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Summary

In this dissertation, we aim to give a somewhat complete proof of Godel’s Incompleteness Theorem,
one of the central Theorems in mathematical logic. The basic idea behind this Theorem' is that, if we
attempt to formalize number theory in computable way, there will be number-theoretic truths that can’t
be proven mechanically, and so any such attempt will be essentially incomplete. We will spend the first
chapter defining formal systems and key concepts regarding them, and giving some results on formal
systems that will prove useful for our study, while in the second chapter we will focus on how we can
apply these results to study number theory from a formal point of view.

We start by defining the idea of a formal system, the mathematical object on which the rest of our
study will be based, and we explain some of the key concepts related to them, such as axioms, theorems,
proofs and deductions. As an example, we define one of the most basic formal systems, L, which forma-
lizes propositional calculus and involves concepts such as truth values, tautologies... We then proceed
to give two of the most important properties of this system. These properties are consistency, which
assures that we don’t encounter any intuitively impossible situation, such as a sentence being true and
false at the same time; and completeness, which refers to the system’s ability to accurately capture our
idea of truth in its theorems. Godel’s Incompleteness Theorem proves precisely that a certain kind of
system does not have this property of completeness.

In the next section we introduce a particular kind of formal system (first-order systems) which
will be of special interest to our study, defining their language first and their behaviour afterwards.
These systems widen our study of propositional calculus through L to predicate calculus, in a way
“splitting” sentences into their subject and predicate in a formal way. We also introduce the idea of
interpretation and truth, which correspond to the concept of truth value that we saw in L. Then, we define
all the concepts we need to prove the properties of completeness and consistency for a particular first-
order system (the predicate calculus), such as extensions and models, and give some important results
regarding models such as the Skolem-Lowenheim Theorem, which allows us to reduce any model of a
first-order system to a denumerable model.

We close the chapter by introducing first-order systems with equality (that is, systems where we
have a predicate, or property, that can be interpreted as equality) and normal models (in which said
predicate is indeed seen as equality). This will be our first step towards formalizing number theory,
which we will complete during the second chapter. We then extend the Skolem-Lowenheim Theorem to
deal with normal models as well.

The second chapter is focused on the study of formal systems applied to arithmetic. First, we give
the formal system S, based on the Peano postulates, which aims to capture arithmetic in a formal system,
and then give an explanation about its properties on which we will expand later. S is indeed a first-order
system with equality, so we can apply the theory we’ve already seen in the first chapter. We also briefly
discuss one of the most unintuitive points about the system S; that is, the fact that its consistency is not
something that can be proven like we did with L, but has to be taken as an unproven truth.

We then move to the study of functions and relations in number theory, which we name arithmetic
functions and relations. After the basic definitions and the idea of characteristic function, we introduce
the concept of recursivity and primitive recursivity. The concepts of representability and expressibility

'As we will explain in the first chapter, we refer to important results on formal systems as Theorems (capital T), to avoid
confusion with the concept of theorem of a formal system.

II1



v Capitulo 0. Summary

allow us to link the formal systems we’ve been studying so far with arithmetic functions and relations.
We then state that recursive functions and relations are, respectively, representable and expressible in S,
highlighting the importance of recursivity.

Next, we define Godel numbers, which allow us, in a certain way, to express the properties of
a formal system inside the formal system itself, and as such are the fundamental tool for the proof
of Godel’s Incompleteness Theorem. Through Godel numbers we can define arithmetic functions and
relations which translate properties of our system to number theory, and by means of recursivity and
under certain conditions we find that we can represent and express these properties in S, looping back
around into formal systems. Although we could do extensive study of the arithmetic functions and
relations that can or cannot be represented or expressed in S, we consider here only a selected few that
will be needed for the proof of Godel’s Incompleteness Theorem.

The last section is devoted to defining the last few concepts we will need for the proof, such as w-
consistency, and to finally use all the tools we’ve introduced to give a proof of Godel’s Incompleteness
Theorem. We do this by creating a sentence ¢ that asserts its own unprovability, via the technique we
mentioned before of moving our properties back and forth between formal systems and number theory,
by means of recursivity and Godel numbers. We close with a brief explanation of the consequences of
this Theorem for mathematics and computability; essentially, all our attempts at using formal systems
for number theory will ultimately fail to capture every possible number-theoretic truth, and any sys-
tem that so did could not be described in a recursive (i.e. computable) way and as such it would be
inaccessible to us or any machine we could build with that purpose.
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Capitulo 1

Sistemas formales

1.1. El sistema L

Comenzaremos dando una definicién precisa de lo que serd el objeto de nuestro estudio, los sistemas
formales.

Definicién. Un sistema formal o teoria viene dado por los siguientes elementos:

= Un alfabeto, es decir, un conjunto numerable de simbolos. Una cadena finita de simbolos se dird
expresion.

= Un subconjunto de las posibles expresiones. Estas se llamaran formulas bien formadas, o formulas
para abreviar. Si hemos definido un alfabeto y sus férmulas bien formadas, diremos que tenemos
un lenguaje.

= Un subconjunto de las férmulas bien formadas, a las que llamaremos axiomas.

= Una cantidad finita de reglas de deduccion, que nos permiten obtener una nueva férmula a partir
de una o mds férmulas dadas. Diremos que la nueva férmula se deduce de las anteriores mediante
dicha regla.

Dado un conjunto de férmulas I', una prueba desde I" (0 simplemente prueba si I es vacio) es una
sucesion finita de férmulas <7, ..., %7, donde cada 7 es un axioma, un elemento de I" 0 una férmula
que se deduce de las anteriores de la sucesion mediante una de las reglas de deduccién. Diremos que .«
es consecuencia de I' si es el tltimo elemento de una prueba desde I (escrito I' ¢ /), y diremos que
es un feorema si es el dltimo elemento de una prueba (escrito -y &7), donde F es el sistema formal en
cuestion. Omitiremos el subindice r cuando no haya ambigiiedad posible.

A modo de ejemplo, introduciremos el sistema formal L, que formaliza la 16gica proposicional.

Definicion. El sistema L para el calculo proposicional viene dado por lo siguiente:

= Sus simbolos son las letras de sentencia Ay,A,,As, ..., los conectores — y —, y los simbolos ”(”,
99 99 99\9 |
Y T)
= Toda letra de sentencia es una férmula bien formada. Asimismo, si .27 y % son férmulas, entonces
(of — AB)y (—a/) también lo son.

» Cualquier férmula de una de las siguientes formas es un axioma, donde o7, 'y € son férmulas
cualesquiera:

L) o - (B — )

"Notacién: Los paréntesis se omitiran cuando no haya ambigiiedad posible. Del mismo modo, las comas no son técnica-
mente necesarias, pero se usardn por claridad de lectura. Seguiremos la convencién establecida en [1, pag. 17-18].
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L2 (> (B—F)— (A >B)— (A —F))
L3) (B — ) = (~B — ) — B)?

