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Prologue

The following text discusses the Galois Theory in a non-classical way. It consists of two chapters.

• The first one establish some results about algebras. Here the reader can find what algebras and
algebras over a field are; what we call trivial, separable algebras, etc. The reader will find at some
points how the classical theory of algebraic extensions fits in this context.

• The second chapter is divided in two parts. First, I give some basic results of G-sets. Then I state
the theorems and propositions which will allow us to establish and prove the Galois Theorem,
which will be displayed at the end.

This text is based on [1], which in turn is based on the course taught by Prof. García Loygorri at
University of Salamanca in 1974. In [2] and [3] the reader will find definitions and results of concepts
that have not been explained properly because they are out of the main topic, in a sense. For a discussion
in a more categorical way, [7] can be used. In this text it has been used just to complet some proofs
that are not clear in [1]. In [4], [5] and [6] the reader can find an exhaustive explanation of concepts in
classical algebraic extensions theory that are only mentioned as examples here.
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Summary

El presente texto se pregunta qué quiere decir la teoría de Galois. Una respuesta frecuente suele men-
cionar el estudio de la resolución de ecuaciones polinómicas por radicales. Bien es cierto que ésta es la
motivación de matemáticos como Ruffini, quien en su libro Teoria Generale delle Equazioni defiende
la imposibilidad de la resolución de ecuaciones polinómicas de grado cinco mediante radicales; Abel,
que da una prueba sobre la idea de Ruffini que es depurada finalmente por Kronecker; y el propio Ga-
lois, quien se pregunta en general, no solamente para las quínticas que habían sido estudiadas por sus
predecesores, cuándo existe y cuándo no una solución por radicales [8, Historical Introduction]. Sin
embargo, éste se muestra ahora como un problema menor dada la magnitud del impacto que supone la
aparición de una noción tan ubicua como es la de grupo.
La teoría de Galois clásica, explicada ya en términos de Artin, muestra que existe una relación biunívoca
entre las extensiones intermedias de un cuerpo y una extensión de Galois y los subgrupos del grupo de
Galois, lo que facilita en gran medida el estudio de las extensiones de cuerpos trasladándolo al estudio
de sus grupos de automorfismos. La teoría de Galois como aquí se trata pretende ser de algún modo más
general. Se puede decir que ésta va a ser una versión intermedia entre la versión clásica y la versión de
Grothendieck, quién hace uso de una terminología categórica que aquí prácticamente no se usa. Si el
lector tiene interés en esta versión, puede consultar [7], capítulo 2. El objetivo de una nueva reformu-
lación de la teoría de Galois de un modo más general es el de preparar el camino a un salto a una teoría
de Galois para extensiones infinitas, [7], capítulo 3, que no es tratada aquí.

La primera parte del trabajo introduce la noción de álgebra. Un A-álgebra B será un anillo con un
morfismo de anillos f : A→ B que permite definir el producto dado por ab = f (a)b de manera que
B adquiere una estructura adicional de A-modulo. Esto es, una A-álgebra es un anillo dotado de la
operación por escalares de un anillo A. Siempre y cuando un subanillo de B sea tal que contiene la
imagen de A bajo el morfismo f , éste tendrá también estructura de A-álgebra y será llamado subálgebra.

No se define el producto tensorial de módulos ni el producto tensorial de álgebras, que pueden verse
en [2, Chapter 2, p.24] y [2, Chapter 2, p.30] respectivamente. Del mismo modo, no se mencionan ni
prueban ciertas propiedades fundamentales del producto tensorial que aparecen en [3, Chapter XVI].
En cualquier caso, dadas dos A-algebras B,C podemos considerar su producto tensorial sobre A, que
denotamos B⊗A C y que jugará un importante rol a lo largo del texto.

Estudiamos también las k-algebras en las que el anillo k es un cuerpo. Llamaremos extensión a
las k-álgebras k→ K con K cuerpo. Merece la pena mencionar aquí que lo que llamamos extensión
de un cuerpo en la teoría clásica de extensiones algebraicas es de hecho una álgebra sobre un cuerpo.
Vemos también que si K es una extensión de k, para toda k-algebra A existe un morfismo de álgebras
de manera que A⊗k K es una K-álgebra que recibe el nombre de extensión de escalares. La dimensión
de esta álgebra sobre K será la misma que la de la k-algebra A sobre k. Del mismo modo tendremos
la transitividad del grado de cualquier álgebra de manera que si B es una K-algebra donde K es una
extensión de k, entonces dimk(B) = dimK(B)dimk(K).

Como en la teoría clásica de Galois, en la que se estudian las extensiones finitas sobre un cuerpo,
nosotros estudiaremos las álgebras finitas. Veremos que un álgebra finita, si es un dominio de integridad,
es un cuerpo; que todo ideal primo es maximal y que cualquier cociente de un álgebra por su radical
(esto es, la intersección de sus ideales maximales) se descompone en la suma directa de los cuerpos
residuales de estos ideales, lo que viene a ser el teorema chino de los restos.
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vi Chapter 0. Summary

Llamamos álgebra trivial a cualquier álgebra que se descomponga como suma directa de extensiones
de grado uno y álgebras reducidas a las álgebras sin elementos nilpotentes no nulos. El Teorema de
Descomposición dirá que cualquier álgebra finita y reducida se descompone como suma directa de sus
componentes. Esto es claro, ya que, al ser reducida, su radical es nulo.

Estudiamos los puntos de un algebra A sobre una extensión K, que son los morfismos de álgebras
de A en K y que, veremos, están unívocamente relacionados con los morfismos de la K-algebra AK en
K, con los ideales maximales m de AK tales que el cociente AK/m es isomorfo a K y de aquí, claro, con
las componentes de AK(*).

Introducimos la noción de separabilidad de k-algebras, que es una generalización de la separabilidad
de extensiones (de hecho, en el texto vemos que si una extensión es separable en el sentido clásico,
entonces es una k-algebra separable) y las caracterizamos. Una k-álgebra separable cumplirá que su
extensión de escalares por todo cuerpo K extensión de k será separable.

Para estudiar si una k-algebra es separable o no, haremos uso de la métrica de la traza. Dada una
k-algebra A, cualquier elemento a ∈ A define un endomorfismo de A dado por x 7−→ ax. Llamaremos
traza de a a la traza de este endomorfismo. Ocurre que el radical de la k-algebra está contendido en el
radical de la métrica, así que para ver si una k-algebra A es reducida, basta con ver si el radical de la
métrica de la traza de AK es nula. De esta manera, la métrica de la traza se revela como una importante
herramienta para el estudio de álgebras reducidas.

Finalmente estudiamos los cuerpos finitos para concluir que todo cuerpo finito es perfecto, esto es,
que toda extensión de un cuerpo finito es separable.

Decimos que un conjunto X es un G-conjunto si está dotado de una acción de G sobre X . La acción
de G define una equivalencia en X a cuyas clases de equivalencia llamamos órbitas. Es claro entonces
que todo G-conjunto es isomorfo a la unión disjunta de sus órbitas. Un G-conjunto con una sola órbita se
dirá conexo. Se observa que todo G-conjunto conexo X es isomorfo a G/H donde H es el estabilizador
de un elemento x ∈ X . Podemos definir aplicaciones entre G-conjuntos que conserven su estructura.
Éstas se llaman G-morfismos. El conjunto de G-morfismos entre dos G-conjuntos X e Y se denota
HomG(X ,Y ) y se relaciona unívocamente con el conjunto de órbitas de X×Y isomorfas a X a través de
una proyección canónica de X×Y en X .

Veremos que dada una k-algebra A y una extensión K de k, todo automorfismo g de K induce un
automorfismo id⊗g de AK . Es decir, el grupo G = Autk(K) actúa sobre AK , luego actúa también sobre
sus ideales maximales, así que actúa sobre Homk−alg(A,K) por (*). De esta manera Homk−alg(A,K)
es un G-conjunto sobre el que G actúa mediante la composición. Es decir, g f = g ◦ f para todo f ∈
Homk−alg(A,K).

