𝑈(𝑃𝑃,𝑓𝑓) −� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
≤ 𝑈𝑈(𝑃𝑃1,𝑓𝑓) −� 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑎𝑎
<
𝜀𝜀
2

 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
− 𝐿𝐿(𝑃𝑃2,𝑓𝑓) ≤ � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑎𝑎
− 𝐿𝐿(𝑃𝑃2,𝑓𝑓) <

𝜀𝜀
2

 

Luego  

𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝐿𝐿(𝑃𝑃,𝑓𝑓) < 𝜀𝜀 

Se verifica, entonces la condición (2). 

Tabla 11. Institucionalización asociada al desarrollo de la segunda parte del problema CP-1 (CP-

1.b, tabla 10). 

Una vez institucionalizadas las sumas superiores e inferiores, se pide que los 

alumnos realicen averiguaciones acerca del proceso de convergencia. Mediante el 

programa Geogebra podrán realizar ciertas manipulaciones mediante las que se aprecia 
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el efecto del refinamiento en las particiones en las sumas correspondientes. Sin embargo, 

para evitar que la resolución de la tabla del apartado (ii) se resuelva mediante el método 

de prueba y error, se propone que los alumnos hagan uso de las sucesiones para obtener 

una expresión algebraica general que facilite el proceso. 

La cuestión (iii) tiene por objetivo que los alumnos apliquen el concepto de límite 

a las sucesiones de sumas superiores e inferiores asociadas a la familia propuesta de 

particiones. Dado que ambos límites coinciden, si se tiene en cuenta las relaciones 

definidas en la expresión (1), necesariamente, el valor exacto área de la región debe ser 

igual al de dichos límites. Éstos son, respectivamente, la cota superior mínima e inferior 

mínima de las correspondientes sumas. Es en este momento cuando se institucionaliza la 

definición de integral definida (definición 3, tabla 11). 

En el contexto de la pregunta (iv), que tiene un carácter generalizador, se puede 

aprovechar para reflexionar sobre algunas propiedades de la integral definida relevantes 

que pueden resultar útiles para la resolución de ejercicios. En primer lugar, se puede el 

hecho de haber optado por el cálculo de la aproximación en una de las mitades de la 

parábola, es interesante comprobar su validez para la integral definida. Por otro lado, en 

la resolución del ejercicio a partir del uso de sucesiones se ha podido intuir la propiedad 

de linealidad de las sumas superiores e inferiores, de modo que se puede cuestionar si 

dicha propiedad también se verifica en la integral definida. En una línea similar, en la 

pregunta (v) pueden surgir las propiedades de la integral que se institucionalizan en la 

tabla 12 (teoremas 4, 5 y 6). 

Propiedades de la integral definida 

Teorema 4. Si la función 𝑓𝑓(𝑥𝑥) es integrable en [𝑎𝑎, 𝑏𝑏] y sea c un número real perteneciente al 
intervalo (𝑎𝑎, 𝑏𝑏), entonces 𝑓𝑓(𝑥𝑥) es integrable en [𝑎𝑎, 𝑐𝑐] y en [𝑐𝑐, 𝑏𝑏]. De forma recíproca, si 𝑓𝑓(𝑥𝑥) 
es integrable en [𝑎𝑎, 𝑐𝑐] y en [𝑐𝑐, 𝑏𝑏] entonces es integrable en [𝑎𝑎, 𝑏𝑏]. Además se cumple la siguiente 
igualdad: 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑐𝑐

𝑎𝑎
+ � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑐𝑐
 

 

Demostración: Si 𝑓𝑓(𝑥𝑥) es integrable en [𝑎𝑎, 𝑏𝑏] es posible encontrar una partición P que, 
conteniendo a c, haga cumplir: 

𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝐿𝐿(𝑃𝑃,𝑓𝑓) < 𝜀𝜀 

A su vez, con los elementos de 𝑃𝑃 se pueden construir dos particiones 𝑃𝑃’ y 𝑃𝑃’’ de los intervalos 
[𝑎𝑎, 𝑐𝑐] y [𝑐𝑐, 𝑏𝑏] respectivamente, entonces: 
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𝑈𝑈(𝑃𝑃,𝑓𝑓) = 𝑈𝑈(𝑃𝑃’,𝑓𝑓) + 𝑈𝑈(𝑃𝑃’’,𝑓𝑓) 

𝐿𝐿(𝑃𝑃,𝑓𝑓) = 𝐿𝐿(𝑃𝑃’,𝑓𝑓) + 𝐿𝐿(𝑃𝑃’’,𝑓𝑓) 

Entonces 

𝑈𝑈(𝑃𝑃,𝑓𝑓)− 𝐿𝐿(𝑃𝑃,𝑓𝑓) = [𝑈𝑈(𝑃𝑃’,𝑓𝑓)− 𝐿𝐿(𝑃𝑃’,𝑓𝑓)] + [𝑈𝑈(𝑃𝑃’’,𝑓𝑓)− 𝐿𝐿(𝑃𝑃’’,𝑓𝑓)] < 𝜀𝜀 

Dado que, según el teorema 2, el valor de las expresiones entre corchetes son mayores o iguales 
a cero, se tiene, a partir de la condición de integrabilidad del teorema 4, que 𝑓𝑓(𝑥𝑥) es integrable 
en [𝑎𝑎, 𝑐𝑐] y en [𝑐𝑐, 𝑏𝑏]. A partir de esta relación se puede probar la afirmación recíproca. 

Por otro lado, para cualesquiera particiones 𝑃𝑃’ y 𝑃𝑃’’ se tiene que: 

𝐿𝐿(𝑃𝑃’,𝑓𝑓) ≤ � 𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐

𝑎𝑎
≤ 𝑈𝑈(𝑃𝑃’,𝑓𝑓) 

𝐿𝐿(𝑃𝑃’’, 𝑓𝑓) ≤ � 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑐𝑐
≤ 𝑈𝑈(𝑃𝑃’’,𝑓𝑓) 

Y, por tanto: 

𝐿𝐿(𝑃𝑃,𝑓𝑓) ≤ � 𝑓𝑓𝑓𝑓𝑓𝑓
𝑐𝑐

𝑎𝑎
+ � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑐𝑐
≤ 𝑈𝑈(𝑃𝑃’, 𝑓𝑓) 

Como esta relación se cumple para cualquier partición, se tiene que: 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑐𝑐

𝑎𝑎
+ � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑐𝑐
 

En este punto, se completa la definición de integral definida con los siguientes casos, que no 
se había contemplado en la presentación anterior: 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= −� 𝑓𝑓𝑓𝑓𝑓𝑓

𝑎𝑎

𝑏𝑏
 

� 𝑓𝑓𝑓𝑓𝑓𝑓
𝑎𝑎

𝑎𝑎
= 0 

Teorema 5. Si las funciones 𝑓𝑓(𝑥𝑥) y 𝑔𝑔(𝑥𝑥) son integrables en [𝑎𝑎, 𝑏𝑏], entonces la función 𝑓𝑓(𝑥𝑥) +
 𝑔𝑔(𝑥𝑥) es integrable en [𝑎𝑎, 𝑏𝑏] y se cumple que: 

� (𝑓𝑓 + 𝑔𝑔)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
= � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑎𝑎
+ � 𝑔𝑔𝑔𝑔𝑔𝑔

𝑏𝑏

𝑎𝑎
 

 

Demostración. Si 𝑓𝑓 y 𝑔𝑔 son integrables, por el resultado del  teorema 4, se pueden tomar sendas 
particiones 𝑃𝑃1 y  𝑃𝑃2 que hagan cumplir las siguientes relaciones: 

𝑈𝑈(𝑃𝑃1,𝑓𝑓)− 𝐿𝐿(𝑃𝑃1,𝑓𝑓) <
𝜀𝜀
2

 

𝑈𝑈(𝑃𝑃2,𝑔𝑔) − 𝐿𝐿(𝑃𝑃2,𝑔𝑔) <
𝜀𝜀
2

 

Para cualquier 𝜀𝜀 > 0 (tan pequeño como se requiera). 

Ambas condiciones se cumplen si se toma la partición 𝑃𝑃∗ = 𝑃𝑃1⋃ 𝑃𝑃2, como prueba el teorema 
1. 
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Por otra parte, dadas las definiciones de las sumas superiores e inferiores, se tienen las 
siguientes desigualdades: 

𝐿𝐿(𝑃𝑃,𝑓𝑓 + 𝑔𝑔) ≥ 𝐿𝐿(𝑃𝑃,𝑓𝑓) + 𝐿𝐿(𝑃𝑃,𝑔𝑔) 

𝑈𝑈(𝑃𝑃,𝑓𝑓 + 𝑔𝑔) ≤ 𝑈𝑈(𝑃𝑃,𝑓𝑓) + 𝑈𝑈(𝑃𝑃,𝑔𝑔) 

De modo, que se satisface la siguiente desigualdad 

𝑈𝑈(𝑃𝑃∗,𝑓𝑓 + 𝑔𝑔) − 𝐿𝐿(𝑃𝑃∗,𝑓𝑓 + 𝑔𝑔) < 𝜀𝜀 

que demuestra que 𝑓𝑓 + 𝑔𝑔 es integrable. 

Por otra parte se cumple que 

𝑈𝑈(𝑃𝑃∗,𝑓𝑓 + 𝑔𝑔) ≥  𝑈𝑈(𝑃𝑃∗,𝑓𝑓) + 𝑈𝑈(𝑃𝑃∗,𝑔𝑔) ≥ � (𝑓𝑓 + 𝑔𝑔)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
≥  𝐿𝐿(𝑃𝑃∗,𝑓𝑓) + 𝐿𝐿(𝑃𝑃∗,𝑔𝑔) ≥ 𝐿𝐿(𝑃𝑃∗,𝑓𝑓 + 𝑔𝑔) 

y que 

𝑈𝑈(𝑃𝑃∗,𝑓𝑓) + 𝑈𝑈(𝑃𝑃∗,𝑔𝑔) ≥ � 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
+ � 𝑔𝑔𝑔𝑔𝑔𝑔

𝑏𝑏

𝑎𝑎
≥  𝐿𝐿(𝑃𝑃∗,𝑓𝑓) + 𝐿𝐿(𝑃𝑃∗,𝑔𝑔) 

Como las relaciones se tienen que cumplir para cualquier valor de 𝜀𝜀 > 0, tan pequeño como se 
requiera, se tiene que: 

� (𝑓𝑓 + 𝑔𝑔)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
= � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑎𝑎
+ � 𝑔𝑔𝑔𝑔𝑔𝑔

𝑏𝑏

𝑎𝑎
 

Teorema 6. Si las función 𝑓𝑓(𝑥𝑥) es integrables en [𝑎𝑎, 𝑏𝑏], entonces la función 𝑐𝑐 · 𝑓𝑓(𝑥𝑥), siendo 𝑐𝑐 
un número real, es integrable en [𝑎𝑎, 𝑏𝑏] y se cumple que: 

� 𝑐𝑐 · 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= 𝑐𝑐 · � 𝑓𝑓𝑓𝑓𝑓𝑓

𝑏𝑏

𝑎𝑎
 

Demostración. Si se analiza el caso 𝑐𝑐 > 0 se tiene que:  

𝑈𝑈(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑐𝑐 · 𝑈𝑈(𝑃𝑃,𝑓𝑓) 

𝐿𝐿(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑐𝑐 · 𝐿𝐿(𝑃𝑃,𝑓𝑓) 

de modo que si 𝑓𝑓 es integrable, y por tanto, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓), la relación análoga se 
debe cumplir para la función 𝑐𝑐 · 𝑓𝑓. 

𝑐𝑐 · 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = � 𝑐𝑐 · 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑐𝑐 · 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) 

En el caso opuesto, cuando 𝑐𝑐 < 0, se tiene que: 

𝐿𝐿(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑐𝑐 · 𝑈𝑈(𝑃𝑃,𝑓𝑓) 

𝑈𝑈(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑐𝑐 · 𝐿𝐿(𝑃𝑃,𝑓𝑓) 

así que, de nuevo, si 𝑓𝑓 es integrable, se cumple: 

𝑐𝑐 · 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑓𝑓) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = � 𝑐𝑐 · 𝑓𝑓𝑓𝑓𝑓𝑓
𝑏𝑏

𝑎𝑎
= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑐𝑐 · 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑓𝑓) 

El caso c=0, es trivial, ya que para cualquier partición se tiene que 𝐿𝐿(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) = 𝑈𝑈(𝑃𝑃, 𝑐𝑐 · 𝑓𝑓) =
0. 

Tabla 12. Institucionalización de las propiedades de la integral. 
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La última cuestión del ejercicio (v) busca que los alumnos apliquen las 

propiedades que se han institucionalizado de la integral definida y que, finalmente, 

extraigan como resultado una expresión para el cálculo de la integral de las funciones que 

han surgido: cuadrática y constante. Asimismo, la descomposición suma de funciones de 

la expresión correspondiente a la curva que delimita la región, permite analizar el caso 

∫ 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝑎𝑎  con 𝑓𝑓(𝑥𝑥) ≤ 0 cuando 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏. A partir de este análisis se puede presentar la 

relación entre el área y la integral definida (tabla 13). 

• Si 𝑓𝑓(𝑥𝑥) ≤ 0 cuando 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, entonces ∫ 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝑎𝑎  es el área encerrada entre la curva 

𝑓𝑓(𝑥𝑥), las rectas 𝑥𝑥 = 𝑎𝑎 y 𝑥𝑥 = 𝑏𝑏 y el eje OX. 

• Si 𝑓𝑓(𝑥𝑥) ≤ 0 cuando 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏, entonces ∫ 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝑎𝑎  es el área encerrada entre la curva 

𝑓𝑓(𝑥𝑥), las rectas 𝑥𝑥 = 𝑎𝑎 y 𝑥𝑥 = 𝑏𝑏 y el eje OX. 

Tabla 13. Institucionalización de la relación entre el área y la integral definida. 

Una vez concluida la actividad relacionada con el problema RS-1/CP-1, se 

proponen los ejercicios que se muestran en la tabla 14. Los ejercicios CP-1.2 y CP-1.3 se 

han diseñado en torno identificación entre área e integral definida. A partir de esta 

relación y de la aplicación de las propiedades de la integral definida pueden los alumnos 

completar las cuestiones que se plantean. Los ejercicios CP-1.4 y CP-1.5 acercan a los 

alumnos a la problemática de la integración numérica. Dentro de la secuencia didáctica, 

el principal objetivo es suscitar de nuevo la reflexión acerca del proceso de convergencia 

al valor de la integral definida. 

CP-1.2. A partir de las técnicas que conoces para el cálculo de áreas de figuras planas y de las 
propiedades de la integral definida, representa las funciones y resuelve las siguientes 
cuestiones: 

i) ∫ 𝑥𝑥20 𝑑𝑑𝑑𝑑 ii)−∫ 𝑥𝑥𝑏𝑏0 𝑑𝑑𝑑𝑑 iii) ∫ |𝑥𝑥|2
−2 𝑑𝑑𝑑𝑑 

iv) ∫ −(3 + 2 · 𝑥𝑥)2
0 𝑑𝑑𝑑𝑑 v) ∫ |3 + 2 · 𝑥𝑥|2

−6 𝑑𝑑𝑑𝑑 vi) ∫ 𝑘𝑘 · 𝑥𝑥𝑏𝑏
𝑎𝑎 𝑑𝑑𝑑𝑑 

vii) ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)2𝜋𝜋
0 𝑑𝑑𝑑𝑑 viii) 2 · ∫ √1 − 𝑥𝑥21

−1 𝑑𝑑𝑑𝑑 ix) ∫ √1 − 𝑥𝑥2√2 2⁄
−1 𝑑𝑑𝑑𝑑 

x) ∫ √𝑅𝑅2 − 𝑥𝑥2𝑏𝑏
−𝑅𝑅 𝑑𝑑𝑑𝑑 𝑏𝑏 ∈ [−𝑅𝑅,𝑅𝑅] xi) 𝑘𝑘 · ∫ √𝑅𝑅2 − 𝑥𝑥2𝑅𝑅

−𝑅𝑅 𝑑𝑑𝑑𝑑 xii) ∫ �𝑥𝑥 − 𝐸𝐸(𝑥𝑥)�𝑎𝑎
0 𝑑𝑑𝑑𝑑6 

A partir de los resultados anteriores ¿Sabrías obtener una fórmula general para calcular el área 
de la elipse? 

                                                                    
6 𝐸𝐸(𝑥𝑥): función parte entera de x. 
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CP-1.3. Calcular el área de las siguientes regiones: 

i) la que encierran la parábola 𝑦𝑦 = 9 − 𝑥𝑥2 y la recta 𝑦𝑦 = 6 − 2𝑥𝑥. 

ii) la que encierran la parábola 𝑦𝑦 = 𝑥𝑥2 − 4 y la recta 𝑦𝑦 = 𝑥𝑥 + 2. 

iii) si ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)𝜋𝜋
0 𝑑𝑑𝑑𝑑 = 2, calcular el área de la región encerrada por la función 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) 

y el eje OX dentro del intervalo [−𝜋𝜋,𝜋𝜋]. 

Si 𝑓𝑓(𝑥𝑥) y 𝑔𝑔(𝑥𝑥) son funciones continuas en  [𝑎𝑎, 𝑏𝑏], tal que 𝑓𝑓(𝑥𝑥) ≥ 𝑔𝑔(𝑥𝑥) ¿qué significado 
geométrico tiene las siguientes integrales definidas? 

• ∫ [ 𝑓𝑓(𝑥𝑥) −  𝑔𝑔(𝑥𝑥)]𝑏𝑏
𝑎𝑎 · 𝑑𝑑𝑑𝑑 

• ∫ |𝑓𝑓(𝑥𝑥)|𝑏𝑏
𝑎𝑎 · 𝑑𝑑𝑑𝑑 

CP-1.4 (Opcional). En ocasiones sólo se calculan valores numéricos aproximados a los 
integrales definidas mediante procedimientos numéricos basados en técnicas similares a la 
utilizada en el problema RS-CP1.1. En estos casos es importante la eficiencia del 
procedimiento numérico, interesa alcanzar un resultado preciso con un número lo más reducido 
posible de cálculos aritméticos. ¿Puedes proponer alguna modificación del procedimiento 
basado en sumas superiores e inferiores que permita acelerar el proceso de convergencia al 
valor exacto de la integral que ejemplifica la tabla que has construido? 

CP-1.5 (Entrega)7. A partir del resultado de la integral CP-1.2.viii, utiliza un procedimiento 
para aproximar el número 𝜋𝜋 con un error menor a 0,01, ¿Cuántas veces necesitas evaluar la 
función 𝑓𝑓(𝑥𝑥) = √1 − 𝑥𝑥2?. i) (opcional) si aplicas el procedimiento que has propuesto en el 
ejercicio anterior, ¿se reduce el número de evaluaciones? Representa en un gráfico la relación 
precisión-número de evaluaciones 

Nota: es conveniente que utilices una herramienta informática Geogebra o una hoja de cálculo 
para resolución. 

Tabla 14. Conjunto de ejercicios relacionados con la utilización de la integral definida para el 

cálculo de áreas. 

Una vez realizada la práctica de los ejercicios CP-1.2 y CP-1.3, se retomará en 

clase la cuestión de la integrabilidad. Hasta ahora, sólo se ha presentado la definición de 

integral definida (Riemann) y  la condición de integrabilidad. En este momento, se puede 

recordar a los alumnos que mientras se ha trabajado con funciones continuas no ha habido 

problemas en el momento de integrar. En estos casos, la identificación área-integral era 

sencilla. No se plantea en esta propuesta la demostración de la integrabilidad para 

funciones continuas ya que requiere del concepto de continuidad uniforme. Así, el 

ejercicio CP-1.6 (tabla 15) propone realizar algunas averiguaciones acerca de la 

integrabilidad de algunas funciones. Como conclusión de este trabajo se enuncian, sin 

demostrar, algunas condiciones suficientes de integrabilidad (tabla 16). 

                                                                    
7 Redondo y Haro (2002) proponen una actividad similar para la aproximación del número 𝜋𝜋. 
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CP-1.6. Conocida la definición formal de integral definida, razonar si las siguientes funciones 
son integrables o no en el intervalo que se indica: 

i) 𝑓𝑓(𝑥𝑥) = �2, 𝑥𝑥 ≤ 0
0,   𝑥𝑥 > 0 ,   [−2,2] ii) 𝑓𝑓(𝑥𝑥) = � 1, 𝑥𝑥 ∈ ℚ

0,    𝑥𝑥 ∉ ℚ ,   [0,1] 

iii) 𝑓𝑓(𝑥𝑥) = �
2, 𝑥𝑥 < 0
0,   𝑥𝑥 = 0
2, 𝑥𝑥 > 0

 ,  [−2,2] 
iv) una función acotada y estrictamente creciente 
en [𝑎𝑎, 𝑏𝑏] 

 

CP-1.7. (Opcional) Sea la función f(x) que se representa gráficamente en la siguiente figura: 

 
Calcular el área de las siguientes regiones: 

i) Calcular el área de la región sombreada. 

ii) ¿Es posible encontrar una partición del dominio de la función que permita reducir la 
diferencia entre las sumas superior e inferior asociadas –𝑈𝑈(𝑃𝑃,𝑓𝑓) y 𝐿𝐿(𝑃𝑃,𝑓𝑓)- hasta un cierto nivel 
𝜀𝜀 dado? En ese caso, trata de proponer una regla para la formación para dicha familia de 
particiones. ¿Qué condiciones debe cumplir? ¿Cuántos elementos se necesitan en P? 

