000058800 001__ 58800 000058800 005__ 20170127103250.0 000058800 037__ $$aTAZ-TFG-2016-4995 000058800 041__ $$aeng 000058800 1001_ $$aBarrera Esteban, Fernando 000058800 24200 $$aGalois Theory and G-sets 000058800 24500 $$aTeoría de Galois y G-conjuntos 000058800 260__ $$aZaragoza$$bUniversidad de Zaragoza$$c2016 000058800 506__ $$aby-nc-sa$$bCreative Commons$$c3.0$$uhttp://creativecommons.org/licenses/by-nc-sa/3.0/ 000058800 520__ $$aThe following text discusses the Galois Theory in a non-classical way. It consists of two chapters. The first one establish some results about algebras. Here the reader can find what algebras and algebras over a field are; what we call trivial, separable algebras, etc. The reader will find at some points how the classical theory of algebraic extensions fits in this context. The second chapter is divided in two parts. First, I give some basic results of G-sets. Then I state the theorems and propositions which will allow us to establish and prove the Galois Theorem, which will be displayed at the end. 000058800 521__ $$aGraduado en Matemáticas 000058800 540__ $$aDerechos regulados por licencia Creative Commons 000058800 700__ $$aMontaner Frutos, Fernando$$edir. 000058800 7102_ $$aUniversidad de Zaragoza$$bMatemáticas$$cAlgebra 000058800 8560_ $$f659249@celes.unizar.es 000058800 8564_ $$s379394$$uhttps://zaguan.unizar.es/record/58800/files/TAZ-TFG-2016-4995.pdf$$yMemoria (eng) 000058800 909CO $$ooai:zaguan.unizar.es:58800$$pdriver$$ptrabajos-fin-grado 000058800 950__ $$a 000058800 951__ $$adeposita:2017-01-26 000058800 980__ $$aTAZ$$bTFG$$cCIEN