Decimos que una extension k→ K es Galois si la K-álgebra K⊗k K es trivial. Al grupo de automor-
fismos de K se le llama su grupo de Galois. Ocurre que si K es Galois con grupo de Galois G, entonces
KG = k, lo que demuestra que nuestra definición de extensión de Galois contiene a la definición clásica
ya que una extensión se dice de Galois si ésta es normal y separable, lo que es equivalente a que KG = k.
El Teorema de Artin dirá que si G es el grupo de automorfismos de una extensión finita y separable K
de k, entonces KG = k y G será el grupo de Galois de K. Desde el teorema de Prolongación veremos
que si G es el grupo de Galois de una extensión de Galois K sobre k, para toda otra extensión finita L
de k, G actúa transitivamente sobre Homk(L,K). Finalmente definimos lo que es una k-algebra trivial
sobre la extensión de Galois K, que es aquella tal que su extensión escalar es una K-álgebra trivial. El
Teorema de Galois establecerá una relación biunívoca entre la categoría de k-álgebras triviales sobre
K y la categoría de G-conjuntos finitos. La función vendrá dada por los funtores contravariantes P y R
que llevan la k-algebra A a P(A) = Homk(A,K) y el G-conjunto X a R(X) = (⊕X K)G. Veremos que,
nuevamente, esta versión del teorema de Galois es una generalización porque contiene el teorema de
Galois clásico que relaciona las extensiones intermedias de k y K y los subgrupos del grupo de Galois de
K. Citaremos finalmente la envoltura de Galois de una k-algebra finita y separable A como la extensión
de Galois más pequeña sobre la que A es trivial.
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Chapter 1

Finite Algebras

1.1 Algebras

Definition 1.1.1. Let A, B be two rings and let f : A→ B be a ring morphism. We define a product

ab = f (a)b

which makes B into an A-module. The ring B together with the structure of A-module is said to be an
A-algebra.

Definition 1.1.2. Given two ring morphisms f : A→ B and g : A→C, the ring morphism h : B→C is
said to be an A-algebra morphism or morphism of A-algebras if it is also an A-module morphism. It is
easy to see that h is an A-algebra morphism if and only if h◦ f = g.

Definition 1.1.3. Let f : A→ B be a ring morphism. Any subring C of B such that f (A) ⊂ C has a
structure of A-algebra. C is called subalgebra of the algebra B.

Let B and C be two A-algebras, since they can be seen as A-modules we may form their tensor prod-
uct B⊗A C which is an A-algebra, as well. This A-algebra is endowed with two A-algebra morphisms
u : B→ B⊗A C and v : C→ B⊗A C such that

HomA−alg(B⊗A C,D) = HomA−alg(B,D)×HomA−alg(C,D)
f ←→ ( f ◦u, f ◦ v)

for any A-algebra D. We will write b⊗ c = u(b)v(c). It is worth saying that any pair of A-algebra
morphisms f : A→ X and g : B→ Y define an A-algebra morpshism f ⊗ g : A⊗B→ X ⊗Y given by
( f ⊗g)(a⊗b) = f (a)⊗g(b).

1.2 Algebras over a field

Let k be a field.

Definition 1.2.1. We will say that a k-algebra k 7→ K is an extension whenever the ring K is a field.

If K is an extension and A is a k-algebra, their tensor product A⊗k K is endowed with a k-algebra
morphism

u : K 7−→ A⊗k K
λ 7−→ 1⊗λ

such that A⊗k K has a structure of K-algebra. This new K-algebra will be denoted by AK and called
extension of scalars.
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2 Chapter 1. Finite Algebras

If A is a k-algebra, it can be seen as a vector space over k. We will say that the k-algebra A is finite
if it is finite as a k-vector space. Since a tensor product is free if its factors are free and AK is generated
by the elements of the form ai⊗λ , where {ai} is a basis of A, the k-algebra A will be finite if and only
if AK is finite. In this conditions we will have:

dimk(A) = dimK(AK).

Moreover, if k 7→ K is a finite extension and B is a finite K-algebra, B will have a structure of k-algebra
through the composition k 7−→ K 7−→ B and it is verified that

dimk(B) = dimK(B)dimk(K).

If K is a finite extension of k, its dimension over k will be called degree.
Let us notice that, since any morphism between fields is injective, any morphism between finite exten-
sions is an automorphism.

The reader must have noticed that it has not been necessary to talk about irreducible polynomials and
algebraic extensions as it is done in the classical Galois Theory. However, it is easy to see that from
our new definitions we can reach the same results. It is straightforward that finite extensions are finite
k-algebras and it is already known that an extension is finite if and only if it is algebraic. Therefore
when we talk about finite k-algebras in particular we are considering algebraic extensions.

Let k be a field and A be a k-algebra. It is clear that the ring of polynomials k[x] is a k-algebra as
well. Take an element a ∈ A. It induces the mapping

φa : k[x]→ A given by X 7−→ a

which clearly is a k-algebra morphism. The image of this mapping will be k[a] which is the smallest
subalgebra which contains a. Since k is a field, k[x] is a principal ideal domain so kerφa will be generated
by just one polynomial and we can choose a monic one. This polynomial is called the irreducible
polynomial of a and we denote it by Irr(a,k). By the First Isomorphism Theorem we have that:

k[x]/(Irr(a,k))' k[a].

Given an extension k→ K and the elements a1, . . . ,an ∈ K, we denote by K(a1, . . . ,an) the smallest
subfield of K containing both the image of k and the given elements. If K is finite, for any a ∈ K it
happens that

k(a) = k[a]

because a is algebraic over k so Irr(a,k) is irreducible and therefore k[a] ' k[x]/(Irr(a,k)) is a field.
This in particular give us the following

Proposition 1.2.2. If K is an extension k→ k(a), then degk(k(a)) = deg(Irr(a,k)).

Definition 1.2.3. Let K, K′ and E be extensions of a field k. Given the field morphisms K → E and
K′→ E we call the composite of K and K′ to the smallest subfield of E which contains the image of the
induced morphism K⊗k K′→ E.

1.3 Finite algebras

Let k be a field.

Lemma 1.3.1. If the finite k-algebra A is an integral domain, then it is a field.
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Proof. Any element a ∈ A defines an endomorphism φa : A 7−→ A given by φa(x) = ax. Since A is an
integral domain there is no x such that ax = 0 so φa is a monomorphism. But A is a finite k-algebra so φa

is an epimorphism. This implies that for any a ∈ A there is an inversible element, thus A is a field. �

Remark. It is trivial that φa is an isomorphism because it is a monomorphism between finite dimensional
k-vector spaces with the same dimension.

Theorem 1.3.2. Any prime ideal of a finite k-algebra is maximal.

Proof. Let p be a prime ideal of the finite k-algebra A. Then A/p is an integral domain so, by the lemma
above, it is a field thus p is maximal. �

Lemma 1.3.3. Let m1, . . . ,mr be maximal ideals of a ring A. Then the canonical morphism

A/(m1∩ . . .∩mr)→ A/m1⊕ . . .⊕A/mr

is an isomorphism.

Proof. It is straightfoward that the mapping is a monomorphism. To see that it is also onto we prove
that, without loss of generality, the element (1,0, . . . ,0) is in the image.
If i 6= 1 then m1 +mi = A. Otherwise, since the sum of ideals is an ideal, we would have a proper ideal
containing both m1 and mi which are maximal. Therefore there exist elements ai ∈ m1 and bi ∈ mi such
that ai +bi = 1. Let

c = ∑
r
i=2 ∏bi

Then c≡ 1(mod m1) as bi ≡ 1(mod m1) and c≡ 0(mod mi) for any i 6= 1 as bi ≡ 0(mod mi). �

Definition 1.3.4. A k-algebra is said to be trivial if it is isomorphic to the direct sum of extensions of
degree 1, i.e., if it is isomorphic to k⊕ . . .⊕ k.

Note that the tensor product of two trivial k-algebras is a trivial k-algebra and that any quotient of
a trivial k-algebra is trivial. Also, if A is a trivial k-algebra and k→ K an extension of k then AK is a
trivial K-algebra. Indeed, AK = A⊗k K ' (k⊕ . . .⊕ k)⊗k K = (k⊗k K)⊕ . . .⊕ (k⊗k K) = K⊕ . . .⊕K.

Corollary 1.3.5. The number of maximal ideals of a finite k-algebra is bounded by its dimension. The
equality holds if and only if the k-algebra is trivial.