= La tnica regla de deduccién es Modus Ponens, abreviado MP: si o/ y % son férmulas cuales-
quiera, entonces 4 se deduce de &7 y (& — %) mediante Modus Ponens.

Ademis de los conectores dados en el alfabeto, usaremos también (o7 A Z), (/' V B) y (< < B),
como abreviaturas de —(oZ — —AB), ((—~H) > B)y (o — B) N\ (# — <)), respectivamente.

Este sistema nos permite estudiar desde un punto de vista puramente formal la 16gica proposicional.
Las férmulas de L se ven, intuitivamente, como proposiciones que pueden tomar el valor de verdad “ver-
dadero” o “falso”, y el valor de verdad de una férmula con conectores depende de los valores de verdad
de las férmulas mds pequeiias que contiene. Para un estudio mds riguroso de la 16gica proposicional,
ver [1, pdg. 10-25]. Por ahora, sélo nos interesa trasladar el concepto de tautologia al sistema formal L,
entendiendo por tautologia una férmula que siempre toma el valor de verdad “verdadero”.

Como ejemplo de los conceptos introducidos, presentamos una prueba sencilla en L:

(1) A —(A2—A)) (L1
(2) (A] — (Az —>A1)) — ((Al —>A2) — (A] —>A1)) (L2)
(3) (Al —=Ay)) — (A = A)) (D), (2), MP

Por tanto, - (A; — Az) — (A — A}). Notar que esta formula es también una tautologia en el sentido
de la l6gica proposicional.
El siguiente Teorema® dice que este es precisamente el caso para todo teorema de L.

Teorema 1.1 (Completitud de L). Fy, o7 siy sélo si o7 es una tautologia.

Para una demostraciéon completa, ver [1, pag. 34].

Es fécil probar que todo teorema es una tautologia; basta probar que todo axioma lo es, y que laregla
Modus Ponens preserva las tautologias. Este resultado, sin embargo, es mas fuerte: nos dice que, si una
férmula se corresponde con nuestra nocidn de verdad (es una tautologia), entonces es demostrable en el
sistema L. Esta claro que los sistemas formales con esta propiedad serdn de especial interés.

Por otra parte, este Teorema recoge otra de las propiedades importantes de L:

Teorema 1.2 (Consistencia de L). No existe ninguna formula </ tal que -1 o/ 'yt (—/). (En general,
un sistema con esta propiedad se dird consistente. )

Demostracion. Sityp o/, por 1.1, o es una tautologia, y por tanto —.o7 es una contradiccién, asi que no
puede ser un teorema. 0

Si queremos que nuestros sistemas formales reflejen adecuadamente nuestra idea de verdad mate-
matica, es importante que no se dé el caso de que una férmula y su negacién sean a la vez teoremas, para
evitar contradicciones. Por tanto, serd importante comprobar que el sistema formal con el que estemos
trabajando sea consistente.

El sistema L tiene las dos propiedades importantes que hemos mencionado (consistencia y comple-
titud); sin embargo, podemos encontrarnos con sistemas que no tengan dichas propiedades. El Teorema
central de este trabajo versard sobre completitud y consistencia de los sistemas de primer orden, que
pasamos a estudiar.

2Existen otras formas de definir los axiomas del sistema L; en [2, pag. 28], se da una definicién distinta de L3.
3Es importante distinguir entre teoremas (t mindscula), que son férmulas que tienen demostracién en un sistema formal, y
Teoremas (T mayuscula), que son resultados sobre los sistemas formales.



El teorema de incompletitud de Godel - Victor Lopez Martinez 3

1.2. Sistemas formales de primer orden

En el sistema L usamos las proposiciones como base para construir frases mas complejas y estudiar
las relaciones ldgicas entre ellas. Sin embargo, en algunas ocasiones esto no es suficiente y debemos des-
componer las proposiciones en sujetos y predicados. Para representar este nuevo nivel de complejidad
necesitaremos una nueva clase de lenguajes.

Estos lenguajes incluirdn constantes individuales a;,ay, ... que hardn las veces de objetos matema-
ticos fijos, como por ejemplo el nimero 0; incluirdn también letras de funcién f;' que deben entenderse
como si actuaran sobre n objetos mateméticos para dar otro objeto; y por dltimo, las letras de predi-
cado AY representardn propiedades que n objetos pueden (o no) tener. En ambos casos, el indice i es
puramente para distinguir letras de funcién o de predicado entre si.

La mayor diferencia con el lenguaje que hemos usado hasta ahora sera el cuantificador universal V.
Este simbolo debe interpretarse de forma que actie sobre las variables xp,x;... Por ejemplo, leeremos
“(Vxp)...” como “Para todo xi, ...”.

Al igual que en el lenguaje de L, usaremos los simbolos V, Ay ¢+ para acortar las férmulas; del
mismo modo, usaremos (3x;).<7 como abreviatura de —(Vx;)—.o7 .

Definicion. Un lenguaje de primer orden £ tiene en su alfabeto:
= Variables x1,x2,x3,... y algunas de las constantes individuales ay,as,as, ...

s Algunas de las letras de predicado A} y algunas de las letras de funcién f;'.

9 9 9

= Los simbolos ”(”,”,” y )", los conectores — y —, y el cuantificador universal V.
Las férmulas bien formadas se definen de forma inductiva:

= Toda variable o constante individual es un término. Sity, ...,t, son términos, entonces f/'(f1,...,1,)
también es un término, para cualquier i.

» Sity,...,t, son términos, entonces A}(ty,...,1,) se llama formula atémica, y es una férmula bien
formada, para cualquier i. Si .o/ y % son férmulas, entonces (&7 — £), (/) y (Vx;).o/ también
son férmulas, para cualquier i.

Los términos se deben interpretar como sujetos sobre los que actian los predicados A”. Asi,
“(Vx1)AL(f3 (x1))” se lee como “Para todo x, el resultado de aplicar £, a x tiene la propiedad AL”. Més
rigurosamente:

Definicion. Una interpretacion M de un lenguaje de primer orden . consiste en un conjunto no vacio
D y una serie de asignaciones:

= A cada constante a;, M le asigna un elemento de D (a;)¥.
= A cada f", M le asigna una funcién (/") : D" — D.

» A cada A?, M le asigna un subconjunto (A?)¥ C D". (Este subconjunto se debe entender como
una relacién: verdadero si los n argumentos del predicado estén en el subconjunto (A”)Y, falso si
no.)

En una férmula de tipo (Vx;).<7, se dice que o7 es el ambito del cuantificador (Vx;). Se dice que
una variable x; aparece ligada en una férmula si estd en el dmbito de un cuantificador universal (Vx;)
con el mismo indice i; se dice libre si no lo estd. A modo de ejemplo, en la férmula (Vx3)A3(xs,x3),
la variable x3 aparece ligada y la variable x5, libre. Una férmula se dice cerrada (o sentencia) si no
contiene variables libres.

