
Appendix A

Preliminaries

This appendix consists in a brief summary of the basics in Knot Theory and in particular in what is the
central topic of the paper, Virtual Knot Theory, in order to gain the necessary background to follow all
the exposed.

A.1 Graph Theory

Before entering in the subject and due to the fact that there is a strong relation and common core between
knots and graphs, some concepts of these last will be reviewed. Graph Theory consists in the study of
certain geometrical objects called graphs:

Definition A.1.1. We call abstract graph any set G = (V,E), where V is a finite set whose elements are
called vertices and E a multiset whose elements, called edges, are sets of two vertices.

These sets are usually represented in R2, where the vertices are drawn as (different) points and the
edges as segments joining its two vertices. We call any of these representations graphs and vertices and
egdes of the graph to the image of the vertices and the edges in the representation. An example of a
graph is given in Figure A.1 (a): we have the abstract graph Go = (Vo,Eo) with Vo = {1,2,3,4} and
Eo = {{1,2},{2,3},{3,4},{4,1}} represented in the plane, a graph of Go.

(a) Planar graph of Go. (b) Non-planar graph of Go. (c) Virtual crossing.

Figure A.1: Graphs of Go and virtual intersection/crossing.

Definition A.1.2. Given an abstract graph G = (V,E), we say e ∈ E is incident to v ∈V if v ∈ e (if v is
one of the endpoints of e in any of its graphs). We denote as E(v) the set of egdes incident to v.

Definition A.1.3. Given a graph G = (V,E) and n∈N, we say G is a n-valent abstract graph if |E(v)|=
n ∀v ∈V . Any of its graphs are said to be n-valent graphs.
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On the other hand, in Graph Theory it is very important the concept of planarity:

Definition A.1.4. Given a graph g, we say g is planar if the edges do not intersect outside of the vertices.

As we can see, the graph in Figure A.1 (a) is a planar graph, but in Figure A.1 (b) we have a non-
planar graph of Go. The intersection of the edges (outside of the vertices) is represented as in Figure
A.1 (c) in order to differenciate it from the vertices. We call this kind of intersections virtual crossings.

Definition A.1.5. Given an abstract graph G, we say G is planar if there exists a planar graph g of G.

The abstract graph Go of our example is planar because there exists at least one planar graph of
Go, the given firstly, but not all abstract graphs have a planar graph. We will see that, in the context
of Virtual Knot Theory, these concepts serve to clarify and help to understand the complex universe of
virtual knots.

A.2 Knot Theory

From the Stone Age to our recent days, knots has been a key element in the development of mankind.
Mainly used as tools in devices, constructions and more, its particular structure make them essential
for certain specific purposes. Due to this particular geometry, they constitute an object of analysis and
study in some disciplines.

Figure A.2: Description of mathematical knot.

In mathematics, an idealization of what we understand as knot conforms a relatively young branch
of topology: routhly speaking, a mathematical knot is the object resultant of knotting a given rope
in whatever way and joinning its endpoints, forming a kind of "intertwined circunference" in the 3-
dimensional space as represented in Figure A.2. In a more rigurous sense:

Definition A.2.1. Given two topological spaces A and B and an application between them h : A−→ B,
we say h is a homeomorphism if it is bijective, continuous and h−1 is continuous as well.

Definition A.2.2. Given K : S1 −→ R3 map, we say K is a knot if it is an embedding (in a topological
context), that is, if the map g : S1 −→ K(S1) such that K = iK(S1) ◦ g is a homeomorphism, where
iK(S1) : K(S1)−→ R3 is the inclusion and K(S1) inherits the topology of R3.

This topological structure frequently appear describing certain natural geometrical phenomena.
Their study is fundamental within Topology and Geometry (where knots appear as selfintersections
and boundaries of surfaces as well as in the study of 3-manifolds among other things) and become use-
ful in research in Physics and Biochemistry.

