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Introduccion

En su forma genérica, los problemas de rutas de vehiculos consisten en hallar una ruta o rutas
para una flota de vehiculos para dar servicio a un conjunto de clientes minimizando, generalmente,
el coste del transporte. Sus principales caracteristicas son: la red de transporte, los arcos y nodos que
los vehiculos pueden recorrer, la flota de vehiculos, las caracteristicas de los vehiculos utilizados en
el proceso, asi como las restricciones que puedan imponerse. Estas restricciones pueden afectar a la
distancia recorrida o la carga maxima que pueden transportar los vehiculos; al lugar en donde entregar la
mercancia si cada cliente tiene varios posibles; el origen, o los origenes si se permite que haya varios; el
servicio, si se permite que la carga se pueda dividir o si existen horarios que cumplir; y las rutas solucion,
por ejemplo si éstas no deben superar una longitud maxima o si se permite que un vehiculo realice varias
de ellas. Este tipo de problemas de rutas de vehiculos tiene multitud de variantes y modificaciones,
desde las més sencillas hasta algunas que hoy en dia siguen siendo materia de investigacion. El coste
computacional para resolver este tipo de problemas es elevado y, aunque existen métodos y algoritmos
exactos, para problemas con un elevado nimero de nodos el tiempo de cdlculo suele ser excesivo. Es por
esto que los algoritmos metaheuristicos, que exploran el espacio de soluciones mediante algin método
de busqueda, se han utilizado para resolver este tipo de problemas, a menudo con resultados altamente
satisfactorios.

Uno de estos procedimientos metaheuristicos son los llamados algoritmos de bisqueda tabu. Estos
algoritmos tratan de guiar un proceso de busqueda local mediante la utilizacién de estructuras de memo-
ria, que almacenan determinados acontecimientos ocurridos a lo largo del proceso. La bisqueda local se
basa en el concepto de vecinos de una solucién, y va recorriendo el espacio de soluciones partiendo de
una solucién inicial y sustituyéndola por uno de sus vecinos iterativamente. Las estructuras de bisqueda
tabt, en su forma mas bésica, penalizan determinados vecinos para evitar que el proceso se estanque en
un minimo local.

El objetivo de este trabajo es estudiar el problema de rutas de vehiculos y los algoritmos de bisqueda
tabd, asi como implementar un algoritmo de este tipo para resolver un problema clasico de rutas de
vehiculos. Esta memoria consta de tres capitulos. En el primer capitulo, se formula el problema cldsico
de rutas de vehiculos y se presentan algunas variantes asi como distintos tipos de algoritmos que se
han propuesto en la literatura para su resolucién. En el segundo capitulo, se presentan los conceptos
fundamentales de los algoritmos de busqueda tabd, asi como algunas caracteristicas mds avanzadas.
Por dltimo, en el tercer capitulo, se detalla la implementacion realizada del algoritmo, asi como los
resultados obtenidos tras ejecutarlo.
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Summary

The aim of this proyect is to study the vehicle routing problem, to show which characteristics are
usually taken into account to formulate it, and to present some algorithms which have been proposed in
the literature to solve it. Then, we focus on tabu search algorithms and present a custom implementation
of a tabu search algorithm designed to solve the capacitated vehicle routing problem.

Vehicle routing problems are combinatorial optimization and integer programming problems that
consist on finding an optimal set of routes for a fleet of vehicles to traverse in order a group of customers.
It was first introduced by Dantzig y Ramser (1959) and used to solve a petrol delivery problem. There
exist a lot of variants, and they have many applications on industry.

One of the most studied and simple variant is the capacitated vehicle routing problem. It consists
on the distribution of goods from a single depot to a set of customers. The fleet is assumed to be
homogeneous, meaning that all the vehicles have the same capacity and operate at identical costs. Each
vehicle starts at the depot, visits some customers and returns to the depot ending the route. When
travelling between nodes, the vehicle incurs the travel cost of the arc between them. The objective is to
minimize the travel costs of all the routes visiting all the customers and without exceeding the vehicle
capacity.

In this work we present five formulations of the capacitated vehicle routing problem: the two-
index formulation for directed graphs and for undirected graphs, a three-index formulation, an extensive
formulation based on a set covering model and the capacity indexed formulation.

Some of the variants of the vehicle routing problems take into account network characteristics, for
example if the customers need to be served on arcs instead of nodes or even both; route constraints,
like limiting route length; letting a vehicle travel multiple routes or adding time window constraints.
Also the fleet characteristics can be considered, sometimes the fleet is heterogeneous and vehicles have
different capacity, costs or even depots. In general, the objective is to minimize route costs, but in some
cases it is also needed to optimize the time, the length or the number of vehicles, and others.

There also exist different methods to solve these problems, and they are separated in two main
groups, exact and heuristics algorithms, but there are also methods which combine both of them. Exact
algorithms find the optimal solution testing implicitly or explicitly all the solutions. Heuristics try to find
a good solution searching the topology of the space of solutions. Heuristic approaches cannot ensure
that the best solution found is the optimal solution, but they are a good alternative when considering a
high number of restrictions, because exact approaches often take a lot of computing time.

Some important exact algorithms are branch and bound, that incorporate relaxations and recursively
split the search space removing the groups of solutions that cannot improve the current best solution;
approaches based on column generation, where only some routes are considered and improved; branch
and cut algorithms, an improvement to branch and bound procedures where restrictions are introduced
to cut the search space; and branch and cut and price, which combines branch and cut with column
generation. On the other hand, some important heuristics are local search, that travels the search space
moving from one solution to another at each iteration like simulated annealing or tabu search; and
population based heuristics, inspired by nature like ant colony optimization or genetic algorithms.