Por otra parte, dado un término ¢ y una férmula o7, se dice que ¢ es libre para x; en 27 si al sustituir
todas las x; libres de < por ¢, ninguna de las variables de ¢ pasaria a estar ligada; en otras palabras, si
podemos sustituir x; por ¢ sin que cambie la estructura de .o En el ejemplo anterior, el término f12 (x2,x3)
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no es libre para xs, pero el término f31 (x4) silo es. En muchas ocasiones, como en el axioma (L4) (ver
mas adelante), necesitaremos que un término ¢ sea libre para una variable x; para poder sustituirlo.

Bajo una interpretacién M, las variables recorren los elementos de D. Asi, una férmula cerrada <7 se
convierte en una afirmacion sobre D que puede ser cierta o falsa, mientras que una férmula no cerrada
2(xi,xj,...) contiene variables libres x;,x;,..., y por tanto no tiene por qué tener un valor de verdad
definido (pues x;,x;,... pueden tomar un valor en D que haga cierta a % y otro que no). La idea de
que una férmula cerrada sea cierta o falsa bajo una interpretacién M es, por tanto, intuitiva; para una
definicién precisa, ver [1, pag. 47-48].

Una férmula o7 se dice ldgicamente vdlida si es cierta para toda interpretacion posible, y contradic-
toria si es falsa para toda interpretacion posible. La idea de verdad en una interpretacién extiende a la
idea de asignacién de los valores de verdad en la l6gica proposicional; las férmulas 16gicamente validas
son andlogas, por tanto, a las tautologias de L.

De hecho, si tenemos un lenguaje de primer orden .#’ y una férmula bien formada .7 del sistema L,
podemos sustituir cada letra de sentencia por una férmula bien formada de .’ de forma consistente (esto
es, si dos letras de sentencia A;, A; de </ cumplen i = j, entonces se sustituyen por la misma férmula).
El resultado de esta sustitucion es una férmula bien formada % de .Z. En ese caso, diremos que # es
una instancia de «7; es claro, entonces, que toda instancia de una tautologia es l6gicamente valida.

Estamos listos para definir los sistemas formales con los que trabajaremos de aqui en adelante:

Definicion. Un sistema formal de primer orden K viene dado por lo siguiente:
= Un lenguaje de primer orden, con su alfabeto y sus férmulas bien formadas.

= Cualquier férmula de una de las siguientes formas es un axioma de K, donde &/, # y € son
férmulas cualesquiera:

L) o - (B— )

L2) (> (B—F))— (A >B)— (A —>F))

L3) (B —~A)— (B — A)— B)

(L4) (Vx;)of (x;) — </ (t), donde ¢ es un término libre para x; en <7
L5 (Vx) (o — B) — (o — (Vx;)A), donde <7 no contiene a x; libre.

Ademds, un sistema de primer orden puede tener otros axiomas cualesquiera, llamados axio-
mas propios. Los axiomas (L1)-(L5) reciben el nombre de axiomas logicos. Si K no tiene
axiomas propios, entonces K se llama un cdlculo de predicados.

= K tiene dos reglas de inferencia:

Modus Ponens (Abreviada MP): De &7 — Ay </ se deduce 4.
Generalizacién (Abreviada Gen): De <7 se deduce (Vx;)< .

No todos los sistemas de primer orden K seran consistentes; esto dependera de los axiomas propios
de K. Sin embargo, si K no tiene axiomas propios, podemos demostrar su consistencia:

Teorema 1.3 (Consistencia del cdlculo de predicados). Si K no tiene axiomas propios, no existe ninguna
formula < tal que g of y bk ().

Demostracion. Dada una férmula .o/, denotemos por h[</] a la férmula que resulta de eliminar los
cuantificadores de 7'y sustituir toda férmula atémica de .2/ por una letra de sentencia de L, sustituyendo
siempre la misma letra de predicado por la misma letra de sentencia (por ejemplo, A? por A,i3., aunque
hay otras formas). Entonces h[<7] es una férmula de L. Ademads, se demuestra facilmente que, si .o/
es un axioma légico de K, entonces F h[.<7]; por tanto, si g <7, entonces 1, h[</], pues se puede
demostrar a partir de los axiomas de L.

Se deduce que, si -x By Fg (—A), entonces 1 h[HB] y 1 h[—~AB), que es —h[H], 1o cual no es
posible por 1.2. O
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Podemos demostrar un resultado andlogo a 1.1; sin embargo, para ello necesitamos resultados algo
mas complejos, que obtendremos en el estudio de otros sistemas formales de primer orden en la siguiente
seccion.

1.3. Modelos y extensiones. Completitud

Si I" es un conjunto de férmulas de un sistema formal, un modelo M de I es una interpretacion M
bajo la cual todas las férmulas de I' son ciertas. Por otra parte, un modelo M de un sistema de primer
orden K es un modelo del conjunto de sus axiomas; esto es, una interpretacion bajo la cual todos los
axiomas (y por extension, los teoremas) de K son ciertos.

Se dice que un sistema K’ es una extension de K si todo teorema de K es un teorema de K’. En
particular, dado un sistema K cuyos axiomas son I' y una férmula <7, el sistema con el mismo lenguaje
y reglas de deduccion que K y cuyos axiomas son I'U{.<7 } es una extensién de K, a la que llamaremos
K U .o/ (no se trata de una auténtica unién de conjuntos, es pura notacion).

Diremos que un sistema K es completo* si, dada cualquier férmula cerrada .7 de K, o se cumple
que Fx o7 o se cumple que g (—.27).

Antes de demostrar resultados sobre completitud, veamos una herramienta que nos serd necesaria
para algunos resultados:

Teorema 1.4 (de Deduccién en sistemas de primer orden). Si tenemos una prueba de U,.of = 9B en

la que no se usa la regla Gen con una variable libre de <f (en particular, si &/ es cerrada), entonces
I'- (o — B).

No daremos una demostracién porque sélo nos interesa su aplicacién; una prueba completa estd
en [, pag. 59].

Teorema 1.5 (Lema de Lindenbaum). Si K es un sistema formal consistente, entonces existe K' exten-
sion completa de K.

Demostracién. Probamos primero el siguiente hecho: si una férmula cerrada .2 no es un teorema de K,
entonces K U (—.7) es consistente. Para ello, supongamos que no lo es; entonces existe una férmula %
tal que Fgy(-o) BY Fru(-ar) (7P). Ahora, tenemos que gy () (7 F) — (% — &), por la siguiente
prueba y dos aplicaciones de 1.4, ya que no usamos Gen:

(1) £ Hipétesis
2) A Hipdtesis
3) B—(~d —B) (L1)

4) oA (1), (3), MP
(5) ~B—(~A —B) (L1)

6) -~ —>-A (2), (4), MP
(7)) (A = -B)— (A > B) = ) (L3)

8) (A >B)— oA (6), (7), MP
9 o 4), (8), MP

Por tanto, %, % Ik (~.z) <5 pero, como %'y =% son teoremas de K U (—.¢7 ), entonces tenemos que
I—Ku(ﬁ o) 7. Esto nos muestra el hecho crucial de que, en un sistema inconsistente como suponemos
que es KU (—.7), cualquier férmula es un teorema.

