
Algoritmos de Búsqueda Tabú
Aplicación en un problema de rutas

Abel Naya Forcano
Trabajo de fin de grado en Matemáticas

Universidad de Zaragoza

Directores del trabajo:
Herminia I. Calvete
Ángel R. Francés

Julio de 2016

Introducción

En su forma genérica, los problemas de rutas de vehículos consisten en hallar una ruta o rutas
para una flota de vehículos para dar servicio a un conjunto de clientes minimizando, generalmente,
el coste del transporte. Sus principales características son: la red de transporte, los arcos y nodos que
los vehículos pueden recorrer, la flota de vehículos, las características de los vehículos utilizados en
el proceso, así como las restricciones que puedan imponerse. Estas restricciones pueden afectar a la
distancia recorrida o la carga máxima que pueden transportar los vehículos; al lugar en donde entregar la
mercancía si cada cliente tiene varios posibles; el origen, o los orígenes si se permite que haya varios; el
servicio, si se permite que la carga se pueda dividir o si existen horarios que cumplir; y las rutas solución,
por ejemplo si éstas no deben superar una longitud máxima o si se permite que un vehículo realice varias
de ellas. Este tipo de problemas de rutas de vehículos tiene multitud de variantes y modificaciones,
desde las más sencillas hasta algunas que hoy en día siguen siendo materia de investigación. El coste
computacional para resolver este tipo de problemas es elevado y, aunque existen métodos y algoritmos
exactos, para problemas con un elevado número de nodos el tiempo de cálculo suele ser excesivo. Es por
esto que los algoritmos metaheurísticos, que exploran el espacio de soluciones mediante algún método
de búsqueda, se han utilizado para resolver este tipo de problemas, a menudo con resultados altamente
satisfactorios.

Uno de estos procedimientos metaheurísticos son los llamados algoritmos de búsqueda tabú. Estos
algoritmos tratan de guiar un proceso de búsqueda local mediante la utilización de estructuras de memo-
ria, que almacenan determinados acontecimientos ocurridos a lo largo del proceso. La búsqueda local se
basa en el concepto de vecinos de una solución, y va recorriendo el espacio de soluciones partiendo de
una solución inicial y sustituyéndola por uno de sus vecinos iterativamente. Las estructuras de búsqueda
tabú, en su forma mas básica, penalizan determinados vecinos para evitar que el proceso se estanque en
un mínimo local.

El objetivo de este trabajo es estudiar el problema de rutas de vehículos y los algoritmos de búsqueda
tabú, así como implementar un algoritmo de este tipo para resolver un problema clásico de rutas de
vehículos. Esta memoria consta de tres capítulos. En el primer capítulo, se formula el problema clásico
de rutas de vehículos y se presentan algunas variantes así como distintos tipos de algoritmos que se
han propuesto en la literatura para su resolución. En el segundo capítulo, se presentan los conceptos
fundamentales de los algoritmos de búsqueda tabú, así como algunas características más avanzadas.
Por último, en el tercer capítulo, se detalla la implementación realizada del algoritmo, así como los
resultados obtenidos tras ejecutarlo.

III

Summary

The aim of this proyect is to study the vehicle routing problem, to show which characteristics are
usually taken into account to formulate it, and to present some algorithms which have been proposed in
the literature to solve it. Then, we focus on tabu search algorithms and present a custom implementation
of a tabu search algorithm designed to solve the capacitated vehicle routing problem.

Vehicle routing problems are combinatorial optimization and integer programming problems that
consist on finding an optimal set of routes for a fleet of vehicles to traverse in order a group of customers.
It was first introduced by Dantzig y Ramser (1959) and used to solve a petrol delivery problem. There
exist a lot of variants, and they have many applications on industry.

One of the most studied and simple variant is the capacitated vehicle routing problem. It consists
on the distribution of goods from a single depot to a set of customers. The fleet is assumed to be
homogeneous, meaning that all the vehicles have the same capacity and operate at identical costs. Each
vehicle starts at the depot, visits some customers and returns to the depot ending the route. When
travelling between nodes, the vehicle incurs the travel cost of the arc between them. The objective is to
minimize the travel costs of all the routes visiting all the customers and without exceeding the vehicle
capacity.

In this work we present five formulations of the capacitated vehicle routing problem: the two-
index formulation for directed graphs and for undirected graphs, a three-index formulation, an extensive
formulation based on a set covering model and the capacity indexed formulation.

Some of the variants of the vehicle routing problems take into account network characteristics, for
example if the customers need to be served on arcs instead of nodes or even both; route constraints,
like limiting route length; letting a vehicle travel multiple routes or adding time window constraints.
Also the fleet characteristics can be considered, sometimes the fleet is heterogeneous and vehicles have
different capacity, costs or even depots. In general, the objective is to minimize route costs, but in some
cases it is also needed to optimize the time, the length or the number of vehicles, and others.

There also exist different methods to solve these problems, and they are separated in two main
groups, exact and heuristics algorithms, but there are also methods which combine both of them. Exact
algorithms find the optimal solution testing implicitly or explicitly all the solutions. Heuristics try to find
a good solution searching the topology of the space of solutions. Heuristic approaches cannot ensure
that the best solution found is the optimal solution, but they are a good alternative when considering a
high number of restrictions, because exact approaches often take a lot of computing time.

Some important exact algorithms are branch and bound, that incorporate relaxations and recursively
split the search space removing the groups of solutions that cannot improve the current best solution;
approaches based on column generation, where only some routes are considered and improved; branch
and cut algorithms, an improvement to branch and bound procedures where restrictions are introduced
to cut the search space; and branch and cut and price, which combines branch and cut with column
generation. On the other hand, some important heuristics are local search, that travels the search space
moving from one solution to another at each iteration like simulated annealing or tabu search; and
population based heuristics, inspired by nature like ant colony optimization or genetic algorithms.

Tabu search heuristic is an approach used to guide a local search trying to avoid local optimums
using memory and keeping track of events occurred in the past. These algorithms were first proposed
by Glover (1977) and have been used to solve problems from many different areas like scheduling,
logistics, planning, etc.

V

VI Summary

Local search heuristics travel the search space from the current solution to a near one. The near
solutions are called neighbours. In general, the near solution results of modifying some of the current
solution characteristics or variables. The best of these neighbours is set as the current solution, and
the process is repeated until a stopping criterion is satisfied. During the execution of the algorithm, the
best solution found is kept and returned when finalizing. Main basic tabu search mechanisms consist on
keeping some properties of the solutions visited, or the movements that lead to these solutions, called
tabu restrictions. When searching for the best neighbour, the solutions that match some of the tabu
characteristics, are marked as tabu and they are not chosen unless an aspiration criterion removes the
tabu status. The tabu restrictions are kept on a tabu structure for a limited number of iterations, then
they are removed. This is often called short term memory. Some advanced tabu search mechanisms
consist on keeping characteristics on a different structure without removing them. This is called long
term memory. This information shows the characteristics or movements most used, and can be used to
bias the search. Penalizing these movements will encourage the method to search unexplored regions;
whether encouraging them will focus the search on the current area, these are intensification rules.

The algorithm taburoute, proposed by Gendreau et al. (1994), is a tabu search heuristic for capaci-
tated vehicle routing problems on directed graphs. This algorithm uses basic and advanced features of
tabu search. It starts generating some random solutions in such a way that they are separated on the
search space. On each of these solutions a tabu search process is executed. Then, from the best solution
found in all of them, the algorithm is run again with different parameters chosen to improve as much as
possible the current solution. Finally, the algorithm is run one more time with intensification parame-
ters, in order to ensure that we did not miss any good near solution. The search algorithm implements
tabu search methods, checking all neighbours that are obtained by moving a vertex from its current route
to another one. Removing and adding vertex to routes is performed using procedures from Gendreau
et al. (1992) called Stringing and Unstringing, where instead of removing the vertex joining the open
paths and adding it between two consecutive vertices a more efficient approach is used: it checks some
different ways of modifying the route reorganising the vertices in the process, and the best of them is
executed. This paper also describes other algorithms called Us, which optimizes a route removing and
adding all vertices iteratively; and Genius, which creates a full route adding vertices using Stringing and
optimizing with Us.

We have developed a custom implementation of the algorithm in Java using 23 different classes.
Taburoute which contains the main algorithms. Genius which implements the algorithm with the same
name. EstructuraTabu which contains the tabu structure used by the Search algorithm. Grafo which
contains the data of the graph and the problem. Solucion which consists of a set of routes. Ruta which
consists of a sequence of vertices and implements the Stringing and Unstringing procedures. And
SolucionProxy and RutaProxy (and all subclasses) that represent the modifications of a solution and a
route, respectively, and extends the SolucionAbstracta and RutaAbstracta classes. Proxi classes were
chosen so that, instead of creating copies of the neighbour, the result of the modifications made to get the
neighbour are evaluated, without actually generating the neighbour, and then the one chosen modifies
the current solution.

Finally, the algorithm has been run using the same fourteen test problems from Christofides et al.
(1979) used by the original article and the obtained results are shown. The code is also annexed for
inspection.

Índice general

Introducción III

Summary V

1. Problemas de rutas de vehículos 1
1.1. Problemas de rutas de vehículos con capacidad . 1
1.2. Formulaciones . 2

1.2.1. Notaciones básicas . 2
1.2.2. Formulación con dos índices . 2
1.2.3. Formulación con tres índices . 3
1.2.4. Formulación basada en rutas . 4
1.2.5. Formulación con la capacidad como índice 4

1.3. Variantes de problema . 5
1.3.1. Características de la red . 5
1.3.2. Requisitos de transporte . 5
1.3.3. Restricciones de la ruta . 6
1.3.4. Características de la flota . 6
1.3.5. Restricciones globales . 7
1.3.6. Objetivos . 7
1.3.7. Otras extensiones . 7

1.4. Métodos de resolución exactos . 7
1.4.1. Algoritmos de ramificación y acotación . 7
1.4.2. Algoritmos basados en la formulación con rutas 8
1.4.3. Algoritmos de ramificación y cortes . 8
1.4.4. Algoritmos de ramificación, cortes y precios 8

1.5. Métodos de resolución heurísticos . 9
1.5.1. Heurísticas constructivas . 9
1.5.2. Heurísticas clásicas . 9
1.5.3. Metaheurísticas de búsquedas locales . 9
1.5.4. Metaheurísticas basadas en poblaciones . 10

1.6. Métodos Híbridos . 10

2. Algoritmos de búsqueda tabú 11
2.1. Búsqueda tabú básica . 12

2.1.1. Problema de planificación o secuenciación de trabajos (job scheduling) 12
2.1.2. Vecindad y movimientos . 12
2.1.3. Características y estructura tabú . 13
2.1.4. Un algoritmo básico . 13

2.2. Búsqueda tabú avanzada . 14

VII

VIII Índice general

3. Un algoritmo de búsqueda tabú para el problema de rutas de vehículos 17
3.1. Algoritmo . 17

3.1.1. Algoritmos principales . 18
3.1.2. Algoritmos auxiliares . 19
3.1.3. Valores de los parámetros . 21

3.2. Implementación . 22
3.3. Resultados y análisis . 24

Bibliografía 27

Siglas 29

Capítulo 1

Problemas de rutas de vehículos

Los problemas de rutas de vehículos, Vehicle Routing Problems (VRP), engloban una familia de
problemas de optimización que, genéricamente, tratan de encontrar las rutas que deben seguir un con-
junto de vehículos desde un almacén central para visitar un cierto número de clientes con el menor coste
posible. En particular, se trata de decidir qué vehículos recorren qué clientes y en qué orden, de forma
de que todas las rutas efectuadas sean viables y el coste sea mínimo.

Esta descripción del problema es muy genérica, existiendo una gran cantidad de variantes. Aun así
todos estos problemas comparten unas características similares, como la dificultad de encontrar una
solución exacta en un tiempo razonable (no así soluciones aproximadas, que suelen requerir mucho
menos tiempo) al tratarse de problemas P-duros, y la utilidad de sus aplicaciones en el mundo real.

Han pasado casi 60 años desde que la primera formulación fue descrita en 1959 por Dantzig y
Ramser (1959) para resolver un problema de suministro de gasolina a estaciones de servicio. Desde
entonces, se siguen publicando artículos y métodos de resolución debido principalmente a las ya men-
cionadas complejidad y utilidad práctica.

Una buena referencia sobre los problemas de rutas de vehículos son los dos libros de Toth y Vigo
(2001, 2014) y el artículo de Laporte (2009).

1.1. Problemas de rutas de vehículos con capacidad

El problema de rutas de vehículos con capacidad, Capacitated Vehicle Routing Problem (CVRP),
constituye el modelo más estudiado de entre los VRP. Trata de distribuir una mercancía desde un al-
macén central o centro de distribución hasta un conjunto de clientes. Se caracteriza porque se toma en
consideración la capacidad de los vehículos, que puede ser o no igual para todos ellos. Por tanto, la
suma de las demandas de los clientes en una ruta no puede ser mayor que la capacidad del vehículo que
la recorre.

Denotaremos con 0 el centro de distribución y con N = {1,2, ...,n} el conjunto de los nodos que re-
presentan a los clientes. Consideramos la red G = (V,A) o G = (V,E) donde V = {0}∪N = {0,1, . . . ,n}
es el conjunto de nodos y A/E es el conjunto de arcos o ejes, según sea la red dirigida o no dirigida. En el
primer caso A = {a = (i, j) ∈V ×V : i 6= j}. En el segundo caso E = {e = (i, j) = (j, i) : i, j ∈V, i 6= j}.