The branch that takes care of understanding them is the so-called Knot Theory. Although the first
investigations associated to knots took place in the late XVIII Century by the hands of C.F. Gauss or A.
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Vandermonde and the (erroneous) atomic model based in knots of Lord Kelvin in the 1860s increased
the interest in them, they stayed in a secondary position until the beginning of XX Century, in the apogee
of topology, with M. Dehn and J.W. Alexander.

Knot Theory has experienced a revolutionary development from then, been faced from many dif-
ferent aproaches from what, among all, we will be particularly interested in the combinatorial one
represented by L.H. Kauffman or V. Jones. However, the natural context to define knots is from topol-
ogy: coming back to the example of the rope, once we have this intertwined circunference, we do not
distinguish between the same knot with different sizes, the same knot but being rotated 90 degrees or, in
a more general sense, two knots obtained by deforming one to the other with any move that does not cut
the knot. In Figure A.3 we have an example of a process in which we get equivalent knots all the time
using this type of transformations (notice that we get S1 (the trivial knot) from other knot that seems
more complex).

Figure A.3: Equivalent moves.

These moves are captured by a particular map called isotopy, a deformation that depends on time
and brings one knot to another:

Definition A.2.3. Given two topological spaces X ,Y and two embeddings h1,h2 : X −→ Y , we call
isotopy from h1 to h2 any map

H : X× I −→ Y
(x, t) 7−→ H(x, t)

such that Ht(x) = H(x, t) is an embedding ∀t ∈ I, H(x,0) = h0 and H(x,1) = h1.

These maps capture the essence of knot equivalence:

Definition A.2.4. Given two topological spaces X ,Y and two embeddings h1,h2 : X −→ Y , we say h1
isotopic to h2, h1 ∼ h2, if there exists an isotopy from h1 to h2. This is an equivalence relation.

Definition A.2.5. Given two knots K1 and K2, we say they are equivalent, K1 ' K2, if K1 ∼ K2.

Therefore, what we are actually interested in is these classes of equivalence of knots under isotopy,
since englobe knots that are essentially the same for us, knots that can be obtained one from the other
by moves that do not cut the knot. All these definitions form the basis of Knot Theory.

However, they just characterize these objects, but in the practice is very hard to find an isotopy
between two knots or define knots in terms of embeddings of S1. Fortunately, we will work with a
simpler approach, the universe of diagrams: a diagram is just a representation in the plane of a knot (see
Figure A.6 (b)). Before giving a rigurous definition we need to introduce the concept of shadow:



4 Chapter A. Preliminaries

Definition A.2.6. Given a knot K, we call shadow of K any closed curve (with or without selfintersec-
tions) in the plane that is the resulting of projecting (call p the projection) K into A, where A is some
plane in R3, satisfying:

• There exists no n-points for n > 2, where an n-point is any point P ∈ p(K) with n preimages in
the projection (see Figure A.4 (a) (1)).

• For every 2-point, the arcs involved intersect transversally (see Figure A.4 (a) (2)).

We call intersection of the shadow any 2-point.

(a) Forbidden situations in con-
ditions 1 and 2 respectively.

(b) Projection of a knot.

Figure A.4: Shadow concepts.

In order to clarify this, we have a projection in Figure A.4 (b), the shadow of the so-called trefoil
knot in Figure A.5 (a) and some other shadows in Figure A.6 (a). However, they do not capture all the
information: what we want is to represent in the plane a closed curve in R3. As it is an intertwined
curve, it may have intersections when projected in a plane and we have to distinguish between its two
preimages. The way to do so is very intuitive, we draw the complete arc that overcrosses and cut in the
intersection the one that undercrosses, as we would see it in front of the plane, represented in Figure
A.5 (b) and Figure A.6 (b) . Then, intersections are transfromed in what we call crossings and every
diagram can be seen as a 4-valent graph by substituting crossings by vertices, as in Figure A.5 (c).

(a) Trefoil shadow. (b) Trefoil diagram. (c) 4-valent graph of a
trefoil diagram.

Figure A.5: Trefoil knot: shadow, diagram and 4-valent graph.