Tabu search heuristic is an approach used to guide a local search trying to avoid local optimums
using memory and keeping track of events occurred in the past. These algorithms were first proposed
by Glover (1977) and have been used to solve problems from many different areas like scheduling,
logistics, planning, etc.
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Local search heuristics travel the search space from the current solution to a near one. The near
solutions are called neighbours. In general, the near solution results of modifying some of the current
solution characteristics or variables. The best of these neighbours is set as the current solution, and
the process is repeated until a stopping criterion is satisfied. During the execution of the algorithm, the
best solution found is kept and returned when finalizing. Main basic tabu search mechanisms consist on
keeping some properties of the solutions visited, or the movements that lead to these solutions, called
tabu restrictions. When searching for the best neighbour, the solutions that match some of the tabu
characteristics, are marked as tabu and they are not chosen unless an aspiration criterion removes the
tabu status. The tabu restrictions are kept on a tabu structure for a limited number of iterations, then
they are removed. This is often called short term memory. Some advanced tabu search mechanisms
consist on keeping characteristics on a different structure without removing them. This is called long
term memory. This information shows the characteristics or movements most used, and can be used to
bias the search. Penalizing these movements will encourage the method to search unexplored regions;
whether encouraging them will focus the search on the current area, these are intensification rules.

The algorithm taburoute, proposed by Gendreau et al. (1994), is a tabu search heuristic for capaci-
tated vehicle routing problems on directed graphs. This algorithm uses basic and advanced features of
tabu search. It starts generating some random solutions in such a way that they are separated on the
search space. On each of these solutions a tabu search process is executed. Then, from the best solution
found in all of them, the algorithm is run again with different parameters chosen to improve as much as
possible the current solution. Finally, the algorithm is run one more time with intensification parame-
ters, in order to ensure that we did not miss any good near solution. The search algorithm implements
tabu search methods, checking all neighbours that are obtained by moving a vertex from its current route
to another one. Removing and adding vertex to routes is performed using procedures from Gendreau
et al. (1992) called Stringing and Unstringing, where instead of removing the vertex joining the open
paths and adding it between two consecutive vertices a more efficient approach is used: it checks some
different ways of modifying the route reorganising the vertices in the process, and the best of them is
executed. This paper also describes other algorithms called Us, which optimizes a route removing and
adding all vertices iteratively; and Genius, which creates a full route adding vertices using Stringing and
optimizing with Us.

We have developed a custom implementation of the algorithm in Java using 23 different classes.
Taburoute which contains the main algorithms. Genius which implements the algorithm with the same
name. EstructuraTabu which contains the tabu structure used by the Search algorithm. Grafo which
contains the data of the graph and the problem. Solucion which consists of a set of routes. Ruta which
consists of a sequence of vertices and implements the Stringing and Unstringing procedures. And
SolucionProxy and RutaProxy (and all subclasses) that represent the modifications of a solution and a
route, respectively, and extends the SolucionAbstracta and RutaAbstracta classes. Proxi classes were
chosen so that, instead of creating copies of the neighbour, the result of the modifications made to get the
neighbour are evaluated, without actually generating the neighbour, and then the one chosen modifies
the current solution.

Finally, the algorithm has been run using the same fourteen test problems from Christofides et al.
(1979) used by the original article and the obtained results are shown. The code is also annexed for
inspection.
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Capitulo 1

Problemas de rutas de vehiculos

Los problemas de rutas de vehiculos, Vehicle Routing Problems (VRP), engloban una familia de
problemas de optimizacién que, genéricamente, tratan de encontrar las rutas que deben seguir un con-
junto de vehiculos desde un almacén central para visitar un cierto ntimero de clientes con el menor coste
posible. En particular, se trata de decidir qué vehiculos recorren qué clientes y en qué orden, de forma
de que todas las rutas efectuadas sean viables y el coste sea minimo.

Esta descripcion del problema es muy genérica, existiendo una gran cantidad de variantes. Aun as{
todos estos problemas comparten unas caracteristicas similares, como la dificultad de encontrar una
solucién exacta en un tiempo razonable (no asi soluciones aproximadas, que suelen requerir mucho
menos tiempo) al tratarse de problemas P-duros, y la utilidad de sus aplicaciones en el mundo real.

Han pasado casi 60 afios desde que la primera formulacién fue descrita en 1959 por Dantzig y
Ramser (1959) para resolver un problema de suministro de gasolina a estaciones de servicio. Desde
entonces, se siguen publicando articulos y métodos de resolucién debido principalmente a las ya men-
cionadas complejidad y utilidad prictica.

Una buena referencia sobre los problemas de rutas de vehiculos son los dos libros de Toth y Vigo
(2001, 2014) y el articulo de Laporte (2009).

1.1. Problemas de rutas de vehiculos con capacidad

El problema de rutas de vehiculos con capacidad, Capacitated Vehicle Routing Problem (CVRP),
constituye el modelo mas estudiado de entre los VRP. Trata de distribuir una mercancia desde un al-
macén central o centro de distribucién hasta un conjunto de clientes. Se caracteriza porque se toma en
consideracién la capacidad de los vehiculos, que puede ser o no igual para todos ellos. Por tanto, la
suma de las demandas de los clientes en una ruta no puede ser mayor que la capacidad del vehiculo que
la recorre.

Denotaremos con 0 el centro de distribucién y con N = {1,2,...,n} el conjunto de los nodos que re-
presentan a los clientes. Consideramos lared G = (V,A) 0 G= (V,E) donde V = {0} UN = {0, 1,...,n}
es el conjunto de nodos y A/E es el conjunto de arcos o ejes, segtin sea la red dirigida o no dirigida. En el
primer caso A = {a = (i,j) €V xV :i# j}.Enel segundo caso E = {e = (i, j) = (j,i) : i, j € V,i # j}.