Nota: no es necesario utilizar una partición con intervalos de longitud uniforme. Puedes probar 
con particiones que se adapten a las características específicas de la función. 

iii) A partir de los resultados anteriores ¿se puede concluir algo acerca de la integrabilidad de 
𝑓𝑓(𝑥𝑥) en el intervalo [0,1]? ¿Cuál es el valor de dicha integral? 

Tabla 15. Ejercicios relacionados con la integrabilidad de las funciones. 

• Si 𝑓𝑓(𝑥𝑥) es monótona en [𝑎𝑎, 𝑏𝑏] entonces 𝑓𝑓(𝑥𝑥) es integrable en [𝑎𝑎, 𝑏𝑏]. 

• Si 𝑓𝑓(𝑥𝑥) es continua en [𝑎𝑎, 𝑏𝑏] entonces 𝑓𝑓(𝑥𝑥) es integrable en [𝑎𝑎, 𝑏𝑏]. 

• Si 𝑓𝑓(𝑥𝑥) es acotada y tiene un número finito de discontinuidades en [𝑎𝑎, 𝑏𝑏] 
entonces 𝑓𝑓(𝑥𝑥) es integrable en [𝑎𝑎, 𝑏𝑏] 

Tabla 16. Condiciones suficientes de integrabilidad. 

Los siguientes ejercicios (CP-1.8 y 1.9, tabla 17) tienen el objetivo de ampliar el 

campo de aplicaciones de la integral, dentro del significado general de la cuantificación 

de magnitudes estáticas. En primer lugar, se proponen dos ejercicios relacionados con la 

aplicación de la integral para el cálculo de fuerzas hidrostáticas. Se asume que el alumno 

11/21/41/8
(...)

1/2

1
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está familiarizado con el concepto presión. El problema CP-1.9 sólo se planteará en el 

caso de que los alumnos estén familiarizados con la noción de momento estático y con la 

idea de equilibrio asociada a dicha magnitud. En todo caso, se plantea como ejercicio 

opcional. 

CP-1.8. Un recipiente con forma de prisma de base cuadrada de lado A y altura H contiene 
agua hasta un nivel h (h<H). Se desea conocer la fuerza que ejerce el líquido sobre la basa y 
sobre cada una de las paredes laterales. La presión hidrostática del agua en cada punto 
depende únicamente de la profundidad de dicho punto (𝑧𝑧). 

𝑝𝑝(𝑧𝑧) = 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · 𝑧𝑧 

Donde 𝜌𝜌𝑎𝑎 es la densidad del agua y 𝑔𝑔 la constante de gravitación terrestre. 

i) Representa la función 𝑝𝑝(𝑧𝑧). 

ii) Plantea un procedimiento para aproximar el cálculo de la fuerza resultante. ¿Se puede 
alcanzar el valor exacto. 

iii) Si el aire del depósito 𝑝𝑝𝑎𝑎 se encuentra a una presión barométrica negativa 𝑝𝑝𝑎𝑎 = −𝑝𝑝, tal que 
𝑝𝑝 ≥ 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · ℎ. ¿Cuál es el signo del resultado de la integral? ¿Cómo interpretas el resultado? 

CP-1.9 (Opcional) Cuando se diseña una presa como la que muestra la figura, una condición 
de diseño frecuentemente utilizada se basa en asegurar que la fuerza que ejerce el agua sobre 
la presa no hace volcar a dicho elemento de contención. ¿Qué condición deben cumplir las 
dimensiones de la presa para impedir esta situación? 

 
Ayuda:  

• se puede asumir que cualquier sección de la presa por el plano perpendicular al dibujo 
es rectangular de anchura 𝐴𝐴. 

• se debe analizar el momento que generan, respectivamente, la fuerza de la gravedad y 
la hidrostática sobre el eje perpendicular al plano del dibujo. Recuerda que el momento 
que genera un conjunto de 𝑛𝑛 fuerzas (𝑓𝑓𝑖𝑖) aplicadas en 𝑃𝑃𝑖𝑖 referido al punto O se calcula 
mediante la siguiente fórmula. 

𝑀𝑀��⃗ = �𝑂𝑂𝑂𝑂�����⃗ 𝑖𝑖 ∧ 𝑓𝑓𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

Tabla 17. Ejercicios relacionados con la integrabilidad de las funciones. 
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Finalmente, se presenta la aplicación de la integral definida para el cálculo de 

volúmenes de cuerpos de revolución (tabla 18). La idea es que los alumnos reconozcan 

la manera en que se puede utilizar la integral para este propósito. Por otra parte, el 

ejercicio CP-10 prepara la aparición de la función integral (tabla 20). Pese a que no es 

necesario su uso, el hecho de que se solicite un cálculo repetitivo (apartados ii y iii) que 

implique conocer la relación nivel de líquido-volumen contenido, puede suscitar la idea 

de recurrir a una función. Por último, la pregunta sobre la precisión en la medida pretende 

que los alumnos reflexionen acerca de la influencia que tiene la función nivel de líquido-

volumen –concretamente, su tasa de crecimiento– en esta cuestión. 

CP-1.10 

Se dispone de un recipiente con forma de paraboloide de revolución. Es decir, la superficie 
interior se engendra a girar en torno al eje OY la parábola 𝑦𝑦 = 𝑎𝑎 · 𝑥𝑥2. Si la altura del recipiente 
es 8 cm y el radio máximo 10 cm,  

i) ¿qué volumen máximo de líquido se puede contener en el recipiente? 

Se desea inscribir en la pared del recipiente cierto número de señales que permitan medir 
distintos volúmenes de líquido. Determinar la altura de las mismas en los siguientes casos: 

ii) 1/4, 1/2, 3/4 y 1 l de líquido. Proporcionar la cota más aproximada a la solución exacta 
medida en milímetros. 

iii) 5, 10, 15,.., 95, 100 cl líquido.8 

iv) ¿Qué distancia –en vertical– separa dos marcas consecutivas? ¿Puedes obtener una 
expresión general? ¿En qué zona crees que se puede medir volúmenes con más precisión? 

CP-1.11 

¿Hasta qué profundidad se sumerge en el agua un sólido de densidad 𝜌𝜌𝑠𝑠 < 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 con forma 

de cono de altura 𝐻𝐻9? ¿y una esfera de radio R? 

Propón un procedimiento gráfico para calcular la profundidad a la que se sumerge el sólido 
engendrado al rotar la curva que se muestra en la figura. ¿Observas alguna característica 
significativa de la función volumen desalojado-profundidad sumergida? 

                                                                    
8 No es necesario presentar la lista de los veinte datos. Es suficiente con presentar un procedimiento que 
permita obtener la cota de cada uno de los mencionados puntos. 
9 Asúmase en el ejercicio CP-1.11 que en las figuras con simetría de revolución, dicho eje se sitúa en 
posición vertical. 
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Nota: Recuerda el principio de Arquímedes: todo cuerpo sólido, al ser sumergido en un líquido, 
experimenta una fuerza de flotación que es igual al peso del líquido que desaloja. 

Tabla 18. Ejercicios relacionados con el cálculo de volúmenes de revolución. 

Cálculo del volumen de cuerpos de revolución 

Sea 𝑓𝑓(𝑥𝑥) una función integrable en [𝑎𝑎, 𝑏𝑏] el volumen 𝑉𝑉 del cuerpo delimitado por la 
superficie que resulta de revolucionar la curva 𝑓𝑓(𝑥𝑥) en torno al eje OX y los planos 𝑥𝑥 = 𝑎𝑎 y 
𝑥𝑥 = 𝑏𝑏 se puede calcular mediante la siguiente integral definida: 

𝑉𝑉 = 𝜋𝜋� 𝑓𝑓(𝑥𝑥)2 · 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
 

Justificación: si se utiliza una partición 𝑃𝑃 del intervalo [𝑎𝑎, 𝑏𝑏], se puede acotar el volumen del 
cuerpo mediante las siguientes sumas, que corresponden al volumen de los cilindros: 

𝑈𝑈(𝑃𝑃,𝑉𝑉) = 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}2 

𝐿𝐿(𝑃𝑃,𝑉𝑉) = 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}2 

En este momento, se puede dividir el dominio en las zonas donde 𝑓𝑓(𝑥𝑥) ≥ 0 y donde 𝑓𝑓(𝑥𝑥) <
0. En el primer caso se tiene que; 

𝑈𝑈(𝑃𝑃′,𝑉𝑉) = 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥)2: 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖} 

𝐿𝐿(𝑃𝑃′,𝑉𝑉) = 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥)2: 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖} 

Mientras que en el segundo: 

𝑈𝑈(𝑃𝑃′′,𝑉𝑉) = 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}2 = 

= 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥)2: 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖} 

H

R
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𝐿𝐿(𝑃𝑃′′,𝑉𝑉) = 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}2 = 

= 𝜋𝜋�(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

· 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥)2: 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖} 

De modo que: 

𝑈𝑈(𝑃𝑃,𝑉𝑉) = 𝑈𝑈(𝑃𝑃′,𝑉𝑉) + 𝑈𝑈(𝑃𝑃′′,𝑉𝑉) ≥ 𝑉𝑉 ≥ 𝐿𝐿(𝑃𝑃′,𝑉𝑉) + 𝐿𝐿(𝑃𝑃′′,𝑉𝑉) = 𝑈𝑈(𝑃𝑃,𝑉𝑉) 

Con lo que se tiene que: 

𝑉𝑉 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑃𝑃,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃,𝑉𝑉) = 𝜋𝜋� 𝑓𝑓(𝑥𝑥)2 · 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
 

Tabla 19. Institucionalización: cálculo del volumen de cuerpos de revolución. 

Función integral 

Definición 4: Sea 𝑓𝑓(𝑥𝑥) una función integrable en [𝑎𝑎, 𝑏𝑏]. Se define en el intervalo [𝑎𝑎, 𝑏𝑏] la 
función integral 𝐹𝐹(𝑥𝑥) de la siguiente forma: 

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑡𝑡) · 𝑑𝑑𝑑𝑑
𝑥𝑥

𝑎𝑎
 

Teorema 8. La función integral 𝐹𝐹(𝑥𝑥), tal y como se ha definido (def. 4), es continua en el 
intervalo [𝑎𝑎, 𝑏𝑏].  

Tabla 20. Institucionalización: función integral. 

E.2 Segundo campo de problemas: análisis del resultado de procesos de cambio y 

teorema fundamental del cálculo 

Este bloque de ejercicios tiene por objetivo acercar a los alumnos, a través de unas 

primeras indagaciones sobre la relación entre integral y derivada, al primer teorema 

fundamental del cálculo. En este contexto de análisis de procesos de cambio en el tiempo, 

a partir de los conceptos de tasa instantánea y variación acumulada, los alumnos pueden 

alcanzar ciertas ideas intuitivas sobre el carácter inverso de la derivada e integral. 

El problema CP-2.1 (tabla 21) plantea, en la primera parte, la aplicación de la 

integral para calcular el resultado al final de un proceso de cambio en el tiempo a partir 

de una función de tasa instantánea de variación. En la segunda sección, se presenta el caso 

inverso, con el objetivo de que se aprecie el carácter inverso de las operaciones de 

derivación e integración. Se ha utilizado una función 𝑉𝑉(𝑡𝑡) no derivable con el propósito 

de se pueda observar la influencia de la continuidad de la función tasa instantánea de 

variación en la mencionada relación inversa entre las dos operaciones. Por último, se 

introduce la necesidad de integrar una función senoidal (apartado iv) de tal manera que 
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se aprecie la utilidad del resultado del primer teorema fundamental del cálculo y de la 

regla de Barrow. Se propone institucionalizar dicho teorema (tabla 22) una vez los 

alumnos hayan analizado los resultados correspondientes a las cuestiones (i), (ii) y (iii) 

de segunda parte (B) del ejercicio. 

P-RS.2/CP-2.1  

A. El recipiente del problema CP-1.10 se encuentra inicialmente vacío. ¿Cuál será la evolución 
temporal del volumen contenido si se llena de las siguientes formas? Represéntalo en forma de 
función. ¿En qué momento rebosará? 

i) A un caudal fijo 𝑞𝑞 = 1
5
𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

ii) A un caudal variable con el tiempo (t [min]) 𝑞𝑞2(𝑡𝑡) �
1
5
− 𝑡𝑡

20
 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚               𝑡𝑡 < 4 𝑚𝑚𝑚𝑚𝑚𝑚

0                            𝑡𝑡 ≥ 4𝑚𝑚𝑚𝑚𝑚𝑚        
 

iii) El caudal presenta una evolución periódica que se repite cada 3 minutos 

 

iv) 𝑞𝑞(𝑡𝑡) = 1+𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋·𝑡𝑡)
8

 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 

 

B. En una nueva situación se desconoce el caudal que entra pero, ya que se dispone de 
cronómetro y el recipiente está graduado, se puede medir la evolución temporal del  volumen 
de líquido. En este caso, la evolución del volumen de líquido con el tiempo se corresponde con 
la siguiente función 𝑉𝑉(𝑡𝑡). 

𝑉𝑉(𝑡𝑡) =

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧ 𝑡𝑡2

10
        0 ≤ 𝑡𝑡 < 2

2
5

        2 ≤ 𝑡𝑡 < 4

2
5

+
(𝑡𝑡 − 4)2

10
        4 ≤ 𝑡𝑡 < 6

4
5

        6 ≤ 𝑡𝑡

 

 

i) ¿Cuál es el caudal promedio de líquido que entra entre los instantes 𝑡𝑡 = 0 𝑚𝑚𝑚𝑚𝑚𝑚 y 𝑡𝑡 = 2 𝑚𝑚𝑚𝑚𝑚𝑚? 
¿Y entre 𝑡𝑡 = 6 𝑚𝑚𝑚𝑚𝑚𝑚 y 𝑡𝑡 = 8 𝑚𝑚𝑚𝑚𝑚𝑚? 

0

0,2

0 3 6 9

Ca
ud

a 
[l/

m
in

]

Tiempo [min]
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ii) A partir del procedimiento de cálculo que has utilizado en el apartado anterior, ¿puedes 
realizar una aproximación al caudal que entra en el instante 𝑡𝑡 = 1 𝑚𝑚𝑚𝑚𝑚𝑚? ¿Cuán precisa puede 
llegar a ser? ¿Es posible, entonces, calcular el valor exacto? ¿Ocurre lo mismo en instante 𝑡𝑡 =
2 𝑚𝑚𝑚𝑚𝑚𝑚? Completa la siguiente tabla y representa los valores de la derivada calculados. 

𝑡𝑡  𝑞𝑞(𝑡𝑡) 

0  

a         0 ≤ 𝑎𝑎 < 2  

2  

a        2 ≤ 𝑎𝑎 < 4  

4  

a        4 ≤ 𝑎𝑎 < 6  

iii) Compara el procedimiento de cálculo que has utilizado en el apartado anterior para evaluar 
el valor exacto del caudal con el empleado en la primera parte del problema. ¿Qué caracteriza 
a los puntos en los que no se puede calcular el caudal instantáneo? 

iv) Aprovecha el resultado anterior para calcular la evolución del volumen en el caso A.iv. 

Tabla 21. Problema CP-2.1 con el análisis del resultado de procesos de cambio. 

Teorema fundamental del cálculo integral 

Teorema 9. Sea 𝑓𝑓(𝑥𝑥) una función integrable en [𝑎𝑎, 𝑏𝑏] y 𝑐𝑐 un punto del intervalo (𝑎𝑎, 𝑏𝑏) en 
que la función 𝑓𝑓(𝑥𝑥) es continua. Entonces se tiene que: 

𝐹𝐹′(𝑐𝑐) = 𝑓𝑓(𝑐𝑐) 

Siendo 𝐹𝐹′(𝑐𝑐) la derivada en el punto 𝑐𝑐 de la función integral 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑡𝑡)𝑥𝑥
𝑎𝑎 · 𝑑𝑑𝑑𝑑. 

 

Demostración: Se puede realizar el análisis de la tasa de variación media de la función 
integral entre 𝑐𝑐 y 𝑐𝑐 + ℎ. 

 𝐹𝐹(𝑐𝑐 + ℎ) −  𝐹𝐹(𝑐𝑐)
ℎ

 

Si se aplican las propiedades de la integral definida se tiene la siguiente relación (1): 

𝐹𝐹(𝑐𝑐 + ℎ) −  𝐹𝐹(𝑐𝑐) = � 𝑓𝑓(𝑡𝑡)
𝑐𝑐+ℎ

𝑐𝑐
· 𝑑𝑑𝑑𝑑 

Si en (1) se aplica la siguiente manipulación algebraica 𝑓𝑓(𝑡𝑡) = 𝑓𝑓(𝑥𝑥) + �𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑥𝑥)�, queda 
la siguiente expresión (2). 

𝐹𝐹(𝑐𝑐 + ℎ) −  𝐹𝐹(𝑐𝑐) = 𝑓𝑓(𝑐𝑐) · ℎ + � �𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)�
𝑐𝑐+ℎ

𝑐𝑐
· 𝑑𝑑𝑑𝑑 
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Si utilizamos esta última expresión (2) en la correspondiente a la tasa de variación media se 
obtiene: 

 𝐹𝐹(𝑐𝑐 + ℎ) −  𝐹𝐹(𝑐𝑐)
ℎ

= 𝑓𝑓(𝑥𝑥) +
1
ℎ

· � �𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)�
𝑐𝑐+ℎ

𝑐𝑐
· 𝑑𝑑𝑑𝑑 

Con lo que la demostración del teorema es equivalente a demostrar que 

lim
ℎ→0

1
ℎ

· � �𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)�
𝑐𝑐+ℎ

𝑐𝑐
· 𝑑𝑑𝑑𝑑 = 0          (1) 

si 𝑓𝑓(𝑥𝑥) es continua en 𝑐𝑐. Si se aplica, entonces, la definición de continuidad, es decir que para 
todo 𝜀𝜀 > 0 existe 𝛿𝛿 > 0 tal que  

|𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)| < 𝜀𝜀 

Con −𝛿𝛿 < 𝑡𝑡 < 𝛿𝛿. 

Si se escoge un ℎ de manera que 0 < ℎ < 𝛿𝛿 de tal forma que |𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)| < 𝜀𝜀
2
, se tiene que: 

−𝜀𝜀 · ℎ < −
𝜀𝜀
2

· ℎ = −�
𝜀𝜀
2

· 𝑑𝑑𝑑𝑑
𝑐𝑐+ℎ

𝑐𝑐
≤ � �𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)� · 𝑑𝑑𝑑𝑑

𝑐𝑐+ℎ

𝑐𝑐
≤ �

𝜀𝜀
2

· 𝑑𝑑𝑑𝑑
𝑐𝑐+ℎ

𝑐𝑐
=
𝜀𝜀
2

· ℎ < 𝜀𝜀 · ℎ 

Si se divide entre ℎ, se obtiene que �∫ �𝑓𝑓(𝑡𝑡) − 𝑓𝑓(𝑐𝑐)� · 𝑑𝑑𝑑𝑑𝑐𝑐+ℎ
𝑐𝑐 � se puede hacer tan pequeño 

como se quiera, con lo que queda demostrado (1) y, en consecuencia, el teorema 9. 

Regla de Barrow: Sea 𝑓𝑓(𝑥𝑥) una función continua en [𝑎𝑎, 𝑏𝑏] y G(x) una función que cumple 
G’(x)=f(x) en [𝑎𝑎, 𝑏𝑏].   Entonces se tienen que para todo 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]: 

� 𝑓𝑓(𝑡𝑡)
𝑥𝑥

𝑎𝑎
· 𝑑𝑑𝑑𝑑 = 𝐺𝐺(𝑥𝑥) − 𝐺𝐺(𝑎𝑎) 

Tabla 22. Institucionalización relacionada con el primer teorema fundamental del cálculo. 

El problema CP-2.2 (tabla 23), que se plantea como tarea voluntaria, es una 

continuación de la pregunta (iv) del problema CP-1.10. En él la relación inversa entre la 

integral y derivada surge en un entorno geométrico. En el problema CP-2.3 aparece, por 

primera vez en la propuesta, la integral definida de una función exponencial. En el 

problema CP-2.4 ya introduce una situación propia de la cinemática. Se hace referencia 

expresa a que los alumnos abandonen el uso de las fórmulas del movimiento 

uniformemente acelerado y que lo resuelvan a partir de las nuevas herramientas analíticas 

adquiridas. En el enunciado se realiza la distinción entre posición y desplazamiento, de 

tal forma que los alumnos puedan relacionarlo con las correspondientes formulaciones 

integrales. En los experiencia de Camacho et al. (2008) algunos mostraron cierta 

confusión en el momento de para distinguir y relacionar con funciones integrales ambas 

magnitudes cinemáticas. 
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CP-2.2 (Opcional)  

Cuando se miden magnitudes físicas es interesante realizar un análisis crítico de la influencia 
que poseen los diferentes errores que se producen en el proceso de medición en el resultado 
global. Se suele denominar a este efecto sensibilidad de la medida con respecto a un 
determinado tipo de error. 

En el caso del recipiente para medir volúmenes de líquido del problema CP1.10, se considera 
que, si éste se ha graduado bien, el principal error de medida es el asociado a la lectura del nivel 
de líquido (p. ej. error de paralaje o interpretación del menisco, ver figura inferior). 

 
i) ¿Se te ocurre alguna forma de obtener una cuantificación de la sensibilidad de la medida de 
volumen de líquido? 

ii) Ya que se desconoce el error de lectura que se comete pero se puede, en cualquier caso, 
asumir que es muy pequeño en términos relativos, ¿se podría obtener una cuantificación de la 
sensibilidad eliminando la dependencia con el nivel de error? 

iii) ¿Qué relación observas entre la sensibilidad y la geometría del recipiente? 

iv) ¿En qué zonas del recipiente crees que se obtiene una medida de peor calidad? ¿Es igual la 
conclusión si se tiene en cuenta la sensibilidad expresada en términos absolutos y relativos? 