Thus, all the possible diagrams of a given knot represent the knot and from now on, they will be used
to develop our study. The next step will be to translate the concept of isotopy to the universe of diagrams.

To do so, we will need to relate the diagrams that come form the same knot.
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Figure A.6: Examples of shadows and diagrams

Definition A.2.7. Given two diagrams d1 and d2, we call move from d1 to d2 any transformation that
brings d1 to d2.

Equivalence in diagrams will be defined in terms of moves. We will need to be able to determine
which moves are allowed and which are not, which moves preserve equivalence in the knots they are
representing and which does not. As a necessary condition, it is clear that diagramas that are the same
but one is bigger than the other are essentially the same, or that rotations are allowed moves, or in a
more general sense, moves that does not erase or generate new crossings, that are just are reordering
of the ones we have. These trivial cases are captured by isotopy in the context of graphs: we will see
diagrams as graphs (as in Figure A.5 (c)) and define these trivial moves in terms of deformations of
these graphs.

Definition A.2.8. Given a planar graph go ⊆R2, we call graph embedding (for go) any map h : g−→R2

which is an embedding (in a topological context) and (h(g) = go), that is, if the map f : g−→ h(g) such
that h = ih(g)) ◦ f is a homeomorphism, where ih(g)) : h(g)−→R3 is the inclusion and g and h(g) inherits
the topology of R2, and (h(g) = go).

Definition A.2.9. Given two planar graphs g1,g2 ⊆ R2, we say g1 and g2 are strongly equivalent, g1 '
g2, if there exists h1 a graph embedding for g1 and h2 a graph embedding for g2 that are isotopic
(h1 ∼ h2).

In other words, two graphs are strongly equivalent if one can be brought to the other in a way that
its topological structure is preserved. Let´s translate it to diagrams:

Definition A.2.10. We say two diagrams d1 and d2 are strongly equivalent, d1 'o d2, if, seen as graphs,
they are strongly equivalent. We call the move from d1 to d2 strong equivalence move.

In conclusion, given d1 and d2 strongly equivalent diagrams, the move that brings d1 to d2 is one of
these moves that trivially preserves equivalence in its knots, d1 and d2 trivially represents two equivalent
knots.

However, there are more moves that preserves equivalence in its knots that are not that trivial, as
for example, each move involved in Figure A.3. If we pay attention, in each step of the process, the
two diagrams involved are equal except from inside the balls drawn. We will define all the moves
that preserve equivalence as composition of 3 moves (and its inverses) that leave invariant the diagram
except from a local part of it:

Definition A.2.11. We call Reidemeister move (i), (ii) or (iii) to any move that leaves invariant the
starting diagram except from a local part, where the diagram is transformed as represented in Figure
A.7 (a) (i), (ii) or (iii) respectively.

These diagrams form the true basis of diagram equivalence:
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Figure A.7: Generalized Reidemeister moves ([?, page 665]).

Definition A.2.12. Given diagrams d1 and d2, we say d1 is equivalent to d2, d1 ' d2, if d2 can be
obtained from d1 by using a finite number of Reidemeister moves and/or strong equivalence moves.
This is an equivalence relation.

To sum up, strong equivalence moves and Reidemeister moves capture in the universe of diagrams
the equivalence under isotopy of the knots they represent:

Proposition A.2.1. Given d1,d2 diagrams of K1,K2 respectively, K1 ' K2 ⇐⇒ d1 ' d2.

Proof. See [?].

We have defined the concept of knot and equivalence of knots in terms of diagrams in order to have a
simpler context to work with knots, but also combinatorial: we have some objects related to each other,
related by 3 differents moves. Is not easy to get the way to obtain one from the other, since there exists
an infinite number of possiblities to begin with one and continue with others.

This turns the problem of giving a complete classification of knots a hard task: however, partial
solutions have been given using more advanced techniques. Following this line, we will continue ex-
tending the given before for Virtual Knot Theory, which is the central topic of this paper. So, from now,
we will refer to knots as classical knots and the concept of knot will be extended.