Proof. If m1, . . . ,mr are the maximal ideals of a finite k-algebra A then:

dimk(A)> dimk(A/(m1∩ . . .∩mr)) = dimk(A/m1⊕ . . .⊕A/mr) = ∑
r
i=1 dimk(A/mi)> r

To have the equality we need that m1 ∩ . . .∩mr = 0 and A/mi ' k for any i, that is, we need A to be
trivial. �

Theorem 1.3.6 (Decomposition Theorem). Any reduced and finite k-algebra decomposes as the direct
sum of the residual fields of its maximal ideals.

Proof. Because of the previous result, the number of maximal ideals of a finite k-algebra is finite. Let
A be a reduced finite k-algebra. Its radical is the intersection of all its maximal ideals and, since A is
reduced, this is null. Then, applying 1.3.3 the result follows. �

Corollary 1.3.7. Any subalgebra of a trivial finite k-algebra is trivial.

Proof. Let us take a trivial k-algebra A and consider its projections πi : A→ k. Let B be a subalgebra of k.
Then we can restrict the projections to πB

i : B→ k. The kernel of any projection πi is a maximal ideal mi

so the kernles of πB
i are also maximal ideals ni =mi∩B but not necessarily different. Moreover B/ni' k.

To see this, note that for any i, k ' A/mi so any λ ∈ k can be written as a+mi with a ∈ A therefore any
a ∈ A can be written as λ +mi. Hence, A = k+mi. But k+mi ⊂ B+mi so B+mi/mi ' A/mi and, by
the Second Isomorphism Theorem, B+m/m' B/B∩m = B/n and we have proven that B/ni ' k. Then
we apply the Decomposition Theorem on B and the result follows. �



4 Chapter 1. Finite Algebras

Definition 1.3.8. A field k is said to be algebraically closed if all of its polynomials have at least one
root in k. Therefore, if k is algebraically closed, all its irreducible polynomials are of degree 1.

Corollary 1.3.9. Any finite k-algebra which is reduced over an algebraically closed field is trivial.

Proof. Let k be an algebraically closed field. If A is a reduced finite k-algebra it decomposes in the
direct sum of its residual fields. But they are extensions of k through the composition k→ A→ A/mi

for any i so degk(A/mi) = 1 hence they are isomorphic to k. �

Definition 1.3.10. Let A be a reduced finite k-algebra. Its residual fields are called components.

According to this definition, the Decomposition Theorem says that a reduced finite k-algebra A de-
compose in the direct sum of its components. Let us notice that the components of A are not subalgebras
of A.

Let us consider the finite k-algebra k[x]. By 1.3.2 any prime ideal of k[x] is maximal. But k[x] is a
PID, so prime ideals are generated by just one polynomial which is irreducible because in a PID

{maximal ideals of k[x]}= {(p) with p prime}= {(p) is irreducible}.

Let q1, . . . ,qn be the monic irreducible factors so that p = qe1
1 . . .qen

n for some ei ≥ 1 and take k[x]/(p).
Whenever the factors qi are different to each other, it happens that

k[x]/(p) = k[x]/(qe1
1 . . .qen

n ) = k[x]/∩i (qi).

From the Decomposition Theorem it follows that

k[x]/(p) =
⊕

i k[x]/(qi).

1.4 Points of an algebra

Definition 1.4.1. Let K be an extension of k and let A be a k-algebra. The k-algebra morphisms from
A into K are called points of A with values in K. Points of a k-algebra with values in k are said to be
rational points.

Lemma 1.4.2. The rational points of a k-algebra are in 1-1 correspondence with its maximal ideals of
residual field k. More precisely:

Homk−alg(A,k) = {m | m/max A and A/m' k}.

Proof. Each maximal ideal whose residual field is k is the kernel of a point of A with values in k. To see
this, take m/max A such that A/m' k and consider the map A→ k given by a 7−→ a+m.
On the other hand, any k-algebra morphism from A into k is surjective. Indeed, since any k-algebra
morphism is a k-module morphism, f (λ ) = f (λ1) = λ f (1) = λ for any f : A→ k, λ ∈ k. Therefore,
if two of such morphisms have the same kernel they factorize through the other so they are different,
possibly up to an automorphism of k. Since the only automorphism of k is the identity, each rational
point is indeed determined by its kernel. �

Lemma 1.4.3. The points of a k-algebra A with values in K are in 1-1 correspondence with the rational
points of the K-algebra AK . More precisely:

Homk−alg(A,K) = HomK−alg(AK ,K)

where any k-algebra morphism f : A→ K is attached to the morphism f ⊗ id : AK → K given by

( f ⊗ id)(∑ai⊗λi) = ∑ f (ai)λi.
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Proof. The morphism f is determined by f ⊗ id because f (a) = ( f ⊗ id)(a⊗1).
On the other hand, let g : AK → K be a K-algebra morphism. Let us take f : A→ K given by f (a) =
g(a⊗1). It is easy to see that f is a k-algebra morphism. It is verified that:

g(∑ai⊗λi) = g(∑(ai⊗1)(1⊗λi)) =
g(∑λi(ai⊗1)) = ∑(λig(ai⊗1)) =

∑λi f (ai) = ( f ⊗ id)(∑ai⊗λi)

thus g = f ⊗ id. �

Theorem 1.4.4. The points of a k-algebra A with values in an extension K of k are in 1-1 correspondence
with the maximal ideals of AK with residual field K. More precisely:

Homk−alg(A,K) = {m | m/max AK and AK/m' K}

Proof. We have proven in the lemma above that Homk−alg(A,K) = HomK−alg(AK ,K). Applying 1.4.2
to the K-algebra AK the result follows. �

Corollary 1.4.5. The number of points of a finite k-algebra A with values in an extension K is bounded
by its dimension. The equality holds if and only if AK is a trivial K-algebra.

Proof. It follows from 1.3.5. The number of ideals of AK is bounded by dimK(AK). Then apply the
equality in the theorem above. The second statement follows from 1.3.5, too. �

Corollary 1.4.6. The number of rational points of a finite k-algebra is bounded by its dimension. The
equality holds if and only if the algebra is trivial.

Proof. Straightforward from the fact that Homk(A,K) = HomK(AK ,K) and dimk(A) = dimK(AK). �

Corollary 1.4.7. Let K be a finite extension of k. The number of automorphisms of K over k is bounded
by the degree of K over k. The equality holds if and only if K⊗k K is a trivial K-algebra.

Proof. By 1.4.5 the number of points of K with values in K is bounded by dimk(K), which is its degree.
We would have the equality if KK is trivial, that is, if K⊗k K is trivial. �

Definition 1.4.8. Let k be a field. An extension k→ K is said to be an algebraic closure of k if K is
algebraically closed and each element of K is the root of a non-zero polynomial in k[x]. That is, when
K verifies:

i) Any element of K belongs to some subfield of K which is a finite extension of k.

ii) Any polynomial with coefficients in k decomposes in k[x] as product of polynomials of degree 1.

Generally, the algebraic closure of a field k is denoted by k.

Lemma 1.4.9. Let k be a field. Then its algebraic closure is unique up to isomorphism.

Proof. Let K and K′ be two algebraic clousures of k. The residual field of any maximal ideal m of
K⊗K′ is an extension of K through the composition K→ K⊗K′→ K⊗K′/m which is generated by
roots of polynomials with coefficients in k. Indeed, the generators of K⊗k K are α⊗1 and 1⊗λ where
α ∈ K and λ ∈ K′ are roots of polynomials of k[x] as K and K′ are algebraic clousures of k, so it is an
extension of K such that dimK(K⊗K′/m) = 1. An analogous argument can be used for K′. Therefore,
any maximal ideal of K⊗K′ defines a k-algebra morphism K → K′ which is obviously injective but
also surjective because every element of K is a root of a polynomial with coefficients in k and these
polynomials have all their roots in K′. �

Remark. Note that we are assuming the existence in the previous lemma. To see a proof of existence
the reader can check [4, pp.21-22] and [6, pp.47-48].



6 Chapter 1. Finite Algebras

1.5 Separable finite algebras

Let k be a field and let A be a finite k-algebra.

Definition 1.5.1. A k-algebra A is said to be separable if for any extension k→K its extension of scalars
AK has no nilpotent elements.

Remark. Let A be a separable finite k-algebra. Then, AK is finite and reduced so, by the Decomposition
Theorem, AK decomposes as a direct sum of fields. Moreover, let A be a trivial k-algebra. It is clear
that AK has no nilpotent elements because it is a trivial K-algebra so A is separable. That is, any trivial
k-algebra is separable.