En el diseño de instrumentos de medida se trata en ocasiones de obtener medidas cuya 
sensibilidad se uniforme en todo el rango de medida. 

vi) ¿Qué cuerpo de revolución produce una lectura cuya sensibilidad, expresada en términos 
absolutos, es uniforme? ¿Y en términos relativos? 

 

CP-2.3 Se dispone del recipiente del problema C-1.10 completamente lleno de líquido. En 
cierto instante, por efecto de una fuga en su base comienza con un caudal que se puede 
aproximar por la siguiente función exponencial: 

𝑞𝑞(𝑡𝑡) =
8𝜋𝜋

250
· 𝑒𝑒−

𝑡𝑡
10   𝑙𝑙 𝑚𝑚𝑚𝑚𝑚𝑚�  

donde la variable t está expresada en minutos. Aproximadamente, ¿cuánto tiempo le cuesta 
vaciarse hasta la mitad de su contenido original? ¿Y vaciarse completamente? 
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CP-2.4 Un objeto se lanza hacia arriba en dirección vertical a una velocidad de 𝑣𝑣0. ¿Cuánto 
tiempo le costará caer de nuevo hasta su posición original? Representa las funciones 
aceleración, velocidad, distancia recorrida y posición (puedes particularizar para el caso 𝑣𝑣0 =
50𝑚𝑚 𝑠𝑠⁄  y 𝑣𝑣0 = 10𝑚𝑚 𝑠𝑠2⁄ . ¿Qué altura alcanza? (Opcional: utiliza este resultado para calcular 
el tiempo que ocupa el proceso que describe el problema AI.1. ¿Es éste de duración temporal 
finita?) 

Nota: Puedes suponer únicamente el efecto de la gravedad (asumiendo, de esta forma, que no 
existe rozamiento con el aire), constante y de valor 𝑔𝑔. Ya que dominas algunas aplicaciones de 
la integral definida, evita el uso de las fórmulas que recuerdes de física para el movimiento 
uniformemente acelerado. 

CP-2.5 Como ya has comprobado, el teorema fundamental del cálculo y la regla de Barrow 
proporcionan una potente técnica para resolver integrales definidas. En aquellos casos en los 
que puede aplicarse dicha regla, el principal esfuerzo consiste en encontrar una función cuya 
derivada sea la función que se necesita integrar. Así pues, completar la siguiente tabla puede 
resultar una ayuda útil para la resolución de estos problemas. 

Encuentra la función 𝐹𝐹(𝑥𝑥) tal que se cumpla 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

= 𝑓𝑓(𝑥𝑥) en el intervalo dado para cada una 
de las funciones que se indican en la tabla. Indica los puntos donde, desde el punto de vista de 
la integración, esta relación inversa puede presentar problemas. 

𝑓𝑓(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 𝑓𝑓(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 

𝑘𝑘  𝑘𝑘 · 𝑒𝑒−𝑏𝑏·𝑥𝑥  

𝑘𝑘 · (𝑏𝑏 · 𝑥𝑥)𝑚𝑚  𝑚𝑚 ≠ −1  𝑘𝑘 · 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏 · 𝑥𝑥)  

1
𝑏𝑏 · 𝑥𝑥 + 𝑎𝑎

 
 𝑘𝑘 · 𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏 · 𝑥𝑥)  

 

Tabla 23. Problemas y ejercicios relacionados con el teorema fundamental del cálculo. 

E.3 Resumen de la propuesta didáctica: recopilación de técnicas y tecnologías 

La tabla 24 resume los principales elementos de la propuesta didáctica. En ella, 

los elementos de las columnas –problemas, técnicas y tecnología– se ordenan según la 

secuencia de la propuesta. Así, cada problema o conjunto de problemas se relaciona con 

el conjunto de técnicas y tecnologías que, o bien, propicia que emerjan o bien se utilizan, 

a modo de práctica, en su resolución. Las técnicas  (Tc.) y tecnologías (Tclg.) se numeran 

en la tabla, a fin de aligerar la notación en sus respectivas referencias. Del mismo modo, 

se han utilizado abreviaturas para caracterizar el contenido o contexto de los problemas, 

el modo de presentación y su función dentro de la propuesta. 

Dentro del discurso tecnológico, se ha optado por la introducción formal de la 

integral de Riemann y la justificación analítica de sus propiedades más útiles para la 

resolución de los ejercicios que se introducen en este nivel. Asimismo, se ha introducido 
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el criterio de integrabilidad de Riemann. Se ha estimado relevante hacer énfasis en esta 

característica de las funciones, ya que algunos autores evidencian cierta confusión en los 

alumnos entre integrabilidad y existencia de primitiva (Labraña 2001, Ordóñez 2011). A 

partir del mismo, los alumnos pueden justificar la integrabilidad de funciones sencillas 

(ejercicio CP-1.6). Para cerrar la cuestión que atañe a la integrabilidad, se proporcionan 

las condiciones suficientes (tabla 13), en este caso sin demostrar, que cubren todo el 

conjunto de funciones que aparecen en la propuesta. Finalmente, se presentan el teorema 

fundamental del cálculo y la regla de Barrow, con sus respectivas demostraciones, 

después de que los alumnos hayan realizado algunas indagaciones dentro del contexto del 

análisis de un proceso de cambio de en tiempo. 

Es preciso señalar que no se ha realizado en la propuesta una formalización del 

concepto de área. Se asume que la idea de los alumnos que subyace del conjunto de 

técnicas que conocen para el cálculo de áreas de figuras planas elementales y de la 

aceptación de las nuevas –aplicación del principio de exhausción en el problema RS.1 y, 

en cierto modo, en el problema AI-2– es suficiente para articular la propuesta. 

Aunque en algunos casos la justificación que aporten los alumnos pueda acercarse 

a la demostración formal (por ejemplo, las propiedades de las sumas superiores e 

inferiores en el problema RS-1/CP-1.1), es más habitual que se requiera una 

formalización propuesta por el profesor (p. ej. propiedades de la integral, tabla 11). Se 

considera interesante que los alumnos aprecien la necesidad de ordenar y justificar, en 

torno a un discurso lógico-deductivo formal, el conjunto de experiencias e intuiciones que 

surgen de su práctica relacionada con esta unidad didáctica.  

Dentro de los ejercicios y problemas propuestos, según la forma en que se 

presentan, se pueden distinguir varios tipos. En primer lugar, aquellos que constituyen la 

actividad programada para cada sesión. Durante su desarrollo, los alumnos abordarán la 

resolución y a partir de las indagaciones y conclusiones que se obtengan se podrán 

consolidar los elementos del discurso técnico-tecnológico asociado. Por otro lado, se 

presentan tareas de trabajo personal que, en la mayor parte de los casos tiene por objeto 

que el alumno afiance las técnicas y reflexione sobre las tecnologías que han surgido en 

las sesiones. Por último, se han señalado una serie de cuestiones “opcionales” que los 

alumnos pueden, si les interesa resolver. Se les ha otorgado este carácter libre ya que, o 

bien constituyen una profundización más allá de los contenidos fijados en la propuesta o 
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su resolución se considera más difícil. La entrega de dos de estos ejercicios será valorada 

en la evaluación con medio punto extra.  
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Problemas / ejercicios / actividades10 Técnicas Tecnologías 

P-RS1-CP.1.1.a (Geo. áreas) (Int. técn.) 
(act. clase) 

-Aproximación al valor del área mediante sumas superiores e 
inferiores (Tc. 1) 

- Partición (Def. 1), sumas superiores e inferiores 
(Def. 2) 

-Propiedades sumas superiores e inferiores (Teor. 1 
y 2) (dem.11) (Tclg. 1) 

P-RS1-CP.1.1.b (Geo. áreas) (Int. técn.) 
(act. clase) 

-Cálculo exacto del área a partir del límite de las sumas de una 
familia de particiones (Tc. 2) 

-Definición de la integral definida (Def. 3) 

-Criterio de integrabilidad de Riemann (Teor. 3) 
(dem.) (Tclg. 2) 

 -Identificación área-integral (Tc. 3) -Propiedades integral definida (Teor. 4-6) (dem.) 

(Tclg. 3) 

 -Integral función constante y cuadrática (Tc. 4) -Relación entre el área y la integral definida (Tabla 
11) (Tclg. 4) 

CP-1.2, CP-1.3  (Geo. áreas) (práct. 
técnicas) (act. clase/ trabajo personal) 

(Tc. 3, 4) 

-Aplicación de las propiedades de la integral definida (Tc. 5) 

-Integral función lineal (Tc. 6) 

(Tclg. 1-4) 

                                                                    
10 Se han utilizado las siguientes abreviaturas para caracterizar los problemas. Según su contenido o contexto: geométrico-áreas (Geo. áreas), numérico (Num.), 
intramatemático (Mat.), cálculo de volúmenes (Vol.), magnitudes físicas estáticas (Mag. estát.), análisis del resultado de un proceso de cambio (RPC). Según su función 
dentro de la propuesta didáctica: contexto propicio para que emerjan o se introduzcan técnicas y tecnologías (int. técn.), práctica de las técnicas (práct. técnicas). Según su 
forma de presentación: actividad de clase (act. clase). 
11 La aparición de la abreviatura (dem.) en los teoremas o resultados indica que se aparecen demostrados en la secuencia didáctica. 
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CP-1.4, (Num.) (trabajo personal 
opcional) 

CP-1.5,  (Geo. Áreas, Num.) (trabajo 
personal) 

(Tc. 1, 3) 

 

CP-1.6 (Mat.) (Int. técn.) (act. clase) (Tclg. 2) -Condiciones suficientes de integrabilidad (Tclg. 5) 

CP-1.7 (Mat.) (Ejerc. práct. técnicas)  
(trabajo personal opcional) 

(Tclg. 4)  

CP-1.8 (Mag. estát.) (Int. técn.)  (act. 
clase) 

-Aplicación de la integral definida al cálculo de magnitudes 
estáticas (Tc. 7) 

(Tclg. 2) 

CP-1.9 (Mag. estát.) (Ejerc. práct. 
técnicas)  (trabajo personal opcional) 

(Tc. 7)  

CP-1.10 (Vol.) (Int. técn.) (act. clase) -Aplicación de la integral definida para el cálculo de volúmenes 
de cuerpos de revolución (Tc. 8) 

 

-Formulación integral del volumen de un cuerpo de 
revolución (tabla 15) (Tclg. 6) 

-Función integral (Def. 4) (Tclg. 7) 

CP-1.11 (Vol.) (Ejerc. práct. técnicas/ 
Int. técn.) (act. clase/ trabajo personal) 

 -Continuidad de la función integral (Teor. 8) (Tclg. 
7) 

P-RS2/CP-2.1 (RPC) (Int. técn.) (act. 
clase) 

-Aplicación de la integral definida para el análisis de resultados 
de procesos de cambio (Tc. 9) 

-Regla de Barrow, relación inversa integración-derivación (Tc. 
10) 

-Teorema fundamental del cálculo integral y regla 
de Barrow (Teor. 10) (Tclg. 8) 

 

CP-2.2 (Vol.) (Ejerc. práct. técnicas) 
(trabajo personal opcional) 

(Tc. 8-10)  
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CP-2.3 (RPC) (Ejerc. práct. técnicas)  
(trabajo personal) 

 

CP-2.4 (RPC) (Int. técn.) (trabajo 
personal) 

CP-2.5 (RPC) (Int. técn.) (trabajo 
personal/actividad de clase) 

-Tabla de primitivas de funciones elementales (Tc. 11) (Tclg. 8) 

Tabla  24. Resumen de la praxeología de la propuesta didáctica. 
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F. Cronograma 

En la tabla 25 se resume la secuencia de actividades de la propuesta didáctica y su 

distribución a lo largo de trece sesiones. Se propone dedicar una última hora para la 

corrección del examen y revisión de las calificaciones. 

Sesión Contenidos Actividades 

1 -Sucesiones 

-Cálculo de áreas 

Actividad inicial 

2-3 -Cálculo aproximado del área: sumas superiores e 
inferiores 

-Integral de Riemann 

P-RS1-CP.1.1.a-b  

4 -Propiedades de la integral definida P-RS1-CP.1.1.a-b 

5-6 -Cálculo de áreas 

-Integrabilidad 

CP-1.2, CP-1.3   

CP-1.6 

7-8 -Ampliación aplicación integral: volúmenes y magnitudes 
estáticas 

-Función integral 

CP-1.8 

CP-1.9 

9-10-11 -Aplicación de la integral al análisis de resultados de 
procesos de cambio 

-Teorema fundamental del cálculo y regla de Barrow 

P-RS2/CP-2.1 (RPC) 
(Int. técn.) (act. clase) 

12  Evaluación 

13  Corrección 

Tabla 25. Secuencia y planificación de las actividades que componen la propuesta didáctica.





 

57 
 

G. Evaluación 

Se presenta a continuación la prueba para la evaluación del aprendizaje asociado 

de la propuesta didáctica presentada. 

G.1 Diseño de la prueba escrita 

En la siguiente tabla (tabla 26) se recoge la prueba escrita. Ya que dos los 

ejercicios 2 y 3 poseen enunciados extensos y en algunos ejercicios se plantear ciertas 

situaciones problemáticas que requieren la reflexión del alumno (2.ii y 3), se estima una 

duración aproximada de dos horas. 

Ejercicio 1. (2,5+0,5 puntos) 

Un automóvil circula a una velocidad 𝑣𝑣0. En el instante 𝑡𝑡1, el motor deja de impulsar coche por 
lo que, si no se acciona el freno, es la fuerza del rozamiento equivalente el único efecto que 
provoca una reducción en la velocidad.  

En esta situación, la evolución de la velocidad con el tiempo 𝑣𝑣(𝑡𝑡) se puede modelizar mediante 
la siguiente función12. 

𝑣𝑣(𝑡𝑡) = �
25               0 ≤ 𝑡𝑡 ≤ 20

25 · 𝑒𝑒−·(𝑡𝑡−20)
60      20 < 𝑡𝑡

 

En ella, la velocidad se expresa en metros por segundo y el tiempo en segundos. 

i) Representa dicha evolución temporal de la velocidad y calcula el área bajo la función 𝑣𝑣(𝑡𝑡) 
en los intervalos [0,20] y [0,80]. ¿Cuál es su significado físico? ¿Puedes generalizar la 
expresión para cualquier intervalo [0, 𝑡𝑡] 𝑡𝑡 ∈ [0,∞)? (2 puntos) 

ii) Si en el instante 𝑡𝑡 = 20𝑠𝑠 se encuentra el coche a 1 km de un área de servicio, ¿podrá 
alcanzarla sin que los ocupantes se bajen a empujarlo? ¿y si estuviera a 1,5 km? (0,5 puntos + 
0,5 puntos de bonificación) 

 

Ejercicio 2. (3,5 puntos) 

i) Hallar el área de la región comprendida entre la parábola 𝑝𝑝: 𝑦𝑦 = 1 − 𝑥𝑥2 y las siguientes rectas 
(r y s) (2,5 puntos): 

𝑟𝑟: 𝑦𝑦 = −3− 3 · 𝑥𝑥 

𝑠𝑠: 𝑦𝑦 = −3 

ii) Determinar la recta que pasa por el vértice de la parábola y divide la región en otras dos de 
igual área (1 punto). 

 

                                                                    
12 En la elaboración del modelo matemático que representa la dinámica del coche se ha asumido que la 
fuerza de rozamiento equivalente es de tipo viscoso 𝐹𝐹𝑟𝑟 = 𝜇𝜇 · 𝑣𝑣. Se obtiene, por tanto, al resolver la 
ecuación diferencial 𝑚𝑚 · 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝜇𝜇 · 𝑣𝑣. 
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Problema 3. (5 puntos) 

Cuando se hace girar a un vaso de agua cilíndrico por su eje de simetría axial a una velocidad 
angular constante (ω [rad/s]), la superficie del líquido en contacto con el aire adopta la forma 
de un paraboloide de revolución. Esta forma geométrica hace que se equilibren los efectos, por 
un lado, el de la fuerza centrífuga, y, por otro lado, de la presión hidrostática (altura de la 
columna de líquido) y de la presión atmosférica en dicha superficie13. 

La siguiente expresión general relaciona el radio (𝑟𝑟) de cada punto de la superficie del 
paraboloide de revolución con la coordenada axial (𝑧𝑧): 

𝑟𝑟(𝑧𝑧) = √𝑘𝑘 · 𝑧𝑧     𝑧𝑧 ≥ 0 

Donde, en este caso, el origen de 𝑧𝑧, la coordenada correspondiente al eje vertical de giro, se ha 
situado en el vértice del paraboloide y el parámetro 𝑘𝑘 se relaciona con la velocidad angular de 
giro 𝜔𝜔 [rad/s] y la constante de gravitación universal 𝑔𝑔 [m/s2] mediante la siguiente expresión: 

𝑘𝑘 =
2𝑔𝑔
𝜔𝜔2 

La figura muestra una representación de sistema físico. 

 
i) En la situación que describe la figura 1, a partir de la cual se puede conocer el nivel máximo 
(𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) y mínimo del líquido (𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) en el cilindro de radio 𝑅𝑅,   

i.1) ¿a qué velocidad angular está girando? (Sugerencia: prueba a expresar el parámetro 
k en función de las cotas 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 y 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) 

i.2) hallar el volumen de líquido que contiene el vaso. ¿Qué nivel tendría el vaso en 
reposo (𝑧𝑧0)?  

ii) Si se mantiene el mismo volumen de líquido, ¿A qué velocidad angular comenzaría a escapar 
el fluido del vaso? ¿Cuáles serían en dicha situación los niveles máximo y mínimo de líquido? 
Exprésalas en función del nivel en reposo (𝑧𝑧0) y de la altura del vaso (ℎ). 

                                                                    
13 Se obtiene al resolver, en primer lugar, la ecuación en derivadas parciales que surge de la aplicación de 
la ley física asociada al equilibrio de fuerzas para la partícula fluida (White 2009): 
 ∇��⃗ · 𝑝𝑝(𝑟𝑟, 𝑧𝑧) = (𝜔𝜔2 · 𝑟𝑟, 0,−𝑔𝑔) 
Posteriormente, se debe imponer 𝑝𝑝(𝑟𝑟, 𝑧𝑧)|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎é𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 
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iii) Si analizas las relaciones obtenidas en el apartado anterior, ¿se pueden alcanzar valores 
negativos del nivel mínimo de líquido (𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚)? ¿Tiene algún significado físico?  

iv.a) En ese caso, analiza la nueva situación para obtener la velocidad angular que hace que el 
líquido comience a escapar. 

iv.b) Si el nivel de líquido no alcanzara valores negativos, resolver la siguiente integral 
definida, ¿se te ocurre alguna situación análoga a la del problema que se pueda modelizar 
mediante dicha integral?14  

𝑓𝑓(𝑥𝑥) = �
0            𝑥𝑥 < 3

2 · �(𝑥𝑥 − 3)    𝑥𝑥 ≥ 3 

𝑔𝑔(𝑥𝑥) =
𝑥𝑥
4

+ 1 

� 𝜋𝜋(𝑔𝑔(𝑥𝑥)2 − 𝑓𝑓(𝑥𝑥)2) · 𝑑𝑑𝑑𝑑
𝑥𝑥=4

𝑥𝑥=0
 

Tabla 26. Prueba para la evaluación del aprendizaje de la unidad didáctica dedicada a la integral 

definida. 

G.2 Análisis de la prueba 

Esta sección se ha estructurado de tal forma que en los tres principales apartados 

se analizan los principales aspectos de cada uno de los ejercicios planteados. En la tabla 

27 se caracterizan estos ejercicios en términos de los aspectos que evalúan, a partir de las 

técnicas que evalúan, las tecnologías que las justifican y el campo de problemas asociado. 

Asimismo, se recogen en la tabla los estándares de evaluación según el Real Decreto 

1105/2014, de 26 de diciembre (Boletín Oficial de Estado, 3 de enero de 2015). 

Ejercicio 1 

Campo de problemas: cálculo de áreas bajo curva, ampliación de la aplicación de la integral 
definida. 