4No se debe confundir la idea de sistema formal completo con los Teoremas de Completitud como 1.1, que hacen referencia
al hecho de que toda férmula que nosotros entendemos como cierta sea un teorema, esto es, demostrable.
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Ahora, como I KU(=7) o/, entonces ~.o/ bk o/ 'y como —.¢f es cerrada, g .o/ — &7 por 1.4. Como
Fx (mo/ — /) — o/ (es una instancia de tautologia; la prueba es similar a la que se muestra arriba),
por MP, ¢ o7, lo que contradice la hipdtesis. Notar también que esto es equivalente a decir que, si
—.27 no es un teorema, entonces K U .o/ es consistente, pues .7 <> (-—.47) es también una instancia de
tautologia.

Una vez que sabemos que K U .« es consistente cuando =<7 no es un teorema de K, basta enu-
merar todas las férmulas cerradas de K en una lista %, %,, %3, ... Esto es posible porque existe una
aplicacion inyectiva del conjunto de todas las férmulas a los nimeros naturales, como veremos en 2.3.
Abhora, definiremos una sucesion Jy,J1,J2, ... de sistemas formales: Jy es K, y, para cada n, si -, %11,
entonces J,,+1 es Jy; si no, J, 41 es J,U—~%B, ;1. Ahora, Jy es consistente, y en cada paso preservamos la
consistencia por el resultado anterior. Si llamamos J al sistema que tiene como axiomas todos los axio-
mas de los J;, entonces J es una extension de K consistente, y J es claramente completo, pues para cada
férmula cerrada @7 tenemos que 0 .« 0 —.o/ es un axioma de algin J; (pues la lista anterior contiene a
todas las férmulas cerradas), asi que es un axioma de J. U

Teorema 1.6. Todo sistema de primer orden consistente K tiene un modelo numerable (esto es, un
modelo en el que el dominio D es un conjunto numerable).

La demostracion de este Teorema es algo mds compleja; se basa en expandir el lenguaje de K con
una cantidad numerable de constantes individuales nuevas by, b1, ..., enumerar todas las férmulas que
solo tienen una variable libre .%(x;, ),-%1(xi, ), ..., y construir una sucesion de sistemas formales K U% U
% U..., donde los ¥; se construyen a partir de los .%; y los b;. Después, por 1.5, existe una extension
completa T que, por construccion, tiene una cantidad numerable de términos cerrados (términos sin
variables, es decir, que sélo contienen letras de funcién y constantes); finalmente se construye una
interpretacion en la que el dominio es el conjunto de términos cerrados de 7. Para una demostracién
completa, ver [2, pag. 91-96].

Por fin podemos probar la propiedad de los célculos de predicados que buscabamos:

Teorema 1.7 (de Completitud de Godel). Para un cdlculo de predicados K, = o7 si y sdlo si o/ es
logicamente vdlida.

Demostracion. Notar primero que <7 es l6gicamente valida si y sélo si lo es su clausura universal </,
esto es, la formula cerrada (Vx;,)...(Vx;, )<, donde x;,,...,x;, son las variables libres de 7. Del mismo
modo, - o7 siy sélo si - .a7’>

Supongamos, primero, que <7 es l16gicamente vélida; entonces lo es .7’. Supongamos también que
4/ 1o es un teorema y, por tanto, tampoco .7’. Entonces sabemos que K U —.«7’ es consistente, asi que,
por 1.6, tiene un modelo M. Por tanto, -2/’ es cierta en M (por ser modelo de K U —.27"), asi que o/’ es
falsa en M, pues es cerrada. Pero esto contradice que .7’ sea l6gicamente valida; se deduce que - .&7" y,
por tanto, - 7.

Por otra parte, al igual que en L, es sencillo comprobar que los axiomas 16gicos (L.1)-(L5) son 16gi-
camente validos, y las reglas MP y Gen conservan la validez 16gica, asi que todo teorema es lI6gicamente
vélido. O

Este Teorema, junto con 1.1, ilustra la utilidad de los sistemas formales. Nuestro objetivo al definir
estos sistemas es tomar una idea semantica, como puede ser la veracidad o falsedad de una frase, y
reducirla a un concepto puramente sintdctico como el de teorema, que depende inicamente del lenguaje
y los axiomas y reglas de deduccion de un sistema formal. Los Teoremas de Completitud como 1.1 y
1.7 nos muestran que en nuestro sistema formal la idea de teorema es capaz de abarcar todas las frases
verdaderas que podemos expresar en nuestro lenguaje.

Antes de pasar a estudiar los sistemas con igualdad, mostramos un dltimo resultado sobre modelos:

SEsto se demuestra por induccién en 7, el nimero de variables libres de 7; una implicacién usa la regla Gen n veces, y la
otra usa el axioma (L4) n veces.
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Teorema 1.8 (de Skolem-Léwenheim). Todo sistema de primer orden K que tenga un modelo tiene un
modelo numerable.

Demostracion. Notar primero que, si K tiene un modelo M, entonces K debe ser consistente. En efecto,
si no lo fuera, existirfa una formula % tal que - A y - =2, y, por ser M modelo, tanto % como ~%#
serian ciertas bajo M, lo cual no es posible.

Una vez visto esto, 1.6 nos asegura que K tiene un modelo numerable. O

1.4. Sistemas de primer orden con igualdad

Nos interesa estudiar sistemas en los que uno de los predicados de dos argumentos tiene propiedades
similares a la relacién de igualdad, y podemos interpretarlo como la relacién “es igual a...”; podemos
suponer que este predicado es A% sin pérdida de generalidad. De ahora en adelante, abreviaremos A% (t,s)
como t = s,y ~A3(t,s) como ¢ # s, para términos ¢, s cualesquiera.

Definicién. Un sistema de primer orden K se dice sistema con igualdad si las férmulas (I1), (I2) estan
entre sus teoremas:

(Il) (Vxl)xl = X1

(I2) (x; =x;) — (#(x;) = 4/(x;)), donde x; es libre para x; en &7, y &/ (x;) es el resultado de sustituir
algunas (no necesariamente todas) de las x; que ocurren libres en .7 por x;.

Notar que, si K es un sistema con igualdad, entonces - ¢ = ¢ para cualquier término #, por el axioma
(L4). De forma similar se prueban la simetria y transitividad de la igualdad: respectivamente, - (x; =
Xj—=xj=x),ybF (xi=xj = (xj =x = X = x¢)).

Dado que nos interesa poder interpretar el predicado A% como la igualdad, debemos particularizar
las interpretaciones del lenguaje de K que tengan esta propiedad. Asi, diremos que un modelo M de K
es un modelo normal si (A?)M es precisamente la relacién de igualdad en el dominio D. Cabe destacar
que, aunque M no sea normal, si llamamos ~ a (A%)M , entonces ~ es una relacién de equivalencia, por
las propiedades de simetria y transitividad vistas arriba; por tanto, podemos construir un nuevo modelo
M’ cuyo dominio sea D/ ~. Entonces M’ es claramente normal, y se llamaré contraccion de M.