In classical Algebraic Extensions of Fields, given an algebraic extension K/k, an element a ∈ K is
said to be separable over k if it is a simple root of its irreducible polynomial. If all the elements in K/k
are separable K is said to be separable. An element a ∈ K is said to be inseparable if it is not a simple
root of Irr(a,k) and it is said purely inseparable if Irr(a,k) = (x−a)n for some n ∈N.
Let K/k be a normal extension of charateristic p which is not separable. Then there exists an element
a ∈ K which is purely inseparable over k1. Therefore

Irr(a,k) = (x−a)n for some n ∈N.

This can be written in the following way:

Irr(a,k) = (x−a)n = (x−a)pem = h(x)pe

where p and m are coprimes. Let us take the polynomial

h(x) = b0 +b1x+ . . .+bn−1xn−1 + xm.

Then there exists an element bi such that bi /∈ k because otherwise h(x) ∈ k[x]. However, the polynomial

Irr(a,k) = h(x)pe
= bpe

0 +bpe

1 xpe
+ . . .+bpe

n−1x(n−1)pe
+ xmpe

is in k[x] so there exists an element bi such that bi /∈ k and bpe

i ∈ k. Therefore we take s = bi. We have
proven that if the extension K/k is not separable there exists an element s ∈ K such that spe ∈ k. Now,
consider the tensor product K⊗k K and take the element (s⊗1)− (1⊗ s). Then:

((s⊗1)− (1⊗ s))pe
= spe⊗1−1⊗ spe

.

But spe ∈ k so we have that

spe⊗1−1⊗ spe
= spe⊗1− spe⊗1 = 0

so the element s⊗ 1− 1⊗ s is nilpotent on K⊗k K and K is not separable in the sense of k-algebras.
Therefore, we have proven that the separability of k-algebras is actually a generalization of the separa-
bility of extensions.

The following result gives a characterization of separable k-algebras.

Proposition 1.5.2. Let A be a finite k-algebra. The following are equivalent:

i. A is separable.

ii. Ak is reduced, with k is an algebraic clousure of k.

iii. There exists an extension k→ K such that AK is a trivial K-algebra.

iv. There exists an extension k→ K such that AK is a separable K-algebra.

1Check [4, pp.10-18].
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v. AK is a separable K-algebra for any extension k→ K.

Proof. i =⇒ ii) By definition.
ii =⇒ iii) Any finite algebra which is reduced over an algebraically closed field is trivial by 1.3.9 so Ak
is trivial.
iii =⇒ iv) There exists an extension k→ K such that AK is trivial and any trivial extension is separable.
iv =⇒ v) Let K be an extension of k such that AK is a separable K-algebra and take L to be an arbitrary
extension of k. If we prove that AL is reduced then we will conclude that AK is separable because among
the arbitrary extensions of k we can find the extensions of K. Then, let us denote by KL the composite
of K and L. Then, the morphism

AL→ AKL

is injective because L→ KL is injective and, since AKL = AK⊗K L is reduced it follows that AL so is.
v =⇒ i) Trivial. �

Proposition 1.5.3. Any subalgebra of a separable finite algebra is separable.

Proof. Let B be a subalgebra of A with A separable. Then BK is a subalgebra of AK so BK is reduced
whenever so is AK . �

Proposition 1.5.4. Any quotient of a separable finite algebra is separable.

Proof. If f : A→ B is a surjective morphism of algebras, then B is a quotient of A. We may form the
mapping f ⊗ id : AK → BK which is onto, too. Indeed, let β ⊗ λ in BK with β ∈ B then there exists
an element α ∈ A such that f (α) = β so there will be an element α ⊗λ such that ( f ⊗ id)(α ⊗λ ) =
f (α)⊗λ = β ⊗λ . Then we can extend by linearity. Therefore, BK is a quotient of AK and it will be a
trivial K-algebra whenever so is AK . �

Remark. Let us notice that in the proof above it is not used that AK is reduced but trivial over K. In
1.5.2 we can see that the fact that AK is trivial over K is equivalent to the fact that A is separable. Since
AK K-trivial implies BK K-trivial we have that B is separable, which is what we wanted to prove.

Proposition 1.5.5. The direct sum of two separable finite algebras is separable if and only if both
summands are separable.

Proof. ⇒) It is a consecuence of the proposition above. The canonical morphisms A⊕B→ A and
A⊕B→ B are epimorphisms, therefore A and B are quotients of A⊕B and the result follows.
⇐) Let A, B be finite k-algebras. Then (A⊕B)K = AK⊕BK is reduced if AK and BK are reduced. �

Proposition 1.5.6. The tensor product of two finite k-algebras is separable if and only if so are its
factors.

Proof. ⇒) Let us take the separable k-algebra A⊗B. Since A and B are its subalgebras they are separable
as well.
⇐) Let A and B be two finite k-algebras. Then (A⊗k B)K = AK⊗k BK is trivial whenever so are AK and
BK . �

Proposition 1.5.7. Any composite of two separable finite extensions is a separable finite extension.

Proof. Each composite of two finite extensions is a quotient of its tensor product. So applying the
previous propositions the result follows. �
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1.6 Metric of the trace

In this section we study a useful tool to determine whether a k-algebra is separable.

Let A be a finite k-algebra. Any element a ∈ A defines a mapping φa : A→ A given by φa(x) = ax,
which is an endomorphism of k-algebras, that is, an endomorphism of k-vector spaces.

Definition 1.6.1. Let a be an element of the finite k-algebra A. We call the trace of a to the trace of the
endomorphism φa:

trA/k : A→ k given by trA/k(a) = tr(φa).

which verifies trA/k(1) = dimk(A).

The trace is a linear form, so we can define the metric T in A given by:

T (a,b) = trA/k(ab)

which induces a polarity in A, i.e., a linear form from A into its dual space A∗.

ω : A→ A∗ given by a 7−→ ω(a) = T (a,−)

whose kernel is the radical of the linear form T .
Let K be an extension of k, the polarity above induces a polarity over the K-vector space AK .

ω : AK → (A∗)K

Remark. The dual space A∗ of A is the set of linear functions A→ k. But linear functions are homomor-
phisms of vector spaces so A∗ = Homk(A,k). Let us note that (A∗)K = (AK)

∗ which is a consequence of
the natural isomorphism Homk(V,W )⊗K = HomK(V ⊗K,W ⊗K) with V,W k-vector spaces.

Proposition 1.6.2. The polarity associated to the metric in AK is ω⊗ id.

Proof. Let a ∈ A, then the endomorphism φa⊗1 of AK is φa⊗ id. Indeed, let α = x⊗y ∈ AK . φa⊗1(α) =
(a⊗1)(x⊗ y) = (ax⊗ y) = φa(x)⊗ y = (φa⊗ id)(x⊗ y). Since the trace of endomorphisms is invariant
by changing the base field we get trA/k(a⊗1) = trA/k(a)⊗1. Then, the mapping ω⊗ id : AK → A∗K is
(ω⊗ id)(a⊗b) = ω(a)⊗b = T (a,−)⊗b. �

Proposition 1.6.3. Let R be the radical of the metric of the trace of A, then R⊗k K is the radical of the
metric of the trace of the K-algebra AK .

Proof. Consider the following sequence of k-modules:

0→ R→ A ω−→ A∗

The kernel of ω is R which is also the image of the inclusion of R in A, hence the sequence is exact2.
Since any free module is flat3 and any vector space is free, any vector space is flat so K is flat as a k-
vector space and preserves the exactness of sequences by tensorizing. Therefore, the following sequence
is also exact:

0→ R⊗k K→ A⊗k K ω⊗id−−−→ A∗K

By exactness, R⊗k K is the kernel of ω⊗ id. �

Proposition 1.6.4. Rad(A)⊂ R. Where Rad(A) is the radical of the k-algebra A and R is the radical of
the metric of the trace.