Técnicas que evalúa: 

• Cálculo de áreas bajo curvas a través de la integral definida 

• Uso de la noción de área para el cálculo de integrales definidas de funciones sencillas 
(opcional) 

• Aplicación de la regla de Barrow 

• Integración de funciones sencillas 

• Cálculo de límites (pregunta adicional ii) 

 

 

                                                                    
14 Se proporciona la opción de resolver el apartado iv.b en lugar del iv.a en el caso de que no se hayan 
abordado, o resuelto con garantías, los apartados ii y/o iii. 
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Tecnologías involucradas: 

• Teorema fundamental del cálculo 

• Propiedades de la integral definida 

• Noción de área y sus propiedades 

• Definición de límite (pregunta adicional ii) 

Estándares de aprendizaje: 

• Calcula el área de recintos limitados por rectas y curvas sencillas o por dos curvas 
(Bloque 3, 3.1) 

• Conoce las propiedades de las funciones continuas, y representa la función en un 
entorno de los puntos de discontinuidad (Bloque 3, 1.1) 

• Aplica el concepto de límite a la resolución de problemas (Bloque 3, 3.2) 

• Analiza y comprende el enunciado (Bloque 1, 2.1) 

• Interpreta la solución matemática del problema en el contexto de la realidad (Bloque 
1, 8.4) 

Ejercicio 2 

Campo de problemas: cálculo de áreas bajo curvas 

Técnicas que evalúa: 

• Cálculo de áreas bajo curvas a través de la integral definida 

• Uso de la noción de área para el cálculo de integrales definidas de funciones sencillas 
(opcional) 

• Aplicación de la regla de Barrow 

• Integración de funciones sencillas 

• Uso de expresiones algebraicas para transcribir la situación problemática que se 
plantea 

Tecnologías involucradas: 

• Teorema fundamental del cálculo 

• Propiedades de la integral definida 

• Noción de área y sus propiedades 

Estándares de aprendizaje: 

• Calcula el área de recintos limitados por rectas y curvas sencillas o por dos curvas 
(Bloque 3, 3.1) 

• Conoce las propiedades de las funciones continuas, y representa la función en un 
entorno de los puntos de discontinuidad (Bloque 3, 1.1) 

• Analiza y comprende el enunciado (Bloque 1, 2.1) 
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Problema 3 

Campo de problemas: cálculo de áreas bajo curvas, ampliación de la aplicación de la integral 
definida para el cálculo de volúmenes de cuerpos de revolución 

Técnicas que evalúa: 

• Cálculo de volúmenes de revolución a partir de la integral definida 

• Uso de la noción de volumen para el cálculo de integrales definidas de funciones 
sencillas (opcional) 

• Aplicación de la regla de Barrow 

• Integración de funciones sencillas 

• Uso de la visión espacial para comprender las situaciones que el problema plantea 

• Uso de expresiones algebraicas para transcribir la situación problemática que se 
plantea 

Tecnologías involucradas: 

• Teorema fundamental del cálculo 

• Propiedades de la integral definida 

• Noción de área y sus propiedades 

Estándares de aprendizaje: 

• Calcula el área de recintos limitados por rectas y curvas sencillas o por dos curvas 
(Bloque 3, 3.1) 

• Conoce las propiedades de las funciones continuas, y representa la función en un 
entorno de los puntos de discontinuidad (Bloque 3, 1.1) 

• Analiza y comprende el enunciado (Bloque 1, 2.1) 

• Interpreta la solución matemática del problema en el contexto de la realidad (Bloque 
1, 8.4) 

Tabla 27. Resumen de los aspectos que se evalúan en la prueba. 

G.2.1 Ejercicio 1 

G.2.1.a Solución 

En la tabla 28 se propone una solución para el  primer ejercicio. Como criterio 

general, pese a que existan en algunos casos otras técnicas para la resolución de los 

ejercicios/problemas, se ha optado por la utilización de aquellas específicas de la unidad 

didáctica dedicada a la integral definida. No obstante, el hecho de que los estudiantes 

utilicen cualquier técnica válida en sus resoluciones (p.ej. uso de la fórmula para el 

cálculo de área de un triángulo), no penaliza la nota numérica. 
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i) Representación gráfica: 

 
ii) El área bajo la curva corresponde a los metros que ha recorrido el coche a partir del instante 
t=0, ya que elemento diferencial de área coincide con el elemento diferencial de espacio. 

En primer lugar, se solicita el cálculo de la integral definida en dos intervalos. El principal 
objetivo de este cálculo repetitivo es evitar que los alumnos caigan en algún error en la 
aplicación de la regla de Barrow al resolver la siguiente cuestión. 

𝐴𝐴1 = ∫ 𝑣𝑣(𝑡𝑡) · 𝑑𝑑𝑑𝑑𝑡𝑡=20
𝑡𝑡=0 = ∫ 25 · 𝑑𝑑𝑑𝑑𝑡𝑡=20

𝑡𝑡=0 = 500𝑚𝑚, espacio que recorre desde el instante 𝑡𝑡 = 0 a 
𝑡𝑡 = 20. 

𝐴𝐴2 = ∫ 𝑣𝑣(𝑡𝑡) · 𝑑𝑑𝑑𝑑𝑡𝑡=20
𝑡𝑡=0 + ∫ 𝑣𝑣(𝑡𝑡) · 𝑑𝑑𝑑𝑑 = 𝐴𝐴1 +𝑡𝑡=80

𝑡𝑡=20 ∫ 25 · 𝑒𝑒−·(𝑡𝑡−20)
60 · 𝑑𝑑𝑑𝑑𝑡𝑡=20

𝑡𝑡=0 = 500 + 1500 ·

�𝑒𝑒−1
𝑒𝑒
�𝑚𝑚, espacio que recorre desde el instante 𝑡𝑡 = 20 a 𝑡𝑡 = 80. 

Se ha asociado dicha expresión general del espacio recorrido a la función s(t) que queda definida 
a trozos: 

𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧� 25 · 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡=0
                                                  0 ≤ 𝑡𝑡 ≤ 20

� 25 · 𝑑𝑑𝑑𝑑
𝑡𝑡=20

𝑡𝑡=0
+ � 25 · 𝑒𝑒−·(𝑡𝑡−20)

60 · 𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡=20
       20 < 𝑡𝑡

 

𝑠𝑠(𝑡𝑡) = �
25 · 𝑡𝑡                                                        0 ≤ 𝑡𝑡 ≤ 20

500 + 1500 · �1 − 𝑒𝑒−·(𝑡𝑡−20)
60 �                    20 < 𝑡𝑡 

Posibles respuestas correctas: 

• En la representación gráfica se considera válida cualquier representación aproximada 
de la exponencial. Los aspectos que se consideran esenciales son: el recorrido de la 
función, la asíntota horizontal y la concavidad/convexidad. No es necesario que el 
tiempo de decaimiento (60s) quede fielmente reflejado en la gráfica.  

• Cálculo del área de la primera región a partir de la fórmula del rectángulo 

• No es necesario que los alumnos presenten el resultado del espacio recorrido en 
función del tiempo como función definida a trozos, es suficiente que tengan en cuenta 
los dos casos, 𝑡𝑡 ∈ [0, 20] y 𝑡𝑡 ∈ (20,∞) 
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Posibles errores: 

• Error en la aplicación de la regla de Barrow, por ejemplo: 

𝐴𝐴2 = � 𝑣𝑣(𝑡𝑡) · 𝑑𝑑𝑑𝑑
𝑡𝑡=80

𝑡𝑡=0
= 1500 · �1 − 𝑒𝑒−·(80−20)

60 � − 25 · 0 

ii) Es suficiente con analizar si la función 𝑠𝑠′(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) − 𝑠𝑠(20) o la integral 

 

𝑠𝑠′(𝑡𝑡) = � 25 · 𝑒𝑒−·(𝑡𝑡−20)
60 · 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡=20
= 1500 · �1 − 𝑒𝑒−·(𝑡𝑡−20)

60 � 

Se pueden igualan en algún momento a las distancias que se solicitan. 

Caso 1: 

1500 · �1 − 𝑒𝑒−·(𝑡𝑡−20)
60 � = 1000 

Dado que 0 < 1000 1500 < 1⁄ , existe un valor de 𝑡𝑡 ∈ [0,∞) que cumple la ecuación. En ese 
instante el coche habrá alcanzado el área de servicio. 

Caso 2: 

1500 · �1 − 𝑒𝑒−·(𝑡𝑡−20)
60 � = 1500 

No existe un valor de que haga que se verifique la ecuación, pero ya que 

lim
𝑡𝑡→∞

1500 · �1 − 𝑒𝑒−·(𝑡𝑡−20)
60 � = 1500 

Es posible, si se espera lo suficiente, acercarse tanto como se quiera al área de servicio. 

Posibles errores: 

• Error al situar el origen en el desplazamiento o en el tiempo 

• Error en la utilización del concepto de límite 

Tabla 28. Solución del primer ejercicio. 

G.2.1.b Clasificación de las tareas 

En la tabla 29 se recogen y clasifican las tareas asociadas a la resolución del primer 

ejercicio de la prueba. En esta recopilación de tareas y en las siguientes, se han omitido 

las tareas auxiliares generales (T.A.G.) más frecuentes en este tipo de ejercicios: 

• Cálculos aritméticos 

• Simplificación de expresiones algebraicas 

Se han hecho explícitas en aquellos casos en los que se ha considerado oportuno 

para aclarar los criterios de corrección. 
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Apartado i) 

1. Representación gráfica de la función (T.A.E.15) 

2. Aplicación de la integral definida para el cálculo de áreas (T.P.16) 

3. Identificación del área bajo la curva con la magnitud física del problema que se 
modeliza (T.P.) 

4. Utilización de la integral definida para proporcionar una expresión general que 
proporciona el cálculo del área bajo la curva en el intervalo [0, 𝑡𝑡] 𝑡𝑡 ∈ [0,∞) (T.P.) 

5. Integración (T.A.E.) 

Apartado ii) 

1. Utilización de la expresión general para analizar los aspectos que se solicitan (T.A.E.) 

2. Caso 1: conocer el recorrido de una función exponencial (T.A.E.) 

3. Caso 2: aplicación del concepto de límite (T.P.)17 

Tabla 29. Clasificación de las tareas del ejercicio 1. 

  

                                                                    
15 T.A.E.: Tarea auxiliar específica. 
16 T.P.: Tarea principal. 
17 La utilización del concepto de límite para analizar e interpretar la asíntota se considera una tarea 
principal asociada al medio punto de bonificación. 
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G.2.2 Ejercicio 2 

G.2.2.a Solución 

La solución propuesta para el segundo ejercicio se recoge en la tabla 30. 

i) En primer lugar, es conveniente hacer una representación de la región propuesta. 

 
Los puntos de intersección son los siguientes: 

𝑝𝑝 ∩ 𝑟𝑟: (−1,0) 

𝑝𝑝 ∩ 𝑠𝑠: (2,−3) 

𝑟𝑟 ∩ 𝑠𝑠: (0,−3) 

Una vez caracterizada la región, se puede calcular el área a partir de la siguiente suma de 
integrales definidas. 

𝐴𝐴 = � [1 − 𝑥𝑥2 − (−3 − 3𝑥𝑥)]𝑑𝑑𝑑𝑑
0

𝑥𝑥=−1
+ � [1 − 𝑥𝑥2 − (−3)]𝑑𝑑𝑑𝑑

2

𝑥𝑥=0
=

13
6

+
16
3

=
15
2

 

Posibles respuestas correctas: 

• Ya que no se ha solicitado, no se exige la representación gráfica de las funciones 

• Cualquier división de la región alternativa válida para el cálculo del área se evaluará 
con la máxima calificación 

• El cálculo del área de regiones triangulares a través de la fórmula se considera válido 

Posibles errores: 

• Errores en la visualización de la región o en el cálculo de intersecciones. En el caso de 
los haya, se deberá valorar la coherencia en los siguientes pasos. 

• Error en la división de la región para realizar el cálculo del área mediante integrales 
definidas. 

 

-4

-3

-2

-1

0

1

-2 -1 0 1 2 3
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ii) A partir de la representación gráfica de las funciones, se ve de forma intuitiva que la 
coordenada horizontal del punto de intersección entre la nueva recta t, que divide la región en 
dos de igual área, y se debe encontrar en el intervalo (0,2]. Se puede utilizar cómo incógnita 
dicha coordenada 𝑃𝑃 (𝑥𝑥0,−3). 

La recta t tendrá la siguiente ecuación: 

𝑦𝑦 = 1 − 4 ·
𝑥𝑥
𝑥𝑥0

 

El área de la región 1 (izquierda) se puede calcular con mediante las siguientes integrales. 

 

𝐴𝐴1 = � [1 − 𝑥𝑥2 − (−3 − 3𝑥𝑥)]𝑑𝑑𝑑𝑑
0

𝑥𝑥=−1
+ � �1− 4 ·

𝑥𝑥
𝑥𝑥0
− (−3)� 𝑑𝑑𝑑𝑑

𝑥𝑥0

𝑥𝑥=0
=

13
6

+ 2 · 𝑥𝑥0 =
15
2

 

Por último, se debe imponer la condición que se exigía para la nueva región: 2 · 𝐴𝐴1 = 𝐴𝐴 
13
3

+ 4 · 𝑥𝑥0 =
15
2

 

𝑥𝑥0 =
19
24

 

La recta t es la que pasa por los puntos (0,1) y �19
24

,−3�. 

𝑡𝑡:𝑦𝑦 = −
96
19

𝑥𝑥 + 1 

Posibles respuestas correctas: 

• Cualquier división de la región alternativa válida para el cálculo del área se evaluará 
con la máxima calificación 

• El cálculo del área de regiones triangulares a través de la fórmula se considera válido 

• Ya que no se especifica la forma en la que debe definirse la recta t, se acepta cualquier 
forma de especificar dicha recta entre el conjunto de las rectas plano (p. ej. ecuación 
en cualquiera de sus formas, dos puntos, punto y una dirección) 

Posibles errores: 

• Errores derivados de la dificultad en la visualización o transcripción a lenguaje 
algebraico de la condición que expone el enunciado 

Tabla 30. Solución del ejercicio 2. 
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G.2.2.b Clasificación de tareas 

En la tabla 31 se desglosan y clasifican, siguiendo la secuencia para la realización 

del ejercicio de la solución propuesta, las tareas de la segunda pregunta de la prueba. 

Apartado i) 

1. Representación de la región delimitada por las curvas (T.A.E.)  

2. Fraccionamiento de la región en intervalos en los que se pueda aplicar la regla de 
Barrow (T.P.) o cuya área se pueda calcular mediante fórmulas 

3. Uso de la integral definida o de fórmulas para el cálculo de áreas  (T.P.) 

4. Integración (T.A.E.) 

Apartado ii) 

1. Representación geométrica de la situación que se plantea y algebrización (T.P.) 

2. Evaluación del área de la región aplicando las propiedades del cálculo de áreas o de la 
integral definida (T.P.) 

3. Resolución de la ecuación algebraica (T.A.G.) 

4. Definir la recta que se solicita (T.A.E.) 

Tabla 31. Clasificación de las tareas del ejercicio 2. 

G.2.3 Problema 3 

G.2.3.a Solución 

La solución propuesta para el problema 3 se muestra en la tabla 32. 

En primer lugar, resulta cómodo expresar el parámetro k en función de zmax y zmin. Si se 
mantiene el origen en el vértice del paraboloide, se tiene la siguiente relación: 

𝑅𝑅 = �𝑘𝑘 · (𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚) 

 

𝑘𝑘 =
𝑅𝑅2

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
 

 

A partir de esta expresión se puede calcular la velocidad angular 

2𝑔𝑔
𝜔𝜔2 =

𝑅𝑅2

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
 

 

𝜔𝜔 = �2𝑔𝑔 ·
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑅𝑅2
 

De tal manera que el radio de cada punto de la superficie del líquido se puede expresar como: 
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𝑟𝑟(𝑧𝑧) = 𝑅𝑅 · �
𝑧𝑧

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
     𝑧𝑧 ∈ [𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚, 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚] 

El volumen de líquido se puede calcular entonces mediante a partir de la suma de dos integrales 
definidas: 

𝑉𝑉 = � 𝜋𝜋 · 𝑅𝑅2 · 𝑑𝑑𝑑𝑑
𝑧𝑧=0

𝑧𝑧=−𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

+� 𝜋𝜋 · �𝑅𝑅2 − 𝑅𝑅2 ·
𝑧𝑧

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚
� · 𝑑𝑑𝑑𝑑

𝑧𝑧=𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧=0

= 𝜋𝜋 · 𝑅𝑅2 ·
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

2
 

Si se iguala la expresión anterior a la correspondiente al volumen en reposo, se pude obtener la 
expresión para calcular el nivel en dicha situación. 

𝜋𝜋 · 𝑅𝑅2 · 𝑧𝑧0 = 𝜋𝜋 · 𝑅𝑅2 ·
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

2
 

𝑧𝑧0 =
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

2
 

ii) La condición para que escape el líquido se corresponde al momento en el que su nivel 
máximo alcanza el borde del recipiente: 

ℎ = 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 

En ese caso el nivel líquido de líquido se puede expresar de la siguiente manera: 

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 = 2 · 𝑧𝑧0 − ℎ 

En este caso la velocidad angular se calcularía 

𝜔𝜔 = �4 · 𝑔𝑔 ·
ℎ − 𝑧𝑧0
𝑅𝑅2

 

iii) En la expresión obtenida, zmin alcanza valores negativos si 𝑧𝑧0 < ℎ
2
. Se corresponden a los 

casos en los que la superficie del paraboloide interseca con la base del recipiente. En este caso, 
se utilizará la denominación zv (cota del vértice de la parábola), ya que zmin, si se define como 
la cota mínima del líquido en este caso es igual a cero.  En esta nueva situación, el volumen de 
líquido se puede calcular con la siguiente integral.  

𝑉𝑉 = � 𝜋𝜋 · �𝑅𝑅2 − 𝑅𝑅2 ·
𝑧𝑧 − 𝑧𝑧𝑣𝑣
ℎ − 𝑧𝑧𝑣𝑣

� · 𝑑𝑑𝑑𝑑
𝑧𝑧=ℎ

𝑧𝑧=0
= 𝜋𝜋 · 𝑅𝑅2 ·

ℎ2

2 · (ℎ − 𝑧𝑧𝑣𝑣) 

 

El objetivo principal de esta pregunta es guiar a los alumnos en la resolución del problema, de 
manera que se llame su atención sobre esta situación, que a partir de la representación gráfica 
que del enunciado podría pasar desapercibida. De este modo, se considera válido cualquier 
razonamiento por el cual el alumno en cuenta las dos situaciones que se dan en el problema. 

 

De nuevo, se aplica la condición para que se produzca el escape de líquido: 

𝜋𝜋 · 𝑅𝑅2 · 𝑧𝑧0 = 𝜋𝜋 · 𝑅𝑅2 ·
ℎ2

2 · (ℎ − 𝑧𝑧𝑣𝑣) 
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𝑧𝑧𝑣𝑣 =
ℎ
𝑧𝑧0

· (2 · 𝑧𝑧0 − ℎ) 

De esta forma, la velocidad angular quedaría: 

 

𝜔𝜔 = �2𝑔𝑔 ·
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧𝑣𝑣

𝑅𝑅2
= �2𝑔𝑔 ·

ℎ − ℎ
𝑧𝑧0

· (2 · 𝑧𝑧0 − ℎ)

𝑅𝑅2
= �2𝑔𝑔 ·

ℎ
𝑅𝑅2 · 𝑧𝑧0

· (ℎ − 𝑧𝑧0) 

Posibles respuestas correctas: 

• Si se utiliza la relación entre el volumen del paraboloide de revolución y el del cilindro 
que lo contiene, el problema se simplifica al planteamiento de las ecuaciones 
algebraicas equivalentes 

• Si el alumno tiene en cuenta los dos posibles casos del problema, dependiendo de si el 
paraboloide de revolución interseca a la base del recipiente o no, sin necesidad de hacer 
el apartado iii se evaluará con la máxima calificación 

Posibles errores: 

• Derivados del uso del lenguaje algebraico 

• Errores en la ubicación de los sistemas de referencia 

• Derivados de dificultades para la visualización o para la transcripción a lenguaje 
algebraico de las condiciones que se plantean 

Tabla 32. Solución del problema 3. 
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G.2.3.b Clasificación de las tareas 

Las tareas que implica la resolución de los distintos apartados del problema tres 

se listan y clasifican en la tabla 33. 

Apartado i) 

1. Manipulación algebraica para expresar el parámetro 𝑘𝑘 en función de los datos 
conocidos del problema (T.A.G.) 

2. Aplicación de la integral definida para el cálculo de volúmenes de cuerpos de 
revolución (T.P.) 

3. (Opcional) Aplicación correcta de las propiedades en el cálculo de volúmenes así 
como el cálculo de volúmenes de cuerpos cuya fórmula sea conocida. (T.A.E.) 

4. Integración (T.A.E.) 

5. Algebrización: planteamiento de las ecuaciones que permiten obtener la expresión de 
las magnitudes que el problema solicita (z0 y ω) (T.A.E.) 

Apartado ii) 

1. Visualización (o representación) de la situación que se plantea (T.P.) 

2. Transcripción de dicha situación al lenguaje algebraico (T.P.) 

3. Resolución de la ecuación (T.A.G.) 

Apartado iii) 

1. Interpretación del lenguaje algebraico y/o visualización de la nueva situación que se 
plantea (T.P.) 

Apartado iv.a) 

1. Algebrización de la nueva situación (T.A.E.) 

2. Aplicación de la integral definida para el cálculo de volúmenes de cuerpos de 
revolución (T.P.) 

3. (Opcional) Aplicación correcta de las propiedades en el cálculo de volúmenes así 
como el cálculo de volúmenes de cuerpos cuya fórmula sea conocida. (T.A.E.) 

4. Integración (T.A.E.) 

Apartado iv.b) 

1. Aplicación de las propiedades de la integral definida y de la regla de Barrow para el 
cálculo de la integral (T.P.) 

2. Integración (T.A.E.) 

3. Interpretación de la integral definida (T.P.) 

Tabla 33. Clasificación de las tareas del ejercicio 3. 
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G.3 Criterios y guía para la calificación 

En primer lugar, se ha realizado un reparto de puntos con el objetivo de ajustar la 

calificación numérica a unos determinados grados de desarrollos del aprendizaje. De este 

modo, se pueden diferenciar dos niveles principales: 

• El alumno es capaz de aplicar la integral definida al cálculo de áreas bajo 

curvas y, en general, extender este uso a un conjunto limitado de contextos. 