Cada nodo i ∈ N tiene asociada una demanda qi > 0. Para facilitar la formulación del modelo,
asociaremos con el centro de distribución una demanda q0 = 0. Denotaremos el conjunto de vehículos
como K suponiendo una flota homogénea, cada uno de ellos con capacidad Q. Supondremos conocido
el coste ci j asociado a que un vehículo haga el trayecto desde el nodo i al nodo j. Si al menos un
par de nodos tienen coste asimétrico (ci j 6= c ji) entonces es necesario usar una red dirigida. En caso
contrario una red no dirigida es suficiente. Tanto en un caso como en el otro, el número de arcos es
O(n2) (|E|= n(n+1)/2 y |A|= n(n+1)).

Con estas notaciones, el CVRP queda definido de manera única por una red dirigida G=(V,A,ci j,qi)
o no dirigida G = (V,E,ci j,qi), junto con el tamaño |K| de la flota de vehículos y la capacidad Q de
cada vehículo.

1

2 Capítulo 1. Problemas de rutas de vehículos

Una ruta consiste en una secuencia ordenada de nodos r = (i0, i1, ..., is, is+1) cuyos arcos son i0→
i1, i1→ i2, . . . , is→ is+1, con i0 = is+1 = 0. Esta ruta representa la visita de los s clientes S = {i1, ..., is}⊆
N, donde S es un agrupamiento de clientes que llamaremos clúster. Esta ruta r conlleva un coste c(r) =
∑

s
p=0 cip,ip+1 y es factible si se cumple la restricción de capacidad q(S) := ∑i∈S qi 6 Q y los nodos son

distintos i j 6= ih∀1 6 j < h 6 s. En este caso, se dice que S es un clúster factible.
Una solución del CVRP consiste en un conjunto de |K| rutas, una para cada vehículo k ∈ K. Una

solución se dice factible si todas las rutas r1,r2, . . . ,r|K| son factibles y los clústeres S1, ...,S|K| forman
una partición de N. Por tanto, para resolver el problema se precisa llevar a cabo dos tareas simultáneas:
La partición del conjunto de clientes en clústeres factibles y la resolución de un problema del viajante
(Traveling Salesman Problem (TSP), Applegate et al. (2011)) asociado a {0}∪Sk,∀k ∈ K.

1.2. Formulaciones

En este apartado vamos a presentar cuatro formulaciones matemáticas que se han propuesto a lo
largo de los años para el CVRP. Cada una presenta características propias que la hacen idónea para
determinados algoritmos de resolución. Mediante modificaciones de estas formulaciones se tratarán
posteriormente distintas variantes del VRP.

1.2.1. Notaciones básicas

Sea S⊆V un conjunto arbitrario de nodos. Para redes no dirigidas, definimos δ (S) = {(i, j) = (j, i) :
i ∈ S, j /∈ S} como el conjunto de arcos con exactamente uno de los nodos en S. Para redes dirigidas, se
definen δ−(S) = {(i, j) : i /∈ S, j ∈ S} y δ+(S) = {(i, j) : i ∈ S, j /∈ S}, los conjuntos de arcos de entrada
a S y de salida de S, respectivamente. Por otra parte, A(S) = {(i, j) ∈ A : i, j ∈ S} es el conjunto de los
arcos que conectan nodos de S y r(S) denota el mínimo número de vehículos necesarios para satisfacer
la demanda de todos los clientes en S.

1.2.2. Formulación con dos índices

Para el modelo del CVRP en una red dirigida, denotado VRP1, se definen las variables binarias xi j

que toman valor 1 si un vehículo recorre el arco (i, j) ∈ A, y 0 en caso contrario. El problema puede
plantearse como:

min
xi j

∑
(i, j)∈A

ci jxi j

sujeto a
∑

j∈δ+(i)

xi j = 1 ∀i ∈ N

∑
i∈δ−(j)

xi j = 1 ∀ j ∈ N

∑
j∈δ+(0)

x0 j = |K|

∑
(i, j)∈δ+(S)

xi j > r(S) ∀S⊆ N, S 6= /0

xi j ∈ {0,1} ∀(i, j) ∈ A

Esta formulación fue introducida por primera vez por Laporte et al. (1986).
Denotando por x el vector de variables xi j y definiendo x(I) = ∑(i, j)∈I xi j donde I es un subconjunto

arbitrario de arcos, el modelo anterior se puede formular de forma condensada como:

TS-VRP - Abel Naya Forcano 3

min
x

cT x

sujeto a
x(δ+(i)) = 1 ∀i ∈ N

x(δ−(j)) = 1 ∀ j ∈ N

x(δ+(0)) = |K|

x(δ+(S))≥ r(S) ∀S⊆ N, S 6= /0

xa ∈ {0,1} ∀a ∈ A

donde, si a = (i, j), xa = xi j. El modelo correspondiente para una red no dirigida, denotado VRP2,
donde ahora las variables se denotan por xe = xi j, e = (i, j) ∈ E es, en notación condensada:

min
x

cT x

sujeto a
x(δ (i)) = 2 ∀i ∈ N

x(δ (0)) = 2|K|

x(δ (S))> 2r(S) ∀S⊆ N, S 6= /0

xe ∈ {0,1,2} ∀e ∈ δ (0)

xe ∈ {0,1} ∀e ∈ E\δ (0)

Esta formulación fue presentada por Laporte et al. (1985).

1.2.3. Formulación con tres índices

La siguiente formulación, en la que las variables tienen tres índices, permite plantear el problema
en una red dirigida G = (V,A) en donde el origen 0 se reemplaza por dos nodos o y d que representan
el comienzo y el final de las rutas. De esta manera, V := N∪{o,d} y A := (V \{d})× (V \{o}).

Como su nombre indica, la formulación con tres índices tiene variables binarias de la forma xi jk
que modelan el movimiento de los vehículos sobre los arcos. En otras palabras, xi jk = 1 si y solo si el
vehículo k ∈ K recorre el arco (i, j) ∈ A. Al igual que antes, se denota por xk el vector de componentes
xi jk y xk(I) = ∑(i, j)∈I xi jk. Se define también la variable yik que indica si el vehículo k visita el nodo
i ∈V . En este caso, ui j representa la carga del vehículo k justo antes de llegar al nodo i. La formulación
del problema, que denotamos VRP3, es:

4 Capítulo 1. Problemas de rutas de vehículos

min
x,y ∑

k∈K
cT xk

sujeto a
∑
k∈K

yik = 1 ∀i ∈ N

xk(δ
+(i))− xk(δ

−(i)) =
{

1, i = o
0, i ∈ N

∀i ∈V \{d}, k ∈ K

yik = xk(δ
+(i)) ∀i ∈V \{d}, k ∈ K

ydk = xk(δ
−(d)) ∀k ∈ K

uik−u jk +Qxi jk 6 Q−q j ∀(i, j) ∈ A, k ∈ K

qi 6 uik 6 Q ∀i ∈V, k ∈ K

x = (xk) ∈ {0,1}K×A

y = (yk) ∈ {0,1}K×V

Esta formulación, de manera ligeramente diferente, fue descrita por primera vez por Golden et al.
(1977).

1.2.4. Formulación basada en rutas

Esta formulación fue propuesta inicialmente por Balinski y Quandt (1964), y está basada en un
modelo de cubrimiento de conjuntos (Set covering model) cuya idea es que si las rutas factibles se
conocen, para resolver el problema basta determinar qué rutas se han de seleccionar. Sea Ω el conjunto
de todas las rutas factibles del problema. Cada ruta r ∈Ω es de la forma r = (i0, i1, . . . , is, is+1) con i0 = o
e is+1 = d. Su coste asociado es cr = ∑

s
j=0 ci j,i j+1. Se define el coeficiente binario air que vale 1 si y

solo si el nodo i ∈ N se visita en la ruta r. Finalmente, se define la variable binaria λr que toma valor 1
si la ruta r es seleccionada y 0 si no lo es, siendo λ el vector de variables λr, y se denota por 1 el vector
de dimensión el número de rutas con todas sus componentes iguales a 1. La formulación del problema,
denotada VRP4, es:

min
λ

cT
λ

sujeto a
∑
r∈Ω

airλr = 1 ∀i ∈ N

1T
λ = |K|

λ ∈ {0,1}Ω

1.2.5. Formulación con la capacidad como índice

Esta formulación fue propuesta para modelos en redes dirigidas por Pecin et al. (2014). Se define
la variable binaria xq

a que toma el valor 1 si el arco a = (i, j) pertenece a una ruta cuya demanda total
a partir del nodo j inclusive es exactamente q, y 0 en caso contrario. Los arcos que vuelven al origen
deben tener q = 0.

La formulación, que denotamos VRP5, del problema es:

TS-VRP - Abel Naya Forcano 5

min
x ∑

a∈A
ca

Q

∑
q=0

xq
a

sujeto a
∑

a∈δ−({i})

Q

∑
q=1

xq
a = 1 ∀i ∈ N

Q

∑
q=1

∑
i∈N

xq
0i = |K|

∑
a∈δ−({i})

xq
a − ∑

a∈δ+({i})
xq−qi

a = 0 ∀i ∈ N, q = qi, . . . ,Q

xq
a ∈ {0,1} ∀a ∈ A, q = 1, . . . ,Q

xq
(i,0) = 0 ∀i ∈ N, q = 1, . . . ,Q

1.3. Variantes de problema

Los problemas de rutas de vehículos presentan, por sus aplicaciones prácticas, muchas variantes de
distinto tipo, algunas de las cuales se enumeran a continuación.

1.3.1. Características de la red

En el planteamiento general del VRP se considera que los lugares en los que el producto ha de
ser entregado están asociados a los nodos de la red existente. Existen, sin embargo, otras variantes en
las que el servicio a realizar debe llevarse a cabo en los arcos de la red, los denominados Arc Routing
Problems (ARP); o en nodos y arcos simultáneamente, los denominados General Routing Problems
(GRP). Pueden citarse como ejemplos los problemas de rutas para vehículos de limpieza o inspección,
el envío de correo postal y la recogida de basuras.

1.3.2. Requisitos de transporte

Envíos y recogidas. En general, se considera la distribución de mercancía desde un almacén central a
unos clientes. Sin embargo, también se han considerado problemas de recogida, en los que la mercancía
debe ser recogida en los nodos y llevada al almacén. Estos problemas son equivalentes, sin más que
revertir las rutas.

Otras variantes combinan en las rutas la recogida y la entrega de mercancía simultáneamente. Si no
se permiten reorganizaciones dentro de los vehículos, esto es, se debe entregar toda la mercancía antes
de recoger la nueva, se denomina VRP with Backhauls (VRPB). Si por el contrario el vehículo permite la
reorganización, el problema es un Mixed VRPB (MVRPB). En estos casos los clientes precisan entrega
o recogida de mercancía, pero no ambas. Si se permite que los clientes recojan y entreguen mercancía y
que además deba realizarse en una única visita, el problema pasa a denominarse VRP with Simultaneous
Pickup and Delivery (VRPSPD). En caso de que se permita la carga/descarga en más de una visita, se
denomina VRP with Divisible Deliveries and Pickups (VRPDDP).

Servicios alternativos. En esta variante del problema, un cliente puede tener varios lugares posibles
de recogida. En los Multi-Vehicle Covering Tour Problem (MVCTP) quien proporciona el servicio elige
uno de esos lugares para la entrega.

Transportes punto-a-punto. En este tipo de VRP, cada transporte consiste en el movimiento entre
dos ubicaciones específicas de bienes Pickup-and-Delivery Problem (PDP) o personas Dial-a-Ride Pro-
blem (DARP)

6 Capítulo 1. Problemas de rutas de vehículos

Suministro reiterado. Esta variante modela situaciones en las que los clientes requieren los bienes
cada cierto tiempo, pudiendo variar el día de entrega mientras no se queden sin stock, ya sea en días
predefinidos: Periodic VRP (PVRP), o sin predefinir: Inventory Routing Problem (IRP).

Servicios divididos. En la variante Split Delivery VRP (SDVRP) la mercancía que un cliente concreto
requiere no tiene por qué ser transportada por un único vehículo, por lo que cada demanda puede ser
dividida en un número arbitrario de subdemandas, transportadas por diferentes vehículos.

Servicios compartidos y multimodales. En este caso la mercancía permanece indivisible, pero se
transporta por diferentes vehículos utilizando puntos de transferencia intermedios, en donde se almacena
temporalmente.

Rutas con beneficios y selección de servicios. A veces es imposible satisfacer todas las restricciones
de transporte y algunas no pueden realizarse, en cuyo caso hay una penalización por no ser satisfechas.
En el proceso de optimización, se debe elegir qué característica se pretende priorizar, normalmente la
que mayor beneficio produzca. Si el servicio se centra en maximizar el beneficio obtenido (ingresos
menos penalizaciones) se denomina Profitable Tour Problem (PTP). Si se impone como restricción
necesaria una longitud máxima de las rutas, y el objetivo es maximizar el beneficio, se llama Team
Orienteering Problem (TOP). Y si se debe obtener un beneficio mayor que cierta cantidad prefijada
minimizando el coste de las rutas, entonces se denomina Prize-Collecting VRP (PCVRP).

Rutas dinámicas o estocásticas. En ocasiones existen condiciones del problema que no se pueden
conocer previamente. En general, un problema se dice que es dinámico si se dispone de información
relevante sobre las condiciones del sistema durante la operación y estocástico si pueden ser descritas
por una función de probabilidad.

1.3.3. Restricciones de la ruta

Al formular el VRP se ha tenido en cuenta la restricción de capacidad de los vehículos sobre la
ruta, pero existen otras muchas restricciones aplicables como el peso, espacio, volumen, indivisibilidad,
rotación o apilado. También se consideran aquellas en las que los bienes se distribuyen de acuerdo con
el orden de reparto, para evitar reorganizaciones en los vehículos.

Longitud de ruta. Limita la longitud total de una ruta, ya sea por consumo de recursos o por duración
de ésta.