2A sequence of morphisms . . .→Mi−1
fi−1−−→Mi

fi−→Mi+1
fi+1−−→ . . . is said to be exact if Im fi = Ker fi+1. [3, p.15;p.120]

3A module is said to be flat if it preserves exactness by tensorizing. [3, p.612]
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Proof. Let a ∈ A be nilpotent. Then an = 0 for some n ∈N. Take b ∈ A. Then ab is nilpotent, so, since
the trace of a nilpotent endomorphism is null, T (a,b) = trA/k(ab) = 0. �

Remark. The fact that Rad(A) ⊂ R is the key point in this section. Indeed, what it says is that to find
out whether an algebra A is reduced it is enough to check if the radical of its trace is zero.

Theorem 1.6.5. A finite k-algebra is separable if and only if the radical of the trace is zero.

Proof. ⇒) Let A be a finite k-algebra which is separable. Then there exists an extension k→ K such
that AK is trivial, so AK ' K⊕ . . .⊕K. Its components K are ortogonal to each other with respect to the
metric of the trace. The radical of the metric of trace of extensions with degree 1 is zero so the radical
of the metric of AK is zero. Therefore, because of 1.6.3, the radical of the metric of the trace of A is zero
as well.
⇐) If the radical of the metric of A is zero, the radical of the metric of AK is zero for any extension
k → K. Since the radical of the algebra is contained in the radical of the metric, we get that AK is
reduced. �

Corollary 1.6.6. A finite extension k→ K is separable if and only if trK/k is not zero.

Proof. The radical of the metric of the trace of A is an ideal. Indeed, if a ∈ A belongs to the radical,
T (a,b) = 0 for any b∈ A so T (ca,b) = T (a,cb) = 0 for any c∈ A. Therefore, if the radical of the metric
of the trace of an extension K is not zero, it has to be K so the bilinear form trK/k : K→ k is zero.
On the other hand, if trK/k is zero, the metric of the trace is zero. By the theorem above, the extension
is inseparable. �

Corollary 1.6.7. Any finite extension of a field with characteristic 0 is separable. Therefore, any reduced
finite algebra over a field with characteristic 0 is separable.

Proof. Let K be a finite extension of k with char(k) = 0. We have that trK/k(1) = dimk(A) 6= 0 so K is
separable.
By the Decomposition Theorem, any reduced finite k-algebra decomposes as a direct sum of its residual
fields. It is already known that the direct sum of two finite algebras is separable if and only if its
summands are separable. This can be easily extended to n summands. Then the result follows. �

Corollary 1.6.8. Let K be an inseparable finite extension. Then its degree is divisible by the character-
istic of the base field.

Proof. Let k→ K to be such an inseparable finite extension. By 1.6.6 we have that 0 = trK/k(1) =
dimk(K), where dimk(K) = dimk(K)+(p). So, since p divides trK/k(1) then p divides dimk(K). �

1.7 Finite fields

Let k be a field with characteristic p. It is clear that if the degree of k over Z/pZ is n then k has pn

elements. Let us call q = pn. The non-zero elements of k form a group with the multiplication whose
order is q−1. Therefore, for any element x in this group, xq−1 = 1, that is, xq−1−1 = 0. So any element
x ∈ k verifies that xq− x = 0.

Proposition 1.7.1. In fields with char(p) 6= 0 the map φ : k→ k given by φ(x) = xp is a morphism of
fields.

Proof. Let k be a field such that char(k) = p 6= 0 and take a,b ∈ k. Then (ab)p = apbp and (a+b)p =
ap +bb as the coefficients

(p
i

)
of the series (a+b)p are all divisible by p when 1≤ p≤ p−1. �

Definition 1.7.2. Let K be a finite extension of k. We call the Fröbenius automorphism of K over k to
the automorphism F : K→ K given by F(x) = xq where q is the number of elements of K.
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Remark. Note that this morphism fixes the elements of k: if x∈ k then F(x) = xq = x because xq−x = 0.
F is an automorphism because it is a morphism of fields, hence injective, which is also surjective because
of the finiteness of K.

Theorem 1.7.3. Let K be a finite extension of a finite field k. If degk(K)= d, the group of automorphisms
of K over k is cyclic with order d and it is generated by the Fröbenius automorphism. Moreover, KK is
trivial.

Proof. Let us notice that F may form a cyclic group of automorphisms of K over k. Its order will
be the degree of the extension k→ K. If degk(K) = 1 it is clear that F = id and the group will be
〈1〉. If degk(K) = 2 then it will have q2 elements and it will be verified that F(F(x)) = x if x ∈ k and
F(F(X)) = xq2

= x for any x ∈ K so the cyclic group will be 〈1,F〉 and this argument can be extended
for K with degk(K) = d.
By 1.4.7 the number of automorphisms of K over k is equal to degk(K) if and only if KK is trivial. �

Corollary 1.7.4. Any finite extension of a finite field is separable. Therefore, any reduced finite algebra
over a finite field is separable.

Proof. Let K be a finite extension of k. Then K⊗k K is trivial so K is separable.
When it comes about algebras, applying the Decomposition Theorem and 1.5.5 the result follows. �

Remark. Let us take a look now from the point of view of the classical algebraic extensions theory. It
happens that a field k is perfect if and only if either char(k) = 0 or char(k) = p and kp = k. The proof
can be seen in [4, pp.9-10]. This, in particular implies that any finite field is perfect as we have proven
in 1.7.4. Indeed, since the prime field of a field of characteristic 0 has finitely many elements, a finite
field has to be of prime characteristic. This together with the fact that in a field of characteristic p the
mapping which attaches xp to any x is an automorphisms implies that a finite field is perfect. Note also
that in 1.6.7 it is also proven that a field of characteristic 0 is perfect.



Chapter 2

G-sets and Galois Theory

2.1 G-sets

Definition 2.1.1. Let G be a group and let X be a set. We call action of G on X to any group morphism

ρ : G→ S(X)

where S(X) is the set of bijections of X . If g ∈ G and x ∈ X , we simply write gx to denote ρ(g)(x).
Since ρ is a group morphism, ρ(gg′)(x) = (gg′)(x) = g(g′x) = ρ(g)ρ(g′)(x).

Remark. Actually we call action of G on X to the map

φ : G×X → X given by (g,x) 7−→ gx

which satisfies the following properties:

i ex = x for any x ∈ X where e is the unit in G.

ii (gh)x = g(hx) for any g,h ∈ G and x ∈ X

but if ρ is given by ρ(g) = φg : X → X which takes x to gx then ρ is a group morphism. Indeed, let
x,y ∈ X then ρ(gh)(x) = φgh(x) = ghx = g(hx) = φg(hx) = φg(φh(x)) = ρ(g)(ρ(h)(x)). On the other
hand, let ρ be a group morphism such that ρ(g) = φg. The mapping φ(g,x) = φg(x) is an action of G
on X . So therefore we can consider ρ as an action.

Definition 2.1.2. A G-set is a set endowed with an action of the group G.

Definition 2.1.3. Let X ,Y be G-sets. The mapping f : X→Y is said to be a G-set morphism if it verifies
that

f (gx) = g( f (x))

for any g ∈ G and x ∈ X . The set of G-set morphisms from X to Y is denoted by HomG(X ,Y ).

For any subgroup H ≤ G we can consider an equivalence relation which induces the quotient G/H.
This has a strucutre of G-set with the action of G given by g(g′H) = gg′H.
The G-sets G/H1 and G/H2 are isomorphic if and only if H1 and H2 are conjugate. Indeed, let us
consider the mapping G→ G/H1 given by g 7−→ gH1g−1 which is a group morphism whose kernel is
H2 if and only if H1 and H2 are conjugate.

Definition 2.1.4. Let {Xi}i∈I be a family of G-sets.

i) We call disjoint union to the disjoint union
⊕

i∈I Xi attached to the trivial action of G.

ii) We call direct product to their direct product ∏i∈I Xi endowed with the action of G induced by its
action on each factor.

11
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Proposition 2.1.5. For any G-set Y it is verified that

i) HomG(
⊕

i∈I Xi,Y ) = ∏i∈I HomG(Xi,Y )

ii) HomG(Y,∏i∈I Xi) = ∏i∈I HomG(Y,Xi)

Proof. It can be easily seen by computing. �

Any action of the group G on the set X defines an equivalence relation given by x ∼ y if there exists
g ∈ G such that gx = y. The equivalence classes are called orbits and denoted by Orb(x). Since any
element is contained in one orbit we get the following

Theorem 2.1.6 (Decomposition Theorem for G-sets). Any G set is isomorphic to the disjoint union of
its orbits.