Cada nodo i € N tiene asociada una demanda g; > 0. Para facilitar la formulaciéon del modelo,
asociaremos con el centro de distribucién una demanda go = 0. Denotaremos el conjunto de vehiculos
como K suponiendo una flota homogénea, cada uno de ellos con capacidad Q. Supondremos conocido
el coste ¢;; asociado a que un vehiculo haga el trayecto desde el nodo i al nodo j. Si al menos un
par de nodos tienen coste asimétrico (c;; # cj;) entonces es necesario usar una red dirigida. En caso
contrario una red no dirigida es suficiente. Tanto en un caso como en el otro, el nimero de arcos es
O(n?) (E| = n(n+1)/2y |A| = n(n+1)).

Con estas notaciones, el CVRP queda definido de manera tinica por una red dirigida G = (V,A, ¢;j,gi)
o no dirigida G = (V,E,c;j,q;), junto con el tamaiio |K| de la flota de vehiculos y la capacidad Q de
cada vehiculo.
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Una ruta consiste en una secuencia ordenada de nodos r = (ig, i1, ..., i5,is+]) CUyOS arcos son iy —
i1,i1 = i2,...,0s —> is41, con ig = i1 = 0. Esta ruta representa la visita de los s clientes S = {iy, ..., i} C
N, donde S es un agrupamiento de clientes que llamaremos cldster. Esta ruta r conlleva un coste ¢(r) =
Y0 Ciyi,.; Y €s factible si se cumple la restriccién de capacidad q(S) :=Yicsqi < Q y los nodos son
distintos i; # i, V1 < j < h < s. En este caso, se dice que S es un cluster factible.

Una solucién del CVRP consiste en un conjunto de |K| rutas, una para cada vehiculo k € K. Una
solucion se dice factible si todas las rutas ry,r2,...,rg| son factibles y los clusteres S, ..., Sk forman
una particién de N. Por tanto, para resolver el problema se precisa llevar a cabo dos tareas simultaneas:
La particion del conjunto de clientes en cldsteres factibles y la resolucién de un problema del viajante
(Traveling Salesman Problem (TSP), Applegate ef al. (2011)) asociado a {0} U Sy, Vk € K.

1.2. Formulaciones

En este apartado vamos a presentar cuatro formulaciones matemadticas que se han propuesto a lo
largo de los afios para el CVRP. Cada una presenta caracteristicas propias que la hacen idénea para
determinados algoritmos de resolucién. Mediante modificaciones de estas formulaciones se tratardn
posteriormente distintas variantes del VRP.

1.2.1. Notaciones basicas

Sea S C V un conjunto arbitrario de nodos. Para redes no dirigidas, definimos 6(S) = {(i, j) = (j,i) :
i €8,j¢ S} como el conjunto de arcos con exactamente uno de los nodos en S. Para redes dirigidas, se
definen 6 (S) ={(i,j):i ¢ S,j €Sty d7(S)={(i,j) : i €S, j ¢ S}, los conjuntos de arcos de entrada
a Sy de salida de S, respectivamente. Por otra parte, A(S) = {(i,j) € A:i,j € S} es el conjunto de los
arcos que conectan nodos de Sy r(S) denota el minimo nimero de vehiculos necesarios para satisfacer
la demanda de todos los clientes en S.

1.2.2. Formulacion con dos indices

Para el modelo del CVRP en una red dirigida, denotado VRP1, se definen las variables binarias x;;
que toman valor 1 si un vehiculo recorre el arco (i, j) € A, y 0 en caso contrario. El problema puede
plantearse como:

min ) cipxij
M (i, g)ea
sujeto a

Z)Cl‘j =1 VieN

injzl VjeN

Y xij=r(S) VSCN, S#0
xijE{O,l} V(i,j)EA

Esta formulacién fue introducida por primera vez por Laporte et al. (1986).
Denotando por x el vector de variables x;; y definiendo x(/) = Y.(i,j)erXij donde I es un subconjunto
arbitrario de arcos, el modelo anterior se puede formular de forma condensada como:
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m}icn cT'x
sujeto a
x(8F(@) =1 Vie N
A(87(j)=1 VjeN
x(87(0)) =K
x(87(S))>r(S) VSCN, S#£0
xq € {0,1} VacA

donde, si a = (i, j), xs = x; ;- El modelo correspondiente para una red no dirigida, denotado VRP2,
donde ahora las variables se denotan por x, = x;;, ¢ = (i, j) € E es, en notacién condensada:

min c¢’x
sujeto a
x(6(i))=2 Vie N
x(6(0)) =2|K

x(8(8)) =2r(S) VSCN, S#0
x. € {0,1,2} Ve € 6(0)
x. €{0,1} Ve € E\6(0)

Esta formulacién fue presentada por Laporte et al. (1985).

1.2.3. Formulacion con tres indices

La siguiente formulacidn, en la que las variables tienen tres indices, permite plantear el problema
en una red dirigida G = (V,A) en donde el origen 0 se reemplaza por dos nodos o y d que representan
el comienzo y el final de las rutas. De esta manera, V := NU{o,d} y A:= (V\{d}) x (V\{o}).

Como su nombre indica, la formulacién con tres indices tiene variables binarias de la forma x;j;
que modelan el movimiento de los vehiculos sobre los arcos. En otras palabras, x;x = 1 si 'y solo si el
vehiculo k € K recorre el arco (i, j) € A. Al igual que antes, se denota por x el vector de componentes
Xijk Y xe (1) = Z(i’ el Xijk- Se define también la variable y;; que indica si el vehiculo k visita el nodo
i € V. En este caso, u;; representa la carga del vehiculo k justo antes de llegar al nodo i. La formulacién
del problema, que denotamos VRP3, es:
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min Z chk

W kek
sujeto a
Y vie=1 VieN
keK
. . 1, i= .