Los dos resultados importantes sobre modelos vistos en la anterior seccién se pueden extender a
sistemas con igualdad:

Teorema 1.9 (Extension de 1.6). Todo sistema de primer orden K con igualdad que sea consistente
tiene un modelo normal finito o numerable.

Demostracién. Por 1.6, K tiene un modelo numerable M. Su contraccién M’ es un modelo normal, y
estd claro que es finito o numerable pues |D/ ~ | < |D|. O

Teorema 1.10 (Extensién de 1.8). Todo sistema de primer orden K con igualdad que tenga un modelo
normal infinito M tiene un modelo normal numerable.

Demostracion. Afiadimos al lenguaje de K constantes individuales nuevas by, bs,... Sean % ; las for-
mulas (b; # bj), y llamemos K’ a la extension K U{%; ;}, para todo i # j. Podemos extender M a un
modelo de K’, puesto que M es infinito y podemos escoger los (b;) distintos entre si. Puesto que K’
tiene un modelo, debe ser consistente, como hemos visto en 1.8.

Ahora, como K’ es consistente, por 1.9, tiene un modelo finito o numerable N. Entonces los %; ;
deben ser ciertos en N, de lo cual se deduce que los (b;)" son distintos entre si. Como hay una cantidad
numerable de ellos, el dominio de N no puede ser finito, asi que debe ser numerable. O






Capitulo 2

Teoria de numeros

2.1. Elsistema S

En este capitulo nos centraremos en cuestiones formales de la teoria de nimeros, estudidndola desde
el punto de vista de los sistemas formales y utilizando los resultados que hemos visto en el capitulo 1.

Puesto que una gran parte de las matematicas tiene su base en la aritmética de los nimeros naturales,
es l6gico que esta sea nuestro punto de partida. El sistema formal que estudiaremos a lo largo de este
capitulo se basard en los conocidos como “postulados de Peano”. No nos serd posible representar fiel-
mente estos postulados en nuestra teoria, pues uno de ellos trata con conceptos del tipo “para cualquier
propiedad P de un nimero...”, conceptos que escapan a nuestra l6gica de primer orden. !

Sin embargo, podemos construir un sistema de primer orden basado en los postulados de Peano,
como sigue:

Definicion. El sistema formal S es un sistema de primer orden que viene dado por lo siguiente:

= Su lenguaje .Z consiste en la letra de predicado A%, las letras de funcién f}, f12 y f22 (que repre-
sentardn, respectivamente, las funciones sucesor, suma y producto) y la constante individual a;.
Abreviaremos A%(¢,s) como (t = s5); f(t), f2(t,s) y f3(t,s) como ('), (t+s5) y (¢-5) respectiva-
mente; y a; como 0, omitiendo paréntesis cuando no haya lugar a confusién.

= Sus axiomas propios son las férmulas (I1) e (I2) de los sistemas con igualdad, y ademas:

(S1) 0#x]

(S2) x| =x), 2> x1=x

S3) x1+0=1x

S4) x; +x’2 = (x1+x2)

(S5) x;-0=0

(S6) x; x5 = (x1-x2)+x

(S7) 7 (0) — ((Vx;) (A (x;) = < (xi)) = (Vx;)/ (x;)), para cualquier férmula <7 (x;) de S en la
que x; aparezca libre.

Los axiomas de la forma (S7) estdn basados en el axioma de induccion de los postulados de Peano;
sin embargo, no se corresponden exactamente dado que este Ultimo trata con una cantidad no numerable
de propiedades, y en nuestro sistema s6lo tenemos una cantidad numerable de férmulas, como veremos
en 2.3.

Por otra parte, es importante notar que cualquier férmula que resulte de sustituir las variables por
términos cualesquiera en uno de los axiomas (S1)-(S6) es un teorema. Esto se comprueba facilmente
usando Gen y el axioma (L4).

IEs posible estudiar ideas similares a esta mediante sistemas de segundo orden; en estos sistemas, los cuantificadores como
V no sélo actiian sobre variables, sino también sobre predicados.

9
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S es claramente un sistema de primer orden con igualdad. Inmediatamente nos preguntamos si S es
consistente, para lo cual ya hemos visto que basta con encontrar un modelo. La opcién més evidente
es la interpretacién con dominio IN en la que la constante O representa el 0 de los nimeros naturales;
las letras de funcién abreviadas con’, + y - representan el sucesor, la suma y el producto; y la letra de
predicado abreviada con = representa la relacién de igualdad. Tal interpretacion recibird el nombre de
modelo estdndar, y cualquier interpretacién distinta se llamara modelo no estdndar.

Podriamos, por tanto, razonar que dado que S tiene el modelo estdndar, es claramente consistente.
Sin embargo, dado que los nimeros naturales se definen en un principio a través de unos axiomas, preci-
samente como los postulados de Peano, no esta del todo claro que este argumento sobre la consistencia
de S no sea un razonamiento circular en el que afirmamos que S sirve como su propio modelo.” Como
consecuencia, el consenso es aceptar la consistencia de S como una afirmacion cierta sin demostrar.

Por dltimo, al igual que hemos hecho antes con el sistema L y el cdlculo de predicados (ver 1.1
y 1.7), nos preguntamos: ;es S un sistema completo, en el sentido de que las férmulas que se corres-
ponden a nuestra idea de certeza son demostrables? El Teorema central de este trabajo, el Teorema de
Incompletitud de Godel, prueba que S no es un sistema completo. Para poder demostrarlo necesitaremos
desarrollar algo mds la teoria de nimeros formal a través de S.

Para ello, antes de pasar a la siguiente seccion, introducimos algunas abreviaturas que simplificardn
enormemente la notacién:

» (Jix;).e/ (x;) significa (3x;). o/ (x;) A (Vx;)(Vxj) (o7 (x;) A/ (xj) = x; = x;). Esto se puede utilizar
en cualquier sistema con igualdad, y se puede comprobar que representa la idea intuitiva de que
existe un tinico objeto que cumple la propiedad que representa <.

» 1 < ssignifica (3x;)(x; Z0Ax;+1=s). Del mismo modo, t <ses (t <sVi=s),etc.

» Sin es un ndmero natural, 7 es el término 0" (n Ve"es), esto es, la letra de funcién abreviada por
" aplicada n veces a 0. Los términos 0 (que es 0), 1, 2, ... se llamaradn numerales. Es importante
recordar que un numeral es un término de un sistema formal, a diferencia de un niimero natural,
y por tanto para una formula .27 (x;) tiene sentido escribir <7 (77) pero no <7 (n).

