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1. Resumen 
 

   Los disolventes juegan un papel fundamental la industria química ya que están 

presentes en infinidad de procesos, desde la producción hasta la purificación de los 

productos finales.  Es por esto que la demanda mundial de disolventes se prevé que 

aumente en los próximos años y, aunque el uso de compuestos con fuertes efectos sobre 

el medio ambiente disminuirá como consecuencia de regulaciones internacionales, las 

necesidades industriales darán lugar a un aumento de la demanda de nuevos tipos de 

disolventes más amigables con el medio ambiente. Dentro de este grupo de nuevos 

disolventes destacan los líquidos iónicos, los fluidos supercríticos y diversos 

compuestos procedentes de fuentes naturales.  

    En este Trabajo Fin de Master se ha realizado el estudio del equilibrio líquido-vapor 

en distintas condiciones experimentales (presión constante o temperatura constante) de 

diversos sistemas formados a partir de un compuesto procedente de la biomasa (lactato 

de metilo o lactato de etilo) y un alcohol de cadena corta (metanol o etanol).  

   También se han realizado predicciones del equilibrio líquido-vapor para los sistemas 

investigados usando un método de contribución de grupos (método UNIFAC). 

a) Abstract 
 

    Solvents play an important role within chemical industry. As a consequence, their 

demand will increase in the following years although the using of dangerous 

compounds may decrease due to international regulations. This problem will make 

possible the development of new solvents including ionic liquids, supercritical fluids 

and different compounds derived from natural sources. 

   In this TFM, the study of liquid-vapor equilibrium in different environmental 

conditions was developed, considering different systems whose components are an 

alcohol (methanol or ethanol) and a product derived from the biomass (methyl lactate or 

ethyl lactate). 

 Also it has done a prediction of liquid-vapor equilibrium in order to investigate these 

systems using a group contribution method (UNIFAC method). 
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2. Introducción 
   

     El uso de disolventes es inherente a la industria química. Los disolventes juegan un 

papel fundamental en muchos procesos tales como reacciones químicas, procedimientos 

de separación y de purificación de productos, así como portadores de productos, en el 

lavado y la limpieza, y en las operaciones de transferencia de calor o de masa
1
.  Está 

previsto que la demanda mundial de disolventes aumente en los próximos años y, dado 

que el uso de compuestos con fuertes efectos sobre el medio ambiente disminuirá como 

consecuencia de las regulaciones internacionales, será necesario encontrar y utilizar 

nuevos disolventes medioambientalmente amigables
2
. Muchas familias de diferentes 

disolventes “limpios” se han propuesto durante estos últimos años entre los que 

podríamos destacar como los más significativos los fluidos supercríticos y líquidos 

iónicos. A pesar del gran esfuerzo que la comunidad científica ha realizado para estudiar 

las propiedades y aplicaciones de estos dos grupos alternativos de disolventes, se está 

desarrollando otras alternativas útiles que derivan principalmente de fuentes de origen 

biológico. La familia de los ésteres de lactato es un grupo de compuestos que no son 

tóxicos y a su vez son alta y fácilmente biodegradables. Este conjunto de compuestos 

presentan excelentes propiedades como disolventes lo cual posibilitaría que sustituyesen 

a compuestos tóxicos y perjudiciales para el medioambiente. Los ésteres de lactato
3,4 

pueden ser obtenidos a partir de materias primas de hidratos de carbono, lo que unido a 

los recientes desarrollos de nuevos procesos de purificación ha conducido a una 

disminución notable de su precio. Es decir, técnicamente y económicamente, se han 

convertido en una alternativa válida para su utización como disolventes en una amplia 

gama de usos industriales y de consumo, en sustitución de disolventes perjudiciales para 

el medio ambiente incluyendo muchos compuestos orgánicos volátiles y fluidos. 

        La producción de los  ésteres de lactato se suele llevar a cabo a través de la 

esterificación del ácido láctico con el correspondiente alcohol. Esta reacción química 

requiere un proceso de destilación posterior para la purificación de los ésteres 

obtenidos, para el diseño eficiente de las columnas es necesario disponer de la 

información termodinámica más completa posible, principalmente datos del equilibrio 

líquido-vapor de los compuestos implicados. 
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    En este trabajo se ha determinado el equilibrio líquido-vapor tanto en condiciones 

isobáricas (p = 101,325 kPa) como isotérmicas (T = 323,15 K) de los sistemas binarios 

metil lactato y etil lactato con metanol y etanol. 