X (87 (1)) —xi (8 (l)):{ 0 1'1613 VieV\{d}, keK
yie = xk(87(i)) Viev\{d}, keK
yaxk =x (67 (d)) Vk e K
uip — ujk+ Oxijp < Q0 —q; V(i,j) €A, keK
qi Suig < Q VieV, keK

x=(xz) € {0,1}Kx4
y= 00 € 0,11

Esta formulacién, de manera ligeramente diferente, fue descrita por primera vez por Golden et al.
(1977).

1.2.4. Formulacion basada en rutas

Esta formulacién fue propuesta inicialmente por Balinski y Quandt (1964), y estd basada en un
modelo de cubrimiento de conjuntos (Set covering model) cuya idea es que si las rutas factibles se
conocen, para resolver el problema basta determinar qué rutas se han de seleccionar. Sea Q el conjunto
de todas las rutas factibles del problema. Cada ruta r € Q es de la forma r = (ig, i1, . . . , is, is+1) CON ig = 0
e is+1 = d. Su coste asociado es ¢, = ZS/:O Cijij+1- Se define el coeficiente binario a;- que vale 1 siy
solo si el nodo i € N se visita en la ruta r. Finalmente, se define la variable binaria A, que toma valor 1
si la ruta r es seleccionada y 0 si no lo es, siendo A el vector de variables A,, y se denota por 1 el vector
de dimensién el nimero de rutas con todas sus componentes iguales a 1. La formulacién del problema,
denotada VRP4, es:

min ¢’ A
A
sujeto a
Y aidy=1 VieN
reQ
172 = K|
2 €{0,1}

1.2.5. Formulacion con la capacidad como indice

Esta formulacién fue propuesta para modelos en redes dirigidas por Pecin et al. (2014). Se define
la variable binaria x{ que toma el valor 1 si el arco a = (i, j) pertenece a una ruta cuya demanda total
a partir del nodo j inclusive es exactamente g, y O en caso contrario. Los arcos que vuelven al origen
deben tener g = 0.

La formulacién, que denotamos VRP5, del problema es:
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Q
min anZxZ
Y aeA ¢=0
sujeto a 0
Yxi=1 VieN
acs—({i}) =1
Q

Z Z"gi: K]

g=1ieN

ng — ngfq":o VIEN; q:qh"'vQ
acd~ ({i}) acs*({i})

x4 € {0,1} VacA, g=1,...,0

xgm):o VieN, g=1,...,0

1.3. Variantes de problema

Los problemas de rutas de vehiculos presentan, por sus aplicaciones pricticas, muchas variantes de
distinto tipo, algunas de las cuales se enumeran a continuacion.

1.3.1. Caracteristicas de la red

En el planteamiento general del VRP se considera que los lugares en los que el producto ha de
ser entregado estdn asociados a los nodos de la red existente. Existen, sin embargo, otras variantes en
las que el servicio a realizar debe llevarse a cabo en los arcos de la red, los denominados Arc Routing
Problems (ARP); o en nodos y arcos simultdneamente, los denominados General Routing Problems
(GRP). Pueden citarse como ejemplos los problemas de rutas para vehiculos de limpieza o inspeccion,
el envio de correo postal y la recogida de basuras.

1.3.2. Requisitos de transporte

Envios y recogidas. En general, se considera la distribucién de mercancia desde un almacén central a
unos clientes. Sin embargo, también se han considerado problemas de recogida, en los que la mercancia
debe ser recogida en los nodos y llevada al almacén. Estos problemas son equivalentes, sin mds que
revertir las rutas.

Otras variantes combinan en las rutas la recogida y la entrega de mercancia simultdneamente. Si no
se permiten reorganizaciones dentro de los vehiculos, esto es, se debe entregar toda la mercancia antes
de recoger la nueva, se denomina VRP with Backhauls (VRPB). Si por el contrario el vehiculo permite la
reorganizacion, el problema es un Mixed VRPB (MVRPB). En estos casos los clientes precisan entrega
o recogida de mercancia, pero no ambas. Si se permite que los clientes recojan y entreguen mercancia y
que ademds deba realizarse en una Unica visita, el problema pasa a denominarse VRP with Simultaneous
Pickup and Delivery (VRPSPD). En caso de que se permita la carga/descarga en mas de una visita, se
denomina VRP with Divisible Deliveries and Pickups (VRPDDP).

Servicios alternativos. En esta variante del problema, un cliente puede tener varios lugares posibles
de recogida. En los Multi-Vehicle Covering Tour Problem (MVCTP) quien proporciona el servicio elige
uno de esos lugares para la entrega.

Transportes punto-a-punto. En este tipo de VRP, cada transporte consiste en el movimiento entre
dos ubicaciones especificas de bienes Pickup-and-Delivery Problem (PDP) o personas Dial-a-Ride Pro-
blem (DARP)
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Suministro reiterado. Esta variante modela situaciones en las que los clientes requieren los bienes
cada cierto tiempo, pudiendo variar el dia de entrega mientras no se queden sin stock, ya sea en dias
predefinidos: Periodic VRP (PVRP), o sin predefinir: Inventory Routing Problem (IRP).

Servicios divididos. En la variante Split Delivery VRP (SDVRP) la mercancia que un cliente concreto
requiere no tiene por qué ser transportada por un tnico vehiculo, por lo que cada demanda puede ser
dividida en un nimero arbitrario de subdemandas, transportadas por diferentes vehiculos.

Servicios compartidos y multimodales. En este caso la mercancia permanece indivisible, pero se
transporta por diferentes vehiculos utilizando puntos de transferencia intermedios, en donde se almacena
temporalmente.

