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1. A: Efecto Meissner

“A metal in the superconducting state

never allows a magnetic flux density to

exist in its interior.”[1]

A. C. Rose-Innes

E.H. Rhoderick

El estudio de los superconductores en presencia de un campo magnético permite mostrar

algunas caracteŕısticas esenciales de su comportamiento. Consideremos un material que se en-

cuentra en el estado superconductor y es sometido a un campo magnético débil, entonces se

crean corrientes superficiales de electrones que, en movimiento, generan un campo magnético

(Ley de Ampère) que contrarresta flujo en el interior, ver imagen 1.a. De la mismo modo ocurre

cuando el material se encuentra sumergido en un campo magnético y es llevado al estado de

SC. No hay campo magnético en el interior, es expulsado. A este fenómeno se le conoce como

Efecto Meissner:

B = 0 (A.1)

Esta propiedad ha de contrastarse con: si el material es un conductor perfecto se comportará

de forma análoga al superconductor cuando es enfriado y, posteriormente, sometido al campo

magnético. Como muestra la figura 1.b, el estado final que presentan ambos medios es el mismo

si el proceso consiste en primero enfriar y después aplicar campo B (lo expulsan). Sin embargo

en el proceso complementario, primero aplicar campo y después enfriar, sólo el SC lo expulsa.

Esto se entiende porque en el conductor perfecto se cumple1:

Ḃ = 0 (A.2)

(a) (b)

Figura 1: Corrientes superficiales y comportamiento magnético.

1Esta relación se obtiene de las ecuaciones de Maxwell considerando nula la resistividad del material.
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2. B: Teoŕıa de London

Los hermanos F. y H. London dieron una descripción fenomenológica de los aspectos básicos

de la SC basada en la idea dos fluidos de Gorter y Casimir. Consideraron las ecuaciones de

Maxwell del electromagnetismo para explicar la SC. La corriente SC está formada por los su-

perelectrones, que posteriormente se conocerá como pares de Cooper, y por portadores de carga

normales. Despreciando la contribución de éstos últimos y utilizando la vision newtoniana dieron

una aproximación a la longitud de penetración, λL, que indica la variación de la intensidad del

campo magnético dentro del SC. Se justifica el efecto Meissner.

Postularon que la corriente es proporcional al potencial magnético vector, luego se cumple.

~j ∝ ~A⇒ ~j =
1

µ0λ2L

~A (B.1)

Es la ecuación de London que puede también puede ser escrita de la siguiente forma:

∇×~j = − 1

µ0λ2L

~B (B.2)

Por otro lado, desarrollando la ecuaciones de Maxwell:

∇× ~B = µ0~j ⇒ ∇× (∇× ~B) = µ0∇×~j ⇒ ∇ · (∇ ~B)−∇2 ~B = µ0∇×~j (B.3)

Figura 2: Variación de flujo en un superconductor.

Entonces llegamos a la siguiente relación final,

sabiendo que ∇ · ~B = 0:

−∇2 ~B = µ0∇×~j ⇒ ∇2 ~B =
~B

λ2L
(B.4)

Esta relación, con solución en 1D (caso senci-

llo) B(x) = B(0)e
− x
λL , indica la variación del

campo magnético en el interior del SC.

Anteriormente se hab́ıa dicho que el valor

de λL se puede obtener desde una visión newtoniana, luego procederemos a calcularlo. Partiendo

del dato de que la densidad de corriente de los portadores de carga es Js = nsqv, consideran-

do solo la contribución de los superelectrones. Supongamos que momentáneamente aparece un

campo eléctrico, E, sobre el material, luego:

m
∂vs
∂t

= −eE ⇒ ∂jS
∂t

=
e2ns
m

E ⇒(1) ∇× ∂js
∂t

=
nse

2

m

∂B

∂t

⇒(2) ∇2B =
µ0nse

2

m
B ⇒ λL = (

m

µ0nse2
)
1/2

(B.5)

En (1) se ha utilizado la ley de Faraday de la inducción magnética ∇×E = −∂B/∂t. En (2) se

ha utilizado una de las ecuaciones de Maxwell, ∇ × B = µ0 · js, y se ha realizado el desarollo

que correspondiente.
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3. C: La teoŕıa de Ginzburg-Landau

Es una teoŕıa más fundamental que la teoŕıa de London. Si bien se plantea a nivel mesoscópi-

co, es decir prescindiendo de las interacciones microscópicas de los electrones y los átomos del

cristal. Se sustenta en la mecánica cuántica para predecir el comportamiento del material. Asu-

me que los electrones se pueden describir por una “función de ondas efectiva”, Ψ, siendo |Ψ|2 la

densidad de superelectrones.

Partiendo de la consideración de que la parte de enerǵıa cinética de la función de ondas tiene

el mismo origen que la enerǵıa cinética térmica, y asumiendo que la part́ıcula, “superelectrón” en

este caso, se encuentra en movimiento en un campo magnético consigue dar una aproximación de

las ecuaciones Ψ(x, y, z) y A(x, y, z) con una enerǵıa libre mı́nima consistentes con las condiciones

de contorno del sistema.