Usos múltiples de los vehículos. Generalmente se supone que cada vehículo realiza una única ruta
en el problema. En los VRP with Multiple use of vehicles (VRPM) un mismo vehículo puede realizar
varias rutas siempre que la suma de las duraciones de todas ellas satisfaga la restricción de duración y
por tanto la solución sea factible.

Horarios. En los VRP with Time Windows (VRPTW) existen restricciones sobre el momento en el
que comienza (o termina) el servicio a cada cliente.

1.3.4. Características de la flota

Aunque en general se supone que todos los vehículos son iguales y se comportan igual, en algunos
casos se trabaja con vehículos con diferente capacidad, velocidad o coste. Estos problemas son los
Heterogeneous or mixed Fleet VRP (HFVRP). En otros casos, los vehículos son homogéneos, pero
tienen distintos orígenes, esto es, comienzan y terminan las rutas en diferentes lugares: Multi(ple) Depot
VRP (MDVRP).

TS-VRP - Abel Naya Forcano 7

1.3.5. Restricciones globales

Además de las restricciones que afectan a cada ruta, consideradas en el apartado 1.3.3, se pueden
considerar restricciones que afecten a cómo las rutas se combinan. Este es el caso de los VRP with
Multiple Synchronization constraints (VRPMS), que permiten modelar, por ejemplo, si varios vehículos
deben moverse a la vez por un recorrido común, si un destino debe ser visitado por varios vehículos en
un orden prefijado, o si el consumo de recursos total en cada instante no debe sobrepasar un límite.

1.3.6. Objetivos

Aunque se ha definido el VRP como un problema en el que se minimiza el coste de las rutas, a veces
se deben cumplir otro tipo de objetivos como, por ejemplo, minimizar el tiempo empleado, la duración
del recorrido o el número de vehículos utilizados.

1.3.7. Otras extensiones

La consideración del VRP y otras actividades logísticas da lugar a problemas muy diferentes e
interesantes. Por ejemplo, se puede considerar la consistencia de las rutas cuando el servicio se realiza
repetida o regularmente. En los Consistent VRP (ConVRP) se requiere que el mismo conductor visite
los mismos clientes en aproximadamente el mismo momento del día, lo que permite tener en cuenta la
familiaridad de los conductores con la región y los clientes.

Todas estas variantes, y muchas otras más, constituyen la Familia de los Problemas de Rutas de
Vehículos.

1.4. Métodos de resolución exactos

Los algoritmos exactos resuelven el problema hallando la mejor solución posible, generalmente
comprobando todas las soluciones factibles, ya sea explícita o implícitamente. Esto hace que resulte
prácticamente imposible la resolución en tiempo razonable cuando el problema tiene un gran número
de nodos.

1.4.1. Algoritmos de ramificación y acotación

Los algoritmos de ramificación y acotación, Branch-and-bound, fueron los primeros algoritmos
exactos efectivos para resolver el CVRP. A partir de las propuestas iniciales se han ido sofisticando hasta
lograr un rendimiento alto. Estos algoritmos consisten en relajar el problema quitando o reduciendo
alguna restricción, normalmente de integridad. La solución óptima de este problema relajado sirve de
cota inferior (en caso de minimizar) de las soluciones del problema original. Si la solución no es factible
para el problema original, se separa el problema en ramas restringiendo las relajaciones y se resuelven
los problemas asociados a cada una de las ramas, generalmente empezando por aquella con menor coste.
Debido a que la solución da una cota del valor de la función objetivo, si en una rama la cota no mejora
alguna solución factible ya encontrada, esa rama se descarta (prune).

Los distintos algoritmos que se han ido proponiendo difieren, fundamentalmente, en la forma en la
que se relaja el problema y en la cota que proporciona. Cuanto más ajustada sea la cota que se propone,
más soluciones factibles dejarán de analizarse y, en consecuencia, antes se alcanzará la solución óptima.

Tipos de relajaciones. La relajación basada en asignación y emparejamiento consiste en convertir el
problema en un Problema de transporte (TP) añadiendo k−1 copias del origen al grafo y asignándoles
un coste entre ellas de c′i j = γ , donde γ influencia el número de vehículos usados en la solución. Por
ejemplo, γ = ∞ impone el uso de todos los vehículos y con γ = 0 se obtiene la mejor solución usando
como mucho |K| vehículos. Este problema se resuelve hallando un circuito de coste mínimo que pase por
todos los nodos. Otra relajación consiste en imponer únicamente las condiciones de conectividad y hallar

8 Capítulo 1. Problemas de rutas de vehículos

un árbol recubridor mínimo imponiendo algunas condiciones de orden en los nodos. Estas restricciones
tienen una baja calidad y solo permiten la solución óptima en pequeños problemas. Por ello también se
suele realizar un enfoque Lagrangiano o aditivo, que consiste en comenzar imponiendo un subconjunto
significativo de las restricciones y resolver el problema. Después se comprueban aquéllas que no se
cumplen y se imponen, repitiendo el proceso hasta que todas se cumplan.

Ramificaciones. Una manera de ramificar un VRP consiste en separar en dos ramas imponiendo el
uso de un arco determinado en una de ellas y en la otra no (xi j = 1, xi j = 0, respectivamente). Otra forma
consiste en generar tantas ramas como nodos no visitados, imponiendo en cada una la inclusión del arco
desde el último cliente visitado a uno de los clientes no visitados, y una rama extra excluyendo todos
estos arcos.

1.4.2. Algoritmos basados en la formulación con rutas

Este tipo de algoritmos utiliza la formulación VRP4 presentada en 1.2.4 en donde se enumeraban
todas las rutas posibles y se elegían cuáles formaban parte de la solución.

Esta formulación hace que el número de variables a utilizar sea muy grande. Por ello, se suele utilizar
un procedimiento de Generación de columnas (CG) para resolver el problema. Se comienza resolviendo
el problema con un subconjunto de rutas y se hallan las variables óptimas para ese subproblema. Poste-
riormente, se comprueba si existe una ruta mejor fuera del subconjunto de rutas considerado, mediante
cálculos con el problema dual. Si existe tal ruta se añade al subconjunto y se repite el procedimiento. En
caso contrario, la solución óptima del problema restringido es también la solución óptima del problema
completo y se termina el algoritmo.

1.4.3. Algoritmos de ramificación y cortes

La estructura de este tipo de algoritmos es muy similar a la de los algoritmos de ramificación y
acotación, pues a ella se le añade el procedimiento de cortes (cuts) que consiste en añadir restricciones
al problema relajado que cortan partes de la región de factibilidad que con seguridad no contienen la
solución óptima, o ayudan a su resolución (es un procedimiento muy usado en problemas generales
de programación entera). Para este tipo de algoritmos se suele utilizar la formulación con dos índices
VRP2, en donde existen variables binarias que indican si un arco es recorrido o no, la relajación entera
que permite a las variables binarias tomar valores reales en el intervalo [0,1] y la ramificación en la que
en una rama se impone visitar un arco y en la otra no.

Desigualdades válidas utilizadas. A lo largo de la historia de los algoritmos de ramificación y cortes
se han introducido cortes o desigualdades válidas relacionadas con desigualdades que se han probado
útiles en el problema del viajante. Se han considerado también cortes que tienen en cuenta una cota
sobre el número mínimo de vehículos necesarios, o sobre la demanda de los clientes visitados, entre
otros.

1.4.4. Algoritmos de ramificación, cortes y precios

Los algoritmos Branch-and-cut-and-price son la base de la mayoría de algoritmos más recientes, y
se está probando que proporcionan los mejores resultados. Combinan la Generación de columnas (CG)
con los algoritmos de ramificación y cortes (branch-and-cut). Se basan en la observación de que para
grandes problemas con muchas variables binarias, la mayoría de ellas valen 0 y relajarlas, es decir dejar
que tomen cualquier valor en el intervalo [0,1], es innecesario en la mayoría de los casos.

TS-VRP - Abel Naya Forcano 9

1.5. Métodos de resolución heurísticos

Como ya se ha indicado, la complejidad de este tipo de problemas hace que los algoritmos exactos
sean costosos y prácticamente imposibles de utilizar cuando el problema tiene un gran número de nodos.
Es por esto que se han ido aplicando otros tipos de algoritmos que, aunque no garantizan la obtención
de la mejor solución global, tienen una complejidad mucho menor y la solución encontrada se espera
que difiera poco de la óptima.

1.5.1. Heurísticas constructivas

Las heurísticas constructivas se utilizan generalmente para construir soluciones iniciales usadas en
algoritmos de búsqueda. Una de las más utilizadas es el algoritmo de Clarke and Wright. Este algoritmo
comienza construyendo rutas de ida y vuelta (0, i,0) para i = 1, . . . ,n y, gradualmente, va uniendo dos
rutas (0, . . . , i,0) y (0, j, . . . ,0) en (0, . . . , i, j, . . . ,0) reduciendo el coste en si j = ci0+c0 j−ci j que puede
ser calculado a priori. Inicialmente se tomaban las rutas sucesivamente, pero en la versión paralela del
algoritmo se juntan aquellas rutas que proporcionan la mayor reducción en el coste hasta que ya no hay
más uniones válidas.

1.5.2. Heurísticas clásicas

Las heurísticas clásicas realizan movimientos entre rutas, bien quitando η arcos y añadiendo otros
η (siendo η un valor modificado dinámicamente), o bien cambiando η clientes consecutivos de ruta,
entre otros. Esto hace que explorar de forma completa todos los vecinos, es decir probar todos los
movimientos posibles, requiera O(n2|K|2) operaciones. Por ello para grandes problemas se recomienda
reducir la lista de movimientos, por ejemplo con el método granular search que considera restricciones
geográficas para evitar movimientos entre nodos distantes.

1.5.3. Metaheurísticas de búsquedas locales

Estos métodos exploran el espacio de soluciones moviendo la solución actual xt a alguna de sus
vecinas N(xt), donde N(xt) representa el conjunto de soluciones que comparten ciertas características
con xt . Están diseñados para intentar escapar de óptimos locales y evitar ciclos. Denotaremos mediante
f (xt) el coste asociado a la solución xt .

Recocido simulado. Llamada en inglés Simulated Annealing (SA), consiste en elegir una solución
aleatoria x ∈ N(xt). Si f (x) ≤ f (xt) entonces xt+1 = x. En otro caso xt+1 = x con probabilidad pt y
xt+1 = xt con probabilidad 1− pt , donde pt = P(x,xt , t) es generalmente una función decreciente de t.
Se suele definir como pt = exp(−[f (x)− f (xt)]/θt) con θt una función decreciente de t.

Búsqueda determinista. También llamada Deterministic Annealing (DA) es equivalente al recocido
simulado, salvo que en este caso la elección de x es determinista tomando xt+1 = x si f (x)≤σ f (x∗) don-
de σ es un parámetro ligeramente mayor que 1 (por ejemplo 1,05) y x∗ es la mejor solución encontrada
hasta el momento.

Búsqueda tabú. Como veremos en el capítulo 2, los algoritmos de búsqueda tabú, Tabu Search (TS),
recorren las soluciones moviéndose a la mejor de sus vecinas que sean no-tabú (se suelen considerar
tabú aquellas que comparten características con las previamente visitadas). En el capítulo 3 veremos
una implementación de este tipo de algoritmos en detalle para el problema CVRP.

10 Capítulo 1. Problemas de rutas de vehículos

Búsqueda local iterativa. Llamada en inglés Iterated Local Search (ILS), basa su implementación
en la búsqueda local heurística: busca entre los vecinos utilizando algún mecanismo de búsqueda local,
le aplica una pequeña perturbación a la solución encontrada, y repite el proceso hasta alcanzar algún
criterio de parada. Esta perturbación debe ser diseñada con cuidado para no ser revertida por la búsqueda
local, y al mismo tiempo mantener las propiedades de la solución actual.

Búsqueda en entornos variables. En inglés Variable Neighborhood Search (VNS), se basa en la idea
de que una solución óptima local para un tipo de vecinos, no tiene porqué serlo considerando otros
tipos de vecinos, mientras que la solución óptima global lo será independientemente de los vecinos
utilizados. Dada una lista finita de algoritmos de búsqueda de vecinos, si encuentra una solución que
mejora la actual, la toma y vuelve al primero de ellos. En caso de haber encontrado un óptimo local
pasa a utilizar el siguiente algoritmo de búsqueda de vecinos. Una vez utilizados todos los algoritmos
disponibles se termina el procedimiento.

1.5.4. Metaheurísticas basadas en poblaciones

A diferencia de los anteriores, éstos métodos están diseñados a partir del comportamiento de las
poblaciones en la naturaleza.

Colonia de hormigas. En inglés Ant Colony Optimization (ACO), consiste en aplicar la información
de decisiones anteriores para alterar la probabilidad de elegir candidatos. Se basa en el comportamiento
de las colonias de hormigas y el método que siguen para encontrar bienes. Comienzan moviéndose
aleatoriamente dejando feromonas a su paso que se evaporan gradualmente y que dependen de la calidad
del bien encontrado. El resto de hormigas tienden a seguir los rastros con mayor nivel de feromonas.
En el caso del VRP, los arcos que están en soluciones con menor coste reciben más feromonas, lo que
incrementa su probabilidad de ser seleccionados en sucesivas soluciones.

Métodos evolutivos o genéticos. En inglés Genetic Algorithms (GA) o Evolutionary Algorithms (EA),
imitan la selección natural. Comienzan con un conjunto de soluciones aleatorias, la población, y en
cada iteración se seleccionan algunas aleatoriamente que se combinan para generar nuevas soluciones
(hijos), que pueden a su vez ser modificadas aleatoriamente. De entre la población actual y los hijos,
se selecciona la nueva población con algún criterio y se repite el proceso. Al igual que en la selección
natural, el objetivo es la mejora de las sucesivas poblaciones. El procedimiento se repite hasta realizar un
número prefijado de iteraciones o hasta que alguna solución de la población se considere satisfactoria.