A.3 Virtual Knot Theory

Discovered in 1996 by L.H. Kauffman, virtual knots conform a generalization of the concept of classical
knots. In the same way that we have used diagrams to represent classical knots and Reidemeister moves
to characterize their equivalence relation, we will identify virtual knots with a new type of diagrams and
define a set of moves that characterize its equivalences.

These new diagrams are a generalization of the concept of diagram: being diagrams are a represen-
tation of a closed curve of R3 in the plane that admits objects called crosings instead of intersections,
we will permit a new type of crossing (Figure A.1 (c)) (called virtual crossing), resulting objects as in
Figure A.8 (b).
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(a) Trefoil shadow.

Figure A.8: Virtual shadows and diagrams.

The idea of virtual crossings is that actually there is no crossing there: although we will define virtual
knots in terms of (these new) diagrams, they can be also defined from a topological perspective, as
embeddings of S1 in complex topological spaces. The fact that they do not live in R3 (as classical knots
do) provokes that, when we try to represent them in the plane certain artifacts appear, virtual crossings.
In this line, virtual crossings are not real crossings, just a product of the representation in R2.

Thus, we will redefine and extend the concept of shadow and diagram in order to present virtual
knots:

Definition A.3.1. From now, we call shadow any 4-valent graph.

This extends the definition given before, and we say a shadow is planar if it is a planar 4-valent
graph (see Figure A.5 (a)), that is, does not contain virtual intersections, and non-planar in other case
(see Figure A.8 (a)).

Definition A.3.2. We call diagram any shadow with an extra structure in its (non-virtual) intersections
as in Figure A.6 (b). In this context, we call crossing this resulting intersections and virtual crossings to
virtual intersections. Moreover, we denote as D the set of all diagrams.

In the same line, we say a diagram is planar if it does not contain virtual crossings (see Figure A.5
(b)) and non-planar in other case (see Figure A.8 (b)). Notice that these redefinitions effectively extends
the concept of shadows and diagrams given for Knot Theory.

The basis of diagrams equivalence will be given as before, in terms of moves: strong equivalence
moves and a generalization of Reidemeister moves:

Definition A.3.3. Given a diagram d, we call planar graphof d, p(d), to the graph resulting of substi-
tuting its crossings and its virtual crossings by vertices.

We redefine the concept of strong equivalence diagrams:

Definition A.3.4. Given two diagrams d1 and d2, we say d1 and d2 are strongly equivalent, d1 'o d2, if
p(d1) and p(d1) are strongly equivalent (p(d1)' p(d2)).

And generalize Reidemeister moves:

Definition A.3.5. We call virtual Reidemeister move (i), (ii), (iii) or (iv) to any move that leaves invariant
the starting diagram except from a local part, where the diagram is transformed as represented in Figure
A.7 (b) (i), (ii) or (iii) or (c) (iv) respectively. We call generalized Reidemeister move to any move
that leaves invariant the starting diagram except from a local part, where the diagram is transformed as
represented in any of the moves in Figure A.7. From now we call classical Reidemeister moves (i),(ii)
and (iii) to Reidemeister moves (i), (ii) and (iii).
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All these moves form the basis of equivalence in diagrams:

Definition A.3.6. Given diagrams d1 and d2, we say d1 is equivalent to d2, d1' d2, if d2 can be obtained
from d1 by using a finite number of generalized Reidemeister moves and/or strongly equivalence moves.
This is an equivalence relation and the classes of equivalence are denoted by [·].

Definition A.3.7. We call virtual knot any of these clases.

The concept of virtual knot generalise the concept of classical knot and from now, they will be the
object of our study, so, when we say knot we refer to virtual knot. Due to many facts, Virtual Knot
Theory represents a promising line of investigation in Knot Theory, which is the main motivation of this
paper. After these preliminaries, we will study a specific part of this branch, the capability of certain
algebraic elements to represent virtual knots and give us a new interesting and computable perspective
to study these particular objects.
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