Rutas con beneficios y seleccion de servicios. A veces es imposible satisfacer todas las restricciones
de transporte y algunas no pueden realizarse, en cuyo caso hay una penalizacién por no ser satisfechas.
En el proceso de optimizacion, se debe elegir qué caracteristica se pretende priorizar, normalmente la
que mayor beneficio produzca. Si el servicio se centra en maximizar el beneficio obtenido (ingresos
menos penalizaciones) se denomina Profitable Tour Problem (PTP). Si se impone como restriccion
necesaria una longitud maxima de las rutas, y el objetivo es maximizar el beneficio, se llama Team
Orienteering Problem (TOP). Y si se debe obtener un beneficio mayor que cierta cantidad prefijada
minimizando el coste de las rutas, entonces se denomina Prize-Collecting VRP (PCVRP).

Rutas dinamicas o estocasticas. En ocasiones existen condiciones del problema que no se pueden
conocer previamente. En general, un problema se dice que es dindmico si se dispone de informacién
relevante sobre las condiciones del sistema durante la operacion y estocdstico si pueden ser descritas
por una funcién de probabilidad.

1.3.3. Restricciones de la ruta

Al formular el VRP se ha tenido en cuenta la restriccion de capacidad de los vehiculos sobre la
ruta, pero existen otras muchas restricciones aplicables como el peso, espacio, volumen, indivisibilidad,
rotacién o apilado. También se consideran aquellas en las que los bienes se distribuyen de acuerdo con
el orden de reparto, para evitar reorganizaciones en los vehiculos.

Longitud de ruta. Limita la longitud total de una ruta, ya sea por consumo de recursos o por duracién
de ésta.

Usos miiltiples de los vehiculos. Generalmente se supone que cada vehiculo realiza una tnica ruta
en el problema. En los VRP with Multiple use of vehicles (VRPM) un mismo vehiculo puede realizar
varias rutas siempre que la suma de las duraciones de todas ellas satisfaga la restriccion de duracién y
por tanto la solucidn sea factible.

Horarios. En los VRP with Time Windows (VRPTW) existen restricciones sobre el momento en el
que comienza (o termina) el servicio a cada cliente.

1.3.4. Caracteristicas de la flota

Aunque en general se supone que todos los vehiculos son iguales y se comportan igual, en algunos
casos se trabaja con vehiculos con diferente capacidad, velocidad o coste. Estos problemas son los
Heterogeneous or mixed Fleet VRP (HFVRP). En otros casos, los vehiculos son homogéneos, pero
tienen distintos origenes, esto es, comienzan y terminan las rutas en diferentes lugares: Multi(ple) Depot
VRP (MDVRP).
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1.3.5. Restricciones globales

Ademads de las restricciones que afectan a cada ruta, consideradas en el apartado 1.3.3, se pueden
considerar restricciones que afecten a cdmo las rutas se combinan. Este es el caso de los VRP with
Multiple Synchronization constraints (VRPMS), que permiten modelar, por ejemplo, si varios vehiculos
deben moverse a la vez por un recorrido comun, si un destino debe ser visitado por varios vehiculos en
un orden prefijado, o si el consumo de recursos total en cada instante no debe sobrepasar un limite.

1.3.6. Objetivos

Aunque se ha definido el VRP como un problema en el que se minimiza el coste de las rutas, a veces
se deben cumplir otro tipo de objetivos como, por ejemplo, minimizar el tiempo empleado, la duracién
del recorrido o el nimero de vehiculos utilizados.

1.3.7. Otras extensiones

La consideracién del VRP y otras actividades logisticas da lugar a problemas muy diferentes e
interesantes. Por ejemplo, se puede considerar la consistencia de las rutas cuando el servicio se realiza
repetida o regularmente. En los Consistent VRP (ConVRP) se requiere que el mismo conductor visite
los mismos clientes en aproximadamente el mismo momento del dia, lo que permite tener en cuenta la
familiaridad de los conductores con la regién y los clientes.

Todas estas variantes, y muchas otras mads, constituyen la Familia de los Problemas de Rutas de
Vehiculos.

1.4. Métodos de resolucion exactos

Los algoritmos exactos resuelven el problema hallando la mejor solucién posible, generalmente
comprobando todas las soluciones factibles, ya sea explicita o implicitamente. Esto hace que resulte
practicamente imposible la resolucién en tiempo razonable cuando el problema tiene un gran nimero
de nodos.

1.4.1. Algoritmos de ramificacion y acotacion

Los algoritmos de ramificacién y acotacioén, Branch-and-bound, fueron los primeros algoritmos
exactos efectivos para resolver el CVRP. A partir de las propuestas iniciales se han ido sofisticando hasta
lograr un rendimiento alto. Estos algoritmos consisten en relajar el problema quitando o reduciendo
alguna restriccién, normalmente de integridad. La solucion éptima de este problema relajado sirve de
cota inferior (en caso de minimizar) de las soluciones del problema original. Si la solucién no es factible
para el problema original, se separa el problema en ramas restringiendo las relajaciones y se resuelven
los problemas asociados a cada una de las ramas, generalmente empezando por aquella con menor coste.
Debido a que la solucién da una cota del valor de la funcién objetivo, si en una rama la cota no mejora
alguna solucidén factible ya encontrada, esa rama se descarta (prune).

Los distintos algoritmos que se han ido proponiendo difieren, fundamentalmente, en la forma en la
que se relaja el problema y en la cota que proporciona. Cuanto mds ajustada sea la cota que se propone,
mads soluciones factibles dejardn de analizarse y, en consecuencia, antes se alcanzard la solucién éptima.