  En la literatura sólo se encuentran cuatro trabajos en los que se estudie el equilibrio 

líquido-vapor de estos sistemas, tres de los cuales presentan datos isobáricos
5,6,7

 y un 

tercero datos isotérmicos
8
. 

3. Objetivos 
 

     Los objetivos generales de cualquier TFM están orientados a la adquisición y 

consolidación de las competencias propias alumno de Máster. Entre estas competencias 

se pueden mencionar:  

 Reunir e interpretar datos relevantes.  

 Aplicar conocimientos teóricos y prácticos al trabajo en el laboratorio y a la 

interpretación de resultados.  

 Iniciarse o implementar habilidades en el manejo de equipos y programas 

científicos especializados.  

 

Los objetivos específicos que se persiguen con la realización de este TFM son: 

 El estudio de diversos sistemas binarios formados por un compuesto derivado de 

la biomasa y un alcohol de cadena corta.  

 Adquisición de los datos experimentales de equilibrio L-V de los sistemas 

anteriormente mencionados. 

 Construcción de las correspondientes curvas de equilibrio L-V. 

 Comparativa de los datos experimentales respecto métodos predictivos. 

4. Parte experimental 

4.1. Reactivos 
       En este trabajo se ha estudiado el equilibrio líquido-vapor de una serie de mezclas 

constituidas por un alcohol de cadena corta (metanol o etanol) y un compuesto derivado 

de la biomasa (lactato de etilo o lactato de metilo) 
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En la Tabla 1 se muestran los compuestos utilizados en este TFM, las purezas han sido 

comprobadas mediante cromatografía de gases. 

Compuesto Fuente 
Pureza  

(% masa) 

Metanol Sigma-Aldrich 99,8 

Etanol Riedel de Häen 99,8 

Lactato de metilo TCI 99 

Lactato de etilo Sigma-Aldrich 99 

 

Tabla1. Procedencia y pureza de los compuestos utilizados. 

4.2. Ebullómetro 
 

Los datos experimentales para el equilibrio líquido-vapor (ELV) de las diferentes 

mezclas binarias se han determinado con un ebullómetro de recirculación de fases 

Fischer-Labodest. El ebullómetro fue modificado parcialmente en algunas de sus partes 

para conseguir que funcionase en unas condiciones óptimas. Algunas de las 

características principales del equipo son: 

 Se obtienen representaciones gráficas del equilibrio líquido-vapor tanto en 

condiciones isobáricas como isotérmicas. 

 El funcionamiento del ebullómetro se basa en un proceso dinámico. 

 La máxima temperatura de trabajo del equipo es de 523,15 K. 

 El intervalo de presiones de trabajo es amplio, ya que va desde 0,5 a 400 kPa. 

 El instrumento consta de una bomba Cottrell. 

 La temperatura es obtenida por un termómetro de precisión F25 (Automatic 

Systems Laboratories Ldt.) provisto de una sonda de platino que proporciona 

una precisión en la medida de la temperatura de  10
-2 

K. 

 Se obtiene el valor de la presión de la bomba Cottrell gracias a la ayuda de un 

transductor Digiquartz 735-215A-102, marca Paroscientific, con una precisión 

en el valor de la presión dada de  10
-3 

kPa. A su vez consta de un display 

Digiquartz 735. 

 La fase vapor se condensa a una temperatura adecuada haciendo uso de un baño 

termostático Lauda RE-110. 

 El ebullómetro dispone de una bomba de vacío y un reservorio de aire para 

ajustar la presión de trabajo. 
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La muestra se introduce en una vasija con una capacidad de 200 mL 

aproximadamente. Ésta a su vez se colocará en un baño que contiene aceite de silicona 

para proporcionar un calentamiento lo más homogéneo posible con la ayuda además de 

un núcleo magnético contenido en la vasija. Ambas fases, es decir, la fase líquida y la 

fase vapor se mezclan en este lugar. En la parte superior de esta vasija se encuentra un 

embudo invertido por el cual ascenderá el vapor que se irá generando por el 

calentamiento de la muestra. Este vapor llegará a una espiral situada en la zona superior 

de la bomba Cottrell. Todo este conjunto se encuentra rodeado de una camisa de vidrio 

en el interior y de una manta calefactora eléctrica por el exterior que evita la posible 

condensación de la fase vapor. 