Figura 3: Región de separación entre las

superficies normal y superconductora.

Ginzburg-Landau incorporan en su función de enerǵıa

dos parámetros que caracterizan los comportamientos de

los sistemas SC: la longitud caracteŕıstica o de correla-

ción, ξ, indica la escala en la que decae el estado super-

conductor y longitud de penetración o de London, λL, nos

da información de cuánto penetra el campo magnético en

el interior del SC. Al minimizar esta enerǵıa se deduce

que el cociente entre estos permite hacer una distinción

de los SC existentes. La condición que debe satisfacer

para clasificarlos en un superconductor de tipo II es:

κ =
λ

ξ
≤ 1√

2
(C.1)

Esta teoŕıa presenta un pequeño inconveniente y a su

vez una ventaja respecto a la teoŕıa de London. El hecho desfavorable es que no tiene capacidad

predictiva para los valores de λ como lo hace la teoŕıa de London. Lo mismo podemos decir del

parámetro ξ. Sin embargo, al incorporar los valores de ξ y λL en una funcion de enerǵıa libre

permite clasificar la respuesta SC en términos de estos.
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4. D: Teoŕıa BCS y pares de Cooper

La teoŕıa propuesta por Bardeen, Cooper y Shcrieffer ( teoŕıa BCS ) es una teoŕıa que, desde

un punto de vista microscópico, logró explicar con éxito el fenómeno de la superconductividad.

En particular, por contra a las dos anteriores, relaciona ξ y λL con propiedades microscópicas

del medio y permite por todo evaluarlas para diferentes materiales.

Figura 4: Formación de pares de

Cooper en un SC.

Expone que la corriente dentro de un SC no esta for-

mada por electrones sino que son parejas de electrones,

denominados pares de Cooper. La siguiente idea f́ısi-

ca permite visualizar el fenómeno de modo sencillo a la

formación de estos pares: cuando un primer electrón se

desplaza por un medio SC se ve polarizado mediante la

fuerza atractiva que surge entre iones de distintas cargas,

se crea el polarón2. De esta manera tenemos un exceso de

iones positivos lo que da lugar a la atracción de un segun-

do electrón a la zona. En este caso, si la atracción es lo

suficientemente fuerte para superar la fuerza repulsiva Cu-

lombiana entre los dos electrones se crea lo que se conoce

como par de Cooper.

Algunos de los fenómenos que comprende esta teoŕıa son:

La existencia de un gap de enerǵıa asociado al estado puro de superconductividad.

La transición superconductor-normal tiene un cambio de fase de segundo orden.

La referencia [1, Cap. 9] explica la teoŕıa BCS dando unos aspectos básicos y ofreciendo una

visión microscópica a las propiedades de los SC. Habla de la correlación electrónica, ξ, que es

la distancia más corta posible en la que podŕıa haber un cambio significante en la densidad de

superelectrones (cambio en la concentración de los pares de Cooper) lo identifica con la extensión

espacial de la función de ondas de los pares de electrones con longitud de coherencia ξ (teoŕıa

GL).

Un ingrediente esencial es el GAP energético. El GAP SC hace referencia a la función de

ondas que describe los pares de Cooper. Superar esa enerǵıa supone romper la posibilidad del

apareamiento de electrones y como consecuencia la desaparición de la superconductividad. Este

GAP no es constante sino que disminuye conforme aumentamos al temperatura del material.

También hace hincapié en explicar la existencia de una temperatura cŕıtica de transición

relacionada con el gap energético en cero absoluto. Además de justificar la transición de segundo

orden que lleva asociado un calor latente.

2Cuasipart́ıcula compuesta por un electrón y un campo de deformaciones en la red cristalina.
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5. E: Dinámica y propiedades de los vórtices

Figura 5: Flujo de campo magnético y

densidad de superelectrones en el inte-

rior de un vórtice.

Como predice la teoŕıa GL los vórtices (torbellinos de

corriente SC rodeados por tubos de flujo) aparecen en un

estado no ideal de superconductividad que se manifiesta

bajo unas condiciones adecuadas de temperatura y campo

magnético. Sólo se dan en los superconductores de tipo II.

Supongamos que el material se encuentra en estado su-

perconductor, por lo tanto tenemos la expulsión del campo

magnético en su interior, y para que se de este fenómeno

se necesitan crear corrientes superficiales de pares de elec-

trones. Estos pares de electrones (pares de Cooper) dan

lugar a un campo magnético, de igual magnitud, opuesto

al aplicado que, con la ley de superposición, se anulan. Ahora bien, si el campo del material

crece pasamos a un estado mixto, en el que las ĺıneas de corriente comienzan a circular por

zonas determinadas encerrándose sobre śı mismas dando lugar a la formación de los vórtices.

Figura 6: Simulación de vórtices en

una red 2D.