Tipos de relajaciones. La relajacién basada en asignacién y emparejamiento consiste en convertir el
problema en un Problema de transporte (TP) afiadiendo k — 1 copias del origen al grafo y asigndndoles
un coste entre ellas de ¢} ; =7, donde y influencia el nimero de vehiculos usados en la solucion. Por
ejemplo, ¥ = oo impone el uso de todos los vehiculos y con ¥ = 0 se obtiene la mejor solucién usando
como mucho | K| vehiculos. Este problema se resuelve hallando un circuito de coste minimo que pase por
todos los nodos. Otra relajacion consiste en imponer Unicamente las condiciones de conectividad y hallar
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un arbol recubridor minimo imponiendo algunas condiciones de orden en los nodos. Estas restricciones
tienen una baja calidad y solo permiten la solucién 6ptima en pequefios problemas. Por ello también se
suele realizar un enfoque Lagrangiano o aditivo, que consiste en comenzar imponiendo un subconjunto
significativo de las restricciones y resolver el problema. Después se comprueban aquéllas que no se
cumplen y se imponen, repitiendo el proceso hasta que todas se cumplan.

Ramiificaciones. Una manera de ramificar un VRP consiste en separar en dos ramas imponiendo el
uso de un arco determinado en una de ellas y en la otra no (x;; = 1, x;; = 0, respectivamente). Otra forma
consiste en generar tantas ramas como nodos no visitados, imponiendo en cada una la inclusién del arco
desde el dltimo cliente visitado a uno de los clientes no visitados, y una rama extra excluyendo todos
estos arcos.

1.4.2. Algoritmos basados en la formulaciéon con rutas

Este tipo de algoritmos utiliza la formulacion VRP4 presentada en 1.2.4 en donde se enumeraban
todas las rutas posibles y se elegian cuédles formaban parte de la solucion.

Esta formulacion hace que el nimero de variables a utilizar sea muy grande. Por ello, se suele utilizar
un procedimiento de Generacion de columnas (CG) para resolver el problema. Se comienza resolviendo
el problema con un subconjunto de rutas y se hallan las variables 6ptimas para ese subproblema. Poste-
riormente, se comprueba si existe una ruta mejor fuera del subconjunto de rutas considerado, mediante
célculos con el problema dual. Si existe tal ruta se afiade al subconjunto y se repite el procedimiento. En
caso contrario, la solucién 6ptima del problema restringido es también la solucién 6ptima del problema
completo y se termina el algoritmo.

1.4.3. Algoritmos de ramificacion y cortes

La estructura de este tipo de algoritmos es muy similar a la de los algoritmos de ramificacién y
acotacion, pues a ella se le afiade el procedimiento de cortes (cuts) que consiste en afiadir restricciones
al problema relajado que cortan partes de la regién de factibilidad que con seguridad no contienen la
solucién éptima, o ayudan a su resolucién (es un procedimiento muy usado en problemas generales
de programacién entera). Para este tipo de algoritmos se suele utilizar la formulacién con dos indices
VRP2, en donde existen variables binarias que indican si un arco es recorrido o no, la relajacién entera
que permite a las variables binarias tomar valores reales en el intervalo [0,1] y la ramificacion en la que
en una rama se impone visitar un arco y en la otra no.

Desigualdades validas utilizadas. A lo largo de la historia de los algoritmos de ramificacion y cortes
se han introducido cortes o desigualdades validas relacionadas con desigualdades que se han probado
utiles en el problema del viajante. Se han considerado también cortes que tienen en cuenta una cota
sobre el nimero minimo de vehiculos necesarios, o sobre la demanda de los clientes visitados, entre
otros.

1.4.4. Algoritmos de ramificacion, cortes y precios

Los algoritmos Branch-and-cut-and-price son la base de la mayoria de algoritmos mds recientes, y
se estd probando que proporcionan los mejores resultados. Combinan la Generacion de columnas (CG)
con los algoritmos de ramificacion y cortes (branch-and-cut). Se basan en la observacién de que para
grandes problemas con muchas variables binarias, la mayoria de ellas valen 0 y relajarlas, es decir dejar
que tomen cualquier valor en el intervalo [0, 1], es innecesario en la mayoria de los casos.
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1.5. Métodos de resolucion heuristicos

Como ya se ha indicado, la complejidad de este tipo de problemas hace que los algoritmos exactos
sean costosos y practicamente imposibles de utilizar cuando el problema tiene un gran ndmero de nodos.
Es por esto que se han ido aplicando otros tipos de algoritmos que, aunque no garantizan la obtencién
de la mejor solucién global, tienen una complejidad mucho menor y la solucién encontrada se espera
que difiera poco de la 6ptima.

1.5.1. Heuristicas constructivas

Las heuristicas constructivas se utilizan generalmente para construir soluciones iniciales usadas en
algoritmos de bisqueda. Una de las m4s utilizadas es el algoritmo de Clarke and Wright. Este algoritmo
comienza construyendo rutas de ida y vuelta (0,7,0) parai =1,...,n y, gradualmente, va uniendo dos
rutas (0,...,i,0)y (0,/,...,0) en (0,...,i, ,...,0) reduciendo el coste en s;; = cjo +co; — ¢;; que puede
ser calculado a priori. Inicialmente se tomaban las rutas sucesivamente, pero en la version paralela del
algoritmo se juntan aquellas rutas que proporcionan la mayor reduccién en el coste hasta que ya no hay
mads uniones vélidas.

1.5.2. Heuristicas clasicas

Las heuristicas clésicas realizan movimientos entre rutas, bien quitando 7 arcos y afiadiendo otros
1 (siendo M un valor modificado dindmicamente), o bien cambiando 1 clientes consecutivos de ruta,
entre otros. Esto hace que explorar de forma completa todos los vecinos, es decir probar todos los
movimientos posibles, requiera O(n?|K|?) operaciones. Por ello para grandes problemas se recomienda
reducir la lista de movimientos, por ejemplo con el método granular search que considera restricciones
geogréficas para evitar movimientos entre nodos distantes.