El análisis del equilibrio líquido-vapor se fundamenta en la separación y estudió de 

la fase líquida y vapor de una muestra determinada. Al calentar la mezcla se genera un 

vapor que atravesará el embudo y la espiral hasta que llega a un plato donde se pone en 

contacto con el termómetro que mide la temperatura en el equilibrio de las dos fases. En 

este proyecto científico se ha estudiado en condiciones isotermas, por lo que interesa 

obtener los valores de la presión cuando se alcanza una temperatura dada. Para 

conseguir este resultado se va variando la presión mediante el sistema de vacío y las 

llaves del reservorio de aire hasta conseguir la temperatura deseada. Una vez que la 

temperatura y la presión se han estabilizado se deja recircular el sistema durante 45  

min. Después de anotar los valores experimentales de p y T, se procede a la obtención 

de las muestras, tanto de la fase líquida como de la fase vapor (esta última será líquida 

ya que se habrá condensado previamente) para la determinación de su composición de 

forma indirecta, que se explicará más adelante. Ambas fases se obtienen con el uso de 

unas válvulas electromagnéticas y de las llaves de igualación de la presión. Las 

muestras se recogen en ampollas de vidrio. 

Una vez realizada una medida determinada se procederá a medir la siguiente 

mezcla. Se retirará si hace falta parte de la mezcla ya existente en la vasija y se 

introducirá una cierta cantidad de uno de los componentes de la muestra. Para llevar a 

cabo esta operación se aislará el ebullómetro del resto del equipo haciendo uso de las 

llaves necesarias. 

La determinación de la composición de la fase líquida y de la fase vapor se lleva a 

cabo de forma indirecta, ya que previamente se realiza una calibración de la densidad en 
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todo el intervalo de composiciones. Se determina la densidad para ambas fases y 

mediante el uso de cálculos matemáticos se obtendrá la composición de la medida 

estudiada. El densímetro utilizado en el trabajo ha sido un Anton Paar DMA 5000. La 

incertidumbre en la medida de la densidad fue de ± 5 x 10
-2

 kg m
-3

. 

5. Resultados y discusión 
 

    Las mezclas líquidas se estudian mediante la comparación del comportamiento entre 

una mezcla real y una mezcla ideal. La desviación entre comportamiento real de la 

mezcla y el supuesto comportamiento ideal está definida por los coeficientes de 

actividad, a partir de estos, γi, puede calcularse la energía de Gibbs de exceso, G
E
, que 

viene expresada por la siguiente relación matemática. 

                                                                                      (1) 

donde xi, p y T  tienen el significado habitual. 

     En la Tabla 2 aparecen las propiedades de los compuestos puros: constantes de la 

ecuación de Antoine, A, B y C, parámetros críticos, Tc, pc, y Vc, factor acéntrico, , 

momento dipolar, , presiones de vapor, p, a T = 323,15 K,  temperaturas de ebullición 

normales, Teb, y volumen molar a T = 298,15 K, Vm 

 

              Compuesto 

Propiedad 
Lactato de metilo Lactato de etilo Metanol Etanol 

A 5,9066 6,0006 7,20519 7,16897 

B 1236,8 1320,6 1581,993 1552,601 

C 173,90 177,27 239,711 222,419 

Tc / K 584 588 512,58 516,2 

pc / bar 40,87 34,39 80,98 61,48 

Vc / cm
3
·mol

-1
 0,301 0,354 0,118 0,167 

 0,554 0,625 0,565 0,649 

 / D 1,8 2,4 2,87 1,7 

p / kPa 2,400 1,535 55,785 29,565 

Teb / K 416,27 426,40 337,71 351,40 

Vm / cm
3
·mol

-1
 95,7348 114,8736 40,7467 58,6919 
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Tabla 2. constantes de la ecuación de Antoine, A, B y C, parámetros críticos, Tc, pc, y 

Vc, factor acéntrico, , momento dipolar, , presiones de vapor, p, a T = 323,15 K,  

temperaturas de ebullición normales, Teb, y volumen molar a T = 298,15 K, Vm 

5.1. Resultados experimentales 
 

  Los coeficientes de actividad pueden relacionarse con la composición y la temperatura  

utilizando la ecuación de Wilson
9
. Esta ecuación para mezclas binarias viene dada por la 

siguiente expresión. 