2.2. Funciones y relaciones recursivas

Una funcion aritmética de n argumentos es una aplicacion cuyos argumentos y valor son nimeros
naturales, esto es, una aplicacién de IN" en IN; el sucesor y la suma son ejemplos de funciones aritméti-
cas. Asimismo, una relacion aritmética de n argumentos es una relacién en los ndmeros naturales, esto
es, un subconjunto de IN"".

Una relacién aritmética de n argumentos R se dird expresable en S si existe una féormula o7 (x, ..., x,)
con n variables libres tal que, para nimeros naturales k1, ..., k,, cualesquiera:

» SiR(ki,...,k,) es cierta, entonces g <7 (ki, ..., kp).
» SiR(ky,...,k,) es falsa, entonces s —.o7 (ki, ..., ky).

Del mismo modo, una funcién aritmética de n argumentos f se dira representable en S si existe una for-
mula &7 (xy,...,X,+1) con n+ 1 variables libres tal que, para niimeros naturales kj, ..., k,, m cualesquiera:

» Si f(ki,...,k,) = m, entonces s o (ki ..., kn, ).

L] FS (Ellxn+1)le(%1,...,%n,x,,ﬂ).

2Quizd un ejemplo mds claro es el del sistema de primer orden ZF, o de Zermelo-Fraenkel, que definen la teoria de
conjuntos. Es evidente que no podemos dar definiciones como “Un lenguaje consta de un conjunto de simbolos...” y apoyar la
teorfa de conjuntos sobre ellas.
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Por ejemplo, la relacion aritmética de igualdad es expresable en S por la férmula x; = x;, y la funcién
sucesor es representable en S por la férmula x, = x|. Observamos que podemos establecer una cone-
xién entre relaciones y funciones aritméticas, del siguiente modo: si R es una relacién aritmética de n
argumentos, su funcion caracteristica Cg es una funcion aritmética definida por:

Cr( ) 0 si R(xy,...,x,) es falsa.
Xy Xn) = _ ]
A " 1 si R(xy,...,x,) es cierta.

Es inmediato ver que una relacion aritmética R es expresable en S si y sélo si su funcién caracteris-
tica Cg es representable en S.

Para el estudio de las funciones aritméticas representables en S, definimos una nueva clase de fun-
ciones mediante los siguientes pasos:

1. Las siguientes funciones aritméticas se llamardn funciones iniciales:

a) La funcién cero: Z(x) = 0 para todo x.
b) La funcién sucesor: N(x) =n+ 1 para todo x.

¢) Las funciones proyeccion: U/ (x1,...,X,) = x;, para todos xi, ..., X,.
2. Las siguientes reglas se usan para obtener funciones nuevas a partir de otras dadas:

Sustitucion: Si f(xy,...,x,) = g(h1(x1, ..., Xn), ..oy A (x1,...,X,)) para todos xi, ..., x,, se dice que
[ se obtiene por sustitucién de g y las Ay, ..., hy,.

Recursion: Si f(xq,...,x,,0) =g(x1,...s ) Y F (X150 X0, ¥+ 1) = A(X1, o0y X0, Y, f (X1 5 eey X0, V), SE
dice que f se obtiene por recursién de g y &, o sélo de 4 cuando n = (. Es importante ver que
f esta bien definida, pues el valor para y = 0 lo da la funcion g y para y > 0 lo obtenemos
de h y el valor anterior de f.

Operador : Sea R una relacion aritmética de n+ 1 argumentos. Denotamos por (YR (x1, ..., X, y)
el menor nimero natural y tal que R(xy,...,x,,y) es cierta, si existe. Notar que si g es una
funcién aritmética de n+ 1 argumentos, g(x1, ..., X,,y) = 0 define una relacién aritmética. Si
fxry e xn) = 1 (g(x1,...,xn,y) = 0), decimos que f se obtiene por el operador i de g.

3. Una funcién aritmética f se dice recursiva si se obtiene de las funciones iniciales mediante un
nimero finito de aplicaciones de las reglas anteriores. f se dice recursiva primitiva si se obtiene
de las funciones iniciales utilizando sélo las reglas de sustitucién y recursién. Del mismo modo,
una relacidn aritmética es recursiva (primitiva) si su funcién caracteristica es recursiva (primitiva).

A modo de ejemplo, las siguientes funciones son recursivas (de hecho, recursivas primitivas):

1. x+y

2. x-y

3. O(x) (La funcidn inversa al sucesor si x > 0, 0 si no)
4. xoy (Lafuncién x —y six >y, 0 si no)

5. [x—yl

6. sg(x) (Vale 0 six =0, 1 sino)

7. 5g(x) (Vale 1 si x =0, 0 si no)

8. gt(x,y) (El cociente de la division de x por y)
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9. exp(x, j) (El exponente del j-ésimo primo en la descomposicién en factores primos de x)

Por otra parte, es importante notar que, si R; y R, son relaciones recursivas (primitivas), entonces
(Ry — Rz) y (—R;) son recursivas (primitivas). Esto no es cierto para los cuantificadores V y 3, pero
podemos introducir un nuevo simbolo: entenderemos por (Vy),<.R(x1,...,X,,y) la relacién “para todo y,
si y < z, entonces R(xy,...,x,,y) es cierta”. Del mismo modo definimos los simbolos (¥y),<;, (3y)y<z,
etc. Las relaciones obtenidas a partir de relaciones recursivas (primitivas) a través de estos simbolos,
llamados cuantificadores acotados, si son recursivas (primitivas).

El siguiente Teorema muestra la importancia de las funciones recursivas en nuestro estudio:

Teorema 2.1. Toda funcion recursiva es representable en S. Asimismo, toda relacion recursiva es ex-
presable en S.

No daremos una demostracién completa de este Teorema, ya que es muy extensa; se puede encontrar
unaen [ 1, pag. 143-145]. La prueba pasa por demostrar que las funciones iniciales son representables, y
que las reglas de sustitucién, recursién y operador ¢ dan funciones representables a partir de funciones
representables. La segunda parte se sigue inmediatamente como corolario.

Como ultima nota, aunque hemos dado la definicién de funciones representables y relaciones expre-
sables para S, s6lo es necesario que un sistema contenga los simbolos del lenguaje de S (posiblemente
mads) para poder dar dichas definiciones. Tal sistema K se dird sistema aritmético, y podemos decir,
por ejemplo, que una funcién f es representable en K, ya que un sistema aritmético contiene todos los
numerales.

2.3. Numeracion de Godel

La idea central del Teorema de Godel pasa por encontrar una forma de que las férmulas de un
sistema formal puedan, de algin modo, representar propiedades del propio sistema. Para sistemas arit-
méticos (en particular S), dado que las férmulas se pueden ver como afirmaciones sobre los nimeros
naturales, este método serd la numeracion de Godel, que consiste en asignar un ndmero natural a cada
férmula mediante una aplicacidn g.