Any element x ∈ X defines a G-set morphism

φx : G→ X such that φx(g) = gx

whose image is Orb(x) and whose kernel is the stabilizer of x Gx = {g | gx = x} ≤G. Therefore, by the
First Isomorphism Theorem G/Gx ' Orb(x).

Definition 2.1.7. A G-set with just one orbit is said to be connected.

What have been said above proves the next

Proposition 2.1.8. Any connected G-set is isomorphic to G/H for some subgroup H ≤ G which is the
stabilizer of one of its elements.

Let X be a G-set. We denote by X/G the set of orbits of X . We write XG to denote the set of
invariant elements of X under the action G, that is, those elements whose stabilizer is the whole G. Both
X/G and XG have a structure of G-sets with the trivial action of G, i.e., any element g ∈ G acts by the
identity. This way the canonical morphisms

X → X/G

and

XG→ X

are G-set morphisms.
Note that if a group G acts on a k-algebra A by k-algebra automorphisms, AG is a subalgebra of A.
Indeed, let ρ : G→ Autk(A) given by g→ ρ(g) : A→ A automorphism. Since automorphisms over k
are in particular k-module morphisms, k ⊂ AG so AG is a subalgebra of A.

Proposition 2.1.9. Let X be a connected G-set. For any G-set Y it is verified that

HomG(X ,Y ) = {Orbits of X×Y isomorphic to X through the canonical projection X×Y → X}

Proof. Take a G-set morphism f ∈HomG(X ,Y ). It induces the morphism id× f : X→ X×Y which is a
section of the canonical morphism ρ : X×Y → X because ρ(id× f )(x) = ρ(x, f (x)) = x for any x ∈ X .
Therefore we get a 1-1 correspondence between the G-set morphisms from X to Y and the sections of
the canonical morphism ρ : X ×Y → X . Since X is connected, each section of ρ is an isomorphism
between X and an orbit of X ×Y which is isomorphic with X through ρ . Indeed, if X is connected it is
an orbit by the Decomposition Theorem, so take an element y ∈ X . Then there exists g ∈ G such that
y = gx with x ∈ X . Then (id× f )(y) = (y, f (y)) = (gx,g( f (x))) because f is a G-set morphism. But
(gx,g f (x)) = g(x, f (x)) belongs to the orbit Orb(x, f (x)) in X×Y , which is isomorphic to X through ρ

because ρ(x, f (x)) = x is an isomorphism. Reciprocally, any of such orbits defines a section of ρ . �
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2.2 Actions of Autk(K) on Homk−alg(A,K)

We have seen in the previous chapter that the next equalities hold:

Homk(A,K) = HomK(AK ,K) =
= {m | m/max AK and AK/m' K}= {components of AK isomorphic to K}

Given an automorphism g : K→ K over k, g induces an automorphism of A⊗k K given by g(a⊗λ ) =
(id⊗g)(a⊗g(λ )). Therefore, the group of automorphisms of K over k acts on A⊗k K hence it acts on
its maximal ideals. We conclude that G = Autk(K) acts on the four sets above.

Let π : AK→K be the component of AK associated to the maximal ideal m/max AK . We call g(π) : AK→
K to the canonincal projection of AK into the component associated to its maximal ideal (id⊗ g)(m)
(note that (id⊗ g)(m) is also maximal because, in general, if f : A→ A is an automorphism, B is an
ideal if and only if so is f (B)). It follows that the following diagram is commutative:

It has been said before that G=Autk(K) acts on Homk−alg(A,K). Take f ∈Homk−alg(A,K) such that
π(a⊗λ ) = f (a)λ (this can be done because of 1.4.3) and h ∈Homk−alg(A,K) such that g(π)(a⊗λ ) =
h(a)λ . Then we have

h(a) = g(π)(a⊗1) = (g(π)◦ (id⊗g))(a⊗1) = (g◦π)(a⊗1) = g( f (a))

so G acts on Homk−alg(A,K) by composition:

g( f ) = g◦ f .

2.3 Galois extensions

Definition 2.3.1. We say that a finite extension k→ K is a Galois extension if the K-algebra K⊗k K is
trivial.

Remark. It is already known that if KK is trivial, K is separable. Also, Autk(K) = Homk−alg(K,K) =
HomK(KK ,K) = {m | m /max KK such that K ' KK/m} but, since KK is trivial, by 1.3.5 the number
of elements in this set is equal to dimk(K). That is, the number of automorphisms over k of a Galois
extension K coincides with its degree over k.

Definition 2.3.2. The group G = Autk(K) of the Galois extension K is called the Galois group of K.

Proposition 2.3.3. Let k→ K be a Galois extension with Galois group G. Then KG = k.

Proof. Since any finite k-algebra which is an integral domain is a field, KG is a field. Now, any el-
ement G is an automorphism of K over KG, then G = Autk(K) ⊂ AutKG(K) = HomKG(K) and since
|HomKG(K)| = dimKG(K) it follows that the degree of K over KG is equal or greater than the order of
G. But |G|= |Autk(K)|= |Homk(K,K)|= degk(K) so degk(K)≤ degKG(K) so KG ⊂ k. Since k ⊂ KG

it follows that k = KG. �
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Remark. In classical Galois Theory a finite extension K/k with Galois group G is said to be Galois if it
is separable and normal, which is equivalent to the fact that KG = k1. Then it is clear that our definition
does not have any contradiction with the classical one.

Definition 2.3.4. Let a group G and a set X . We say that G acts transitively on X if for any x,y ∈ X
there exists an element g ∈ G such that gx = y.

Lemma 2.3.5. Let G be the group of automorphisms of a reduced finite k-algebra A such that AG is a
field. Then G acts transitively on the components of A.

Proof. Assume G does not act this way. Since A is finite and reduced, by the Decomposition Theorem
it decomposes as the direct sum of its components. They can be regrouped as the sum A = B⊕C. Since
G does not act transitively on A, it is easy to see that AG = BG⊕CG. But this would imply that AG is not
a field because the direct sum of two algebras always has zero divisors. �

Lemma 2.3.6. Let k be a field and G be the finite group of automorphisms of the k-algebra B. Then, for
any k-algebra A, the morphism

A⊗k (BG)→ (A⊗k B)G

is an isomorphism where G acts on A⊗k B by g(a⊗b) = a⊗g(b).

Proof. The definition of BG implies the exactness of the following succession:

0→ BG→ B
f−→
⊕

G B

where f (b) = (b−gb)g∈G. By the same argument used in the proof of 1.6.3 the k-algebra A is flat so it
preserves exactness by tensorizing. Therefore the following succession is exact:

0→ A⊗k (BG)→ A⊗k B
id⊗ f−−−→

⊕
G(A⊗k B),

and exactness implies A⊗k (BG)' (A⊗k B)G. �

Corollary 2.3.7. Let k→ L and k→ K be an extension and a Galois extension respectively. Then the
L-algebra K⊗k L decomposes as the direct sum of extensions which are isomorphic to each other.

Proof. The L-algebra K⊗k L decompose as the direct sum of extensions because K is a separable ex-
tension. To see that the extensions are isomorphic let us note that the Galois group of K acts transitively
on them. Indeed, (K⊗k L)G = (K)G⊗k L = L and due to 2.3.5 the result follows. �

Theorem 2.3.8 (Prolongation Theorem). Let G be the Galois group of a Galois extension k→K. If L is
a finite extension of k it is verified that G acts transitively on Homk(L,K) whenever it is not empty. That
is, if f , f ′ are morphisms from L into K, there exists some automorphism g of K such that f ′ = g◦ f .

Proof. We use the same argument used in the result above. G acts transitively on the components of
L⊗k K because (L⊗k K)G is a field and then we apply 2.3.5. �

We have seen during this section that a Galois extension k→ K with Galois group G satisfies that
KG = k. The following theorem gives us a sort of reciprocal by assuming that the extension K is
separable and that KG = k where G = Autk(K).

Theorem 2.3.9 (Artin’s Theorem). Let G be a group of automorphisms of a separable finite extension
k→ K. If KG = k, then k→ K is a Galois extension whose Galois group is G.