                       
   

        
 

   

        
                                                   (2) 

                       
   

        
 

   

        
                                                   (3) 

Los parámetros     y     se calculan:  

     
  
 

  
       

       

  
                                                                                               (4) 

     
  
 

  
       

       

  
                                                                                               (5) 

   En las expresiones 4 y 5,   
 es el volumen molar del líquido puro a T = 298,15 K,  λij 

son los parámetros de interacción entre los componentes i, j de la mezcla, R es la 

constante de los gases. Estos parámetros han sido obtenidos mediante la minimización 

de la función objetivo
10

. 

     
         

    
 
 

 
 
                                                                                                       (6) 

   La presión calculada ha sido obtenida teniendo en cuenta la no idealidad de la fase 

vapor, a través del segundo coeficiente del virial, y la variación de la energía de Gibbs 

de los componentes puros respecto a la presión
11,12

. 

             
  

        
   

           
         

     

  
                                                      (7) 

                                                                                                                    (8) 

xi e yi son la composición de la fase líquida y de la fase vapor respectivamente. p es la 

presión total,   
 es la presión de vapor del compuesto i puro, obtenida 
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experimentalmente,   
  es el volumen molar del componente i Bii es el segundo 

coeficiente del virial para el componente i. , por último Bij es el segundo coeficiente del 

virial cruzado. Las presiones de vapor se calculan  mediante las correspondientes 

ecuaciones de Antoine, los volúmenes molares se estiman utilizando la ecuación de 

Rackett
13

, finalmente los segundos coeficientes del virial pueden obtenerse haciendo 

uso del método de Tsonopoulos
14,15

. Las constantes y parámetros necesarios para 

realizar estos cálculos se muestran en la Tabla 2 
16,17,18

.  

  Las desviaciones medias de la presión, Δp, las desviaciones medias de la temperatura, 

ΔT, y de la composición en la fase vapor, Δy, se obtienen a partir de las siguientes 

ecuaciones. 

    
 

 
             

 
                                                                                                (9) 

    
 

 
             

 
                                                                                                           (10) 

    
 

  
                                   

 
                                                       (11) 

donde n es el número de medidas, pexp es la presión obtenida experimentalmente, pcal es 

la presión calculada a través de la ecuación 7, Texp es la presión obtenida 

experimentalmente, Tcal es la presión calculada, y1,exp es la composición de la fase vapor 

en equilibrio del componente 1 de la mezcla, y2,exp es la composición de la fase vapor en 

equilibrio del componente 2, e y1,cal e y2,cal son las composiciones calculadas de la fase 

vapor para los componentes 1 y 2 respectivamente. 

      Los parámetros de ajuste de la ecuación de Wilson, ij - ii, junto con las 

correspondientes desviaciones en temperatura, T, o presión, p,  y desviaciones en la 

composición de la fase vapor, y vienen dados en la Tabla 3.  
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Tabla 3. parámetros de ajuste de la ecuación de Wilson, ij - ii, junto con las 

correspondientes desviaciones en temperatura, T, o presión, p,  y desviaciones en la 

composición de la fase vapor, y. 

Condiciones 

experimentales 
ij - ii / 

kJ·mol
-1

 

ij - ii / 

kJ·mol
-1

 
T / K p / kPa y 

Lactato de metilo (1) + metanol (2) 

p = 101,325 kPa -3262,46 3565,46 0,40  0,0053 

T = 323,15 K -1592,40 1928,80  0,073 0,0026 

Lactato de metilo (1) + etanol (2) 

p = 101,325 kPa 825,39 274,92 0,37  0,0050 

T = 323,15 K 404,85 1291,09  0,044 0,0043 

Lactato de etilo (1) + metanol (2) 

p = 101,325 kPa -2935,81 3397,25 0,45  0,0081 

T = 323,15 K -3144,58 4380,66  0,091 0,0069 

Lactato de etilo (1) + etanol (2) 

p = 101,325 kPa -416,00 1319,69 0,37  0,0074 

T = 323,15 K -1745,05 2884,90  0,042 0,0047 

5.2. Correlación de los datos globales del equilibrio líquido-vapor 

(p,T, x1) mediante una ecuación de Redlich-Kister. 