1.6. Métodos Híbridos

En los apartados anteriores se han descrito algunos métodos que se han utilizado para resolver el
VRP o algunas de sus variantes. No obstante, conviene señalar que la frontera entre ellos está cada vez
más difuminada, y han surgido algoritmos híbridos que combinan dos o más algoritmos metaheurísticos,
ya sean trabajando juntos o complementándose el uno al otro, o bien utilizan un método metaheurístico
que incorpora la obtención de soluciones parciales de forma exacta.

Capítulo 2

Algoritmos de búsqueda tabú

La Búsqueda tabú, Tabu Search (TS), es un tipo de metaheurística que se utiliza para guiar un
proceso de búsqueda local, utilizando estructuras y mecanismos diseñados para visitar regiones a las
que de otra manera sería difícil acceder, así como para evitar que la búsqueda quede atrapada en un
mínimo local.

Este tipo de algoritmos están basados en ideas propuestas por Glover (1977), que aplicó original-
mente para resolver problemas de programación entera. A lo largo de los años estas ideas se han ido
mejorando, y sofisticando, siendo utilizadas en la resolución de problemas de muy diversas áreas, entre
las que cabe destacar: planificación, telecomunicaciones, computación en paralelo, transporte y diseño
de redes, optimización de estructuras, optimización en grafos, aprendizaje y redes neuronales, optimi-
zación estocástica y continua, fabricación, análisis financiero, etc. En Glover (1990) y Glover y Laguna
(2013) puede encontrarse una relación más completa de problemas y áreas en los que la búsqueda tabú
se ha utilizado con éxito.

En general, estos algoritmos tratan de optimizar, maximizar o minimizar, el valor de una función
objetivo f (x), con x∈ X el vector de variables de decisión, donde X representa el conjunto de soluciones
admisibles, factibles o no, del problema que se pretende resolver. En los procesos de búsqueda local,
cada solución x tiene asociado un entorno N(x) ⊂ X de soluciones vecinas, cada una de las cuales se
obtiene a partir de x mediante una transformación elemental llamada movimiento.

Un algoritmo de búsqueda local trata de mejorar una solución dada, que es inicialmente considerada
como la solución actual xa de un proceso iterativo. En cada iteración de este proceso se explora el
entorno de sus soluciones vecinas N(xa) o, equivalentemente, el conjunto de movimientos que conducen
a ellas, remplazándola con la ‘mejor’ encontrada en relación a la función objetivo. Durante todo este
proceso iterativo, la mejor solución encontrada se va almacenando y, cuando algún criterio de parada
especificado se cumple, el algoritmo se detiene y la devuelve como resultado. Este criterio de parada
puede ser, por ejemplo, haber realizado un determinado número de iteraciones bien totales o bien desde
la última actualización de la mejor solución, entre otros.

Si solo se permite actualizar la solución actual con una vecina xv ∈ N(xa) que mejora estrictamente
la función objetivo, es decir, si f (xv)< f (xa) en el caso de minimizar, el proceso se detendrá al alcanzar
un mínimo local, que no necesariamente tiene porqué ser la solución óptima buscada. Para evitar esto,
la búsqueda tabú recopila y posteriormente explota información sobre las soluciones visitadas en las
iteraciones previas. En su forma más simple, ciertas propiedades de esas soluciones, que se determinan
en función del problema, se califican como prohibidas (tabú) durante un cierto número de iteraciones, de
forma que en cada iteración se escoge el mejor vecino no tabú aunque éste no mejore la solución actual.
En formas más avanzadas se recoge también información sobre la frecuencia de cada propiedad, bien
sea para penalizar aquellas que más han aparecido, con objeto de diversificar la búsqueda hacia nuevas
áreas del espacio de soluciones, o para incentivarlas, con lo que se permite intensificar la búsqueda en
una zona concreta.

11

12 Capítulo 2. Algoritmos de búsqueda tabú

2.1. Búsqueda tabú básica

En esta sección introducimos los principales conceptos de los algoritmos de búsqueda tabú, para cu-
ya exposición nos hemos basado en Glover (1989); Laguna (1994); Gendreau (2003); Glover y Laguna
(2013). Con objeto de facilitar su comprensión, ilustraremos con ejemplos algunos de ellos utilizando
el siguiente problema de planificación de trabajos.

2.1.1. Problema de planificación o secuenciación de trabajos (job scheduling)

Se tiene un conjunto de trabajos { j : 1 6 j 6 n} que deben ser realizados en orden, cada uno de
los cuales tiene un tiempo de realización p j, una fecha límite de entrega d j y una penalización w j por
superarla. El objetivo del problema es encontrar el orden en el que los trabajos deben ser realizados para
minimizar el coste ocasionado por superar las fechas límite, es decir, encontrar aquella permutación de
los trabajos que minimiza

T =
n

∑
j=1

w j [C j−d j]
+

donde [x]+ = max {0,x} y C j = ∑
j
i=1 p j es el instante en el que el trabajo j se completa. El conjunto de

soluciones X en este caso es el conjunto de las permutaciones de n elementos.

2.1.2. Vecindad y movimientos

Como hemos indicado, la búsqueda tabú guía un proceso de búsqueda local. Por tanto, el primer
paso es definir para cada solución x el entorno N(x) ⊂ X de sus soluciones vecinas. Esta es la parte
más compleja del algoritmo y en ocasiones decidir qué debe ser vecino y qué no de manera errónea
suele ser la causa de que el algoritmo sea poco eficiente. Una alternativa es la definición de una función
distancia sobre X , en cuyo caso las soluciones vecinas de una dada serán las que estén a una distancia
menor que un valor fijado, sin embargo es habitual definir las soluciones vecinas como aquellas que se
obtienen modificando de alguna manera la expresión de la solución de partida. Llamaremos movimiento
al conjunto de estas operaciones que hay que realizar sobre una solución para obtener otra diferente.

El tipo de movimientos que se pueden realizar depende de la estructura del problema y, en gran
medida, de la forma de expresar las soluciones, así como de las variables utilizadas para representar-
las. Algunas posibilidades son el cambio de valor de una determinada variable, añadir o eliminar un
elemento de un conjunto, intercambiar la posición de dos elementos, etc. Si consideramos el problema
de planificación de trabajos, cuyas soluciones son permutaciones de los elementos 1, . . . ,n, podemos
considerar que una solución es vecina de otra si dos de sus trabajos están intercambiados, es decir, las
soluciones (. . . , i, . . . , j, . . .) y (. . . , j, . . . , i, . . .), con i 6= j, son vecinas. En este caso, un movimiento es
la transposición de (i, j). Una segunda posibilidad sería considerar inserciones en lugar de permutacio-
nes, es decir, tomar el elemento i y trasladarlo a la posición j, desplazando el resto de elementos según
corresponda. Así, la solución (. . . , i, . . . , j−1, j, j+1, . . .) se transformaría en (. . . , j−1, j, i, j+1, . . .).

En cada iteración de un algoritmo simple se deberían generar todas las soluciones vecinas xv ∈N(xa)
de la solución actual xa, y evaluar para cada una de ellas la función objetivo. La mejor de ellas, xm, re-
emplazará a xa en la siguiente iteración, incluso si f (xm) > f (xa). La eficiencia de este subproceso es
crítica para la del algoritmo completo, pues es lo que más veces se ejecuta. Por ello, suele ser sustituido
por un recorrido del conjunto de movimientos que se pueden aplicar a la solución actual y por la eva-
luación del atractivo de cada uno de ellos. Esta alternativa ofrece varias ventajas. Por un lado, no obliga
a generar las soluciones vecinas, por lo que solo es necesario mantener una única solución completa
en todo momento, la solución actual, con el consiguiente ahorro de espacio y tiempo. Por otro, aunque
la medida más obvia para evaluar el atractivo de un movimiento es la diferencia de los valores de la
función objetivo f (xv)− f (xa), se pueden utilizar otras alternativas en caso de que ésta no pueda ser
calculada directa y eficientemente, por ejemplo con algún tipo de medida local.

TS-VRP - Abel Naya Forcano 13

2.1.3. Características y estructura tabú

Como hemos señalado, la búsqueda tabú recopila información para posteriormente utilizarla. La
forma más básica de explotar esta información, que constituye el núcleo central de los algoritmos de
búsqueda tabú, es prohibir que ciertos acontecimientos ocurran, al menos durante un cierto tiempo.
Por ejemplo, tras abandonar un mínimo local debería prohibirse realizar en la siguiente iteración el
movimiento inverso que nos ha sacado de él. Esta información que se recoge, y que debe ser adecuada
para alcanzar este objetivo, está generalmente relacionada con atributos de los movimientos y de la
expresión de las soluciones.

Se define como restricción tabú lo que se desea penalizar, por ejemplo aquellos movimientos que
desplacen de nuevo los trabajos que una permutación (i, j) acaba de intercambiar. Y llamaremos atributo
tabú a la información que se almacena en la estructura tabú y que es necesaria para determinar si un
movimiento está o no restringido, en el ejemplo anterior almacenaríamos cada uno de los trabajos por
separado i y j. Otros ejemplos, utilizando el problema de planificación, pueden ser: si definimos como
movimientos la inserción de un trabajo j en la posición i desde la posición k, se puede definir como
restricción tabú que el trabajo j pase a estar en la posición k, mediante el atributo tabú (j,k), con lo que
estaríamos evitando que el trabajo j vuelva de nuevo a la posición k durante algunas iteraciones. Si por
el contrario tomamos como movimientos las permutaciones de dos elementos (i, j), podemos definir
como restricción tabú la propia permutación (i, j), en cuyo caso los atributos tabú almacenados serían
las parejas (i, j).

La estructura tabú es el elemento principal de la búsqueda tabú. Consiste en un listado de atributos
tabú, normalmente restricciones que han sido marcadas como tabú en las iteraciones anteriores a la
actual. Su misión consiste en prohibir la visita de soluciones que han sido visitadas recientemente, o
que tienen características muy similares a ellas. Por esto, el algoritmo descarta todos los movimientos
considerados ‘tabú’ salvo que se cumpla un criterio de aspiración, que si se satisface permite revocar
el estatus de tabú y entonces el movimiento puede ser elegido, incluso si es tabú. En la mayoría de los
casos se toma como criterio de aspiración que la solución obtenida tras realizar el movimiento mejore
la mejor solución obtenida hasta el momento.

A la hora de almacenar la lista de atributos tabú también existen distintos métodos. Se puede alma-
cenar cada elemento junto a un entero, indicando el número de iteraciones que debe permanecer tabú
al que llamaremos permanencia (tenure), y disminuir su valor en cada iteración hasta que llegue a ce-
ro, momento en el que se quita de la lista. Si se opta por este método, es preferible almacenar en su
lugar el atributo tabú junto a la iteración en la que dejará de ser tabú, es decir la iteración actual más
la permanencia, con lo que no hace falta actualizar toda la estructura cada vez, únicamente al marcar
como tabú. Para comprobar si un atributo es tabú basta con comprobar si la iteración actual supera o
no la iteración almacenada. Si tomamos como ejemplo de atributos tabú las permutaciones de trabajos,
se puede utilizar un array de dos índices; y si optamos por marcar como tabú los trabajos por separado
basta un array de un solo índice. Otra alternativa consiste en utilizar una cola de prioridad con tamaño
fijo, a la cual se le van añadiendo los atributos junto a la iteración en la que se incluyeron (si el atributo
ya existe se elimina y se añade de nuevo). En el momento en el que la lista supere el tamaño máximo
permitido se elimina aquel con menos prioridad, es decir, el primero que se añadió. Los atributos tabú
serán aquellos que que se encuentren en la lista, independientemente del número de iteraciones que
hayan pasado desde que se incluyeron. Esta estructura es similar a una lista FIFO (first-in first-out) pero
sin permitir duplicados.

2.1.4. Un algoritmo básico

En este apartado vamos a explicar como se realizaría una implementación básica de un algoritmo
que utilice mecanismos de búsqueda tabú. Para ello disponemos de una variable global que imple-
menta la estructura tabú y de dos funciones, esTabu(m, it) y hacerTabu(m, it), que operan sobre ella.
La primera determina si el movimiento m es o no tabú en la iteración it; la segunda declara el movi-
miento m como tabú a partir de la iteración it. También se tienen dos funciones criterioParada(it) y

14 Capítulo 2. Algoritmos de búsqueda tabú

criterioAspiracion(m) que comprueban si se debe detener el algoritmo en la iteración it y si el movi-
miento m debe ser elegido aunque sea tabú, respectivamente.

En primer lugar se inicializan las variables, la solución inicial pasa a ser tanto la solución actual
como la mejor solución encontrada y el número de iteraciones se inicializa a cero. En esta fase ningún
movimiento es considerado tabú. Durante un número determinado de iteraciones, mientras no se cumpla
el criterio de parada, se realizan las siguientes etapas:

1. Se comprueban los movimientos que se pueden aplicar a la solución actual y se toma el mejor de
ellos, recordando que aquellos considerados tabú se descartan salvo que cumplan el criterio de
aspiración.

2. Una vez identificado el mejor movimiento, se le aplica a la solución actual, modificándola, y se
actualiza la estructura tabú marcando este movimiento realizado como tabú.

3. Se comprueba si la solución obtenida es mejor que la mejor encontrada hasta el momento, en
cuyo caso se almacena, y se aumenta el número de iteraciones.