Con este grado de desarrollo la nota máxima que se puede alcanzar se sitúa 

en torno al siete (apartados: 1.i, 2.i, 3.i, 3.iv.b) 

• Si además, el alumno es competente para utilizar la integral definida en 

ciertas situaciones problemáticas (apartados 2.ii, 3.ii, 3.iii y 3.iv.b) optará 

a la máxima calificación en la prueba 

• Por último, se ha concedido medio punto adicional para la calificación a 

la aplicación del concepto de límite en el primer ejercicio (1.ii) 

.Los criterios se alinean con los siguientes que se indican en la Orden de 1 de julio 

de 2008 (Boletín Oficial de Aragón de 17 de julio)18: 

• Calcular áreas de regiones limitadas por rectas y curvas sencillas 

fácilmente representables, y aplicar este cálculo a situaciones de la 

naturaleza o la tecnología. 

• Transcribir problemas reales a un lenguaje algebraico, utilizar las técnicas 

matemáticas apropiadas en cada caso para resolverlos e interpretar las 

soluciones de acuerdo con el enunciado. 

La metodología adoptada para otorgar la calificación numérica a cada ejercicio 

sigue el modelo de penalización de errores propuesto por Gairín et al. (2012). La 

penalización asociada a cada error está condicionada por el tipo de tarea en la que ha 

surgido. Así pues, en la guía para la calificación elaborada (tabla 34), se ha señalado la 

penalización máxima atribuible a los errores vinculados a cada una de las tareas. 

  

                                                                    
18 Estos criterios se recogen, a su vez, en la programación de la asignatura de Matemáticas para la prueba 
de acceso a la universidad elaborada por la Universidad de Zaragoza. 
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Ejercicio 1.  

Apartado i) (2 puntos) 

Tarea Penalización 

T.A.E. Representación gráfica de la función ≤1/3 

T.P. Aplicación de la integral definida para el cálculo de áreas ≤1 

T.P. Identificación del área bajo la curva con la magnitud física del problema 
que se modeliza19 

≤1/3 

T.P. Utilización de la integral definida para proporcionar una expresión 
general que proporciona el cálculo del área bajo la curva en el intervalo 
[0, 𝑡𝑡] 𝑡𝑡 ∈ [0,∞) 

≤1/3 

T.A.E. Integración ≤1/3 

T.A.G. Simplificaciones algebraicas ≤1/ 

 

Apartado i) (0,5+0,5 puntos) 

Tarea Penalización 

T.A.E. Utilización de la expresión general para analizar los aspectos que se 
solicitan (T.A.E.) 

≤1/3 

T.A.E. conocer y aplicar el recorrido de una función exponencial (T.A.E.)  ≤1/3 

T.P. aplicación del concepto de límite (T.P.) 1 

T.A.G. Simplificaciones algebraicas, cálculos aritméticos 

 

≤1/6 

Ejercicio 2 

Apartado i) (2,5 puntos) 

Tarea Penalización 

T.A.E. Tareas relacionadas con la determinación o visualización de la 
región20 

≤1/3 

T.P. Fraccionamiento de la región en intervalos en los que se pueda aplicar la 
regla de Barrow o cuya área se pueda calcular mediante fórmulas 

≤1/5 

T.P. Uso de la integral definida o de fórmulas para el cálculo de áreas  ≤1/5 

                                                                    
19 Se rebaja la repercusión de la falta de identificación de la integral definida con el espacio recorrido ya 
que se considera que una dificultad de este tipo acarrea necesariamente una penalización significativa en 
el siguiente apartado del ejercicio. 
20 Se penalizará los fallos derivados de una delimitación errónea de la región, en ningún caso la ausencia 
de representación gráfica, pues el enunciado no lo pide. 
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T.A.E. Integración ≤1/3 

T.A.G. Simplificaciones algebraicas, cálculos aritméticos ≤1/6 

 

Apartado ii) (1 punto)  

Tarea Penalización 

T.P. Representación geométrica de la situación que se plantea y algebrización 
(T.P.) 

≤1/5 

T.P. Evaluación del área de la región aplicando las propiedades del cálculo de 
áreas o de la integral definida (T.P.) 

≤1/5 

T.A.E. Definición de la recta que se solicita ≤1/3 

T.A.G. Resolución de la ecuación de primer grado, cálculos aritméticos y 
simplificaciones algebraicas 

≤1/6 

 

 

Problema 3 

Apartado i) (1,5 puntos) 

Tarea Penalización 

T.A.G. Ajuste de la expresión general del paraboloide presentada a las 
condiciones que especifica el enunciado 

≤1/6 

T.P. Aplicación de la integral definida para el cálculo de volúmenes de 
cuerpos de revolución 

≤1 

T.A.E. Aplicación correcta de las propiedades en el cálculo de volúmenes así 
como el cálculo de volúmenes de cuerpos cuya fórmula sea conocida 

≤1/3 

T.A.E. Integración ≤1/3 

T.A.E. Algebrización: planteamiento de las ecuaciones que permiten obtener 
la expresión de las magnitudes que el problema solicita (z0 y ω) 

≤1/621 

T.A.G. Simplificación de expresiones algebraicas (T.A.G.) ≤1/6 

Apartado ii) (1 punto) 

T.P. Visualización (o representación) de la situación que se plantea (T.P.) ≤1/5 

T.P. Transcripción de dicha situación al lenguaje algebraico (T.P.) ≤1/5 

T.A.G. Resolución de la ecuación de primer grado, simplificación de 
expresiones algebraicas (T.A.G.) 

≤1/6 

                                                                    
21 Se rebaja la penalización de esta T.A.E al considerar que acarrea suficiente penalización en los 
siguientes apartados. 
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Apartado iii) (0,5 puntos) 

T.P. Interpretación del lenguaje algebraico y/o visualización de la nueva 
situación que se plantea 

 

≤1 

 

Apartado iv.a) (1 punto) 

T.A.E. Algebrización de la nueva situación ≤1/3 

T.P. Aplicación de la integral definida para el cálculo de volúmenes de 
cuerpos de revolución 

≤1 

T.A.E. (Opcional) Aplicación correcta de las propiedades en el cálculo de 
volúmenes así como el cálculo de volúmenes de cuerpos cuya fórmula sea 
conocida 

≤1/3 

T.A.E. Integración ≤1/3 

T.A.G. Simplificación de expresiones algebraicas (T.A.G.) ≤1/6 

 

Apartado iv.b) (1 punto)  

T.P. Aplicación de las propiedades de la integral definida y de la regla de 
Barrow para el cálculo de la integral 

≤1 

T.A.E. Integración ≤1/3 

T.A.G. Cálculos aritméticos ≤1/6 

Tabla 34. Guía para la calificación de la prueba de aprendizaje. 

Por último, para finalizar el proceso de evaluación, se dedicaría una sesión a la 

resolución de las cuestiones que hayan generado mayores dificultades a los estudiantes. 

Asimismo, con el objetivo de que los alumnos puedan mejorar su calificación, o para 

aquellos interesados, se puede plantear la actividad voluntaria de continuar el estudio del 

problema tres del examen. Podría ésta consistir en el análisis de cómo variaría el problema 

si el recipiente tuviera forma de cono o de tronco de cono. En este nuevo caso surgen 

situaciones en las que se integran los contenidos relacionados con interpretación 

geométrica de la derivada. Además, proporciona la oportunidad a los alumnos de abordar 

una actividad cercana a la resolución de problemas en un contexto más cómodo que el de 

una prueba escrita. 
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Anexo. Resolución de ejercicios 

I.1 Actividad inicial 

Ejercicio AI-1 

Los alumnos pueden comenzar analizando la recurrencia para los primeros casos: 

𝑑𝑑(1) = 1 · 𝐻𝐻 = 𝐻𝐻 

𝑑𝑑(2) = �1 + 2 ·
1
2
� · 𝐻𝐻 = 2 · 𝐻𝐻 

𝑑𝑑(3) = �1 + 2 ·
1
2

+ 2 ·
1
2

·
1
2
� · 𝐻𝐻 =

5
2

· 𝐻𝐻 

𝑑𝑑(4) = �1 + 2 ·
1
2

+ 2 ·
1
2

·
1
2

+ 2 ·
1
2

·
1
2

·
1
2
� · 𝐻𝐻 =

11
4

· 𝐻𝐻 

El término general se puede expresar de la siguiente forma: 

𝑑𝑑(𝑛𝑛) = �1 + 2 ·
1
2

+ 2 ·
1
2

·
1
2

+ ⋯+ 2 ·
1

2𝑛𝑛−1
� · 𝐻𝐻 

O, más formalmente: 

𝑑𝑑(𝑛𝑛) = �2 · �
1

2𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

− 1� · 𝐻𝐻 

En este momento, si los alumnos no recuerdan, se puede mostrar que la distancia 

recorrida en cada rebote sigue una progresión geométrica de razón 1 2⁄  y se les 

proporciona por tanto la ayuda. 

�𝑎𝑎1 · 𝑟𝑟𝑖𝑖−1
𝑛𝑛

𝑖𝑖=1

= 𝑎𝑎1 ·
1 − 𝑟𝑟𝑛𝑛

1 − 𝑟𝑟
 

En este caso, si este resultado se aplica al ejercicio se obtiene: 

𝑑𝑑(𝑛𝑛) = �2 · �
1

2𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

− 1� · 𝐻𝐻 = �4 · �1 −
1

2𝑛𝑛
� − 1� · 𝐻𝐻 = �3 −

1
2𝑛𝑛−2

� · 𝐻𝐻 

En clase se mostrará que, pese a que la sucesión 𝑑𝑑(𝑛𝑛) es creciente, pues la 

distancia entre dos rebotes es siempre mayor que cero, dicha sucesión es convergente ya 

que: 
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lim
𝑛𝑛→∞

𝑑𝑑(𝑛𝑛) = 3 · 𝐻𝐻 

Por lo tanto, si el proceso se prolonga indefinidamente, aunque la pelota realiza 

infinitos rebotes recorre una distancia 3 · 𝐻𝐻. 

Ejercicio AI-2 

La primera de familia de figuras –triángulo de Sierpinski22– se construye, de 

forma recurrente, eliminando en cada uno triángulo equilátero otro cuya área es la cuarta 

parte. Puede ayudar a construir las expresiones algebraicas correspondientes al perímetro 

y el área la siguiente tabla I.1. Para abreviar la notación, se utilizan 𝑃𝑃1 y 𝐴𝐴1 para designar 

el perímetro y el área de la primera figura. 

𝑃𝑃1 = 3 · 𝑙𝑙 

𝐴𝐴1 =
√3
4

· 𝑙𝑙2 

Figura Triáng. 
(*) 

Perímetro, 𝑃𝑃(𝑛𝑛) Área, 𝐴𝐴(𝑛𝑛) 

1 0 𝑃𝑃1 𝐴𝐴1 

2 1 𝑃𝑃1 · �1 +
1
2
� =

3
2

· 𝑃𝑃1 𝐴𝐴1 · �1 −
1
4
� =

3
4

· 𝐴𝐴1 

3 3 𝑃𝑃1 · �1 +
1
2

+
3

22
� =

9
4

· 𝑃𝑃1 𝐴𝐴1 · �1 −
1
4
−

3
42
� =

9
16

· 𝐴𝐴1 

4 32 𝑃𝑃1 · �1 +
1
2

+
3
22

+
32

23
� =

27
8

· 𝑃𝑃1 𝐴𝐴1 · �1 −
1
4
−

3
42
−

32

43
� =

27
64

· 𝐴𝐴1 

n 3𝑛𝑛−2 
𝑃𝑃1 · �1 +

1
2
�

3𝑖𝑖−1

2𝑖𝑖−1

𝑛𝑛−1

𝑖𝑖=1

� = �
3𝑛𝑛−1

2𝑛𝑛−1
�𝑃𝑃1 𝐴𝐴1 · �1 −

1
4
−

3
42
−

32

43
� = �

3𝑛𝑛−1

4𝑛𝑛−1
� · 𝐴𝐴1 

Tabla I.1. Construcción de una tabla para la obtención de los términos generales correspondientes 

al perímetro y área de la primera figura. (*) Triángulos que se eliminan para la construcción de 

cada figura. 

Se puede observar que tanto cada incremento en el perímetro como el decremento 

en el área siguen sendas sucesiones geométricas. Ambas sucesiones son monótonas y, sin 

embargo, mientras la correspondiente al perímetro no está acotada la correspondiente al 

área converge a cero. 

                                                                    
22 Durante la sesión se puede hacer una breve referencia a la geometría fractal ya que puede suscitar el 
interés de los alumnos. 
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lim
𝑛𝑛→∞

𝑃𝑃(𝑛𝑛) = ∞ 

lim
𝑛𝑛→∞

𝐴𝐴(𝑛𝑛) = 0 

En el caso de la segunda figura –copo de nieve de Koch–, se forma por añadir en 

cada lado un triángulo equilátero cuyo lado es la tercera parte aquél en el que se integra. 

De forma análoga se puede elaborar una tabla (tabla I.2) para observar la recurrencia en 

el término general.  

Figura Lados Perímetro, 𝑃𝑃(𝑛𝑛) Área, 𝐴𝐴(𝑛𝑛) 

1 3 3 · 𝑙𝑙 𝐴𝐴1 

2 3 · 4 4 · 𝑙𝑙 𝐴𝐴1 · �1 +
3
9
� =

4
3

· 𝐴𝐴1 

3 3 · 42 42

3
· 𝑙𝑙 𝐴𝐴1 · �1 +

3
9

+
3 · 4
92

� =
22 · 5

33
· 𝐴𝐴1 

4 3 · 43 43

32
· 𝑙𝑙 𝐴𝐴1 · �1 +

3
9

+
3 · 4
92

+
3 · 42

93 � =
23 · 47

35
· 𝐴𝐴1 

n 3𝑛𝑛−2 
�

4𝑛𝑛−1

3𝑛𝑛−1�
· 3𝑙𝑙 𝐴𝐴1 · �1 +

1
3
�

4𝑖𝑖−1

9𝑖𝑖−1

𝑛𝑛−1

𝑖𝑖=1

� =
1
5

· �8 − 3 ·
4𝑛𝑛−1

9𝑛𝑛−1�
· 𝐴𝐴1 

Tabla I.2. Construcción de una tabla para la obtención de los términos generales correspondientes 

al perímetro y área de la segunda figura.  

En este caso se tiene que: 

lim
𝑛𝑛→∞

𝑃𝑃(𝑛𝑛) = ∞ 

 

lim
𝑛𝑛→∞

𝐴𝐴(𝑛𝑛) =
8
5

· 𝐴𝐴1 =
2√3

5
· 𝑙𝑙2 

Por tanto, el área de la figura coloreada resultante de un proceso infinito es un 

número real finito. 
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I.2 Ejercicios del primer campo de problemas 

Ejercicio RS-CP-1.1 

En primer lugar, se tratará de que los alumnos utilicen las herramientas que poseen 

de geometría analítica. Así, la curva que delimita superiormente la fachada parabólica 

puede expresarse mediante la función. 

𝑓𝑓(𝑥𝑥) =
ℎ
𝑎𝑎2

· (𝑎𝑎2 − 𝑥𝑥2) 

Donde ℎ es la altura máxima de la fachada y 𝑎𝑎 la mitad de la su anchura máxima23. 

Dado que la función es simétrica, si se aplican las propiedades que los alumnos 

conocen del área, el problema se puede reducir al cálculo del área en la región donde 0 ≤

𝑥𝑥 ≤ 𝑎𝑎. En términos de integral definida, que todavía no ha sido introducida, este paso 

implicaría la aceptación de la propiedad por la que ∫ 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝑎𝑎 = ∫ 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐

𝑎𝑎 + ∫ 𝑓𝑓𝑓𝑓𝑓𝑓𝑏𝑏
𝑐𝑐  con 𝑎𝑎 <

𝑐𝑐 < 𝑏𝑏. Más adelante, se puede aprovechar este paso para justificar, en base a su utilidad 

en la resolución de los ejercicios, la institucionalización de esta propiedad. 

La familia de particiones propuesta 𝑃𝑃𝑝𝑝 divide el intervalo en 𝑛𝑛 = 2𝑝𝑝 subintervalos 

de igual amplitud 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1 = 𝑎𝑎
𝑛𝑛
.  

𝑃𝑃𝑝𝑝 = �0,
𝑎𝑎
𝑛𝑛

,
2 · 𝑎𝑎
𝑛𝑛

, … ,
𝑖𝑖 · 𝑎𝑎
𝑛𝑛

, … ,
(𝑛𝑛 − 1) · 𝑎𝑎

𝑛𝑛
,𝑎𝑎� 

Así, la suma inferior se puede expresar de la siguiente forma: 

𝐿𝐿�𝑃𝑃𝑝𝑝,𝑓𝑓� = �
𝑎𝑎

𝑛𝑛
·
ℎ

𝑎𝑎2 · �𝑎𝑎2 − �
𝑖𝑖 · 𝑎𝑎

𝑛𝑛
�

2

�
𝑛𝑛

𝑖𝑖=1

=
𝑎𝑎

𝑛𝑛
· ℎ�1

𝑛𝑛

𝑖𝑖=1

−
𝑎𝑎

𝑛𝑛2 · ℎ�· 𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

 

Si se aplica la fórmula para la suma de los elementos de la sucesión ∑ · 𝑖𝑖2𝑛𝑛
𝑖𝑖=1 =

𝑛𝑛3

3
+ 𝑛𝑛2

2
+ 𝑛𝑛

6
, las sumas inferiores asociadas a la familia de particiones propuestas se 

pueden expresar mediante la siguiente fórmula general. 

𝐿𝐿�𝑃𝑃𝑝𝑝,𝑓𝑓� = ℎ · 𝑎𝑎 �1 −
1
3
−

1
2 · 𝑛𝑛

−
1

6 · 𝑛𝑛2
� 

                                                                    
2323 En la resolución que se presenta del ejercicio se ha optado por mantener los parámetros h y a sin 
sustituir por los datos del problema. En la resolución de clase, dependiendo de la destreza de los alumnos 
para el manejo de expresiones algebraicas, se puede utilizar desde el principio dichos valores numéricos. 



Anexo. Resolución de ejercicios 
 

 
 

83 

De la misma forma, si se aplican análogas operaciones algebraicas a la suma 

superior, se puede obtener la siguiente expresión: 

𝑈𝑈�𝑃𝑃𝑝𝑝,𝑓𝑓� = �
𝑎𝑎

𝑛𝑛
·
ℎ

𝑎𝑎2 · �𝑎𝑎2 − �
(𝑖𝑖 − 1) · 𝑎𝑎

𝑛𝑛
�

2

�
𝑛𝑛

𝑖𝑖=1

= ℎ · 𝑎𝑎 �1 −
1
3

+
1

2 · 𝑛𝑛
−

1
6 · 𝑛𝑛2

� 

La diferencia entre ambas aproximaciones proporciona información acerca de la 

calidad de la estimación del área. 

𝜀𝜀 = 2 · �𝑈𝑈�𝑃𝑃𝑝𝑝, 𝑓𝑓� − 𝐿𝐿�𝑃𝑃𝑝𝑝,𝑓𝑓�� = 2 ·
ℎ · 𝑎𝑎
𝑛𝑛

 

A partir de este desarrollo se puede completar la tabla I.3: 

Precisión Partición Número 
de nodos 

L(Pi,f) [m2] U(Pi,f) [m2] ε [m2] Error relativo 
[%] 

10m2 P7 128 795,300 804,675 9,375 1,17189% 

1m2 P11 2048 799,707 800,293 0,586 0,07324% 

1dm2 P17 217 799,995 800,005 9,16·10-3 0,00114% 

1cm2 P24 224 800,000 800,000 7,15·10-5 0,00001% 

1mm2 P31 231 800,000 800,000 5,59·10-7 0,00000% 

Tabla I.3. Proceso de convergencia asociado a la familia de particiones Pp.  

Una vez que los alumnos han avanzado hasta este punto, pueden observar que no 

existe ninguna partición finita de elementos que verifique 𝑈𝑈(𝑃𝑃,𝑓𝑓) = 𝐿𝐿(𝑃𝑃,𝑓𝑓). Sin 

embargo se puede comprobar que el límite de las sucesiones asociadas a cada suma 

coincide. 

lim
𝑛𝑛→∞

ℎ · 𝑎𝑎 �1 −
1
3

+
1

2 · 𝑛𝑛
−

1
6 · 𝑛𝑛2

� = lim
𝑛𝑛→∞

ℎ · 𝑎𝑎 �1 −
1
3
−

1
2 · 𝑛𝑛

−
1

6 · 𝑛𝑛2
� =

2 · ℎ · 𝑎𝑎
3

 

Y dado, que, a partir del desarrollo deductivo, se había establecido que: 

𝑈𝑈(𝑃𝑃,𝑓𝑓) ≥
Á𝑟𝑟𝑟𝑟𝑟𝑟

2
≥ 𝐿𝐿(𝑃𝑃,𝑓𝑓) 

Se tiene que el valor exacto del área coincide con dicho límite. 

Á𝑟𝑟𝑟𝑟𝑟𝑟 =
4
3

· ℎ · 𝑎𝑎 =
2
3

· ℎ · 𝐴𝐴 
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En la resolución del apartado (v), los alumnos pueden comprobar que la 

proyección de la figura sobre el suelo produce una transformación de la siguiente forma 

en la curva.  