 

 Se utiliza una expansión polinómica de Redlich-Kister para el ajuste de las 

funciones de Gibbs de exceso reducidas, g, en función de la presión, p, la temperatura, 

T,  y la composición de la fase líquida, x1. Para lo cual se emplean parámetros ajustables 

dependientes de la presión y la temperatura:   

 i
21

0
i21 )-( xxA·x·xg

RT

G

i

E




                                                                                (12) 

T·p·AT·AT/p·Ap·AA iiiii 4321                                                                       (13) 

A partir de esta ecuación pueden obtenerse los coeficientes de actividad, teniendo 

en cuenta la relación termodinámica existente entre la función de Gibbs de exceso y  los 

correspondientes potenciales químicos de exceso:  

T,p
x

g
·xgln 














1
21                                                                                                (14) 
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T,p
x

g
·xgln 














1
12                                                                                                (15) 

En la Tabla 4 se muestran los parámetros de ajuste de la ecuación 12, Aii, junto con las 

correspondientes desviaciones en temperatura, T, y desviaciones en la composición de 

la fase vapor, y. 

A01 A02 A03 A04 

T / K y A11 A12 A13 A14 

A21 A22 A23 A24 

Lactato de metilo (1) + metanol (2) 

-0.054416 0.000391 0.000663 0.000143 

0.129 0.0032 0.017011 -0.000401 -0.000374 -0.000051 

0.020577 -0.001749 -0.000214 -0.000053 

Lactato de metilo (1) + etanol (2) 

0.250136 0.002880 0.000263 -0.000657 

0.130 0.0261 -0.040394 0.002838 0.000488 0.000135 

-0.028825 -0.004205 0.000323 0.000079 

Lactato de etilo (1) + metanol (2) 

0.013626 0.000334 0.001079 -0.000042   

0.002805 -0.001059 0.000255 -0.000010 0.129 0.0071 

-0.004627 -0.000185 -0.000018 0.000016   

Lactato de etilo (1) + etanol (2) 

-0.032715 0.001245 0.001430 0.000079 

0.128 0.0043 0.038664 -0.001007 -0.000247 -0.000109 

-0.011010 -0.001974 0.000134 0.000033 

 

   Asimismo puede utilizarse esta correlación para obtener el equilibrio líquido-vapor en 

otras condiciones experimentales, hemos realizado los cálculos a dos temperaturas 

(343,15 K y 373,15 K) y a dos presiones (40,0 kPa y 70,0 kPa). En las figuras 9, 10, 11, 

12, 13,  14, 15 y 16   se muestran los resultados obtenidos. 

     En las Figuras 1 hasta 8 se representan los diagramas p-x1-y1 yT-x1-y1 para el 

equilibrio líquido-vapor de las distintas mezclas a las diferentes temperaturas de trabajo 

junto con su correspondientes curvas de ajuste proporcionadas por la ecuación de 

Wilson. 
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Fig. 1. Diagrama T-x1-y1 del sistema lactato 

de metilo (1) + metanol (2) a p = 101,325 

kPa: (,) experimental; (
____

) ecuación 

de Wilson; (,) ref. 5. 

 Fig. 2. Diagrama p-x1-y1 del sistema lactato 

de metilo (1) + metanol (2) a T = 323,15 K: 

(,) experimental; (
____

) ecuación de 

Wilson. 
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Fig. 3. Diagrama T-x1-y1 del sistema lactato de 

metilo (1) + etanol (2) a p = 101,325 kPa: 

(,) experimental; (
____

) ecuación de 

Wilson. 

 Fig. 4. Diagrama p-x1-y1 del sistema lactato 

de metilo (1) + etanol (2) a T = 323,15 K: 

(,) experimental; (
____

) ecuación de 

Wilson. 
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Fig. 5. Diagrama T-x1-y1 del sistema 

lactato de etilo (1) + metanol (2) a p = 

101,325 kPa: (,) experimental; (
____

) 

ecuación de Wilson; (,) ref. 8. 

 Fig. 6. Diagrama p-x1-y1 del sistema 

lactato de etilo (1) + metanol (2) a T = 

323,15 K: (,) experimental; (
____

) 

ecuación de Wilson. 
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Fig. 7. Diagrama T-x1-y1 del sistema 

lactato de etilo (1) + etanol (2) a p = 

101,325 kPa: (,) experimental; (
____

) 

ecuación de Wilson; (,) ref. 6. 