1.5.3. Metaheuristicas de busquedas locales

Estos métodos exploran el espacio de soluciones moviendo la solucién actual x, a alguna de sus
vecinas N(x;), donde N(x,) representa el conjunto de soluciones que comparten ciertas caracteristicas
con x;. Estdn diseiados para intentar escapar de dptimos locales y evitar ciclos. Denotaremos mediante
f(x;) el coste asociado a la solucién x;.

Recocido simulado. Llamada en inglés Simulated Annealing (SA), consiste en elegir una solucién
aleatoria x € N(x;). Si f(x) < f(x;) entonces x;+; = x. En otro caso x,;; = x con probabilidad p, y
Xt+1 = X; con probabilidad 1 — p;, donde p; = P(x,x;,t) es generalmente una funcién decreciente de 7.
Se suele definir como p; = exp(—[f(x) — f(x;)]/6;) con 6; una funcién decreciente de ¢.

Busqueda determinista. También llamada Deterministic Annealing (DA) es equivalente al recocido
simulado, salvo que en este caso la eleccién de x es determinista tomando x;+; = x si f(x) < o f(x*) don-
de o es un parametro ligeramente mayor que 1 (por ejemplo 1,05) y x* es la mejor solucién encontrada
hasta el momento.

Busqueda tabi. Como veremos en el capitulo 2, los algoritmos de busqueda tabu, Tabu Search (TS),
recorren las soluciones moviéndose a la mejor de sus vecinas que sean no-tabu (se suelen considerar
tabt aquellas que comparten caracteristicas con las previamente visitadas). En el capitulo 3 veremos
una implementacion de este tipo de algoritmos en detalle para el problema CVRP.
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Busqueda local iterativa. Llamada en inglés lterated Local Search (ILS), basa su implementacion
en la busqueda local heuristica: busca entre los vecinos utilizando algtin mecanismo de busqueda local,
le aplica una pequena perturbacién a la solucién encontrada, y repite el proceso hasta alcanzar algin
criterio de parada. Esta perturbacién debe ser disefiada con cuidado para no ser revertida por la bisqueda
local, y al mismo tiempo mantener las propiedades de la solucién actual.

Busqueda en entornos variables. En inglés Variable Neighborhood Search (VNS), se basa en la idea
de que una solucién éptima local para un tipo de vecinos, no tiene porqué serlo considerando otros
tipos de vecinos, mientras que la solucién Optima global lo serd independientemente de los vecinos
utilizados. Dada una lista finita de algoritmos de buisqueda de vecinos, si encuentra una solucién que
mejora la actual, la toma y vuelve al primero de ellos. En caso de haber encontrado un 6ptimo local
pasa a utilizar el siguiente algoritmo de bisqueda de vecinos. Una vez utilizados todos los algoritmos
disponibles se termina el procedimiento.

1.5.4. Metaheuristicas basadas en poblaciones

A diferencia de los anteriores, éstos métodos estdn diseflados a partir del comportamiento de las
poblaciones en la naturaleza.

Colonia de hormigas. En inglés Ant Colony Optimization (ACO), consiste en aplicar la informacién
de decisiones anteriores para alterar la probabilidad de elegir candidatos. Se basa en el comportamiento
de las colonias de hormigas y el método que siguen para encontrar bienes. Comienzan moviéndose
aleatoriamente dejando feromonas a su paso que se evaporan gradualmente y que dependen de la calidad
del bien encontrado. El resto de hormigas tienden a seguir los rastros con mayor nivel de feromonas.
En el caso del VRP, los arcos que estdn en soluciones con menor coste reciben mds feromonas, lo que
incrementa su probabilidad de ser seleccionados en sucesivas soluciones.

Métodos evolutivos o genéticos. En inglés Genetic Algorithms (GA) o Evolutionary Algorithms (EA),
imitan la seleccién natural. Comienzan con un conjunto de soluciones aleatorias, la poblacién, y en
cada iteracion se seleccionan algunas aleatoriamente que se combinan para generar nuevas soluciones
(hijos), que pueden a su vez ser modificadas aleatoriamente. De entre la poblacién actual y los hijos,
se selecciona la nueva poblacién con algin criterio y se repite el proceso. Al igual que en la seleccién
natural, el objetivo es la mejora de las sucesivas poblaciones. El procedimiento se repite hasta realizar un
nimero prefijado de iteraciones o hasta que alguna solucién de la poblacién se considere satisfactoria.

1.6. Métodos Hibridos

En los apartados anteriores se han descrito algunos métodos que se han utilizado para resolver el
VRP o algunas de sus variantes. No obstante, conviene sefialar que la frontera entre ellos estd cada vez
mads difuminada, y han surgido algoritmos hibridos que combinan dos o més algoritmos metaheuristicos,
ya sean trabajando juntos o complementdndose el uno al otro, o bien utilizan un método metaheuristico
que incorpora la obtencién de soluciones parciales de forma exacta.



Capitulo 2

Algoritmos de busqueda tabu

La Busqueda tabu, Tabu Search (TS), es un tipo de metaheuristica que se utiliza para guiar un
proceso de busqueda local, utilizando estructuras y mecanismos disefiados para visitar regiones a las
que de otra manera seria dificil acceder, asi como para evitar que la bisqueda quede atrapada en un
minimo local.