Proof. Let us consider the action of G on K⊗k K given by g(a⊗b) = g(a)⊗b = ga⊗b. Then, (K⊗k
K)G = (KG)⊗k K = K so (K⊗k K)G is a field and, since the component of K⊗k K associated to the
identity is isomorphic to K, K⊗k K is K-trivial. We conclude that K is a Galois extension.
G acts transitively on the components of K⊗k K which are in correspondence with the automorphisms
of K over k so G is the Galois group of K. �

1[6, p.55].
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2.4 The Galois Theorem

In this section we discuss the results which will allow us to formulate the Galois Theorem in terms of a
particular kind of k-algebras and G-sets. As a consequence, our theorem will be more general than the
one in the classical Galois Theory.

Let k→ K be a Galois extension with Galois group G.

Definition 2.4.1. A finite k-algebra A such that AK is a trivial K-algebra is said to be trivial over K.

Remark. Note that if A is trivial over K, then A is separable.

Let A be a finite k-algebra and let G be a group which acts on the k-algebra A⊗k K by the identity
on A and its natural action on K. Then

(A⊗k K)G = A⊗k (KG) = A⊗k k = A

so we can get back the k-algebra A from A⊗k K and its action of G. When A is trivial over K it is enough
to know the action of G on the components of AK . Therefore we can recuperate A from the G-set formed
by the components of AK . More precisely, when A is trivial over K:

A⊗k K =
⊕

P(A) K

where P(A) denotes the set of points of A with values in K. Since P(A) = {components of AK}, under
the action of G we get:

A = (
⊕

P(A) K)G.

Definition 2.4.2. Let A be a finite k-algebra which is trivial over K. We will denote by P(A) the finite
G-set Homk−alg(A,K) on which G acts as defined at the begining of this chapter. That is, g( f ) = g◦ f .

Definition 2.4.3. Let u : A→ B be a k-algebra morphism with A and B finite k-algebras which are trivial
over K. We call P(u) : P(B)→ P(A) to the G-set morphism given by P(u)( f ) = f ◦u.

Remark. Actually, what we have defined is a contravariant functor P: C → G where C is the subcat-
egory of k-algebras containing the finite k-algebras which are trivial over K and G is the category of
G-sets.

Proposition 2.4.4. P turns direct sums into disjoint unions.

Proof. Take ⊕i∈IA with {A}i∈I a family of finite k-algebras trivial over K. Then ⊕i∈IA is also trivial
over K. Indeed, ⊕i∈IA⊗k K =⊕i∈I(A⊗k K) =⊕i∈I(⊕iK). Now,

P(⊕i∈IA) = Homk−alg(⊕i∈IA,K) = HomK−alg(⊕i∈IAK ,K)

But ⊕i∈I(AK) =⊕i∈I(⊕iK), so

HomK−alg(⊕i∈IAK ,K) = {components of ⊕i∈I (⊕iK)}=
⊔

HomK−alg(⊕iK,K) =
⊔

HomK−alg(AK ,K)

and the result follows. �

Lemma 2.4.5. The canonical k-algebra morphism φ : A→
⊕

P(A) K given by a ∈ A 7−→ ( f (a)) f∈P(A)

satisfies that imφ = (
⊕

P(A) K)G.

Proof. Let us first note that this map can be factorize in the following one:

A
φ−→ A⊗k K α−→⊕P(A)K

a 7−→ a⊗1 7−→ ( f (a)) f∈P(A).
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Take φ . Since G acts on A⊗k K by the identity in A and the natural action on K, we have that g(a⊗1) =
a⊗ g(1) = a⊗ 1. So therefore, A goes to (A⊗k K)G through φ . If we prove that the mapping α is a
G-isomorphism, then we will have that (A⊗k K)G goes to (⊕P(A)K)G.
Note that ⊕P(A)K = KP(A) = KHomK(AK ,K). Therefore α can be rewritten this way:

θ : AK → KP(A)

which in turn can be written as

θ : AK → Hom(HomK(AK ,K),K)

given by

α 7−→ θα : Hom(AK ,K)→ K such that θα( f ) = f (α).

We know how G acts on AK so we translate its action to KP(A) such that

θgα( f ) = gθα( f ) = θα(g f )

and by the commutativity of the diagram in section 2.2 we know that g f = g◦ f ◦ (id⊗g−1). We have
therefore our G-isomorphism and (A⊗k K)G = (⊕P(A)K)G. �

Definition 2.4.6. Let X be a finite G-set. G acts on the k-algebra
⊕

X K in the following way: g(λx)x∈X =
(gλgx)x∈X . The finite k-algebra R(X) = (

⊕
X K)G is called the associated algebra of X .

Definition 2.4.7. Let u : X → Y be a G-set morphism with X , B finite G-sets. We call R(u) : R(Y )→
R(X) to the k-algebra morphism which takes the succesion (λy) to the succession (λu(x)).

Remark. As before, R is induced from the contravariant functor G → C

Note that it is being suppossed that R(X) and R(Y ) are K-trivial k-algebras because C is the category of
such k-algebras. This is because actually R(X) is a finite k-algebra which is trivial over K for any G-set
X . Indeed, since R(X) is a subalgebra of⊕X K, R(X)⊗k K is a subalgebra of (⊕X K)⊗k K =⊕X(K⊗k K)
which is trivial over K so it is a trivial K-algebra as K is Galois.

Proposition 2.4.8. R turns disjoint unions into direct sums.

Proof. R(tiY ) = (⊕tY K)G = (⊕i(⊕YiK))G =⊕i(R(Yi)). �

Lemma 2.4.9. Let H ≤ G be a subgroup. The k-algebra R(G/H) is isomorphic to KH .

Proof. Take the k-algebra morphism

φ : KH →
⊕

G/H K
λ 7−→ (gλ )g∈G/H

Since λ is invariant under the action of H, φ is well defined because it does not depend on the chosen
representant of the equivalence class g. This map is injective because in one of the entries of the tuple
we can take the unity as a representant of the equivalence class and we will have an equality. Since
P(KH) = G/H we apply 2.4.5 and the First Isomorphism Theorem and the result follows. �
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Theorem 2.4.10 (Galois Theorem). Let G be the Galois group of a Galois extension k→ K. Then the
finite k-algebras which are trivial over K are in canonical correspondence with the finite G-sets. More
precisely:
If A is a finite k-algebra which is trivial over K, the canononical morphism

A→ R(P(A))

is a k-algebra isomorphism. And if X is a finite G-set, the canonical morphism

X → P(R(X))

is a G-set morphism.
Moreover, if A and B are in C , P verifies a bijection

Homk−alg(A,B) = HomG(P(B),P(A))

whose inverse is induced by R.

Proof. Let A be a finite k-algebra trivial over K. In 2.4.5 it has been proven that A→ R(P(A)) is an
isomorphism.
On the other hand, remember than P turns direct sums into disjoint unions and R do the opposite. There-
fore, it is enough to consider a connected G-set X to prove that X → P(R(X)) is a G-set isomorphism.
Indeed, if X is not connected it is isomorphic to the disjoint union of its orbits and R takes them to its
direct sum but P takes them back to its disjoint union. Therefore, take a connected G-set X . By 2.1.8
X is isomorphic to G/H for some H ≤ G. Then, by 2.4.9, KH ' R(G/H) = R(X). Now, since KH is a
finite extension, by the Prolongation Theorem, G acts transitively on Homk−alg(KH ,K) = P(KH) which
means that P(KH) is connected. But we can consider the mapping G = Homk(K,K)→ Homk(KH ,K)
which attaches to any f ∈ Homk(K,K) its restriction fKH ∈ Homk(KH ,K) which is an epimorphism
so it can be factorize through G→ G/ ∼ ϕ−→ Homk(KH ,K) where the equivalence relation ∼ is given
by g ∼ g′ if and only if ϕ(g) = ϕ(g′) which happens if and only if the restriction of both g,g′ to
KH is the same function, that is, if g(x) = g′(x) for any x ∈ KH if and only if (g′)−1g(x) = x for any
x ∈ KH if and only if (g′)−1g ∈ H. Therefore, we get that G/ ∼ is actually G/H and we get that
G/H ' Homk(KH ,K) = P(KH). It follows that X → P(R(X)) is an isomorphism.

Now take A,B ∈ C . We can supposse that B is a finite extension k → L trivial over K. Then, ap-
plying what we have seen above and 2.1.9:

Homk−alg(A,L) = {components of A⊗k L isomorphic to L}=

= {orbits of P(A⊗k L) isomorphic to P(L)}= {orbits of P(A)×P(L) isomorphic to P(L)}=

= HomG(P(L),P(A)).