BúsquedaTabú(entrada:solucionInicial; salida:mejorSolucion)

//inicialización

solucionActual <- solucionInicial

mejorSolucion <- solucionInicial

estructuraTabu <- vacı́a

it <- 0

//iteración

MIENTRAS NO criterioParada(it)

mejorMovimiento <- null

//evaluación

PARA_CADA movimiento EN movimientos(solucionActual)

SI valor(movimiento) < valor(mejorMovimiento) Y

(NO esTabu(movimiento,it) O criterioAspiracion(movimiento))

mejorMovimiento <- movimiento

FIN_SI

FIN_PARA_CADA

//modificación

solucionActual <- aplicar(mejorMovimiento,solucionActual)

hacerTabu(mejorMovimiento,it)

//actualización

SI f(solucionActual) < f(mejorSolucion)

mejorSolucion <- solucionActual

FIN_SI

it<-it+1

FIN_MIENTRAS

2.2. Búsqueda tabú avanzada

La forma de explotar la información recogida en la estructura tabú sólo permite tener en cuenta los
movimientos realizados recientemente, en unas pocas iteraciones previas a la actual. Por este motivo

TS-VRP - Abel Naya Forcano 15

es habitual referirse a ella como memoria a corto plazo. Aunque en muchos problemas la estructura
tabú es suficiente para obtener buenas soluciones, en problemas más complejos se requieren distintas
estrategias y estructuras adicionales para obtener un mayor rendimiento. En esta sección haremos una
revisión de algunas de las muchas que se han presentado conforme los algoritmos han ido creciendo en
nivel de sofisticación.

La mayor parte de las estrategias avanzadas que se incorporan a la búsqueda tabú requieren almace-
nar información a largo plazo, para así disponer de datos sobre lo ocurrido desde el inicio del proceso.
El tipo de información que se almacena en estas estructuras puede ser muy variada y depende del obje-
tivo que se quiera alcanzar. Lo más habitual es registrar la frecuencia de determinados acontecimientos,
por ejemplo el número de veces que cada movimiento ha sido escogido como el mejor, la frecuencia
con la que al ejecutar cada movimiento se ha alcanzado un mínimo local o una mejor solución, etc. Esta
información puede ser explotada generalmente de dos formas opuestas: las estrategias de diversificación
y las de intensificación.

Las estrategias de diversificación están diseñadas específicamente para escapar de ciclos, es decir,
repeticiones de forma continuada de un conjunto de soluciones, y dirigir la búsqueda hacia zonas todavía
no exploradas. En el proceso pueden aparecer ciclos si éstos tienen un tamaño mayor que la permanencia
de los atributos tabú o si se permite escoger vecinos con el mismo valor que la solución actual, algo que
muchos autores no recomiendan realizar. Las estrategias de diversificación suelen ser muy útiles cuando
existen buenas soluciones que sólo pueden ser visitadas cruzando barreras o ‘montes’ de la topología
del espacio de soluciones.

La forma más sencilla de implementar una estrategia de diversificación es modificar la función que
evalúa el atractivo de los movimientos, penalizando aquellos que se han realizado más frecuentemente.
Otras implementaciones consisten en que, tras un cierto número de iteraciones, en lugar de realizar el
proceso de selección de vecinos se le aplica el movimiento menos usado a la solución actual. En otras
ocasiones incluso, se reinicia el proceso entero como si se ejecutara de nuevo todo el algoritmo con la
mejor solución encontrada como solución inicial.

Las estrategias de intensificación tratan de modificar las reglas de elección de vecinos para favorecer
los mejores movimientos, los que más frecuentemente han contribuido a mejorar la solución actual, o la
aparición de ciertos patrones frecuentes en las soluciones que en algún momento fueron consideradas
las mejores. Visto de otro modo, lo que se intenta conseguir con esta estrategia es penalizar aquellos que
en el pasado no han dado lugar a buenas soluciones.

La implementación más habitual consiste, al igual que en las estrategias de diversificación, en mo-
dificar el atractivo de los movimientos, por ejemplo sumándole una cantidad inversamente proporcional
al número de veces que el movimiento se ha realizado desde el inicio del algoritmo.

Finalmente, otro tipo de estrategia de intensificación consiste en almacenar una lista de soluciones
de élite, ya sean soluciones suficientemente separadas, esto es, que el número de movimientos para
pasar de una a otra sea grande, o aquellas que en algún momento fueron la mejor solución encontrada.
Después de que el criterio de parada detenga el algoritmo, se borra la memoria a largo plazo y se reinicia
el proceso desde la mejor solución de esta lista, eliminándola de ella. Cuando la lista se queda vacía, o
tras un número fijado de iteraciones, el algoritmo se detiene.

Independientemente de las estrategias de diversificación e intensificación que puedan implementarse
con la memoria a largo plazo, y frecuentemente de forma simultánea, se introducen alteraciones en el
esquema básico del algoritmo que en muchos problemas mejoran su rendimiento. Destacamos, por su
sencillez e impacto, dos de ellas.

Si se trabaja con una estructura tabú con tiempo de permanencia, es usual considerar un valor varia-
ble. Cada vez que se añade un nuevo atributo a la estructura, su tiempo de permanencia se puede escoger
aleatoriamente dentro de un intervalo fijado o bien como una función de la valoración del movimiento.

También es usual, especialmente cuando el entorno N(xa) de vecinos de la solución actual es muy
numeroso, trabajar con un subconjunto de movimientos tentativos a explorar. La elección de este sub-
conjunto puede ser aleatoria, con tamaño prefijado, o en función de la estructura del problema. Como
ejemplo de esta segunda opción, en el problema de planificación de trabajos se pueden considerar úni-

16 Capítulo 2. Algoritmos de búsqueda tabú

camente aquellos movimientos que adelanten la finalización de un trabajo cuya fecha límite haya sido
superada en la solución actual. Otra alternativa más simple, que se puede implementar junto a las an-
teriores, consiste en finalizar la comprobación de movimientos al obtener uno que mejore la solución
actual. Estas tácticas aceleran globalmente la ejecución del algoritmo, pero pueden dejar inexplorados
movimientos que conduzcan a mejores soluciones, por lo que es recomendable complementarlos con
alguna estrategia de intensificación.

Capítulo 3

Un algoritmo de búsqueda tabú para el
problema de rutas de vehículos

En este capítulo presentamos el algoritmo de búsqueda tabú TABUROUTE descrito en el artículo de
Gendreau et al. (1994), así como una implementación propia realizada en el lenguaje de programación
Java. Este algoritmo utiliza la metaheurística de búsqueda tabú para resolver una variante del problema
CVRP asimétrico con tiempos de servicio, que presentamos en la sección 1.1. Más concretamente, el
problema que TABUROUTE resuelve es el siguiente:

Sea G = (V,A) una red dirigida, donde V = {v0, . . . ,vn} es el conjunto de nodos y A = {(vi,v j) : i 6=
j} es el conjunto de arcos. El nodo v0 denota el origen, del que parten m 6 m̄ vehículos idénticos (m̄
valor constante), y el resto son clientes. Cada nodo tiene asociado una demanda no negativa qi (q0 = 0),
y un tiempo de servicio δi (δ0 = 0). Con cada arco (vi,v j) hay asociado un tiempo de transporte ci j.
El objetivo del problema es en encontrar un conjunto de rutas de mínimo coste de forma que todas
ellas comiencen y terminen en el origen, todos los clientes sean visitados una y sólo una vez por algún
vehículo y se cumplan las siguientes restricciones adicionales: 1) La suma total de las demandas de los
clientes de una ruta no puede superar la capacidad de los vehículos Q, que se supone constante e igual
para todos ellos. 2) La longitud de la ruta, es decir la suma de los tiempos de servicio de los clientes
más los tiempos de transporte de los arcos recorridos, no puede superar un valor fijado L.

3.1. Algoritmo

En esta sección se da una visión general del algoritmo sin realizar ninguna consideración sobre su
posible implementación. Para ello usaremos la siguiente notación. Una solución S es un conjunto de
m rutas R1, . . . ,Rm, donde m ∈ [1, m̄], y cada ruta es una lista ordenada de nodos R = (v0,vr1 , . . . ,v0),
tales que cada cliente vi, i = 1 . . .n, es visitado por una y solo una ruta. Cuando un nodo v es visitado
en una ruta R, se dice que v pertenece a la ruta R y escribiremos v ∈ R. Del mismo modo escribiremos
(vi,v j) ∈ R si los nodos vi y v j son visitados consecutivamente y en ese orden en R, es decir, si el arco
es recorrido.

Estas rutas pueden ser factibles o no respecto de las restricciones de capacidad y longitud. Sobre el
conjunto de todas las rutas definimos dos funciones objetivo:

F1(S) =
m

∑
r=1

∑
(vi,v j)∈Rr

ci j

F2(S) = F1(S)+α

m

∑
r=1

[(
∑

vi∈Rr

qi

)
−Q

]+
+β

m

∑
r=1

[(
∑

(vi,v j)∈Rr

ci j + ∑
vi∈Rr

δi

)
−L

]+
donde α y β son dos parámetros reales positivos y [x]+ = max {0,x}. Obsérvese que las funciones
F1 y F2 coinciden para las soluciones factibles. De hecho, la función F1 es la función objetivo que

17

18 Capítulo 3. Un algoritmo de búsqueda tabú para el problema de rutas de vehículos

se pretende minimizar, mientras que la función F2 contiene dos términos adicionales que penalizan el
exceso de capacidad y longitud, respectivamente, en las soluciones no factibles.

El algoritmo TABUROUTE recorre el conjunto de todas las soluciones, tanto las factibles como las
que no lo son, intentando mejorar en cada iteración la solución actual, que denotaremos por S. En todo
momento del algoritmo las expresiones F∗1 y F∗2 contendrán, respectivamente, el menor valor de F1 y de
F2 encontrado hasta el momento. Del mismo modo S∗ almacena la mejor solución factible encontrada,
y S̃∗ la mejor solución, factible o no.

3.1.1. Algoritmos principales

Procedemos a explicar con detalle el propósito de los dos algoritmos principales. El algoritmo
TABUROUTE es el algoritmo principal, que se encarga de dirigir el proceso, y realiza llamadas a SEARCH
que se encarga de mejorar una solución dada mediante estrategias de búsqueda tabú. Ambos proce-
dimientos están descritos en el artículo de Gendreau et al. (1994) y se apoyan en los procedimientos
Stringing, Unstringing, US y GENIUS, presentes en el artículo de Gendreau et al. (1992), para reali-
zar operaciones con rutas de manera eficiente. Todos estos algoritmos tienen parámetros de entrada que
se explicarán en sus respectivos apartados.

TABUROUTE Parámetro de entrada: λ .
Este algoritmo comienza inicializando las variables globales que afectarán a todo el proceso de

búsqueda. Se asigna el valor 1 a α y β , mientras que a F∗1 y F∗2 se le asigna infinito. Después, en una
primera fase, se busca una primera solución mediante la generación de λ soluciones en el espacio de
búsqueda. Para ello se realizan λ iteraciones del siguiente proceso:

1. Se elije un nodo aleatorio vi.

2. A partir de la secuencia de nodos (v0,vi, . . . ,vn,v1,vi−1), se genera un camino que pase por to-
dos ellos y que es solución del TSP, utilizando GENIUS. El camino obtenido será de la forma
(v0,vp1 , . . . ,vpn).

3. Empezando en v0 se generan una solución S con un máximo de m̄ rutas. La primera ruta contendrá
los primeros nodos del camino (v0,vp1 , . . . ,vpi−1 ,v0) hasta aquel vpi cuya inclusión haga que la ruta
deje de ser factible. El proceso se repite comenzando por vpi hasta que todos los nodos han sido
utilizados (la solución será factible), o hasta que m̄− 1 rutas se han generado, en cuyo caso los
nodos restantes se añaden a la última ruta (la solución puede ser no factible).

4. Finalmente se llama a SEARCH con un conjunto de parámetros P1 para mejorar esta solución,
actualizando los valores de F1, F2, S∗ y S̃∗ cuando sea necesario.

Una vez realizadas las λ iteraciones, se toma la mejor solución encontrada en todas ellas, que corres-
ponde con S∗ si F∗1 es finito, es decir se ha encontrado una solución factible, o con S̃∗ en caso contrario.
A esta solución se le aplica de nuevo SEARCH con distintos parámetros P2. Es en esta fase donde el algo-
ritmo ocupa la mayor parte del tiempo y en la que, normalmente, se suele encontrar la mejor solución
del proceso completo.

Por último se realiza una tercera llamada a SEARCH usando de nuevo la mejor solución encontrada
(S∗ o S̃∗ según corresponda). En esta última fase se utilizan parámetros P3 elegidos para llevar a cabo
una estrategia de intensificación, con la que se realiza una búsqueda exhaustiva en entornos cercanos.
Para terminar, el algoritmo devuelve la solución almacenada en S∗ si F∗1 es finito. En caso contrario no
se ha encontrado ninguna solución factible.

SEARCH Parámetros de entrada P = (W,q, p1, p2,θmin ,θmax ,g,h,nmax).
El procedimiento SEARCH es el que implementa realmente la búsqueda tabú. Dada una solución

inicial se encarga de mejorarla aplicando las técnicas de búsqueda tabú, utilizando como movimiento
la extracción de un nodo v de su ruta Rr y su reinserción en otra distinta Rs. La forma de evaluar el

TS-VRP - Abel Naya Forcano 19

atractivo de estos movimientos es calcular la diferencia entre el valor de las funciones objetivo antes y
después de realizar la modificación. Tras realizar un movimiento se marca como tabú la pareja (v,Rr),
con lo que evitamos que el nodo eliminado vuelva a ser reinsertado en la misma ruta durante algunas
iteraciones.