Esto se puede hacer de maneras diversas, pero aqui usaremos la numeracién dada en [1]. La apli-
cacion g asigna nimeros naturales a los simbolos de cualquier lenguaje de primer orden del siguiente
modo:

= 2((0)=3:80)=58()=T:8() =9 g(=) =11: g(V) =13

(

w g(xx) =13+8kparak=1,2,...
(
(

g(ax) =7+ 8k parak = 1,2,... En particular, en S, g(0) = 15.

» g(f") =1-+8(2"3") parak,n > 1
)

» g(A?) =3+8(2k3") para k,n > 1

Abhora, si upu;...u, es una expresion formada por simbolos uy, se define g(uou;...u,) como

pg(”‘)) pf(”])... P4 donde p j es el j-ésimo primo, empezando por py = 2. Del mismo modo, si ey, ..., e,

son expresiones, entonces definimos g(ey, ...,e,) = pg(e‘))... p£) Diremos que el resultado de la aplica-
cién g es el nimero de Godel del simbolo, expresion o sucesion de expresiones correspondiente.

Como ya hemos mencionado, hay distintas formas de asignar nimeros de Godel, pero es importante
poder invertir el proceso y decidir si un nimero natural dado es el nimero de Godel de algin simbolo,
expresion o sucesion. Claramente, el Teorema fundamental de la aritmética nos asegura que nuestro
sistema de numeracién de Gédel cumple con este requisito; notar que el nimero de Gddel de un simbolo
es impar, el de una expresion es divisible por 2 una cantidad impar de veces y el de una sucesién, una
cantidad par de veces.
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Ahora, sea K un sistema aritmético con un lenguaje .. Diremos que .Z es un lenguaje recursivo
(o recursivo primitivo) si las relaciones IC(x), FL(x) y PL(x), ciertas si x es el nimero de Godel de una
constante individual, una letra de funcién o una letra de predicado respectivamente, son recursivas (o
recursivas primitivas).

Si K es un sistema con lenguaje recursivo (primitivo), entonces las siguientes funciones y relaciones
son recursivas (primitivas):

Relaciones: Exp(x), Trm(x), Fml(x), LAx(x): x es el nimero de Godel de una expresién en £, un
término en ., una férmula bien formada de .Z’ o un axioma légico de K, respectivamente.

Funciones: Num(u): El nimero de Godel de la expresion u (esto es, g(u)), asi como Sub(x,u,v): El
ndmero de Godel de la expresion resultante de tomar la expresién g~ ! (x), tomar todas las veces
que la variable g~ (u) ocurre libre en x, y sustituirlas por el término g~!(v).?

Ademds, si la relacién PrAx(x) (esto es, x es el nimero de Godel de un axioma propio de K) es
recursiva (primitiva), entonces la relacién Pf(x,s) (esto es, s es el nimero de Godel de una sucesion que
es una prueba de la férmula g~ ! (x) en K) es recursiva (primitiva).

El uso de la numeracién de Godel nos permite probar el siguiente resultado sobre recursividad:

Teorema 2.2. Sea K un sistema aritmético con igualdad y con lenguaje recursivo que cumple que
PrAx(x) es recursiva, y ademds cumple que, si = m = n, entonces m = n. En ese caso, toda funcion
aritmética representable en K es recursiva.

Demostracion. Sea f una funcién aritmética de n argumentos representable en K: entonces existe una
féormula de K de n+ 1 argumentos que la representa, o7 (x1,...,X;,X,+1). Sea m el nimero de Godel de
/. Construyamos la relacion aritmética de n + 2 argumentos B(uy, ..., u,, u,11,y) que sea cierta si y es
el nimero de Godel de una prueba de <7 (uy, ..., Uy ):

B(uy,...,upn+1,y) = Pf(Sub(...Sub(m,g(x1),Num(uy))...,g(xp41), Num(up11)),y)

Puesto que hemos construido B a partir de funciones y relaciones recursivas, es claro que B es
recursiva. Ahora, si llamamos r = f(uy,...,u,) entonces - <7 (uy, ..., u,,7) y por tanto existe una prueba
en K de dicha férmula. Digamos que esta prueba tiene nimero de Godel j; entonces B(uy, ..., uy, 1, j)
por construccién. Llamemos y = 273/

Notar ahora que, si B(uj, ..., Uy, ty11,y), €ntonces r = u,;1, porque <7 representa a f y esto impli-
ca que - (31x) (dy,...,ln,x) y como - o7 (uy,..., Uy, Uy+1) tenemos = 7 = u,, y por hipétesis esto
implica que r = u,+1. Se deduce que:

r= f(ula-'-a”n) = exp(:uy(B(ula"'7un’exp(ya 0),exp(y, 1)))’0)
Por lo que f es recursiva, ya que sabemos que B lo es. O

Como consecuencia inmediata, toda relacién aritmética expresable en K es recursiva.

2.4. Incompletitud

Contamos, por fin, con todas las herramientas necesarias para probar el hecho que afirmamos en
2.1: que el sistema S no es completo. Esto requiere probar la existencia de una sentencia indecidible,
esto es, una férmula cerrada < tal que ni - <7 ni F —.o7.

Con este prop6sito, definimos una funcién aritmética D, llamada funcion diagonal:

D(u) = Sub(u,g(x1),Num(u))

3Aunque no es estrictamente correcto, usaremos “la expresién/sucesion/etc. g_](x)” para referirnos a “la expre-
sién/sucesion/etc. que tiene como nimero de Godel a x”.
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Si u es el nimero de Godel de una férmula o7 (x;), la funcion diagonal D(u) nos da el nimero
de Godel de la féormula cerrada o7 (#); en cierto modo, si <7 afirma una propiedad de x;, entonces la
funcién diagonal nos da una férmula que afirma que su propio nimero de Godel tiene esa propiedad.

Teorema 2.3 (Lema de diagonalizacién). Sea K un sistema aritmético con igualdad en el cual D es
representable. Entonces, para cualquier formula con una sola variable libre % (x,), existe una formula
cerrada € tal que =€ <> HB(g(¥)). Notar que g(€) es el numeral correspondiente al niimero de Godel
de 6.