𝑔𝑔(𝑥𝑥) = 𝑘𝑘 · 𝑓𝑓(𝑥𝑥) 

Es un buen momento para reflexionar acerca de la linealidad de la integral, que 

facilitaría el proceso de resolución. En efecto (teorema 6, tabla 10), el área sombreada en 

el suelo en verano es igual a: 

Á𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
3

· � 20 · �1 − �
𝑥𝑥

30
�
2
� · 𝑑𝑑𝑑𝑑

30

−30
=

800
3

𝑚𝑚2 

En invierno, el problema se complica, ya que aparecen proyecciones sobre el 

edificio B (fig. I.1). Los alumnos pueden empezar por la superficie más sencilla: la 

correspondiente a la fachada este del edificio B. La altura (ℎ) del triángulo se puede 

calcular aplicando el teorema de tales: 

ℎ =
40
60

· 𝑓𝑓(𝑥𝑥 = −10) =
320
27

𝑚𝑚 

La base (b) se puede calcular mediante la siguiente relación: 

𝑏𝑏 = 𝑔𝑔(𝑥𝑥 = −10) − 20 =
100

3
𝑚𝑚 

Luego el área sombreada sobre esta superficie es: 

Á𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵/𝐸𝐸 =
ℎ · 𝑏𝑏

2
=

24

33
· 1000𝑚𝑚2  
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Fig. I.1. Representación de la proyección de la sombra del edificio A sobre las distintas superficies 

en el mediodía del día estival. 

La resolución puede seguir por la región sombreada en el suelo. Pueden 

aprovechar la técnica de descomposición de la figura para calcularla. Más adelante, 

podremos aprovechar este procedimiento para cuestionar su validez en términos de 

integrales (que establecerá el teorema 4, tabla 10). Es necesario, primero, calcular la 

intersección de la curva 𝑔𝑔(𝑥𝑥) con la recta 𝑦𝑦 = 20, �−20√3, 20�. Utilizando la nueva 

herramienta que supone la integral definida, los alumnos podrían expresar el área de la 

siguiente forma. 

Á𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆 = � 𝑔𝑔(𝑥𝑥) · 𝑑𝑑𝑑𝑑
−20√3

−30
+ 𝑔𝑔�−20√3� · �20√3 − 10� + � 𝑔𝑔(𝑥𝑥) · 𝑑𝑑𝑑𝑑

30

−10
 

El hecho de que aparezcan nuevos intervalos de integración puede ser motivo para 

que se realicen indagaciones para obtener una fórmula general de integración de la 

función. Así, se puede completar el trabajo relativo a las propiedades de la integral (tabla 

12), así como extraer sendas fórmulas generales para la integración de la función 
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cuadrática y constante. Por ejemplo, para el caso de la función cuadrática se puede 

plantear el procedimiento similar al aplicado en la primera parte del ejercicio. 

𝐿𝐿�𝑃𝑃𝑝𝑝, 𝑥𝑥2� = �
𝑏𝑏
𝑛𝑛

· �
𝑖𝑖 · 𝑏𝑏
𝑛𝑛
�
2𝑛𝑛

𝑖𝑖=1

= �
𝑏𝑏
𝑛𝑛
�
3

�· 𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

= 𝑏𝑏3 · �
1
3

+
1

2 · 𝑛𝑛
+

1
6 · 𝑛𝑛2

� 

� 𝑥𝑥2𝑑𝑑𝑑𝑑
𝑏𝑏

0
= lim

𝑛𝑛→∞
𝑏𝑏3 · �

1
3

+
1

2 · 𝑛𝑛
+

1
6 · 𝑛𝑛2

� =
𝑏𝑏3

3
 

Por último, el área de la región sombreada en la superficie sur del edificio B se 

puede calcular de la siguiente forma. Una manera sencilla de representar la zona 

sombreada, aunque intuitivamente pueda no ser inmediata para los alumnos, es proyectar 

la arista horizontal inferior del edificio B sobre la fachada del edificio A. De nuevo, es 

necesario haber calculado la intersección entre la curva 𝑓𝑓(𝑥𝑥) y la recta horizontal 𝑦𝑦 = 20
3

, 

�− 20
3 √3, 20

3
�. 

Á𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵/𝑆𝑆 = � 𝑓𝑓(𝑥𝑥) · 𝑑𝑑𝑑𝑑
−10

−203 √3
− 𝑓𝑓 �−

20
3 √3� · �20√3 − 10� 

El apartado que se plantea como resolución opcional requiere un análisis más 

detallado de la proyección de la sobra del edificio. En principio, en los laterales del 

edificio se puede proyectar sombra. Se plantea comenzar por el análisis de esta región (en 

la figura I.2 se representa una proyección de la sombra en el lateral).  

Así pues, es necesario primero determinar el punto de tangencia entre la recta 

correspondiente a la dirección de los rayos del sol proyectada sobre el plano de la fachada 

y la parábola. 

𝑓𝑓′(𝑥𝑥) = −
4
3

· 𝑥𝑥 = 3√2 

Sin embargo la solución 𝑥𝑥 = − 9√2
4

< −3 no se corresponde con ningún punto de 

la fachada, de modo que no se proyecta sombra. La fachada noroeste es, por tanto, la 

única que proyecta sombra sobre el suelo. En la figura I.3 se muestra la proyección de 

esta fachada. Asimismo, en ella se representa la relación entre las sumas superiores e 

inferiores para una partición dada asociadas al área de la fachada y de su sombra. De esta 

manera se tiene que: 
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Á𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴,𝑁𝑁𝑁𝑁/𝑆𝑆 = �
√2
6
𝑓𝑓(𝑥𝑥) · 𝑑𝑑𝑑𝑑

−30

−30
=
√2
6
� 𝑓𝑓(𝑥𝑥) · 𝑑𝑑𝑑𝑑
−30

−30
=
√2
6

· Á𝑟𝑟𝑟𝑟𝑟𝑟𝐴𝐴,𝑁𝑁𝑁𝑁 =
√2
3

· 400𝑚𝑚2 

 

Figura I.2. Proyección de la sombra en la zona lateral del edificio. 

 

Figura I.3. Proyección de la sombra de la fachada noroeste. 

Ejercicio CP-1.6 

A continuación se presenta una tabla (tabla I.4) con las soluciones al ejercicio CP-

1.6. En ella se indican las propiedades de la integral definida que los alumnos pueden 

utilizar, en este momento del desarrollo de la unidad, para resolverlas. 
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i) ∫ 𝑥𝑥20 𝑑𝑑𝑑𝑑 = 2·2
2

= 2 
• Identificación integral-área (tabla 13) 

ii)−∫ 𝑥𝑥𝑏𝑏0 𝑑𝑑𝑑𝑑 = −𝑏𝑏2

2
 

• Propiedad linealidad integral (tabla 12, teor. 
6) 

iii) ∫ |𝑥𝑥|2
−2 𝑑𝑑𝑑𝑑 = 2·2

2
+ 2·2

2
= 4 

• Propiedad aditividad en el intervalo de 
integración (tabla 12, teor. 4) 

iv) ∫ −(3 + 2 · 𝑥𝑥)2
0 𝑑𝑑𝑑𝑑 = −3 · 2 − 2·4

2
= −10 

• Propiedad linealidad integral (tabla 12, teor. 
5) 

v) ∫ |3 + 2 · 𝑥𝑥|2
−6 𝑑𝑑𝑑𝑑 = 7

2
· �2 + 3

2
� + 9

2
· �6 −

3
2
� = 

= 63  

vi) ∫ 𝑘𝑘 · 𝑥𝑥𝑏𝑏
𝑎𝑎 𝑑𝑑𝑑𝑑 = 𝑘𝑘 · (𝑏𝑏2 − 𝑎𝑎2) 

vii) ∫ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)2𝜋𝜋
0 𝑑𝑑𝑑𝑑 = 0 

• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = −𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 + 𝜋𝜋)  
viii) 2 · ∫ √1 − 𝑥𝑥21

−1 𝑑𝑑𝑑𝑑 = 𝜋𝜋 

ix) ∫ √1 − 𝑥𝑥2√2 2⁄
−1 𝑑𝑑𝑑𝑑 = 𝜋𝜋 · �1

4
+ 1

8
� + 1

2
�√2
2
�
2

= 

= 3𝜋𝜋
8

+ 1
4
  

x) ∫ √𝑅𝑅2 − 𝑥𝑥2𝑏𝑏
−𝑅𝑅 𝑑𝑑𝑑𝑑 =

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�−𝑏𝑏𝑅𝑅 �

2
· 𝑅𝑅2 + 𝑏𝑏·�𝑅𝑅2−𝑏𝑏2

2
 

xi) 𝑘𝑘 · ∫ √𝑅𝑅2 − 𝑥𝑥2𝑅𝑅
−𝑅𝑅 𝑑𝑑𝑑𝑑 = 𝑘𝑘

2
· 𝜋𝜋 · 𝑅𝑅2 xii) ∫ [𝑥𝑥 − 𝐸𝐸(𝑥𝑥)]𝑎𝑎

0 𝑑𝑑𝑑𝑑 = 𝐸𝐸(𝑎𝑎)
2

+ [𝑥𝑥−𝐸𝐸(𝑥𝑥)]2

2
 

Tabla I.4. Solución del ejercicio CP-1.2. 

A partir de estos resultados se puede obtener el área de una elipse con diámetros 

a y b. Una expresión analítica explícita de dicha figura es la siguiente: 

𝑦𝑦 = ±
𝑏𝑏
𝑎𝑎

· �𝑎𝑎2 − 𝑥𝑥2 

El área de la figura se puede calcular a partir de la siguiente integral: 

2�
𝑏𝑏
𝑎𝑎

· �𝑎𝑎2 − 𝑥𝑥2𝑑𝑑𝑑𝑑
𝑎𝑎

−𝑎𝑎
 

Si se aplican las propiedades de la integral definida y la identificación de esta 

operación con el área, se obtienen que: 

2�
𝑏𝑏
𝑎𝑎

· �𝑎𝑎2 − 𝑥𝑥2𝑑𝑑𝑑𝑑
𝑎𝑎

−𝑎𝑎
=·

𝑏𝑏
𝑎𝑎

· � 2 · �𝑎𝑎2 − 𝑥𝑥2𝑑𝑑𝑑𝑑
𝑎𝑎

−𝑎𝑎
=
𝑏𝑏
𝑎𝑎

· 𝜋𝜋 · 𝑎𝑎2 = 𝜋𝜋 · 𝑎𝑎 · 𝑏𝑏 

Ejercicio CP-1.3 

i) y ii) En primer lugar, conviene representar la región delimitada por sendas 

parejas de funciones. En la siguiente figura (fig. I.4) se muestra la región correspondiente 

al primer caso (i): 
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Figura I.4. Representación de la región. 

Los puntos de corte entre las dos curvas se pueden calcular mediante la resolución 

de los siguientes sistemas de ecuaciones de dos incógnitas: 

i) �𝑦𝑦 = 9 − 𝑥𝑥2
𝑦𝑦 = 6 − 2𝑥𝑥     (−1,8)    (3,0) 

ii) �𝑦𝑦 = 𝑥𝑥2 − 4
𝑦𝑦 = 𝑥𝑥 + 2      (−2,0)    (3,5) 

El área de ambas regiones se puede calcular mediante la sustracción del área bajo 

cada par de curvas. En este momento, se puede aprovechar las propiedades conocidas de 

la integral definida (teor. 5, tabla 12) para simplificar las operaciones algebraicas: 

i) 𝐴𝐴(𝑖𝑖) = ∫ (9 − 𝑥𝑥2)𝑑𝑑𝑑𝑑3
−1 − ∫ (6 − 2𝑥𝑥)𝑑𝑑𝑑𝑑3

−1 = ∫ (3 + 2𝑥𝑥 − 𝑥𝑥2)𝑑𝑑𝑑𝑑3
−1 = 32

3
𝑢𝑢2 

ii) 𝐴𝐴(𝑖𝑖) = ∫ (𝑥𝑥 + 2)𝑑𝑑𝑑𝑑3
−2 − ∫ (𝑥𝑥2 − 4)𝑑𝑑𝑑𝑑3

−2 = ∫ (6 + 𝑥𝑥 − 𝑥𝑥2)𝑑𝑑𝑑𝑑3
−2 = 125

6
𝑢𝑢2 

iii) En primer lugar, hay que observar que la función cumple las siguientes 

relaciones: 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) ≥ 0,    0 ≤ 𝑥𝑥 ≤ 𝜋𝜋 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) ≤ 0,   − 𝜋𝜋 ≤ 𝑥𝑥 ≤ 0 

-4

-2

0

2

4

6

8

10

-2 -1 0 1 2 3 4

(-1,8)

(3,0)

𝑦𝑦 = 9 − 𝑥𝑥2

𝑦𝑦 = 6 − 2𝑥𝑥
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Una vez que se ha analizado el signo de la función y conocida la relación entre la 

integral y el área (tabla 13), se puede calcular la integral por medio de la siguiente suma 

de integrales definidas: 

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖) = −� 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑
0

−𝜋𝜋
+ � 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑

𝜋𝜋

0
 

Por otra parte se tiene que 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥 + 𝜋𝜋) = −𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥), de modo que el área de la 

región comprendida entre 𝑥𝑥 = −𝜋𝜋 y 𝑥𝑥 = 0 es igual a la de la región comprendida entre 

𝑥𝑥 = 0 y 𝑥𝑥 = 𝜋𝜋. 

𝐴𝐴(𝑖𝑖𝑖𝑖𝑖𝑖) = 2 · � 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)𝑑𝑑𝑑𝑑
𝜋𝜋

0
= 4 

Tras la realización del ejercicio se pueden extraer las siguientes conclusiones 

(tabla I.5): 

Si 𝑓𝑓(𝑥𝑥) y 𝑔𝑔(𝑥𝑥) son funciones continuas en  [𝑎𝑎, 𝑏𝑏], tal que 𝑓𝑓(𝑥𝑥) ≥ 𝑔𝑔(𝑥𝑥), entonces: 

• El valor de la integral definida ∫ [ 𝑓𝑓(𝑥𝑥) −  𝑔𝑔(𝑥𝑥)]𝑏𝑏
𝑎𝑎 · 𝑑𝑑𝑑𝑑 se corresponde con el área de 

la región delimitada por las funciones 𝑓𝑓(𝑥𝑥), 𝑔𝑔(𝑥𝑥) y las rectas 𝑥𝑥 = 𝑎𝑎 y 𝑥𝑥 = 𝑏𝑏. 

• El valor de la integral ∫ |𝑓𝑓(𝑥𝑥)|𝑏𝑏
𝑎𝑎 · 𝑑𝑑𝑑𝑑 se corresponde con el área de la región 

delimitada por la función 𝑓𝑓(𝑥𝑥), las rectas 𝑥𝑥 = 𝑎𝑎 y 𝑥𝑥 = 𝑏𝑏 y el eje OX. 

Tabla I.5. Relaciones entre el área y la integral definida obtenidas a partir de los resultados del 

ejercicio CP-1.3. 

Ejercicio CP-1.4 

El ejercicio tiene como objetivo acercar a los alumnos a la problemática de la 

integración numérica. Aunque el enunciado no acota el tipo de fórmula de integración 

que puede analizar en el ejercicio, los resultados del problema CP-1.1 orientan a la 

utilización de la regla del trapecio. Como se ha visto, las sumas superiores e inferiores 

aplicadas a la función del problema anterior se podían expresar de la siguiente forma: 

𝑈𝑈�𝑃𝑃𝑝𝑝,𝑓𝑓� = �
𝑎𝑎

𝑛𝑛
·
ℎ

𝑎𝑎2 · �𝑎𝑎2 − �
(𝑖𝑖 − 1) · 𝑎𝑎

𝑛𝑛
�

2

�
𝑛𝑛

𝑖𝑖=1

= ℎ · 𝑎𝑎 �1 −
1
3

+
1

2 · 𝑛𝑛
−

1
6 · 𝑛𝑛2

� 

𝐿𝐿�𝑃𝑃𝑝𝑝,𝑓𝑓� = �
𝑎𝑎

𝑛𝑛
·
ℎ

𝑎𝑎2 · �𝑎𝑎2 − �
(𝑖𝑖 − 1) · 𝑎𝑎

𝑛𝑛
�

2

�
𝑛𝑛

𝑖𝑖=1

= ℎ · 𝑎𝑎 �1 −
1
3
−

1
2 · 𝑛𝑛

−
1

6 · 𝑛𝑛2
� 



Anexo. Resolución de ejercicios 
 

 
 

91 

Se puede ver, por tanto, que si se hace la media entre ambos valores aproximativos 

de la integral definida se elimina el término inversamente proporcional a n –número de 

subintervalos de la partición– del error asociado. 

𝑈𝑈�𝑃𝑃𝑝𝑝,𝑓𝑓� + 𝐿𝐿�𝑃𝑃𝑝𝑝,𝑓𝑓� =
𝑎𝑎
𝑛𝑛

· �
1
2

· 𝑓𝑓(0) + 𝑓𝑓(𝑥𝑥1) + ⋯+ 𝑓𝑓(𝑥𝑥𝑛𝑛−1) +
1
2

· 𝑓𝑓(𝑎𝑎)� 

𝑎𝑎
𝑛𝑛

· �
1
2

· 𝑓𝑓(0) + 𝑓𝑓(𝑥𝑥1) + ⋯+ 𝑓𝑓(𝑥𝑥𝑛𝑛−1) +
1
2

· 𝑓𝑓(𝑎𝑎)� = ℎ · 𝑎𝑎 �1 −
1
3
−

1
6 · 𝑛𝑛2

� 

A continuación se completa la tabla I.3 con la nueva fórmula de integración (tabla 

I.6).  

Precisión Pi n L(Pi,f) 
[m2] 

U(Pi,f) 
[m2] 

ε  Pi n Trapecio ε 

10m2 P7 128 795,300 804,675 9,4m2 P3 8 796,8750 3,1 m2 

1m2 P11 2048 799,707 800,293 0,59m2 P4 16 799,2188 0,78 m2 

1dm2 P17 217 799,995 800,005 0,92dm2 P8 256 799,9969 0,31 dm2 

1cm2 P24 224 800,000 800,000 0,71cm2 P11 2048 800,0000 0,48 cm2 

1mm2 P31 231 800,000 800,000 0,56mm2 P14 16384 800,0000 0,75 mm2 

Tabla I.6. Proceso de convergencia asociado a la familia de particiones Pp.  

Ejercicio CP-1.5 

El número 𝜋𝜋 se puede aproximar a partir de siguiente integral definida: 

� �1 − 𝑥𝑥2𝑑𝑑𝑑𝑑
1

0
=
𝜋𝜋
4

 

Si se utiliza una partición uniforme 𝑃𝑃, las sumas superior e inferior proporcionan 

una aproximación a dicho número (4 · 𝑈𝑈(𝑃𝑃, 𝑓𝑓), 4 · 𝐿𝐿(𝑃𝑃,𝑓𝑓)). En la siguiente figura (fig. 

I.5) se muestra la evolución del valor absoluto del error asociado a la estimación del 

número 𝜋𝜋 que producen dichas sumas. En esta representación se ha añadido la 

aproximación que se obtiene de aplicar la regla del trapecio que se ha analizado en el 

ejercicio anterior (CP-1.4). Son necesarias unas particiones de 24, 192 y 209 subintervalos 

para obtener una aproximación con un error menor a la centésima del número 𝜋𝜋 en el caso 

de aplicar, respectivamente, la regla de trapecio, la suma superior y la suma inferior. 
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Fig. I.5. Evolución del error asociado a la estimación del número pi de las distintas sumas 

aproximativas. 

Ejercicio CP-1.6 

i) y iii) Para ambas funciones se puede tomar la siguiente partición: 

𝑃𝑃 = �−2,−
𝛿𝛿
2

,
𝛿𝛿
2

, 2 � 

Donde el número 𝛿𝛿 verifica que 0 < 𝛿𝛿 < 𝜀𝜀
2
. 

A continuación se calculan las sumas superiores e inferiores asociadas: 

𝑈𝑈�𝑃𝑃,𝑓𝑓(𝑖𝑖)� = 0 · �2 −
𝛿𝛿
2
� + 2 · 𝛿𝛿 + 2 · �2 −

𝛿𝛿
2
� 

𝐿𝐿�𝑃𝑃,𝑓𝑓(𝑖𝑖)� = 0 · �2 −
𝛿𝛿
2
� + 0 · 𝛿𝛿 + 2 · �2 −

𝛿𝛿
2
� 

𝑈𝑈�𝑃𝑃,𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖)� = 2 · �2 −
𝛿𝛿
2
� + 2 · 𝛿𝛿 + 2 · �2 −

𝛿𝛿
2
� 

𝐿𝐿�𝑃𝑃,𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖)� = 2 · �2 −
𝛿𝛿
2
� + 0 · 𝛿𝛿 + 2 · �2 −

𝛿𝛿
2
� 

Ambas parejas de sumas, verifican que: 

𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝐿𝐿(𝑃𝑃,𝑓𝑓) = 2 · 𝛿𝛿 < 𝜀𝜀 

De modo que ambas funciones son integrables. 
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� 𝑓𝑓(𝑖𝑖) · 𝑑𝑑𝑑𝑑
2

−2
= 4 

� 𝑓𝑓(𝑖𝑖𝑖𝑖𝑖𝑖) · 𝑑𝑑𝑑𝑑
2

−2
= 8 

ii) Se puede ver que en cualquier intervalo [𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1] de cualquier partición se 

cumple que: 

𝑚𝑚𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑓𝑓�𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥)/  𝑥𝑥𝑥𝑥[𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1]� = 0 

𝑀𝑀𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥)/  𝑥𝑥𝑥𝑥[𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖+1]� = 1 

De modo que, necesariamente, se tiene que: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑃𝑃,𝑓𝑓(𝑖𝑖𝑖𝑖)� = 1 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑃𝑃,𝑓𝑓(𝑖𝑖𝑖𝑖)� = 0 

Por lo que la función no es integrable en el sentido Riemann. 

iv) En primer lugar, se puede observar la siguiente relación útil asociada a las 

sumas superiores e inferiores de la función iv). 