Este procedimiento tiene como entrada un gran número de parámetros: W es un subconjunto de
V \{v0} que contiene los nodos que se permitirán mover de su ruta actual; q es el número de nodos de
W que se utilizarán como candidatos; al insertar un nodo en una ruta diferente, ésta debe contener al
menos uno de sus p1 vecinos más cercanos; p2 es el parámetro utilizado en GENI; θmin y θmax son los
límites del intervalo del valor de la permanencia; g es un factor de escala que modifica la función de
valoración de movimientos; h es la frecuencia con la que los valores de α y β son actualizados; y nmax
es el máximo número de iteraciones que se permiten desde la última mejora en la función objetivo.

En primer lugar se inicializa t = 1 la variable que contiene el número de iteraciones realizadas. Dado
que el número de movimientos posibles es muy elevado, al comienzo de cada iteración se construye una
lista de movimientos potenciales. Para ello, primero se seleccionan aleatoriamente q nodos de W , y para
cada nodo v se evalúa el coste de eliminarlo de su ruta actual Rr e insertarlo en otra ruta Rs que debe
contener alguno de sus p1 vecinos más cercanos, o en una ruta vacía si m < m̄. Para cada uno de estos
movimientos se repite el siguiente procedimiento:

1. Se calcula el coste de eliminar v de Rr mediante Unstringing con parámetro p1 y de reinsertarlo
en Rs mediante Stringing con parámetro p2. Se obtiene la solución S′

2. Si el movimiento es tabú, se descarta salvo que F1(S′)< F∗1 , si S′ es factible, o F2(S′)< F∗2 si es
no factible.

3. Si no ha sido descartado, se le asigna un valor F(S′) = F2(S′) si F2(S′) < F2(S), o F(S′) =
F2(S′)+∆max

√
m ·g · fv en caso contrario, donde ∆max es la mayor diferencia observada en valor

absoluto entre el valor de F2(S) obtenido en dos iteraciones sucesivas. fv el número de veces que
el nodo v ha sido movido, dividido por t. De esta manera estamos aplicando una estrategia de
diversificación, penalizando los movimientos que más se han ejecutado si la solución no mejora
la actual.

El movimiento que proporciona el menor valor de F es identificado. Llamaremos S̄ a la solución que
produce, que no necesariamente se implementa pues puede ser ventajoso intentar mejorar la solución
S mediante el procedimiento US. Esta alternativa se realiza si se cumplen las siguientes condiciones:
a) F2(S̄) > F2(S), b) S es factible, c) US no se ha utilizado en la iteración anterior. Si alguna de estas
condiciones no se cumple, se sustituye S = S̄.

Si se ha realizado el movimiento, reinsertar v en Rr se declara como tabú hasta la iteración t + θ ,
donde θ ∈ [θmin ,θmax] entero tomado aleatoriamente.

Se actualizan las variables F∗1 , F∗2 , S∗, S̃∗, ∆max , m y fv; y si t es múltiplo de h se actualizan también
α y β de la siguiente manera: se comprueba la factibilidad de las h soluciones anteriores, si todas ellas
han sido factibles respecto a la capacidad se ajusta α = α

2 , en caso de que todas hayan sido no factibles
se ajusta en su lugar por α = 2α . Se realiza el procedimiento análogo con β , esta vez comprobando la
factibilidad respecto a la duración de la ruta.

Para finalizar, si tanto F∗1 como F∗2 no se han reducido en las nmax iteraciones previas (criterio de
parada) el algoritmo termina. En otro caso se inicia una nueva iteración.

3.1.2. Algoritmos auxiliares

Estos algoritmos, desarrollados por Gendreau et al. (1992), han sido diseñados para resolver el
problema TSP. Stringing y Unstringing se encargan, respectivamente, de insertar y eliminar nodos
de rutas, US trata de optimizar una ruta y GENIUS es un procedimiento para generar rutas a partir de una
lista de nodos.

20 Capítulo 3. Un algoritmo de búsqueda tabú para el problema de rutas de vehículos

Stringing Parámetro de entrada: p.
Este procedimiento trata de insertar un nodo v en una ruta minimizando el coste. Esto se consigue

probando unas pocas alternativas particulares y eligiendo la mejor, en lugar de insertarlo entre dos nodos
consecutivos directamente. Existen dos tipos de inserciones, además de considerar ambos sentidos de
recorrido de la ruta.

En la primera, tipo I, se eligen tres nodos vi, v j y vk, donde vk se encuentra entre v j y vi (para un
sentido concreto de la ruta) y se realizan las siguientes modificaciones: se eliminan los arcos (vi,vi+1),
(v j,v j+1) y (vk,vk+1); se añaden los arcos (vi,v), (v,v j), (vi+1,vk) y (v j+1,vk+1); y se invierte el recorrido
de los caminos (vi+1, . . . ,v j) y (v j+1, . . . ,vk).

Para la segunda, tipo II, se elige un nodo extra vl entre vi y v j modificando la ruta de la siguiente
manera: se eliminan los arcos (vi,vi+1), (vl−1,vl), (v j,v j+1) y (vk−1,vk); se añaden los arcos (vi,v),
(v,v j), (vl,v j+1), (vk−1,vl−1) y (vi+1,vk); y se invierte el recorrido de los caminos (vi+1, . . . ,vl−1) y
(vl, . . . ,v j).

vi

vi+1
vj

vj+1vk

vk+1

v vi

vi+1
vj

vj+1vk

vk+1

v

(a) Tipo I

vi

vi+1

vj

vj+1

vk

vk-1

v

vl-1

vl

vi

vi+1

vj

vj+1

vk

vk-1

v

vl-1

vl

(b) Tipo II

Figura 3.1: Stringing

Como probar todas las combinaciones para una ruta con n nodos requiere orden O(n4), el algoritmo
tiene como entrada un parámetro p pequeño y se toman únicamente los p-nodos más cercanos, aquellos
cuyas aristas (v,w) tienen el menor coste. En particular, llamando Np(v) a la lista de los p-vecinos más
cercanos a v, se toma vi,v j ∈ Np(v), vk ∈ Np(vi+1) y vl ∈ Np(v j+1).

Unstringing Parámetro de entrada: p.
Este procedimiento trata de eliminar un nodo vi de una ruta minimizando el coste. Lo realiza de

manera análoga a Stringing, en este caso eliminándolo y probando unas pocas alternativas de reorde-
nar la ruta, en lugar de quitar el nodo directamente. Al igual que en Stringing existen dos formas de
realizar la comprobación, y además hay que considerar ambos sentidos de recorrido de la ruta.

Para el tipo I se eligen v j ∈ Np(vi+1) y vk ∈ Np(vi−1) entre vi+1 y v j−1, modificando la ruta de la
siguiente manera: se eliminan los arcos (vi−1,vi), (vi,vi+1), (vk,vk+1) y (v j,v j+1); se añaden los arcos
(vi−1,vk), (vi+1,v j) y (vk+1,v j+1); y se invierte el recorrido de los caminos (vi+1, . . . ,vk) y (vk+1, . . . ,v j).

Para el tipo II se toma en su lugar vk entre v j+1 y vi−2 y además vl ∈Np(vk+1) entre v j y vk−1 con las
siguientes modificaciones: se eliminan los arcos (vi−1,vi), (vi,vi+1), (v j−1,v j), (vl,vl+1) y (vk,vk+1); se
añaden los arcos (vi−1,vk), (vl+1,v j−1), (vi+1,v j) y (vl,vk+1); y se invierte el recorrido de los caminos
(vi+1, . . . ,v j−1) y (vl+1, . . . ,vk).

US
Este procedimiento trata de optimizar el coste de una ruta reordenando sus nodos mediante la apli-

cación secuencial de los algoritmos Unstringing y Stringing a sus nodos. A pesar de que ambos
algoritmos son similares y aparentemente opuestos, la ruta obtenida tras eliminar e insertar un nodo no

TS-VRP - Abel Naya Forcano 21

Vi-1

vk
Vi+1

vjVk+1

vj+1

vi Vi-1

vk
Vi+1

vjVk+1

vj+1

vi

(a) Tipo I

Vi-1

vk

Vj+1

vj

Vk+1

vl

vi

Vl+1

Vj-1

Vi-1

vk

Vj+1

vj

Vk+1

vl

vi

Vl+1

Vj-1

(b) Tipo II

Figura 3.2: Unstringing

es necesariamente la de partida. US aprovecha esta característica para mejorar una ruta realizando el
procedimiento a todos los nodos uno a uno, pero como en ocasiones el quitar y añadir un nodo empeora
el valor de la función objetivo, el algoritmo almacena la mejor ruta encontrada en cada momento. Cada
vez que al quitar y añadir un nodo la ruta mejora, ésta se almacena y se comienza el proceso de nue-
vo desde el primer nodo. Si se le ha realizado el procedimiento a todos los nodos sin obtener ninguna
mejora, el algoritmo termina devolviendo la mejor ruta guardada.

GENI y GENIUS Parámetro de entrada: lista de nodos.
Ambos procedimientos resuelven el problema TSP, generando una ruta de longitud mínima inser-

tando los nodos de entrada de forma secuencial, en una ruta inicialmente vacía, mediante el algoritmo
Stringing. La diferencia entre ambos es que GENIUS tiene un paso adicional: le aplica US a la ruta tras
la inserción de cada uno de los nodos, antes de pasar al siguiente.

3.1.3. Valores de los parámetros

Los algoritmos utilizados admiten como entrada una serie de parámetros. En nuestra implementa-
ción hemos utilizado los mismos valores que se describen en el artículo de Gendreau et al. (1994), que
detallamos a continuación:

El único parámetro de TABUROUTE es el número λ de soluciones iniciales que se utilizarán. Tal y
como se indica en el artículo, es beneficioso usar un valor mayor que 1 y tan grande como

√
n

2 . Hemos
tomado λ =

√
n

2 .
El subalgoritmo SEARCH tiene 9 parámetros de entrada P = (W,q, p1, p2,θmin ,θmax ,g,h,nmax) y se

llama en tres ocasiones diferentes, con parámetros P1, P2 y P3. Si no se especifica lo contrario, se usa el
mismo valor en las tres ocasiones.

W es el conjunto de q nodos que se permitirán mover durante la búsqueda. En P1 y P2 hemos tomado
W = V \ {v0} y q = 5m para asegurarnos de que al menos se selecciona un nodo de cada ruta. En P3,
intensificación, se toman los n

2 nodos con mayor fv, y q = |W |. De esta manera se toman aquellos nodos
que más se han movido durante todo el algoritmo, y por tanto es más probable que den lugar a una
mejora de la solución.

Los parámetros p1 y p2 son los parámetros usados en los algoritmos Unstringing y Stringing

respectivamente. Tal y como indica el artículo, tomar p2 = 5 proporciona un equilibrio entre tiempo y
efectividad. Se define p1 como p1 = max {k, p2} donde k es el número de nodos de la ruta que contiene
el nodo que se va a eliminar.

Los valores de θmin y θmax se utilizan como extremos del intervalo que indica el número de ite-
raciones que un movimiento se mantiene tabú. Tal y como indican en Reeves (1993), se han tomado
θmin = 5 y θmax = 10.

El parámetro g se utiliza como parámetro de escala para la penalización de movimientos usados
frecuentemente. En nuestro caso g = 0,01.

Para el valor de h, que indica el número de iteraciones que deben pasar para cambiar el valor de α

y β si las h soluciones previas han sido todas factibles o todas no factibles, hemos tomado h = 10.

22 Capítulo 3. Un algoritmo de búsqueda tabú para el problema de rutas de vehículos

Por último, el valor de nmax indica el número de iteraciones que deben suceder sin haber obtenido
una mejora para que el algoritmo se detenga. El tiempo de ejecución del algoritmo está directamente
relacionado con este parámetro, si es muy bajo algunas soluciones buenas no serán visitadas, y si es
muy alto el algoritmo trabajará durante más tiempo sin obtener ninguna mejora. Para la implementación
hemos tomado nmax = n en P1 y P3, y nmax = 50n en P2 (diversificación), pues es la parte más importante
del algoritmo y donde la búsqueda debe ser más exhaustiva.

3.2. Implementación

Hemos realizado una implementación en el lenguaje de programación Java de los algoritmos an-
teriores para resolver el problema CVRP sobre grafos dirigidos. Esto nos ha permitido realizar una
aproximación orientada a objetos y representar con relativa sencillez las rutas y las soluciones, así como
la inserción o la eliminación de un nodo en una ruta antes de que estas operaciones de realicen de forma
efectiva. Concretamente hemos utilizado el patrón de programación Proxi para este propósito. No obs-
tante, nuestra implementación no es totalmente orientada a objetos: para asegurar una mayor eficiencia
algunas clases, en particular Grafo y TabuRoute contienen variables globales de acceso público.

En el anexo de este trabajo se encuentra el código completo. En los párrafos siguientes presentamos
los detalles más relevantes de las 23 clases que se han implementado, así como su estructura.

Grafo Estructura tabu Genius

RP_insert

RP_insert_1o2

RP_insert_I

RP_insert_II

RP_insert_IIr

RP_insert_Ir

RP_remove

RP_remove_0

RP_remove_1

RP_remove_I

RP_remove_II

RP_remove_Ir

RP_remove_IIr

Ruta RutaProxi

RutaAbstracta

Solucion SolucionProxi

SolucionAbstractaTabuRoute

Grafo: Representa un problema CVRP, esto es, el número de nodos del grafo, la matriz de adyacencia,
el tiempo de servicio y la demanda de cada nodo, la capacidad de los vehículos, el número de vehículos
disponibles y la longitud máxima de cada ruta. También contiene el método utilizado para leer el fichero
que contiene estos valores. Todos los métodos y variables de esta clase son estáticos, lo que impide que
el algoritmo pueda ser ejecutado para varios problemas simultáneamente.