Demostracion. Puesto que D es representable en K, digamos que estd representada por una férmula
P (x1,x2). Construyamos la formula o7 (x| ) que serd (Vxy)(Z(x1,x2) <> B(x2)). Seam = g( (x1)), y
sea ¢ la formula cerrada .o/ (m). Llamamos g = g(%'); estd claro, por construccion, que D(m) =g, y
por tanto tenemos (*):

*  F2(m,7q)
Ademads, como ¥ representa a D, tenemos (**):
) F @) (Z(m,x2))

Ahora, probamos que - ¢ — #(q):

(1) (V) (Z(m,x2) = B(x2)) Hipétesis
2)  (Yx)(Z(m,x2) = HB(x2)) = (Z(m,q) = B(q)) (L4)

3) 2(mq)— %) (1), (2), MP
4)  2(m.q) (*)

(5) 2@ (3), (4), MP

Se deduce que € - %B(q). Por el Teorema de Deduccién 1.4, =€ — %(q). Por otra parte, vemos
que - #(q) — ¢:

(1) 2@ Hip6tesis

(2)  2(m,x2) Hip6tesis

(3)  (Gix)(Z(m,x2)) (%)

4) 2(myq) (*)

5) 7=x (3), (4), definicién de 3,
(6) (@=x2)— (%(q) = %(x2)) (12)

(7)  #(Qq) > B(x2) (5), (6), MP

(8)  #B(x2) (D), (7), MP

Por tanto, #4(q), Z(m,x;) = %B(x;). De nuevo, por 1.4, B(q) b Z(m,x;) — HB(x2). Aplicando una
vez Gen y luego 1.4 otra vez, tenemos - %#(q) — €.
Por la definicién de <>, tenemos que - € <+ %(q), como queriamos demostrar.
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Las condiciones siguientes serdn necesarias como hipétesis para el Teorema de Godel:

1. La relacién PrAx(x) es recursiva.
2. Fx 0#£T.

3. Toda funcidn aritmética recursiva es representable en K.

En particular, Sy cualquier extensién de S que satisfaga 1* cumple las propiedades 1 a 3.

En un sistema que cumpla estas propiedades, en particular, la relacién Pf(x,s) (que hemos visto
que es recursiva por la propiedad 1) es representable por una férmula, digamos & (x;,x,). Sea #(x) la
férmula (Vx2)—.2(x1,x2); podemos ver 2 como la afirmacién de que la férmula con nimero de Godel
correspondiente al numeral x; no tiene demostracién. Ahora, por el Lema de Diagonalizacién 2.3, existe
una sentencia ¢ tal que:

©  FxY o B(9))

Bajo el modelo estandar, esta sentencia se interpreta como: “La férmula ¢ es cierta si y sélo si la
férmula con nimero de Godel g(¢) (es decir, ¢) no tiene demostracion”; esto es, ¢ es cierta si y s6lo
si no es demostrable. ¢ se dice sentencia de Godel, y es nuestro mejor candidato a férmula indecidible.
El Teorema de Godel probara que efectivamente lo es; pero antes tenemos que introducir un tltimo
concepto.

Un sistema aritmético se dice @-consistente si, para cada férmula 27 (x) que contenga a x como
su Unica variable libre tal que - —.o7 (1) para todo nimero natural n, no es cierto que + (3x).o/(x). En
particular:

Teorema 2.4. Todo sistema aritmético K que sea ®-consistente es consistente.

Demostracion. Basta recordar que, en un sistema no consistente, toda férmula es un teorema, asi que
si encontramos una férmula que no es un teorema el sistema es consistente. Ahora, si llamamos .27 (x) a
(%(x) N—~H(x)) para cualquier formula Z(x) que contenga a x como su tnica variable libre, entonces
es claro que, para cada n, - —.¢7 (), por ser instancia de una tautologia. Ahora, si K es w-consistente,
entonces (3x).o7 (x) no es un teorema, asi que es consistente. O

Notar que cualquier sistema que admita como modelo al modelo estdndar (en particular, S) es w-
consistente.

Teorema 2.5 (de Incompletitud de Godel). Sea K un sistema aritmético que cumple las propiedades 1
a 3. Entonces:

n Si K es consistente, 4 no es un teorema de K.

n Si K es w-consistente, =4 no es un teorema de K.
Por tanto, si K es w-consistente, entonces contiene una sentencia indecidible, a saber, 4.
Demostracion. Sea q = g(¥).

= Supongamos que kg ¢. Sea r el nimero de Gédel de una prueba de ¢ en K. Entonces Pf(q,r)
es cierto, es decir, Fx &?(q,7). Por otra parte, como g ¢, por (¢) y MP, - B(g(¥)), esto es,
F (Vx2)—P(g(94),x2). Usando el axioma (L4) y MP, pues 7 es cerrado y por tanto libre para xy,
llegamos a - =.22(q,7). K es, por tanto, inconsistente.

“4Los sistemas que satisfacen la propiedad 1 se dicen recursivamente axiomatizables.
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= Supongamos que K es @-consistente y que Fx —=¥4. Por (¢) llegamos a - —(Vx;)—=Z?(q,x2) o,
lo que es lo mismo, - (Ixp) Z(q,x2). Por otra parte, como K es @-consistente, es consistente y,
como g —%, entonces no se da que g ¢; es decir, Pf(q,n) es falso para cualquier n, pues ¢ no
tiene prueba. Se deduce que - —.?(g, ) para todo n natural. Pero, como + (3xz) Z(g,x2), K no
puede ser @w-consistente, por definicion.

O]

Notar que, si el sistema K admite el modelo estandar, entonces la sentencia ¢ es verdadera para
dicha interpretacion (pues ¢ afirma que ¢ no es demostrable, y en efecto no lo es por el Teorema de
Godel). Si anadimos algunas condiciones adicionales a K, podemos construir una sentencia algo mas
compleja % (llamada sentencia de Rosser) que nos permite cambiar la condicion de w-consistencia por
la de consistencia. Este resultado se conoce como Teorema de Godel-Rosser.

Por dltimo, recordamos que el objetivo de los sistemas formales es reducir una idea seméantica como
es la veracidad de una frase al concepto puramente sintdctico de teorema. El Teorema de Incompletitud
de Godel nos muestra que cualquier sistema aritmético en el que se tengan las propiedades 1 a 3 serd
incapaz de atrapar por completo esta idea de veracidad. Notar que la propiedad 2 es simplemente de
no-trivialidad, pues un sistema que no la cumpla sélo tiene un numeral. Por otra parte, si tratamos de
afladir a nuestro sistema las férmulas verdaderas y que no es capaz de demostrar, el sistema obtenido
es completo; comprobamos que, por el Teorema de Godel, la propiedad 1 no se puede cumplir, pues
la propiedad 3 no se ve afectada por extensiones. Esto muestra el hecho crucial de que la propiedad
de ser una férmula verdadera (7r(x): x es el nimero de Godel de una férmula verdadera en el modelo
estandar) no es recursiva.

A grandes rasgos, la idea de recursividad se corresponde con la de computabilidad’; esencialmente,
que la veracidad de las férmulas aritméticas sea computable quiere decir que es tedricamente posible
disefiar un algoritmo capaz de decidir si una férmula cualquiera dada es verdadera o no en un nimero
finito de pasos. Una de las consecuencias mds importantes del Teorema de Gdodel es, por tanto, que
es matemdticamente imposible construir un ordenador capaz de, dada una sentencia cualquiera de la
aritmética, decidir si es verdadera o no. De hecho, ni siquiera es posible que sea capaz de decidir si una
férmula cualquiera dada es un teorema o no de un sistema aritmético que cumpla las condiciones 1 a
3, pues la propiedad de ser un teorema de tal sistema (Th(x): x es el nimero de Godel de un teorema)
tampoco es recursiva (ver [, pdg. 169]).

5Esta idea recibe el nombre de Tesis de Church: ver [1, pag. 168]
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