 Fig. 8. Diagrama p-x1-y1 del sistema 

lactato de etilo (1) + etanol (2) a T = 

323,15 K: (,) experimental; (
____

) 

ecuación de Wilson. 

 

En la siguiente Tabla 5 se recoge la comparación de nuestros resultados con los 

encontrados en la literatura 
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Tabla 5. Comparación con resultados publicados previamente. 

Sistema p / kPa T / K y 

Lactato de metilo + metanol
a
 101.325 0,99 0,0075 

Lactato de metilo  + etanol
b
 101.325 0,28 0,0062 

Lactato de etilo  + etanol
c
 101.325 0,27 0,0145 

a
 Ref. 5, 

b
 Ref. 8, 

 c
 Ref. 6. 
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Figura 9. Diagramas T-x1-y1 del sistema 

lactato de metilo (1) + metanol (2) a            

p =  40,0 kPa y 70,0 kPa calculados 

mediante la ecuación 12. 

 Figura 10. Diagramas p-x1-y1 del sistema 

lactato de metilo (1) + metanol (2) a            

T = 343,15 K y 373,15 K calculados 

mediante la ecuación 12. 
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Figura 11. Diagramas T-x1-y1 del sistema 

lactato de metilo (1) + etanol (2) a                

p =  40,0 kPa y 70,0 kPa calculados 

mediante la ecuación 12. 

 Figura 12. Diagramas p-x1-y1 del sistema 

lactato de metilo (1) + etanol (2) a                

T = 343,15 K y 373,15 K calculados 

mediante la ecuación 12. 
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Figura 13. Diagramas T-x1-y1 del sistema 

lactato de etilo (1) + metanol (2) a     p =  40,0 

kPa y 70,0 kPa calculados mediante la 

ecuación 12. 

 Figura 14. Diagramas p-x1-y1 del sistema 

lactato de etilo (1) + metanol (2) a   T = 

343,15 K y 373,15 K calculados mediante la 

ecuación 12. 
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Figura 15. Diagramas T-x1-y1 del sistema 

lactato de etilo (1) + etanol (2) a    p =  40,0 

kPa y 70,0 kPa calculados mediante la 

ecuación12. 

 Figura 16. Diagramas p-x1-y1 del sistema 

lactato de etilo (1) + etanol (2) a  T = 343,15 

K y 373,15 K calculados mediante la 

ecuación 12. 
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5.3. Discusión de los resultados 
 

La desviación de un sistema respecto del comportamiento ideal es debido a diversos 

factores tanto estructurales como energéticos. Los factores estructurales están 

relacionados con las diferencias en tamaño y forma de los componentes de la mezcla. 

Por otro lado, los factores energéticos tienen su origen en el debilitamiento o la 

desaparición de las interacciones presentes en los componentes puros debido a la 

presencia de los otros componentes, así como a la aparición de nuevas interacciones en 

el momento en que se ponen en contacto los distintos constituyentes de la mezcla. 

Una desviación negativa de un sistema con respecto a la idealidad, reflejada en 

coeficientes de actividad menores que la unidad, se debe a que las interacciones que se 

establecen entre las moléculas de los diversos componentes en el proceso de mezcla son 

mayores que las existentes entre las moléculas antes de la mezcla.  Cuando los 

coeficientes de actividad son mayores que la unidad se dice que el sistema se desvía 

positivamente del comportamiento ideal, en este caso la ruptura de las interacciones 

existentes en los componentes puros prevalece sobre las nuevas interacciones entre los 

componentes de la mezcla.  

 En los sistemas aquí estudiados los coeficientes de actividad son ligeramente 

mayores que la unidad por lo tanto pequeñas desviaciones positivas de la idealidad. 

Siendo la mezcla metil lactato + metanol la que muestra las menores desviaciones. 

Puesto que en todos los casos se mezcla un lactato de alquilo con un alcohol y ambas 

moléculas presentan grupos OH, el debilitamiento durante el proceso de mezcla de los 

enlaces por puente de hidrógeno presentes en las moléculas de los componentes puros 

se compensa con la formación de nuevos enlaces de hidrógeno entre las moléculas de 

los componentes del sistema. 