Además, para cada nodo vi se construye y almacena una lista de los nodos v j, con i 6= j, ordenada
de menor a mayor mediante min {ci j,c ji}, esto es, aquellos nodos más cercanos en ambos sentidos de
recorrido. Esta estructura es utilizada para determinar en qué rutas puede ser insertado un nodo usando
Stringing, pues en lugar de comprobar si una ruta concreta contiene uno de sus p-nodos mas cercanos,
se toman directamente las rutas que contienen estos p-nodos.

TabuRoute: Contiene los algoritmos TABUROUTE y SEARCH, y es el encargado de iniciar todo el pro-
ceso y almacenar las variables F∗1 , F∗2 , S∗ y S̃∗, así como α y β . Al igual que en Grafo, todos los métodos
y variables son estáticos.

EstructuraTabu: Representa la estructura de memoria que almacena los atributos tabú, parejas (no-
do,ruta), junto a la iteración a partir de la cual dicho atributo dejará de ser tabú.

TS-VRP - Abel Naya Forcano 23

RutaAbstracta: Es una clase abstracta que sirve de base para una jerarquía de clases que permiten
representar tanto rutas ‘reales’, con la lista de nodos, como rutas ‘virtuales’ resultado de realizar modi-
ficaciones, inserciones y eliminaciones de nodos, a rutas reales sin generar un nuevo objeto. Contiene
dos clases internas a las que tienen acceso sus clases derivadas: Nodo y NodoComparador. Los obje-
tos de la primera representan la pertenencia de un nodo a una ruta concreta, de modo que una ruta se
puede implementar como una lista circular doblemente enlazada de estos objetos. La segunda es una
implementación de la interfaz Comparator de Java que nos permitirá mantener una lista ordenada de
nodos.

El motivo por el que se ha elegido hacer una implementación propia del tipo abstracto de datos ‘lista
circular doblemente enlazada’, en lugar de usar alguna de las clases disponibles en el lenguaje Java, es
asegurar el acceso directo a los nodos para realizar eficientemente las operaciones de eliminación e
inserción.

Ruta: Representa una ruta ‘real’, una secuencia ordenada de nodos que empieza y termina en el
origen. Esta es la clase más compleja del proyecto pues aparte de contener las funciones básicas de una
ruta, como comprobar si es factible y hallar su coste, también contiene los algoritmos Stringing y
Unstringing.

Además, al igual que en la clase Grafo, para cada uno de los nodos vi del problema, se construyen
dos listas de nodos de la ruta v j ∈ R, con i 6= j, ordenadas por ci j y c ji respectivamente. Esto se utiliza
en los algoritmos Stringing y Unstringing para hallar los vecindarios Np(v), que son los p primeros
elementos de una u otra lista.

RutaProxi: Esta clase representa una modificación de una ruta existente. RutaProxi es una clase abs-
tracta implementada en 11 clases específicas que representan cada tipo de inserción y eliminación. Cada
una de estas clases contiene información sobre la ruta original, el movimiento que debe ser realizado,
y los valores de F1 y F2 de la ruta que se obtendría tras la aplicación del procedimiento, calculados a
partir de la diferencia con respecto a la ruta original. En ningún momento se generan las rutas resultado,
únicamente se modifica la ruta original cuando se requiere, momento a partir del cual el objeto queda
inservible y lanza una excepción si se intenta usar.

SolucionAbstracta: Al igual que RutaAbstracta, esta clase abstracta sirve de base a una jerarquía,
formada por las clases Solucion y SolucionProxi, que implementan el patrón de programación Proxi.
Mientras que los objetos de la clase Solucion representan una solución concreta, los de SolucionProxi
representan un movimiento completo sobre ella, tal y como se comenta a continuación. En este caso no
ha sido necesario implementar ninguna estructura adicional.

Solucion: Representa una solución concreta, un conjunto de rutas. También contiene una referencia a
una ruta siempre vacía (sólo el origen) para hacer más sencilla la comprobación de los candidatos.

SolucionProxi: Representa la modificación de una solución, en la que un nodo determinado se elimina
de la ruta que lo contiene y se añade a otra ruta diferente. Equivale a la misma estructura que RutaProxi,
pero como en este caso la modificación es única (un nodo se elimina de una ruta y se añade en otra), esta
clase realiza la modificación, lanzando una excepción si un objeto se intenta usar tras haber modificado
la solución de partida.

Genius: Contiene el algoritmo GENIUS. Dada una lista de nodos devuelve otra lista indicando el orden
de los nodos que tendrían si se generase una ruta mediante GENIUS.

24 Capítulo 3. Un algoritmo de búsqueda tabú para el problema de rutas de vehículos

3.3. Resultados y análisis

Para comprobar la eficacia del algoritmo implementado, hemos utilizado los problemas del capítulo
11 del libro de Christofides et al. (1979). Estos problemas son los utilizados en el artículo del algoritmo
TABUROUTE de Gendreau et al. (1994), cuyos resultados hemos comparado. Estos problemas contienen
entre 50 y 199 nodos, sin incluir el origen. Los problemas 1-5 y 11-12 tienen únicamente restricciones
de capacidad, siendo los problemas 6-10 y 13-14 los mismos, respectivamente, añadiendo restricciones
de longitud. En los problemas 1-10 los nodos están dispersos en el plano, mientras que en 11-14 se
encuentran agrupados.

Lo hemos ejecutado sobre un ordenador Intel Core i7-5500U CPU, 2401 Mhz, 7.2Gflops, utilizando
Java 1.8 (jdk1.8.0_92). Los parámetros utilizados han sido siempre los mismos, mencionados en 3.1.3.
El valor de la distancia recorrida ha sido redondeado a 2 decimales y en las operaciones internas se ha
trabajado con 4 decimales.

Las siguientes tablas muestran las soluciones obtenidas en una única ejecución del algoritmo:

Problema número 1 ciudades Q = 160 L = 999999,00
rutas visitadas capacidad tiempo

0 46 5 49 10 39 33 45 15 44 37 12 0 11 160 99,25
0 11 2 29 21 16 50 34 30 9 38 0 10 159 99,33
0 18 13 41 40 19 42 17 4 47 0 9 157 109,06
0 6 14 25 24 43 7 23 48 27 0 9 152 98,45
0 8 26 31 28 3 36 35 20 22 1 32 0 11 149 118,52

k=5 n=50 777 524,61

Problema número 2 ciudades Q = 140 L = 999999,00
rutas visitadas capacidad tiempo

0 57 15 37 20 70 60 71 69 36 5 29 0 11 139 114,76
0 16 23 56 41 64 42 43 63 0 8 134 108,59
0 72 39 9 25 55 31 10 58 0 8 139 110,55
0 53 11 66 65 38 0 5 129 77,16
0 30 48 47 21 61 22 1 73 0 8 140 92,72
0 68 2 74 28 62 33 6 0 7 139 62,25
0 17 40 12 26 67 75 0 6 137 43,41
0 7 35 14 59 19 54 13 27 0 8 140 97,20
0 51 49 24 18 50 32 44 3 0 8 135 89,66
0 34 46 8 52 45 4 0 6 132 47,39

k=10 n=75 1364 843,68

Problema número 3 ciudades Q = 200 L = 999999,00
rutas visitadas capacidad tiempo

0 6 99 61 16 86 38 44 14 43 42 87 13 0 12 194 111,50
0 94 95 97 92 37 98 100 91 85 93 59 96 0 12 199 59,35
0 89 18 83 60 5 84 17 45 8 46 36 47 48 82 7 52 0 16 200 124,38
0 31 10 32 90 63 64 49 19 11 62 88 0 11 175 124,65
0 76 77 3 78 34 35 71 65 66 20 30 70 1 69 27 0 15 192 123,46
0 50 51 9 81 33 79 29 24 68 80 12 28 0 12 188 98,97
0 4 56 23 67 39 25 55 54 26 0 9 153 107,17
0 58 2 57 15 41 22 75 74 72 73 21 40 53 0 13 157 83,10

k=8 n=100 1458 832,57

Problema número 4 ciudades Q = 200 L = 999999,00
rutas visitadas capacidad tiempo

0 53 58 137 2 115 57 144 87 97 92 59 95 117 13 0 14 195 66,00
0 93 85 91 141 44 140 38 14 119 100 37 98 0 12 196 93,15
0 27 69 122 30 128 131 32 90 63 126 108 10 31 127 0 14 200 88,51
0 111 50 102 33 81 120 9 103 51 1 132 0 11 191 74,38
0 96 104 99 61 16 86 113 17 84 5 118 60 0 12 198 81,45
0 105 40 21 73 72 74 75 133 22 41 145 15 43 142 42 0 15 190 98,84
0 28 76 80 150 68 121 29 24 134 54 109 12 138 0 13 190 76,50
0 26 149 130 55 25 139 39 67 23 56 4 110 0 12 191 108,63
0 89 147 6 94 112 0 5 99 29,40
0 116 77 3 79 129 78 34 135 35 136 65 71 66 20 70 101 0 16 200 122,37
0 88 148 62 107 11 64 49 143 36 47 19 123 7 0 13 196 120,33
0 146 52 106 82 48 124 46 45 125 8 114 83 18 0 13 189 89,95

k=12 n=150 2235 1049,51

Problema número 5 ciudades Q = 200 L = 999999,00
rutas visitadas capacidad tiempo

0 147 6 183 94 95 97 87 137 58 152 0 10 193 46,63
0 153 106 194 7 82 18 166 89 112 156 0 10 158 56,99
0 64 49 143 36 47 168 48 124 46 174 8 114 0 12 199 130,80
0 61 16 86 140 38 14 192 119 44 141 191 91 0 12 191 103,37
0 96 104 99 5 84 173 113 17 45 125 199 83 60 118 0 14 197 82,39
0 132 69 101 162 31 190 127 167 27 0 9 152 42,88
0 146 88 148 62 159 11 175 107 19 123 182 52 0 12 194 77,00
0 171 133 22 41 145 15 43 142 42 172 144 57 178 115 2 0 15 198 101,05
0 180 198 110 197 56 186 23 75 74 72 73 21 40 0 13 193 79,60
0 28 138 154 12 177 109 195 26 105 53 0 10 181 45,30
0 13 117 151 92 98 37 100 193 85 93 59 0 11 190 56,16
0 111 50 102 157 185 79 129 3 158 77 196 76 0 12 199 57,06
0 161 71 66 65 136 35 135 164 34 78 169 0 11 191 125,69
0 130 165 55 25 170 67 39 187 139 155 4 0 11 181 94,81
0 184 116 68 150 80 121 29 24 163 134 54 179 149 0 13 193 77,36
0 33 81 120 9 103 188 128 20 51 122 1 176 0 12 190 90,95
0 10 189 108 90 126 63 181 32 131 160 30 70 0 12 186 92,32

k=17 n=199 3186 1360,35

TS-VRP - Abel Naya Forcano 25

Problema número 6 ciudades Q = 160 L = 200,00
rutas visitadas capacidad tiempo

0 32 11 16 29 21 50 34 30 9 38 0 10 141 195,33
0 12 37 44 15 45 33 39 10 49 5 0 10 155 199,12
0 14 25 13 41 40 19 42 17 0 8 131 189,94
0 27 48 8 26 7 43 24 23 6 0 9 133 190,64
0 2 20 35 36 3 28 31 22 1 0 9 137 198,08
0 46 47 4 18 0 4 80 82,33

k=6 n=50 777 1055,43

Problema número 7 ciudades Q = 140 L = 160,00
rutas visitadas capacidad tiempo

0 4 45 29 5 37 36 47 74 0 8 140 157,79
0 12 9 25 55 50 32 17 0 7 136 158,40
0 48 69 71 60 70 20 0 6 77 159,13
0 40 72 39 31 10 58 26 0 7 140 155,93
0 3 44 18 24 49 16 51 0 7 104 156,10
0 73 42 64 22 62 2 68 0 7 111 159,95
0 33 1 43 41 56 23 63 0 7 121 154,46
0 46 8 19 59 14 35 7 0 7 138 151,36
0 53 11 66 65 38 0 5 129 127,16
0 6 28 61 21 30 75 0 6 133 135,45
0 27 15 57 13 54 52 34 67 0 8 135 157,54

k=11 n=75 1364 1673,25

Problema número 8 ciudades Q = 200 L = 230,00
rutas visitadas capacidad tiempo

0 52 7 19 11 64 49 36 47 48 82 18 0 11 178 227,55
0 50 33 81 9 35 71 65 66 20 51 1 0 11 163 227,93
0 27 69 70 30 32 90 63 10 62 88 31 0 11 155 200,12
0 12 80 68 24 29 34 78 79 3 77 76 28 0 12 169 210,26
0 54 55 25 39 67 23 56 4 26 0 9 153 197,08
0 95 97 92 37 98 100 91 85 93 59 94 0 11 188 168,46
0 58 2 57 41 22 75 74 72 73 21 40 53 0 12 149 194,83
0 6 96 99 5 84 17 45 46 8 83 60 89 0 12 113 212,04
0 61 16 86 38 44 14 43 15 42 87 13 0 11 190 228,60

k=9 n=100 1458 1866,87

Problema número 9 ciudades Q = 200 L = 200,00
rutas visitadas capacidad tiempo

0 18 114 8 46 36 47 124 48 82 106 0 10 152 193,76
0 107 11 64 49 143 19 123 7 52 0 9 128 199,95
0 104 99 5 84 17 45 125 83 60 118 147 89 0 12 192 195,70
0 146 127 88 148 62 126 63 90 70 101 69 27 0 12 119 195,92
0 113 86 140 38 14 119 44 141 16 0 9 174 194,07
0 6 96 59 93 85 61 91 100 98 37 92 95 0 12 176 183,76
0 13 87 144 57 15 43 142 42 97 117 94 112 0 12 176 199,20
0 53 40 21 73 74 133 22 41 145 115 2 137 58 0 13 151 197,04
0 28 116 68 80 150 54 130 55 25 149 26 105 0 12 184 199,27
0 110 4 139 39 67 23 56 75 72 0 9 172 186,11
0 76 77 3 129 78 34 35 135 120 9 0 10 132 191,20
0 138 12 109 134 24 29 121 79 81 33 102 0 11 181 192,13
0 132 1 122 30 128 131 32 108 10 31 0 10 165 179,08
0 111 50 51 103 71 136 65 66 20 0 9 133 199,64