𝑚𝑚𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖�𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥)/ 𝑥𝑥𝑥𝑥[𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖]� = 𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥𝑖𝑖−1) 

𝑀𝑀𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥)/ 𝑥𝑥𝑥𝑥[𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖]� = 𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥𝑖𝑖) 

De modo que se tiene que: 𝑚𝑚𝑖𝑖 = 𝑀𝑀𝑖𝑖−1. Si se toma una partición P uniforme (es 

decir compuesta por subinterválos de igual longitud), las sumas de Darboux asociadas 

quedan de la siguiente forma: 

𝑈𝑈(𝑃𝑃, 𝑓𝑓) =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

· �𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

𝐿𝐿(𝑃𝑃,𝑓𝑓) =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

· �𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑥𝑥𝑖𝑖−1)
𝑛𝑛

𝑖𝑖=1

 

Y, por tanto, la diferencia entre ambas: 

𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝐿𝐿(𝑃𝑃,𝑓𝑓) =
𝑏𝑏 − 𝑎𝑎
𝑛𝑛

· �𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑏𝑏) − 𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑎𝑎)� 

De modo que si se toma un número de intervalos que cumpla: 
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𝑛𝑛 >
𝑏𝑏 − 𝑎𝑎
𝜀𝜀

· �𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑏𝑏) − 𝑓𝑓(𝑖𝑖𝑖𝑖)(𝑎𝑎)� 

Se verifica la siguiente condición necesaria y suficiente de integrabilidad para 

cualquier 𝜀𝜀 > 0. 

𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝐿𝐿(𝑃𝑃,𝑓𝑓) < 𝜀𝜀 

Ejercicio CP-1.7 

i) El área se puede calcular mediante la suma de los infinitos términos de la 

siguiente progresión geométrica: 

𝐴𝐴 = 2 · ��
1
2𝑖𝑖
�
2

= 2 ·
1
4

1 − 1
4

=
2
3

∞

𝑖𝑖=1

 

ii) Una posible partición es la siguiente: 

𝑃𝑃 = {𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛} 

𝑡𝑡0 = 0 

𝑡𝑡1 =
1

2𝑚𝑚
 

𝑡𝑡2 =
1

2𝑚𝑚−1 − 𝛿𝛿1 

𝑡𝑡3 =
1

2𝑚𝑚−1 

(… ) 

𝑡𝑡𝑛𝑛 = 1 

De esta forma, el dominio se divide en 2𝑚𝑚 subintervalos y la partición consta de 

2 · 𝑚𝑚 + 1 puntos. 

La diferencia entre las sumas superiores se puede calcular de la siguiente forma: 

𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝐿𝐿(𝑃𝑃,𝑓𝑓) =
1

2𝑚𝑚
· �

1
2𝑚𝑚

− 0� + � 𝛿𝛿𝑖𝑖 ·
1
2𝑖𝑖

𝑚𝑚−1

𝑖𝑖=1

=
1

22·𝑚𝑚 + � 𝛿𝛿𝑖𝑖 ·
1
2𝑖𝑖

𝑚𝑚−1

𝑖𝑖=1

 

Ante esta situación, se pueden optar por distintas opciones para definir 𝛿𝛿𝑖𝑖. Una de 

ellas es tomar un valor constante 𝛿𝛿 que, por supuesto debe cumplir 𝛿𝛿 < 1
2𝑚𝑚

. 

Entonces quedaría de la siguiente manera la diferencia entre las sumas: 
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𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝐿𝐿(𝑃𝑃,𝑓𝑓) =
1

2𝑚𝑚
· �

1
2𝑚𝑚

− 0� + � 𝛿𝛿𝑖𝑖 ·
1
2𝑖𝑖

𝑚𝑚−1

𝑖𝑖=1

=
1

22·𝑚𝑚 + 𝛿𝛿 ·
1
2 −

1
2𝑚𝑚−1

1
2

=
1

22·𝑚𝑚 + 𝛿𝛿 · �1 −
1

2𝑚𝑚−2� 

Las condiciones que se deben cumplir 𝛿𝛿 y 𝑚𝑚𝑚𝑚ℕ, por tanto son 

1
22·𝑚𝑚 + 𝛿𝛿 · �1 −

1
2𝑚𝑚−2� < 𝜀𝜀 

0 < 𝛿𝛿 <
1

2𝑚𝑚
 

Otra opción, es tomar una razón constante r entre cada 𝛿𝛿 y su subintervalo 

asociado. Entonces quedaría: 

𝑈𝑈(𝑃𝑃,𝑓𝑓) − 𝐿𝐿(𝑃𝑃,𝑓𝑓) =
1

22𝑚𝑚
+ � 𝑟𝑟 ·

1
2𝑖𝑖+1

·
1
2𝑖𝑖

𝑚𝑚−1

𝑖𝑖=1

=
1

22𝑚𝑚
+
𝑟𝑟
2

·
1
4 −

1
22𝑚𝑚−2

1 − 1
4

=
1

22𝑚𝑚
+
𝑟𝑟
6

· �
1
4
−

1
22𝑚𝑚−4� 

1
22𝑚𝑚

+
𝑟𝑟
6

· �1 −
1

22𝑚𝑚−4� < 𝜀𝜀 

0 < 𝑟𝑟 < 1 

O, si se quiere expresar en función del mayor 𝛿𝛿0 

1
22𝑚𝑚

+
𝛿𝛿0
24

· �1 −
1

22𝑚𝑚−4� < 𝜀𝜀 

Ejercicio CP-1.8 

El ejercicio plantea la situación problemática de evaluar la acumulación de cierta 

magnitud física, en este caso la fuerza. Dado que la presión varía con la posición de cada 

punto de la superficie horizontal, los alumnos pueden recurrir a la estrategia del problema 

anterior para obtener una aproximación. 

𝑈𝑈�𝑃𝑃,𝐴𝐴 · 𝑝𝑝(𝑧𝑧)� = �𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1) · 𝑠𝑠𝑠𝑠𝑠𝑠{𝑧𝑧: 𝑧𝑧𝑖𝑖−1 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑖𝑖}
𝑛𝑛

𝑖𝑖=1

 

𝐿𝐿�𝑃𝑃,𝐴𝐴 · 𝑝𝑝(𝑧𝑧)� = �𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1) · 𝑖𝑖𝑖𝑖𝑖𝑖{𝑧𝑧: 𝑧𝑧𝑖𝑖−1 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑖𝑖}
𝑛𝑛

𝑖𝑖=1
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De modo que la fuerza resultante F queda acotada entre las dos aproximaciones. 

𝐿𝐿 ≤ 𝐹𝐹 ≤ 𝑈𝑈 

Así, se puede identificar el cálculo exacto de la resultante con la evaluación de la 

integral. 

𝐹𝐹 = 𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑃𝑃,𝐴𝐴 · 𝑝𝑝(𝑧𝑧)� = 𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝑃𝑃,𝐴𝐴 · 𝑝𝑝(𝑧𝑧)�

= � 𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · 𝑧𝑧 · 𝑑𝑑𝑑𝑑
ℎ

0
 

En este momento, se puede optar por dos alternativas que permiten calcular la 

integral. En primer lugar, se puede aprovechar el resultado de los problemas, es decir, que 

el valor de la integral se corresponde al área bajo la función. En este caso, dado que la 

región forma un triángulo rectángulo se puede de forma inmediata obtener el valor. 

𝐹𝐹 = � 𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · 𝑧𝑧 · 𝑑𝑑𝑑𝑑
ℎ

0
= 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·

𝐴𝐴 · ℎ2

2
 

Por otra parte, se puede, de nuevo plantear una partición uniforme de 𝑛𝑛 intervalos 

y evaluar la suma de los términos de la sucesión. 

 

𝑈𝑈�𝑃𝑃𝑛𝑛,𝐴𝐴 · 𝑝𝑝(𝑧𝑧)� = �𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · �
𝑏𝑏
𝑛𝑛
�
2

· 𝑖𝑖
𝑛𝑛

𝑖𝑖=1

= 𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·
𝑏𝑏
𝑛𝑛

·
𝑛𝑛 · (𝑛𝑛 + 1)

2

= 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·
𝐴𝐴 · 𝑏𝑏2

2
·

(𝑛𝑛 + 1)
𝑛𝑛

 

𝐿𝐿�𝑃𝑃𝑛𝑛,𝐴𝐴 · 𝑝𝑝(𝑧𝑧)� = �𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · �
𝑏𝑏
𝑛𝑛
�
2

· (𝑖𝑖 − 1)
𝑛𝑛

𝑖𝑖=1

= 𝐴𝐴 · 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·
𝑏𝑏
𝑛𝑛

·
𝑛𝑛 · (𝑛𝑛 − 1)

2

= 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·
𝐴𝐴 · 𝑏𝑏2

2
·

(𝑛𝑛 − 1)
𝑛𝑛

 

iii) En el tercer apartado se obtiene un valor negativo de la integral. El objetivo 

es, por un lago, que los alumnos vuelvan a encontrarse con un resultado negativo en el 

cálculo de una integral y, por otro lado, que a partir del modelo utilizado, interpreten los 

resultados. 

𝐹𝐹 = −� 𝐴𝐴 · (𝑝𝑝 − 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · 𝑧𝑧) · 𝑑𝑑𝑑𝑑
ℎ

0
= −𝐴𝐴 · ℎ · �𝑝𝑝 − 𝜌𝜌𝑎𝑎 · 𝑔𝑔 ·

ℎ
2
� 
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Problema CP-1.9 

La resolución del problema se fundamenta en la comparación de los momentos 

estáticos resultantes, respectivamente, de la fuerza de gravedad y la presión sobre la presa. 

De esta forma, para que no vuelque la presa se tiene que asegurar que el momento estático 

causado por su propio peso es superior al correspondiente a la presión del agua cuando 

ésta se encuentra en su nivel máximo (h). 

Si se aplica una estrategia similar a la del ejercicio anterior (CP-1.8) se pueden 

calcular sendos momentos estáticos a partir de las siguientes integrales. 

𝑀𝑀𝑒𝑒,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜌𝜌𝑝𝑝 · 𝑔𝑔 · �
ℎ
𝑎𝑎
𝑥𝑥2 · 𝑑𝑑𝑑𝑑

𝑎𝑎

0
=

1
3

· 𝜌𝜌𝑝𝑝 · 𝑔𝑔 · 𝑎𝑎2 · ℎ 

𝑀𝑀𝑒𝑒,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛 = 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · � (ℎ − 𝑥𝑥) · 𝑥𝑥 · 𝑑𝑑𝑑𝑑
ℎ

0
=

1
6

· 𝜌𝜌𝑎𝑎 · 𝑔𝑔 · ℎ3 

𝑀𝑀𝑒𝑒,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 𝑀𝑀𝑒𝑒,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ó𝑛𝑛     ⟺     
𝑎𝑎
ℎ

>
1
2

·
𝜌𝜌𝑎𝑎
𝜌𝜌𝑝𝑝

 

Problema CP-1.10 

La primera pregunta enfrenta a los alumnos a la problemática del cálculo del 

volumen de un cuerpo cuya fórmula general asociada, en principio, desconocen. Una vez 

que sean conscientes de dicha situación se les inducirá a que recurran a una estrategia 

similar a la utilizada en el problema P-RS1. Ésta consistirá en aproximar el volumen del 

cuerpo a partir de las cotas superiores e inferiores que se obtienen en cada partición que 

se realiza del mismo. Es importante que los alumnos aprecien la necesidad de construir 

particiones que les permitan de forma inmediata –utilizando fórmulas conocidas– acotar 

el volumen del cuerpo.  

El volumen del paraboloide se puede acotar mediante la siguiente suma superior 

e inferior. 

𝑈𝑈 = �𝜋𝜋 · (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1) · (𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥): 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖})2
𝑛𝑛

𝑖𝑖=1

 

𝐿𝐿 = �𝜋𝜋 · (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1) · (𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥):𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖})2
𝑛𝑛

𝑖𝑖=1

 

𝑈𝑈 ≥ 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝐿𝐿 
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Dado que en este caso 𝑓𝑓(𝑥𝑥) ≥ 0 se tiene que (𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥):𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖})2 =

𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥)2: 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖} y, análogamente, (𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥):𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖})2 =

𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥)2:𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}. De la misma forma, el número es factor común de ambas 

sumas. De este modo, las expresiones anteriores se pueden presentar de la siguiente 

forma. 

𝑈𝑈 = 𝜋𝜋 · �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1) · 𝑠𝑠𝑠𝑠𝑠𝑠{𝑓𝑓(𝑥𝑥)2:𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}
𝑛𝑛

𝑖𝑖=1

= 𝜋𝜋 · 𝑈𝑈(𝑃𝑃, 𝑓𝑓(𝑥𝑥)2) 

𝐿𝐿 = 𝜋𝜋 · �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1) · 𝑖𝑖𝑖𝑖𝑖𝑖{𝑓𝑓(𝑥𝑥)2: 𝑥𝑥𝑖𝑖−1 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑖𝑖}
𝑛𝑛

𝑖𝑖=1

= 𝜋𝜋 · 𝐿𝐿(𝑃𝑃,𝑓𝑓(𝑥𝑥)2) 

De  esta forma, el volumen del cuerpo de revolución que se engendra a girar f(x), 

definida en el intervalo [𝑎𝑎, 𝑏𝑏], en torno al eje de abscisas,  se puede calcular mediante la 

integral definida. 

𝑉𝑉 = 𝜋𝜋 · � 𝑓𝑓(𝑥𝑥)2 · 𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎
 

En el caso concreto que se presenta en el problema  (𝑓𝑓(𝑥𝑥) = 4√10
5

· √𝑥𝑥   0 ≤ 𝑥𝑥 ≤

10), el volumen del cuerpo se calcula de la siguiente forma: 

𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜋𝜋 · �
32
5

· 𝑥𝑥 · 𝑑𝑑𝑑𝑑
10

0
= 𝜋𝜋 ·

32
5

· � 𝑥𝑥 · 𝑑𝑑𝑑𝑑
10

0
= 𝜋𝜋 ·

32
5

·
100

2
= 320𝜋𝜋 𝑐𝑐𝑐𝑐3 

ii y iii) Ahora el problema solicita un cálculo inverso: dado un cierto volumen 

determinar el volumen de líquido asociado. Los alumnos pueden razonar que se puede 

resolver el problema estableciendo como incógnita h el límite superior de integración. 

𝜋𝜋 ·
32
5

· � 𝑥𝑥 · 𝑑𝑑𝑑𝑑
ℎ

0
= 𝜋𝜋 ·

16
5

· ℎ2 

Así, para el primero de los resultados que se solicitan: 

ℎ = �1000 ·
5

16𝜋𝜋
= �625

2𝜋𝜋
 

ℎ = 99,7𝑚𝑚𝑚𝑚 
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El hecho de que se les haya solicitado un cálculo repetitivo en estos apartados 

tiene por objeto que los alumnos aprecien la utilidad de definir una función que relacione 

el nivel de líquido con el volumen. 

𝑉𝑉(ℎ) = 𝜋𝜋 ·
32
5

· � 𝑥𝑥 · 𝑑𝑑𝑑𝑑
ℎ

0
= 𝜋𝜋 ·

16
5

· ℎ2 

En este momento se puede institucionalizar la función integral. 

Así, la función 𝐹𝐹(ℎ) relaciona el nivel de líquido con el volumen contenido en el 

recipiente. 

𝐹𝐹(ℎ) = 𝜋𝜋 ·
32
5

· � 𝑥𝑥 · 𝑑𝑑𝑑𝑑
ℎ

0
= 𝜋𝜋 ·

16
5

· ℎ2     0 ≤ ℎ ≤ 10 

La solución al apartado (iii) se puede proporcionar a través de la evaluación de la 

función inversa de la anterior: 

ℎ𝑖𝑖 = 𝐹𝐹−1(𝑉𝑉𝑖𝑖) 

Donde  

𝐹𝐹−1(𝑉𝑉) =
1
4

· �
5
𝜋𝜋

· 𝑉𝑉 

Una representación gráfica como la siguiente (fig. I.6) puede ayudar a los 

alumnos. 

La separación entre dos marcas Vi-1 y Vi se puede calcular a partir de la función 

F-1(V). 

∆ℎ𝑖𝑖 = ℎ𝑖𝑖 − ℎ𝑖𝑖−1 =
1
4

· �
5
𝜋𝜋

· ��ℎ𝑖𝑖 − �ℎ𝑖𝑖−1� 
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Fig. I.6. Representación gráfica de la graduación del recipiente. 

Ejercicio CP-1.11 

En el caso del cono, el enunciado del problema da –de forma intencionada– una 

descripción incompleta  de la posición en que dicho cuerpo se sumerge. De esta forma, 

se pueden analizar los dos casos según esta inmersión se dé a partir del vértice (a) o la 

base (b). 

(a) Inmersión a partir del vértice 

Se puede plantear por medio de una integral el volumen del agua que desaloja un 

cono sumergido hasta una profundidad ℎ. 

𝑉𝑉(ℎ) = � 𝜋𝜋 ·
𝑅𝑅2

𝐻𝐻2 · 𝑥𝑥2 · 𝑑𝑑𝑑𝑑
ℎ

0
=
𝜋𝜋
3

·
𝑅𝑅2

𝐻𝐻2 · ℎ3 

De este modo, si se impone el principio de Arquímedes a partir del resultado 

anterior, se obtiene la profundidad de inmersión. 

𝜌𝜌𝑎𝑎 ·
𝜋𝜋
3

·
𝑅𝑅2

𝐻𝐻2 · ℎ3 = 𝜌𝜌𝑠𝑠 ·
𝜋𝜋
3

· 𝑅𝑅2 · 𝐻𝐻 

ℎ = �
𝜌𝜌𝑠𝑠
𝜌𝜌𝑎𝑎

3
· 𝐻𝐻 

 (b) Inmersión a partir de la base 

10cl 20cl 30cl 40cl 50cl 60cl 70cl 80cl 90cl 100cl
0

20

40

60

80

100
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El volumen del agua desalojada se puede calcular mediante la siguiente integral: 

𝑉𝑉(ℎ) = � 𝜋𝜋 ·
𝑅𝑅2

𝐻𝐻2 · 𝑥𝑥2 · 𝑑𝑑𝑑𝑑
𝐻𝐻

𝐻𝐻−ℎ
=
𝜋𝜋
3

·
𝑅𝑅2

𝐻𝐻2 · [𝐻𝐻3 − (𝐻𝐻 − ℎ)3] = 

=
𝜋𝜋
3

·
𝑅𝑅2

𝐻𝐻2 · [3 · 𝐻𝐻2 · ℎ − 3 · ℎ · 𝐻𝐻2 + ℎ3] 

Si se impone la condición correspondiente al principio de Arquímedes: 

𝜌𝜌𝑎𝑎 ·
𝜋𝜋
3

·
𝑅𝑅2

𝐻𝐻2 · [3 · 𝐻𝐻2 · ℎ − 3 · ℎ · 𝐻𝐻2 + ℎ3] = 𝜌𝜌𝑠𝑠 ·
𝜋𝜋
3

· 𝑅𝑅2 · 𝐻𝐻 

La profundidad h a la que flota el cuerpo es la que satisface la siguiente ecuación: 

�
ℎ
𝐻𝐻
�
3

− 3 · �
ℎ
𝐻𝐻
�
2

+ 3 · �
ℎ
𝐻𝐻
� −

𝜌𝜌𝑠𝑠
𝜌𝜌𝑎𝑎

= 0 

Por otro lado, si se representa la función V(h), se puede obtener gráficamente la 

solución a ambas situaciones como muestra la figura I.7. 

 

Fig. I.7. Representación gráfica de la solución del problema CP-1.11. 

En el caso de la esfera, se puede calcular el volumen del agua desalojada se puede 

calcular a través de la siguiente integral: 

𝑉𝑉(ℎ) = � 𝜋𝜋 · (𝑅𝑅2 − 𝑥𝑥2) · 𝑑𝑑𝑑𝑑
𝑅𝑅

𝑅𝑅−ℎ
= 𝜋𝜋 · �𝑅𝑅 · ℎ2 −

ℎ3

3
� 

De forma análoga, se puede calcular la profundidad a la que se sumerge para flotar 

dicho cuerpo mediante la resolución de la siguiente ecuación: 

Vo
lu

m
en

Profundidad (h)
HH/2 3/4·HH/4

Vcono=R2·H/3

ρs/ρa·Vcono

ρs/ρa·Vcono
Caso (a)

Caso (b)
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�
ℎ
𝑅𝑅
�
3

− 3 · �
ℎ
𝑅𝑅
�
2

− 4 ·
𝜌𝜌𝑠𝑠
𝜌𝜌𝑎𝑎

= 0 

Por último, se puede aplicar para el cuerpo engendrado por la curva que muestra 

la figura del enunciado del problema CP-1.11 el método gráfico que presentado 

anteriormente (fig. I.7). Así pues, es necesario calcular cuál es el volumen de agua 

desalojado en función de la profundidad sumergida. Conviene, por tanto, obtener una 

expresión analítica de la curva 𝑅𝑅(𝑥𝑥). En la figura I.8 se muestra la curva del volumen 

desalojado en función de la profundidad del cuerpo que se sumerge. Es interesante que 

los alumnos adviertan que, pese a que la función 𝑅𝑅(𝑥𝑥) no es continua en el punto 𝑥𝑥 =

𝐻𝐻/3 la función volumen desaloja sí lo es. 