5.4. Método UNIFAC 
 

             Durante la realización de este TFM se ha utilizado un método para predecir el 

comportamiento del equilibrio líquido-vapor de las diferentes mezclas estudiadas, el 

método utilizado ha sido el método UNIFAC.  

 

El método UNIFAC (Universal Functional-group Activity Coefficients) fue 

desarrollado inicialmente por Fredenslund
19

 y colaboradores. La idea principal de un 

método de contribución de grupos es que una molécula se puede considerar como la 
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suma de todos los grupos que la constituyen. En este caso se ha usado el método 

UNIFAC modificado
19

 (Dortmund) propuesto por Gmehling, y colaboradores. Este 

método se desarrolló para la predicción del equilibrio líquido-vapor, de puntos 

azeotrópicos y coeficientes de actividad a dilución infinita. Las ventajas del modelo 

modificado es que realiza una mejor descripción de la dependencia con la temperatura, 

del comportamiento en la región más diluida y, además, puede ser aplicado para 

sistemas constituidos por moléculas con diferencias de tamaño considerables. 

Aquí se modifica la parte combinatorial con respecto al modelo original y se 

introduce la dependencia con la temperatura de los parámetros de interacción entre 

grupos, y a su vez introduce nuevos grupos como el de los alcanos cíclicos. Al igual que 

ocurre con el modelo original, el coeficiente de actividad es la combinación de una parte 

combinatorial y otra parte residual. La parte combinatorial describe el tamaño molecular 

y las diferencias en cuanto a las formas de las distintas moléculas constituyentes del 

sistema. Estos conceptos se cuantifican a través de las áreas (qi) y volúmenes (ri) 

relativos de van der Waals. Por otro lado, la parte residual se relaciona con las 

interacciones moleculares. 

           
      

                                                                                                    (16) 

La parte combinatorial posee la siguiente expresión matemática. 

               
                       

  

  
     

  

  
                                           (17) 

donde el parámetro V´i es el valor de Vi modificado empíricamente, Vi es una propiedad 

auxiliar del componente i (fracción de volumen/fracción molar) y Fi es otra propiedad 

auxiliar (fracción área/fracción molar). Se pueden obtener mediante las siguientes 

ecuaciones. 

     
  

      
                                                                                                                   (18) 

         
                                                                                                                   (19) 

    
  

      
                                                                                                                   (20) 

          
                                                                                                                  (21) 
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donde   
   

 es el número de subgrupos k  en la molécula i , y Qk es el área relativa de 

van der Waals del subgrupo k . La parte residual se calcula de la siguiente manera. 

    
      

   
           

   
                                                                                (22) 

 k  es el coeficiente de actividad residual del grupo k en la mezcla y   
   

 es el 

coeficiente de actividad residual  del grupo k en la sustancia pura. 

                       
     

       
                                                      (23) 

    
    

      
                                                                                                              (24) 

     
   

   
   

    
   
    

                                                                                                        (25) 

donde θm es la fracción de superficie del grupo m en la fase líquida, Xm es la fracción 

molar del grupo m en la fase líquida,   
   

es el número de grupos de tipo k en la 

molécula i,  nm es una forma de interpretar la interacción entre los grupos n y m 

(depende de la temperatura). 

          
               

 
                                                                             (26) 

En esta última ecuación matemática, anm, bnm y cnm son los parámetros de 

interacción entre los grupos n y m, y T es la temperatura absoluta 

   Para comprobar la exactitud de las predicciones realizadas se realizaron los calculo de 

las desviaciones medias de la presión, de la temperatura y de la composición de la fase 

vapor existente entre los valores experimentales y los calculados mediante el método de 

predicción.  Los resultados se muestran en la Tabla 6  y  en las Figuras del 17 a 24. 
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Tabla 6. Predicciones del método UNIFAC. 