k=14 n=150 2235 2706,83

Problema número 10 ciudades Q = 200 L = 200,00
rutas visitadas capacidad tiempo

0 89 166 114 8 174 46 45 125 199 83 60 118 0 12 196 199,58
0 64 49 143 36 47 168 124 0 7 105 182,61
0 27 132 176 1 185 79 129 3 158 77 196 76 28 0 13 194 192,64
0 146 52 153 106 194 7 182 148 88 31 190 127 69 0 13 197 191,81
0 165 55 25 170 67 39 187 139 155 4 0 10 162 194,62
0 6 99 104 59 93 85 100 37 98 151 92 97 117 0 13 182 187,94
0 137 2 178 115 145 41 22 133 74 171 152 58 0 12 191 186,69
0 180 198 110 197 56 23 186 75 72 73 21 40 0 12 185 199,88
0 159 62 11 175 107 19 123 48 82 18 0 10 190 182,49
0 154 138 12 80 150 177 109 195 149 26 105 53 0 12 199 170,32
0 111 184 116 68 121 29 24 163 134 54 130 179 0 12 197 198,22
0 160 131 32 181 63 126 90 108 10 189 0 10 160 191,62
0 156 0 1 19 14,47
0 13 87 144 57 15 43 142 42 172 95 94 112 0 12 193 199,63
0 183 96 61 16 86 113 17 173 84 5 147 0 11 194 192,68
0 20 188 103 161 71 65 66 128 0 8 160 191,38
0 169 78 34 164 135 35 136 9 120 0 9 138 191,63
0 193 91 191 141 44 140 38 14 119 192 0 10 142 191,63
0 167 162 101 70 30 122 51 81 33 157 102 50 0 12 182 193,27

k=19 n=199 3186 3453,11

Problema número 11 ciudades Q = 200 L = 999999,00
rutas visitadas capacidad tiempo

0 52 54 57 59 65 61 62 64 66 63 60 56 58 55
53 0 15 192 213,63

0 21 20 23 26 28 32 35 29 36 34 31 30 33 27
24 22 25 19 16 17 0 20 184 207,51

0 8 12 13 14 15 11 10 9 7 6 5 4 3 1
2 0 15 195 134,96

0 120 105 106 107 104 100 116 98 110 115 109 108 118 18
114 90 91 89 86 111 88 0 21 197 86,28

0 103 73 76 68 77 79 80 78 72 75 74 71 70 69
67 0 15 200 144,41

0 37 38 39 42 41 44 46 47 49 50 51 48 45 43
40 0 15 191 199,62

0 87 95 102 101 99 97 94 96 93 92 85 112 84 113
83 117 81 82 0 18 196 66,67

0 119 0 1 20 14,14
k=8 n=120 1375 1067,22

26 Capítulo 3. Un algoritmo de búsqueda tabú para el problema de rutas de vehículos

Problema número 12 ciudades Q = 200 L = 999999,00
rutas visitadas capacidad tiempo

0 98 96 95 94 92 93 97 100 99 0 9 190 95,94
0 5 3 7 8 11 9 6 4 2 1 75 0 11 170 56,17
0 67 65 63 74 62 66 0 6 150 43,59
0 43 42 41 40 44 46 45 48 51 50 52 49 47 0 13 160 64,81
0 57 59 60 58 56 53 54 55 0 8 200 101,88
0 13 17 18 19 15 16 14 12 10 0 9 200 96,04
0 34 36 39 38 37 35 31 33 32 0 9 200 97,23
0 21 22 23 26 28 30 29 27 25 24 20 0 11 170 50,80
0 69 68 64 61 72 80 79 77 73 70 71 76 78 81 0 14 200 137,02
0 90 87 86 83 82 84 85 88 89 91 0 10 170 76,07

k=10 n=100 1810 819,56

Problema número 13 ciudades Q = 200 L = 720,00
rutas visitadas capacidad tiempo

0 102 101 99 100 116 98 110 115 97 94 93 96 95 0 13 132 702,67
0 92 89 91 90 114 118 18 84 112 85 86 111 88 0 13 128 692,61
0 73 71 74 72 75 78 80 79 77 76 68 0 11 141 686,49
0 57 62 64 66 63 60 56 58 55 53 0 10 114 705,09
0 42 48 45 43 40 59 65 61 54 52 0 10 147 719,34
0 39 38 47 51 50 49 46 44 41 37 0 10 122 689,69
0 16 19 22 24 25 23 26 21 20 17 0 10 123 673,33
0 28 32 35 31 27 30 33 34 36 29 0 10 61 696,34
0 87 109 108 6 5 1 2 83 113 117 81 82 0 12 145 716,44
0 7 9 10 4 3 11 15 14 13 12 8 0 11 144 672,77
0 105 106 107 104 103 67 70 69 120 119 0 10 118 618,44

k=11 n=120 1375 7573,21

Problema número 14 ciudades Q = 200 L = 1040,00
rutas visitadas capacidad tiempo

0 67 65 63 62 74 72 61 64 68 66 0 10 190 958,14
0 75 96 95 97 100 99 2 1 3 5 0 10 180 990,29
0 98 94 93 92 85 84 82 83 86 87 0 10 200 1014,88
0 57 55 54 53 56 58 60 59 0 8 200 821,88
0 29 34 37 38 39 36 30 28 26 23 0 10 160 991,84
0 80 79 77 73 70 71 76 78 81 0 9 150 937,30
0 69 41 40 44 45 48 51 50 0 8 80 783,29
0 13 17 18 19 15 16 14 12 10 0 9 200 906,04
0 7 8 11 9 6 4 91 88 89 90 0 10 150 982,01
0 32 33 35 31 52 49 47 46 42 43 0 10 190 990,01
0 20 24 27 25 22 21 0 6 110 575,03

k=11 n=100 1810 9950,71

A continuación, comparamos el resultado de la función objetivo, la suma del tiempo de todas las
rutas, entre los resultados que mencionan en Gendreau et al. (1994) y los obtenidos por la implementa-
ción desarrollada en esta memoria. Cabe mencionar que en todas las tablas que aquí presentamos hemos
incluido el tiempo de servicio δ de los nodos, mientras que en Gendreau et al. (1994) hay que sumarlos
aparte. En los problemas 1, 6 y 12 se obtiene el mismo resultado mientras que en el resto la diferencia
relativa es menor que el 4%.

Problema 1 2 3 4 5 6 7 8 9 10 11
Gendreau et al. (1994) 524,61 835,32 826,14 1031,07 1311,35 1055,43 1659,68 1865,94 2662,89 3394,75 1042,11

Implementación desarrollada 524,61 843,68 832,57 1049,51 1360,35 1055,43 1673,25 1866,87 2706,83 3453,11 1067,22
Diferencia relativa 0% 1% 0.78% 1.79% 3.74% 0% 0.82% 0.05% 1.65% 1.72% 2.41%

Problema 12 13 14
Gendreau et al. (1994) 819,56 7545,93 9866,37

Implementación desarrollada 819,56 7573,21 9950,71
Diferencia relativa 0% 0.36% 0.85%

Finalmente mostramos la comparación, para cada uno de los problemas, entre el tiempo de cálculo
indicado en Gendreau et al. (1994) y el de nuestra implementación. Debe tenerse en cuenta que el tiempo
utilizado depende esencialmente de la potencia y velocidad de los procesadores de los ordenadores
empleados. Todos los tiempos se dan en segundos redondeados a dos decimales.

Problema 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Gendreau et al. (1994) 360 3228 1104 3528 54 810 3276 1536 4260 5988 1332 960 3552 3942

Implementación desarrollada 9,90 30,85 65,91 243,57 246,78 12,44 30,61 36,84 101,11 195,70 79,76 32,09 47,99 36,06

Bibliografía

D. L. Applegate, R. E. Bixby, V. Chvatal y W. J. Cook. The traveling salesman problem: a computational
study. Princeton University Press, 2011.

M. L. Balinski y R. E. Quandt. On an integer program for a delivery problem. Operations Research, 12
(2):300–304, 1964.

N. Christofides, A. Mingozzi, P. Toth y C. Sandi. Combinatorial optimization. John Wiley, Chichester,
1979.

G. B. Dantzig y J. H. Ramser. The truck dispatching problem. Management Science, 6(1):80–91, 1959.

M. Gendreau. An introduction to tabu search. Springer, 2003.

M. Gendreau, A. Hertz y G. Laporte. New insertion and postoptimization procedures for the traveling
salesman problem. Operations Research, 40(6):1086–1094, 1992.

M. Gendreau, A. Hertz y G. Laporte. A tabu search heuristic for the vehicle routing problem. Manage-
ment Science, 40(10):1276–1290, 1994.

F. Glover. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1):
156–166, 1977.

F. Glover. Tabu search-part i. ORSA Journal on Computing, 1(3):190–206, 1989.

F. Glover. Tabu search: A tutorial. Interfaces, 20(4):74–94, 1990.

F. Glover y M. Laguna. Tabu Search. Springer, 2013.

B. L. Golden, T. L. Magnanti y H. Q. Nguyen. Implementing vehicle routing algorithms. Networks, 7
(2):113–148, 1977.

M. Laguna. A guide to implementing tabu search. Investigación Operativa, 4(1):5–25, 1994.

G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408–416, 2009.

G. Laporte, Y. Nobert y M. Desrochers. Optimal routing under capacity and distance restrictions. Ope-
rations Research, 33(5):1050–1073, 1985.

G. Laporte, H. Mercure y Y. Nobert. An exact algorithm for the asymmetrical capacitated vehicle
routing problem. Networks, 16(1):33–46, 1986.

D. Pecin, A. Pessoa, M. Poggi y E. Uchoa. Improved branch-cut-and-price for capacitated vehicle
routing. En Jon Lee y Jens Vygen, eds., Integer Programming and Combinatorial Optimization,
páginas 393–403. Springer, 2014.

C. R. Reeves. Modern heuristic techniques for combinatorial problems. John Wiley & Sons, Inc., 1993.

P. Toth y D. Vigo. The vehicle routing problem. Society for Industrial and Applied Mathematics, 2001.

P. Toth y D. Vigo. Vehicle Routing: Problems, Methods, and Applications - Segunda edición. Siam,
2014.

27

Siglas

ACO - Ant Colony Optimization, 10
ARP - Arc Routing Problems, 5

CG - Generación de columnas, 8
ConVRP - Consistent VRP, 7
CVRP - Capacitated Vehicle Routing Problem, 1

DA - Deterministic Annealing, 9
DARP - Dial-a-Ride Problem, 5

EA - Evolutionary Algorithms, 10

GA - Genetic Algorithms, 10
GRP - General Routing Problems, 5

HFVRP - Heterogeneous or mixed Fleet VRP, 6

ILS - Iterated Local Search, 10
IRP - Inventory Routing Problem, 6

MDVRP - Multi(ple) Depot VRP, 6
MVCTP - Multi-Vehicle Covering Tour Problem,

5
MVRPB - Mixed VRPB, 5

PCVRP - Prize-Collecting VRP, 6
PDP - Pickup-and-Delivery Problem, 5
PTP - Profitable Tour Problem, 6
PVRP - Periodic VRP, 6

SA - Simulated Annealing, 9
SDVRP - Split Delivery VRP, 6

TOP - Team Orienteering Problem, 6
TP - Problema de transporte, 7
TS - Tabu Search, 9, 11
TSP - Traveling Salesman Problem, 2

VNS - Variable Neighborhood Search, 10
VRP - Vehicle Routing Problems, 1
VRP1, 2
VRP2, 3
VRP3, 3
VRP4, 4
VRP5, 4
VRPB - VRP with Backhauls, 5

VRPDDP - VRP with Divisible Deliveries and Pic-
kups, 5

VRPM - VRP with Multiple use of vehicles, 6
VRPMS - VRP with Multiple Synchronization cons-

traints, 7
VRPSPD - VRP with Simultaneous Pickup and De-

livery, 5
VRPTW - VRP with Time Windows, 6

29

	Introducción
	Summary
	Problemas de rutas de vehículos
	Problemas de rutas de vehículos con capacidad
	Formulaciones
	Notaciones básicas
	Formulación con dos índices
	Formulación con tres índices
	Formulación basada en rutas
	Formulación con la capacidad como índice

	Variantes de problema
	Características de la red
	Requisitos de transporte
	Restricciones de la ruta
	Características de la flota
	Restricciones globales
	Objetivos
	Otras extensiones

	Métodos de resolución exactos
	Algoritmos de ramificación y acotación
	Algoritmos basados en la formulación con rutas
	Algoritmos de ramificación y cortes
	Algoritmos de ramificación, cortes y precios

	Métodos de resolución heurísticos
	Heurísticas constructivas
	Heurísticas clásicas
	Metaheurísticas de búsquedas locales
	Metaheurísticas basadas en poblaciones

	Métodos Híbridos

	Algoritmos de búsqueda tabú
	 Búsqueda tabú básica
	Problema de planificación o secuenciación de trabajos (job scheduling)
	Vecindad y movimientos
	Características y estructura tabú
	Un algoritmo básico

	Búsqueda tabú avanzada

	Un algoritmo de búsqueda tabú para el problema de rutas de vehículos
	Algoritmo
	Algoritmos principales
	Algoritmos auxiliares
	Valores de los parámetros

	Implementación
	Resultados y análisis

	Bibliografía
	Siglas