�

Remark. The fact that we can factorize the mapping G→ Homk(KH ,K) as we do in the proof above
comes from the commutativity of the diagram below, where the equivalence relation is the one given in
the proof.
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Remark (The Galois Theorem in classical Galois Theory). Given a Galois extension K of k, the classical
Galois Theorem establishes a 1-1 correspondence between the intermediate fields k ⊂ L ⊂ K and the
subgroups of the Galois group G of K such that L is related to Gal(K/L). Let L be such an intermediate
extension, then it is of course a k-algebra which also splits on K because K is Galois and KK is K-
trivial. Now, P(L) = Homk(L,K) which is actually a connected G-set, but any connected G-set X is
isomorphic to G/H where H is the stabilizer of an element x ∈ X . Then P(L) is isomorphic to G/H
where H = Gal(K/L). Thus, we are attaching L to Gal(K/L). Therefore, the classical Galois Theorem
is contained in our new Galois Theorem.

2.5 Galois envelope

Definition 2.5.1. Let k→ L a finite extension. We call Galois envelope of L over k to any extension
k→ K verifying the following:

i) K is a composite of L.

ii) L is trivial over K.

Remark. Definition 1.2.3 gives us a definition of the composite of two k-algebras K,L given the mor-
phisms of algebras K→ E and L→ E. This one is slightly different: given two k-algebras K and L, we
say that K is the composite of L if K is the image of some tensor product of L. That is, if K is a quotient
of some tensor product of L.

Proposition 2.5.2. Let K be the Galois envelope of a finite k-algebra L. Then K is a Galois extension.
Moreover, |Homk−alg(L,K)|= dimk(L).

Proof. Since K is a quotient of some tensor product of L, let us say L⊗n for some n ∈N, then K⊗k K
is a quotient of L⊗n⊗k K. But, by ii) L⊗k K is a trivial K-algebra. If we assume that L⊗n−1⊗k K is
trivial, then so is L⊗n⊗k K = L⊗k L⊗n−1⊗k K . Then K⊗k K as a quotient of L⊗n⊗k K is also a trivial
K-algebra and we conclude that k→ K is Galois.
Now, |Homk−alg(L,K)| = |{components of L⊗k K isomorphic to K}| = dimk(L) because L⊗k K is K-
trivial. �

Theorem 2.5.3. Any separable finite extension has a Galois envelope which is unique up to isomor-
phism.

Proof. Existence. Let k→ L be a separable finite extension. If L is trivial over itself, that is, if L⊗k L =
⊕L then L is Galois and it is its own envelope. Let us assume now that L is not that way. Then there
would exist L′ such that L⊗k L = L⊕ . . .⊕L⊕L′⊕L⊕ . . .⊕L. Therefore: L⊗k L′ = L⊗k (L⊗L L′) =
(L⊗k L)⊗L L′= (L⊗L L′)⊕ . . .⊕(L⊗L L′)⊕(L′⊗L L′)⊕(L⊗L L′)⊕ . . .(L⊗L L′) = L′⊕ . . .⊕L′⊕(L′⊗L

L′)⊕L′ . . .⊕L′. This implies that there are more components of L⊗k L′ which are isomorphic to L′ than
components of L⊗k L which are isomorphic to L because there is a component of L′⊗L L′ which is
isomorphic to L′. Now, we apply a descent argument: if L is not trivial over L′ and L′′ is a component of
L⊗k L′ which is not isomorphic to L′ there are more components of L⊗k L′′ which are isomorphic to L′′

than components of L⊗k L′ isomorphic to L′. This process is finite because the number of components
of L⊗k Li is bounded by degk(L). We do this until we find a composite K of L such that L is trivial over
K.
Uniqueness. Let K and K′ be two Galois envelopes of the extension k → L. Then K′ is a quotient
of some tensor product of L, L⊗n n ∈ N, so K⊗k K′ is a quotient of K⊗k L⊗n which is a trivial K-
algebra so it follows that K′ is trivial over K. Therefore, there exist morphisms K′→ K and degk(K′)≤
degk(K). We proceed analogously for K and get degk(K) ≤ degk(K′). Then any morphism K′→ K is
an isomorphism. �
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Lemma 2.5.4. Let K,L be Galois extensions of a field k. Then, all their composites are Galois extensions
of k isomorphic to one another.

Proof. Let KL be a composite of K and L. K is Galois so it is trivial over K. Note now that through the
morphism K→ K⊗k L→ KL we get that KL is a quotient of K so K⊗k KL is a quotient of K⊗k K so
K is trivial over KL. Analogously we get that L is trivial over KL. Therefore K⊗k L is trivial over KL.
Hence all the composites of K and L are trivial over KL because all of them are quotients of K⊗k L. In
particular KL is trivial over itself so it is Galois. Since any composite of K and L admits morphisms in
KL and KL is an arbitrary composite, all of them have the same degree over k and any of such morphisms
is an isomorphism. �

Definition 2.5.5. Let A be a separable finite algebra. We call the Galois envelope of A to the composite
of all the Galois envelopes of its components.

Remark. Note that since A is a separable finite algebra it decomposes into its components by the De-
composition Theorem.

Remark. By the previous lemma, the Galois envelope of A is actually a Galois extension K such that A
is trivial over K and it is the smallest extension with this property. Now, if A is a separable extension of
k, by 2.5.3 the Galois envelope is unique up to isomorphism. In terms of the classical Galois Theory,
the Galois envelope of a separable extension is the normal closure.





Bibliography

[1] J.A. NAVARRO GONZALEZ, Teoría de Galois, Universidad de Extremadura, 1984.

[2] M.F. ATIYAH, I.G. MACDONALD, Introduction to Commutative Algebra, Perseus Books, Cam-
bridge, Massachussetts, 1969.

[3] S. LANG, Algebra. Third Edition, Springer, 2002.

[4] P.J. MCCARTHY, Algebraic Extensions of Fields, Blaisdell Publishin Company, 1966.

[5] F. MONTANER, course notes Galois Theory, Universidad de Zaragoza.

[6] A. ELDUQUE, course notes Algebra (Groups and Galois Theory), Universidad de Zaragoza.
http://www.unizar.es/matematicas/algebra/elduque/files/AlgebraElduque2010.

pdf

[7] F. BORCEUX, G. JANELDIZE, Galois Theories, Cambridge University Press, 2001.

[8] I. STEWART, Galois Theory, Third Edition, Chapman & Hall, 2004.

21

http://www.unizar.es/matematicas/algebra/elduque/files/AlgebraElduque2010.pdf
http://www.unizar.es/matematicas/algebra/elduque/files/AlgebraElduque2010.pdf




Index

action
of a group, 11
transitive, 14

algebra
, 1
finite, 2
separable, 6
trivial, 3
trivial over an extension K, 15

algebraic closure, 5
algebraically closed field, 4

category, 15, 16
component of an algebra, 4
composite, 2, 18
connected group, 12

exact sequence, 8, 14
extension of scalars, 1

field
extension, 1
finite, 9
fixed by a group, 13, 14
perfect, 10

flat module, 8, 14
Fröbenius’ automorphism, 9
functor, 15, 16

G-set, 11
G-set morphism, 11
Galois

envelope, 18
extension, 13
group, 13

inseparable
element, 6
purely inseparable element, 6

irreducible polynomial, 2

metric of a trace, 8
morphism of algebras, 1

normal closure, 19

orbit, 12

point of an algebra, 4
polarity, 8

radical
of a metric, 8
of an algebra, 3, 8

rational point, 4

separable
element, 6
extension, 6

stabilizer, 12
subalgebra, 1

tensor product of algebras, 1
Theorem

Artin, 14
Decomposition, 3
Decomposition of G-sets, 12
Galois, 17
Prolongation, 14

trace, 8

23


	Prologue
	Summary
	Finite Algebras
	Algebras
	Algebras over a field
	Finite algebras
	Points of an algebra
	Separable finite algebras
	Metric of the trace
	Finite fields

	G-sets and Galois Theory
	G-sets
	Actions of Autk(K) on Homk-alg(A,K)
	Galois extensions
	The Galois Theorem
	Galois envelope

	Bibliography
	Index