𝑅𝑅(𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧ 𝑅𝑅

2
· �

3 · 𝑥𝑥
𝐻𝐻

                   0 ≤ 𝑥𝑥 ≤
𝐻𝐻
3

3
2

·
𝑅𝑅
𝐻𝐻

· (𝐻𝐻 − 𝑥𝑥)              
𝐻𝐻
3

< 𝑥𝑥 ≤ 𝐻𝐻 
 

 

𝑉𝑉(ℎ) = 𝜋𝜋� 𝑅𝑅(𝑥𝑥)2𝑑𝑑𝑑𝑑
ℎ

0
=

⎩
⎪
⎨

⎪
⎧ 𝜋𝜋� 𝑅𝑅(𝑥𝑥)2𝑑𝑑𝑑𝑑

ℎ

0
                                              0 ≤ 𝑥𝑥 ≤

2 · 𝐻𝐻
3

𝜋𝜋 �� 𝑅𝑅(𝑥𝑥)2𝑑𝑑𝑑𝑑
2·𝐻𝐻
3

0
+ � 𝑅𝑅(𝑥𝑥)2𝑑𝑑𝑑𝑑

ℎ

2·𝐻𝐻
3

�               
2 · 𝐻𝐻

3
< 𝑥𝑥 ≤ 𝐻𝐻

 

𝑉𝑉(ℎ) =

⎩
⎪
⎨

⎪
⎧ 3𝜋𝜋

16
· 𝑅𝑅2 ·

ℎ2

𝐻𝐻
                                             0 ≤ 𝑥𝑥 ≤

2 · 𝐻𝐻
3

𝜋𝜋
12

· 𝑅𝑅2 · 𝐻𝐻 − 𝜋𝜋 · 𝑅𝑅2 · �ℎ −
2 · 𝐻𝐻

3
�      

2 · 𝐻𝐻
3

< 𝑥𝑥 ≤ 𝐻𝐻 
 

 

 

Fig. I.8. Representación gráfica de la solución del problema CP-1.11. 

H

Vcuerpo=5/12·R2·H

ρs/ρa·Vcuerpo

ρs/ρa·Vcuerpo Caso (a)

Caso (b)
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I.3 Ejercicios del segundo campo de problemas 

Ejercicio CP-2.1 

El objetivo de la primera parte del problema es la aplicación de la función integral 

a la cuantificación de la variación dentro de un proceso de cambio. Así, el volumen de 

líquido que ha entrado en un intervalo de tiempo [0,t] se puede aproximar mediante las 

sumas superior e inferior. 

𝐿𝐿(𝑃𝑃, 𝑞𝑞) ≤ ∆𝑉𝑉(𝑡𝑡) = 𝑉𝑉(𝑡𝑡) − 𝑉𝑉(𝑡𝑡 = 0) ≤ 𝑈𝑈(𝑃𝑃, 𝑞𝑞) 

Donde 

𝑈𝑈(𝑃𝑃, 𝑡𝑡) = �(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) · 𝑠𝑠𝑠𝑠𝑠𝑠{𝑞𝑞(𝑡𝑡), 𝑡𝑡𝑖𝑖−1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖}
𝑛𝑛

𝑖𝑖=1

 

𝐿𝐿(𝑃𝑃, 𝑡𝑡) = �(𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1) · 𝑖𝑖𝑖𝑖𝑖𝑖{𝑞𝑞(𝑡𝑡), 𝑡𝑡𝑖𝑖−1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖}
𝑛𝑛

𝑖𝑖=1

 

Así pues, el volumen en cada instante se puede calcular por medio de la integral 

definida. 

𝑉𝑉(𝑡𝑡) − 𝑉𝑉(𝑡𝑡 = 0) = 𝑉𝑉(𝑡𝑡) = � 𝑞𝑞(𝜏𝜏) · 𝑑𝑑𝑑𝑑
𝑡𝑡

0
 

Ahora bien, el volumen que contiene el recipiente no puede superar su capacidad 

máxima. 

Las integrales correspondientes a las tres primeras funciones de caudal propuestas 

se pueden calcular a partir de los resultados previos y de algunas propiedades de las 

integrales. Por ejemplo: 

i) ∫ 𝑞𝑞0 · 𝑑𝑑𝑑𝑑 = 𝑞𝑞0 · ∫ 𝑑𝑑𝑑𝑑 =𝑡𝑡
0

𝑡𝑡
0 𝑞𝑞0 · 𝑡𝑡 

ii) ∫ 𝑞𝑞0 − 𝑘𝑘 · 𝜏𝜏 · 𝑑𝑑𝑑𝑑𝑡𝑡
0 = 𝑞𝑞0 · ∫ 𝑑𝑑𝑑𝑑𝑡𝑡

0 − 𝑘𝑘 · ∫ 𝜏𝜏 · 𝑑𝑑𝑑𝑑𝑡𝑡
0 = 𝑞𝑞0 · 𝑡𝑡 − 𝑘𝑘 · 𝑡𝑡

2

2
 

iii) ∫ 𝑞𝑞(𝜏𝜏) · 𝑑𝑑𝑑𝑑𝑡𝑡
0 = ∫ 𝑞𝑞(𝜏𝜏) · 𝑑𝑑𝑑𝑑𝑛𝑛·𝑇𝑇

0 + ∫ 𝑞𝑞(𝜏𝜏) · 𝑑𝑑𝑑𝑑𝑡𝑡
𝑛𝑛·𝑇𝑇        𝑛𝑛 = �𝑡𝑡

𝑇𝑇
�       

Analíticamente, las funciones 𝑉𝑉𝑖𝑖(𝑡𝑡) quedan: 

𝑉𝑉1(𝑡𝑡) = �

𝑡𝑡
5

             𝑡𝑡 ≤
8
5

· 𝜋𝜋
8

25
· 𝜋𝜋       𝑡𝑡 >

8
5

· 𝜋𝜋
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𝑉𝑉2(𝑡𝑡) = �

𝑡𝑡
5
−
𝑡𝑡2

40
             𝑡𝑡 ≤ 4

2
5

                       𝑡𝑡 > 4
 

𝑉𝑉3(𝑡𝑡) =

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧
𝑡𝑡
5

                                 𝑡𝑡 ≤ 2

2
5

                        2 < 𝑡𝑡 ≤ 3

𝑡𝑡
5
−

1
5

                   3 < 𝑡𝑡 ≤ 5

  
4
5

                        5 < 𝑡𝑡 ≤ 6 

𝑡𝑡
5
−

2
5

      5 < 𝑡𝑡 ≤
8
5

· 𝜋𝜋 + 2
8

25
· 𝜋𝜋                  𝑡𝑡 >

8
5

· 𝜋𝜋

 

 

 

Fig. I.9. evolución temporal del volumen (sup.) y el nivel (inf.) de líquido. 
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En las primeras secciones de la segunda parte del problema se orienta a los 

alumnos hacia el cálculo de la derivada. En primer lugar, se solicita el cálculo de caudal 

medio en dos intervalos de tiempo distintos. Si se aplica la ley de conservación de la masa, 

siempre que se desprecien las variaciones de densidad en el fluido, dicho caudal 

volumétrico coincide con la tasa media de variación del volumen de líquido que contiene 

el recipiente. 

𝑞𝑞� =
𝑉𝑉(𝑡𝑡2) − 𝑉𝑉(𝑡𝑡2)

𝑡𝑡2 − 𝑡𝑡1
 

La siguiente cuestión orienta el cálculo del caudal instantáneo a través de la 

derivada. Se solicita el cálculo en las distintas regiones del dominio de la función 𝑉𝑉(𝑡𝑡). 

Se ha escogido una función con puntos en los que la derivada no existe, con el objeto de 

que los alumnos puedan observar algunas condiciones para que se cumpla el principal 

resultado del primer teorema fundamental de cálculo. 

𝑞𝑞(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

 

𝑡𝑡  𝑞𝑞(𝑡𝑡) 

0 0 

a         0 ≤ 𝑎𝑎 < 2 𝑡𝑡
5

 

2 n. e. 

a        2 ≤ 𝑎𝑎 < 4 0 

4 0 

a        4 ≤ 𝑎𝑎 < 6 𝑡𝑡 − 4
5

 

A partir de los resultados del ejercicio, los alumnos pueden observar que así como 

el volumen que contiene el depósito se calcula a través de la función integral: 

𝑉𝑉(𝑡𝑡) = � 𝑞𝑞(𝜏𝜏) · 𝑑𝑑𝑑𝑑
𝑡𝑡

0
 

De forma inversa el caudal se puede calcular, en los puntos donde 𝑞𝑞(𝑡𝑡) es 

continua, mediante la derivada. 

𝑞𝑞(𝑡𝑡) =
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

 



Javier Mazo Olarte 
 

 106 

En este momento se propone institucionalizar el primer teorema fundamental del 

cálculo. 

El apartado 1.iv, que había quedado sin resolver, se puede abordar en este 

momento utilizando la regla de Barrow. 

𝑉𝑉(𝑡𝑡) = �
1 + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜋𝜋 · 𝑡𝑡)

8

𝑡𝑡

𝑡𝑡=0
· 𝑑𝑑𝑑𝑑 =

1
8

· 𝑡𝑡 −
𝑐𝑐𝑐𝑐𝑐𝑐(𝜋𝜋 · 𝑡𝑡) − 1

8 · 𝜋𝜋
 

Problema CP-2.2 

La desviación que produce un error ∆ℎ de lectura del nivel de líquido, se relaciona, 

a través de la función F(h), con la desviación en la estimación del volumen de líquido. 

∆𝑉𝑉 = 𝐹𝐹(ℎ + ∆ℎ) − 𝐹𝐹(ℎ) = 𝜋𝜋 ·
16
5

· (2 · ℎ · ∆ℎ + ∆ℎ2) 

La razón entre la desviación en el resultado global y el error de lectura da una 

buena cuantificación de la sensibilidad. 

𝑠𝑠 =
∆𝑉𝑉
∆ℎ

= 𝜋𝜋 ·
16
5

· (2 · ℎ + ∆ℎ) 

Sin embargo esta expresión tiene la desventaja de depender del nivel de error. Ya 

que éste es pequeño se puede aprovechar la derivada para cuantificar la sensibilidad. 

𝑠𝑠 = lim
∆ℎ→0

∆𝑉𝑉
∆ℎ

=
𝑑𝑑𝑑𝑑
𝑑𝑑ℎ

= 𝜋𝜋 ·
32
5

· ℎ 

Ya que la función F(h) había quedado definida como:  

𝐹𝐹(ℎ) = � 𝐴𝐴(𝑥𝑥) · 𝑑𝑑𝑑𝑑
ℎ

0
 

 

Si se aplica el teorema fundamental del cálculo, se obtiene que la sensibilidad es 

igual al área de la sección, 𝐴𝐴(ℎ). 

𝑠𝑠 =
𝑑𝑑𝑑𝑑
𝑑𝑑ℎ

= 𝐴𝐴(ℎ) 

Ahora bien, la sensibilidad se puede analizar, dependiendo de las exigencias de la 

medida, en términos relativos. 

𝑠𝑠
𝑉𝑉

=
𝐴𝐴(ℎ)
𝑉𝑉(ℎ) 
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En el caso del recipiente que se proponía quedan ambas: 

𝑠𝑠 = 𝜋𝜋 ·
32
5

· ℎ 

𝑠𝑠
𝑉𝑉

=
2
ℎ

 

Luego la conclusión del apartado iv varía dependiendo si se fija la atención en la 

sensibilidad absoluta o relativa. En términos absolutos, se obtiene una mejor medida para 

valores bajos del nivel de líquido, mientras que, en dicha zona, aumenta el error relativo. 

Los recipientes que cumplan que en todo el rango de medida tienen una 

sensibilidad relativa idéntica deben verificar la siguiente condición: 

𝑑𝑑𝑑𝑑
𝑑𝑑ℎ

= 𝐴𝐴(ℎ) = 𝑘𝑘 

El cilindro cumple esta condición.  

En el caso de exigir una sensibilidad relativa uniforme en el rango de medida la 

condición es la siguiente: 

𝑑𝑑𝑑𝑑
𝑑𝑑ℎ
𝐹𝐹(ℎ) = 𝑘𝑘 

Se puede ver que las funciones exponenciales satisfacen esta ecuación24. 

𝐹𝐹(ℎ) = 𝑉𝑉0 · 𝑒𝑒𝑘𝑘·ℎ 

Sin embargo, desde el punto de vista práctico, la construcción de un recipiente con 

esta forma no es posible debido a que ningún punto de la curva verifica que 𝑅𝑅(ℎ) = 0. 

Ejercicio CP-2.3 

En primer lugar, se puede calcular la cantidad de líquido, 𝑉𝑉𝑒𝑒(𝑡𝑡), que ha escapado 

hasta un tiempo t mediante la siguiente integral: 

𝑉𝑉𝑒𝑒(𝑡𝑡) = �
8𝜋𝜋

250
· 𝑒𝑒−

𝜏𝜏
10

𝑡𝑡

0
𝑑𝑑𝑑𝑑 =

8𝜋𝜋
25

· �−𝑒𝑒−
𝜏𝜏
10�

𝜏𝜏=0

𝜏𝜏=𝑡𝑡
=

8𝜋𝜋
25

· �1 − 𝑒𝑒−
𝑡𝑡
10� 

Así pues, se trata de igualar esta función a la mitad del volumen del recipiente 

160𝜋𝜋𝑐𝑐𝑐𝑐3 (ejercicio CP-1.10). 

                                                                    
24 No se introduciría ningún comentario acerca de la unicidad de la solución de la ecuación diferencial. 
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8𝜋𝜋
25

· �1 − 𝑒𝑒−
𝑡𝑡
10� =

160𝜋𝜋
1000

 

𝑡𝑡 = 10 · ln(2) ≈ 6′56′′ 

En el segundo caso, la igualdad se plantea utilizando el volumen total del 

recipiente: 320𝜋𝜋𝑐𝑐𝑐𝑐3 

8𝜋𝜋
25

· �1 − 𝑒𝑒−
𝑡𝑡
10� =

320𝜋𝜋
1000

 

Dado que no existe un valor de t que verifique: 𝑒𝑒−
𝑡𝑡
10 = 0, pero ya que 

lim
𝑥𝑥→∞

𝑒𝑒−
𝑡𝑡
10 = 0 

Se concluye que el depósito nunca llega quedar vacío. Sin embargo, puede llegar 

a tener un volumen de líquido tan pequeño como se quiera si se espera lo suficiente. 

Ejercicio CP-2.4 

Ya que la aceleración se define como la tasa de variación instantánea de la 

velocidad y, análogamente, esta última como la tasa de variación instantánea del 

desplazamiento. Se pueden definir de la siguiente forma las correspondientes funciones 

(𝑎𝑎(𝑡𝑡): aceleración; ∆𝑣𝑣(𝑡𝑡): variación acumulada de la velocidad; 𝑣𝑣(𝑡𝑡): velocidad; 𝑦𝑦(𝑡𝑡): 

posición; 𝑑𝑑(𝑡𝑡): despladamiento). 

𝑎𝑎(𝑡𝑡) = −𝑔𝑔   

∆𝑣𝑣(𝑡𝑡) = ∫ 𝑎𝑎(𝜏𝜏) · 𝑑𝑑𝑑𝑑𝑡𝑡
0 = −𝑔𝑔 · 𝑡𝑡  𝑣𝑣(𝑡𝑡) = 𝑣𝑣(0) − ∆𝑣𝑣(𝑡𝑡) = 𝑣𝑣0 − 𝑔𝑔 · 𝑡𝑡  

y(𝑡𝑡) = ∫ 𝑣𝑣(𝜏𝜏) · 𝑑𝑑𝑑𝑑𝑡𝑡
0 = 𝑣𝑣0 · 𝑡𝑡 − 𝑔𝑔 · 𝑡𝑡

2

2
  d(𝑡𝑡) = ∫ |𝑣𝑣(𝜏𝜏)| · 𝑑𝑑𝑑𝑑𝑡𝑡

0   

 d(𝑡𝑡) = �
𝑣𝑣0 · 𝑡𝑡 − 𝑔𝑔 · 𝑡𝑡

2

2
   0 ≤ 𝑡𝑡 ≤ 𝑣𝑣0

𝑔𝑔

𝑔𝑔·𝑣𝑣02

2
+ 𝑔𝑔 ·

�𝑡𝑡−𝑣𝑣0𝑔𝑔 �
2

2
  𝑣𝑣0
𝑔𝑔
≤ 𝑡𝑡 ≤ 2 · 𝑣𝑣0

𝑔𝑔

   

El tiempo que le cuesta volver a la posición original es 2 · 𝑣𝑣0
𝑔𝑔

. 

Se puede aprovechar este resultado para calcular el tiempo de ocupa el proceso 

descrito en el problema AI-1. Del sistema físico que describe dicho ejercicio se conoce la 

altura máxima que alcanza la pelota en cada rebote, que se puede relacionar con la 

velocidad 𝑣𝑣0,n, es decir aquella que tiene el objeto en el instante del rebote, mediante la 

siguiente ecuación. 
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𝐻𝐻𝑛𝑛 =
𝐻𝐻
2𝑛𝑛

=
1
2

·
𝑣𝑣0,n

2

𝑔𝑔
 

Luego el tiempo (∆𝑡𝑡n, 𝑛𝑛 = 1,2 …) que duran el proceso de rebote n, se puede 

expresar relacionar con la altura 𝐻𝐻𝑛𝑛. 

∆𝑡𝑡𝑛𝑛 = 2 · �2 ·
𝐻𝐻n
𝑔𝑔

= �2 ·
H

2𝑛𝑛−2 · 𝑔𝑔
 

Es preciso tener en cuenta que ∆𝑡𝑡0, el tiempo que transcurre desde que se deja caer 

la pelota hasta que impacta con el suelo, no sigue la misma ley general. 

∆𝑡𝑡0 = �
2 · H
𝑔𝑔

 

Así pues, el tiempo hasta el rebote n (𝑡𝑡n, 𝑛𝑛 = 0,1,2 …) se puede expresar de la 

siguiente forma: 

𝑡𝑡𝑛𝑛 = ∆𝑡𝑡0 + �∆𝑡𝑡𝑛𝑛

𝑛𝑛

𝑖𝑖=1

= �
2 · H
𝑔𝑔

+ ��2 ·
H

2𝑛𝑛−2 · 𝑔𝑔

𝑛𝑛

𝑖𝑖=1

= �
2 · H
𝑔𝑔

· �1 + √2�
1

√2
𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

� 

De nuevo, se tiene la suma de los términos de una sucesión geométrica. En la 

siguiente expresión se han realizado ya las operaciones y racionalizado: 

𝑡𝑡𝑛𝑛 = �
2 · H
𝑔𝑔

· �1 + √2�
1

√2
𝑖𝑖−1

𝑛𝑛

𝑖𝑖=1

� = 2 · �√2 + 1� · �1 − �
√2
2
�
𝑛𝑛

� · �
H
𝑔𝑔

 

De modo que se puede calcular el tiempo que ocupa el proceso infinito (𝑡𝑡), ya que 

la sucesión 𝑡𝑡𝑛𝑛 es convergente. 

𝑡𝑡 = lim
𝑛𝑛→∞

2 · �√2 + 1� · �1 − �
√2
2
�
𝑛𝑛

� · �
H
𝑔𝑔

= 2 · �√2 + 1� · �
H
𝑔𝑔

 

Ejercicio CP-2.5 

A continuación se completa la tabla (tabla I.7) que propone el ejercicio CP-2.5. 

En ella se indican los puntos en los que no se cumplen las condiciones que señala el 

teorema fundamental del cálculo. 
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𝑓𝑓(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 𝑓𝑓(𝑥𝑥) 𝐹𝐹(𝑥𝑥) 

𝑘𝑘 𝑘𝑘 · 𝑥𝑥 + 𝐶𝐶 𝑘𝑘 · 𝑒𝑒𝑏𝑏·𝑥𝑥 𝑘𝑘 ·
𝑒𝑒𝑏𝑏·𝑥𝑥

𝑏𝑏
+ 𝐶𝐶 

𝑘𝑘 · (𝑏𝑏 · 𝑥𝑥)𝑚𝑚 

𝑚𝑚 ≠ −1 

𝑘𝑘
𝑏𝑏

·
(𝑏𝑏 · 𝑥𝑥)
𝑚𝑚 + 1

𝑚𝑚+1

+ 𝐶𝐶 

(Si 𝑚𝑚 < 0, 𝑥𝑥 ≠ 0) 
𝑘𝑘 · 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏 · 𝑥𝑥) −

𝑘𝑘
𝑏𝑏

· 𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏 · 𝑥𝑥) + 𝐶𝐶 

𝑘𝑘
𝑏𝑏 · 𝑥𝑥 + 𝑎𝑎

 

𝑘𝑘
𝑏𝑏

· 𝑙𝑙𝑙𝑙|𝑏𝑏 · 𝑥𝑥 + 𝑎𝑎| + 𝐶𝐶 

(Si 𝑥𝑥 ≠ −𝑎𝑎
𝑏𝑏
) 

𝑘𝑘 · 𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏 · 𝑥𝑥) 
𝑘𝑘
𝑏𝑏

· 𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏 · 𝑥𝑥) + 𝐶𝐶 

Tabla I.7. Tabla con las funciones primitivas que solicita el ejercicio CP-2.5. 
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