En un caso ideal, estos vórtices los consideraremos co-

mo tubos rectos que atraviesan el material y por los que

atraviesa el campo magnético, pero en realidad los vórti-

ces se encuentran entrelazándose entre śı. Los vórtices de

corriente manifiestan fuerzas de repulsión, algo similar a

la repulsión entre dos solenoides, formando una estructura

trigonal pues es la más estable energéticamente y acorde

con GL.

Como estos núcleos permiten el paso del campo

magnético a través de ellos, si sometemos el material a una

corriente eléctrica observamos que los vórtices experimentan la fuerza de Lorentz (~F = ~J × ~B).

Si este valor de la fuerza supera a la fuerza de “anclaje”, que es proporcional al potencial en el

que se encuentran los vórtices, éstos comenzarán a desplazarse y por lo tanto a disipar enerǵıa.

Dicho de otra manera, estos núcleos son zonas no superconductoras que presentan resistencia

cuando la corriente los atraviesa.

Figura 7: Densidad de corriente promedio y densi-

dad de corriente mesoscópica.

Para describir el desplazamiento de los

vórtices consideraremos una fuerza interac-

tuante producida por la corriente eléctrica ba-

jo un campo magnético. El vector de densidad

de corriente en promedio se puede describir co-

mo un vector contenido en el mismo plano de

la muestra. Bajo una aproximación mesoscópi-

ca este vector no es totalmente rectiĺıneo sino

que es un promedio de una densidad de co-

rriente que se ve alterada por los núcleos. Ver

imagen anexa.
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6. F: Planos de difracción (hkl)

Para poder entender correctamente el conjunto de planos de difracción (hkl) es preciso dar

unas definiciones previas.

Red de Bravais: Conjunto de infinitos puntos que pueden ser definidos por vectores posición

de la siguiente forma. ~R = n1 ~a1 + n2 ~a2 + n3 ~a3 con ni entero. La elección de los vectores

~ai es arbitraria con condición que deben definir todos los puntos de la red.

Red rećıproca: Conjunto de todos los ~k de ondas planas con la periocidad de una red de

Bravais dada. Cualquier vector de dicha red puede ser expresado de la siguiente forma:
~G = h~b1 + k~b2 + l ~b3, donde la relación entre ellas es ei

~R· ~G = ±1

Índices de Miller: son los enteros h,k,l que no tienen divisor común. Se utilizan para denotar

la familia de planos.

Entonces podemos decir que:

Los planos (hkl) son familias de planos equiespaciados que se encuentran en toda la red. La

separación más pequeña entre estos planos tiene de módulo 2π/d. El valor de d viene dado por

el módulo de un vector de la red reciproca. Estos planos vienen determinados por los llamados

ı́ndices de Miller. Algunos ejemplos de ı́ndices de Miller son:

Figura 8: Índices de Miller para una red rećıproca cúbica.

Puede ampliarse la información sobre este breve recordatorio en [2] y [3]
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7. G: Componentes de la densidad de corriente en ejes intŕınse-

cos del campo

Aqúı presentaremos una demostración matemática de la expresión que adquiere el vector ~J

cuando lo referimos a unos ejes definidos por la dirección ‖ y ⊥ al campo magnético. Usaremos

la notación siguiente:

ĥ: vector unitario a lo lago del campo

θ: ángulo formado por ĥ y el eje k̂

H: módulo de ~H

β̂: vector unitario ⊥ a ĥ

Consideremos que nos encontramos un material en forma de lámina ilimitada que se extiende

por el plano y-z por donde circula la corriente. Daremos por valida la hipótesis de que el campo

magnético aplicado es uniforme y está contenido en dicho plano variando a lo largo del eje x.

Luego utilizando la ley de Amperé de electromagnetismo clásico tenemos el siguiente desarrollo:

∇× ~H = ~J ⇒ ∇× (H · ĥ) = H · (~∇× ~h)− ĥ× ~∇ ·H = J‖ĥ+ J⊥β̂

J⊥ = −ĥ× ~∇ ·H = −(ĥ× î)dH
dx

=
dH

dx
β̂

J‖ = H · (~∇× ĥ) = H · (−∂ sin θ

∂x
ĵ +

∂ cos θ

∂x
k̂) = H

∂θ

∂x
(cos θĵ + sin θk̂) = H

∂θ

∂x
ĥ

(G.1)

8



Referencias

[1] A. C. Rose-Innes and E. H. Rhoderick. Introduction to superconductivity. Pergamon Press,

1978.

[2] Charles Kittel. Introduction to Solid State Physics. John Wiley and Sons, Inc, 2005.

[3] Neil W. Ashcroft and N. David Mermin. Solid State Physics. Harcourt College Publishers,

1967.

9


	Índice
	A: Efecto Meissner
	B: Teoría de London
	C: La teoría de Ginzburg-Landau
	D: Teoría BCS y pares de Cooper
	E: Dinámica y propiedades de los vórtices
	F: Planos de difracción (hkl)
	G: Componentes de la densidad de corriente en ejes intrínsecos del campo
	Referencias