Sistema 
Condiciones 

experimentales 
T / K p / kPa y 

Lactato de metilo + metanol 

p = 101,325 kPa 2,26  0,0179 

T = 323,15 K  0,92 0,0075 

Lactato de metilo + etanol 

p = 101,325 kPa 1,03  0,0079 

T = 323,15 K  1,28 0,0192 

Lactato de etilo + metanol 

p = 101,325 kPa 2,52  0,0170 

T = 323,15 K  2,18 0,0162 

Lactato de etilo + etanol 

p = 101,325 kPa 1,58  0,0110 

T = 323,15 K  0,84 0,0149 

Promedio 

p = 101,325 kPa 1,85  0,0135 

T = 323,15 K  1,30 0,0145 
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Fig. 17. Diagrama T-x1-y1 del sistema lactato de 

metilo (1) + metanol (2) a p = 101.325 kPa: 

(,) experimental; (
____

) UNIFAC. 

 Fig. 18. Diagrama  p-x1-y1 del sistema lactato de 

metilo (1) + metanol (2) a T = 323,15 K: (,) 

experimental; (
____

) UNIFAC. 
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Fig.19. Diagrama T-x1-y1 del sistema lactato de 

metilo (1) + etanol (2) a p = 101.325 kPa: 

(,) experimental; (
____

) UNIFAC. 

 Fig. 20. Diagrama  p-x1-y1 del sistema lactato 

de metilo (1) + etanol (2) a T = 323,15 K: 

(,) experimental; (
____

) UNIFAC. 
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Fig.21. Diagrama  T-x1-y1 del sistema lactato de 

etilo (1) + metanol (2) a p = 101.325 kPa: (,) 

experimental; (
____

) UNIFAC. 

 Fig.22. Diagrama  p-x1-y1 del sistema lactato de 

etilo (1) + metanol (2) a T = 323,15 K: (,) 

experimental; (
____

) UNIFAC. 
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Fig. 23. Diagrama  T-x1-y1 del sistema lactato 

de etilo (1) + etanol (2) a  p = 101.325 kPa: 

(,) experimental; (
____

) UNIFAC. 

 Fig.24. Diagrama  p-x1-y1 del sistema lactato de 

etilo (1) + etanol (2) a T = 323,15 K: (,) 

experimental; (
____

) UNIFAC. 
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El método UNIFAC predice razonablemente bien el equilibrio líquido-vapor de los 

sistemas estudiados tanto en condiciones isobáricas como isotermas. El promedio de las 

desviaciones  en temperatura y presión son respectivamente 1,85 K y 1,30 kPa. El 

método predice valores menores para la temperatura de equilibrio que los obtenidos 

experimentalmente y consecuentemente valores más elevados para la presión de 

equilibrio.  

Los mejores resultados se obtienen para el sistema lactato de etilo + etanol  con una 

desviación media de la presión de 0,84 kPa y de la composición de la fase vapor de 

0,0149. En la situación opuesta se encuentra el sistema lactato de etilo + metanol ya que 

presenta una desviación media de la presión igual a 2,18 kPa y de la composición de la 

fase vapor de 0,0162.  

En el caso de condiciones isobáricas el sistema mejor predicho es  lactato de metilo + 

etanol presentando una desviación media de la temperatura y de composición de la fase 

vapor. 

6. Conclusiones 
 

  En este Trabajo Fin de Master se ha llevado a cabo el estudio de los equilibrios 

líquido-vapor en distintas condiciones experimentales (p constante o T constante) de las 

mezclas binarias constituidas por lactato de metilo o lactato de etilo y metanol o etanol. 

Los datos experimentales se han correlacionado mediante la ecuación de Wilson y se 

han representado los correspondientes diagramas presión-composición y temperatura 

composición obtenidos los coeficientes de actividad.  

   Haciendo uso de la ecuación de Wilson obtenemos los coeficientes de actividad. Estos 

coeficientes de actividad resultan ser  ligeramente mayores que la unidad, es decir,  los 

sistemas muestran pequeñas desviaciones positivas de la idealidad. Estas desviaciones 

son consecuencia de que el establecimiento de puentes de hidrogeno entre los 

componentes de la mezcla compensa el debilitamiento de esas interacciones en los 

respectivos componentes puros.  

 Asimismo se ha ensayado la utilización de una ecuación de tipo Redlich-Kister para la 

correlación global de los datos del equilibrio líquido-vapor con resultados excelentes. 
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  A parte de la determinación experimental del equilibrio líquido-vapor para  los 

distintos sistemas, también se han realizado las predicciones del equilibrio de fases 

mediante el método UNIFAC. La comparación entre los datos experimentales y los 

predichos por el método indican que éste proporciona unas predicciones no del todo 

satisfactorias. 
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