Este tipo de algoritmos estdn basados en ideas propuestas por Glover (1977), que aplic6 original-
mente para resolver problemas de programacion entera. A lo largo de los afios estas ideas se han ido
mejorando, y sofisticando, siendo utilizadas en la resolucién de problemas de muy diversas dreas, entre
las que cabe destacar: planificacién, telecomunicaciones, computacién en paralelo, transporte y disefio
de redes, optimizacidn de estructuras, optimizacién en grafos, aprendizaje y redes neuronales, optimi-
zacion estocdstica y continua, fabricacidn, andlisis financiero, etc. En Glover (1990) y Glover y Laguna
(2013) puede encontrarse una relacién mas completa de problemas y dreas en los que la bisqueda tabu
se ha utilizado con éxito.

En general, estos algoritmos tratan de optimizar, maximizar o minimizar, el valor de una funcion
objetivo f(x), conx € X el vector de variables de decision, donde X representa el conjunto de soluciones
admisibles, factibles o no, del problema que se pretende resolver. En los procesos de bisqueda local,
cada solucion x tiene asociado un entorno N(x) C X de soluciones vecinas, cada una de las cuales se
obtiene a partir de x mediante una transformacién elemental llamada movimiento.

Un algoritmo de buisqueda local trata de mejorar una solucién dada, que es inicialmente considerada
como la solucién actual x, de un proceso iterativo. En cada iteracién de este proceso se explora el
entorno de sus soluciones vecinas N (x,) 0, equivalentemente, el conjunto de movimientos que conducen
a ellas, remplazédndola con la ‘mejor’ encontrada en relacion a la funcién objetivo. Durante todo este
proceso iterativo, la mejor solucién encontrada se va almacenando y, cuando algun criterio de parada
especificado se cumple, el algoritmo se detiene y la devuelve como resultado. Este criterio de parada
puede ser, por ejemplo, haber realizado un determinado nimero de iteraciones bien totales o bien desde
la dltima actualizacién de la mejor solucién, entre otros.

Si solo se permite actualizar la solucién actual con una vecina x, € N(x,) que mejora estrictamente
la funcion objetivo, es decir, si f(x,) < f(x,) en el caso de minimizar, el proceso se detendrd al alcanzar
un minimo local, que no necesariamente tiene porqué ser la solucién ptima buscada. Para evitar esto,
la bisqueda tabu recopila y posteriormente explota informacién sobre las soluciones visitadas en las
iteraciones previas. En su forma mds simple, ciertas propiedades de esas soluciones, que se determinan
en funcién del problema, se califican como prohibidas (tabi) durante un cierto nimero de iteraciones, de
forma que en cada iteracion se escoge el mejor vecino no tabd aunque éste no mejore la solucién actual.
En formas mds avanzadas se recoge también informacién sobre la frecuencia de cada propiedad, bien
sea para penalizar aquellas que mds han aparecido, con objeto de diversificar la bisqueda hacia nuevas
areas del espacio de soluciones, o para incentivarlas, con lo que se permite intensificar la bisqueda en
una zona concreta.

11
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2.1. Busqueda tabu basica

En esta seccién introducimos los principales conceptos de los algoritmos de bisqueda tabu, para cu-
ya exposicion nos hemos basado en Glover (1989); Laguna (1994); Gendreau (2003); Glover y Laguna
(2013). Con objeto de facilitar su comprension, ilustraremos con ejemplos algunos de ellos utilizando
el siguiente problema de planificacién de trabajos.

2.1.1. Problema de planificacion o secuenciacion de trabajos (job scheduling)

Se tiene un conjunto de trabajos {j : 1 < j < n} que deben ser realizados en orden, cada uno de
los cuales tiene un tiempo de realizacién p;, una fecha limite de entrega d; y una penalizacion w; por
superarla. El objetivo del problema es encontrar el orden en el que los trabajos deben ser realizados para
minimizar el coste ocasionado por superar las fechas limite, es decir, encontrar aquella permutacién de

los trabajos que minimiza
n

T=Y w;Ci—d;]"
=1

donde [x]" =max {0,x} y C; = Z{: | Pj es el instante en el que el trabajo j se completa. El conjunto de
soluciones X en este caso es el conjunto de las permutaciones de n elementos.

2.1.2. Vecindad y movimientos

Como hemos indicado, la bisqueda tabd guia un proceso de bisqueda local. Por tanto, el primer
paso es definir para cada solucién x el entorno N(x) C X de sus soluciones vecinas. Esta es la parte
mas compleja del algoritmo y en ocasiones decidir qué debe ser vecino y qué no de manera errénea
suele ser la causa de que el algoritmo sea poco eficiente. Una alternativa es la definicién de una funcién
distancia sobre X, en cuyo caso las soluciones vecinas de una dada serdn las que estén a una distancia
menor que un valor fijado, sin embargo es habitual definir las soluciones vecinas como aquellas que se
obtienen modificando de alguna manera la expresion de la solucion de partida. Llamaremos movimiento
al conjunto de estas operaciones que hay que realizar sobre una solucién para obtener otra diferente.

El tipo de movimientos que se pueden realizar depende de la estructura del problema y, en gran
medida, de la forma de expresar las soluciones, asi como de las variables utilizadas para representar-
las. Algunas posibilidades son el cambio de valor de una determinada variable, afiadir o eliminar un
elemento de un conjunto, intercambiar la posicién de dos elementos, etc. Si consideramos el problema
de planificacion de trabajos, cuyas soluciones son permutaciones de los elementos 1,...,n, podemos
considerar que una solucién es vecina de otra si dos de sus trabajos estdn intercambiados, es decir, las
soluciones (... i,...,j,...) ¥ (-..yj,...,i,...), con i # j, son vecinas. En este caso, un movimiento es
la transposicion de (i, j). Una segunda posibilidad seria considerar inserciones en lugar de permutacio-
nes, es decir, tomar el elemento i y trasladarlo a la posicién j, desplazando el resto de elementos segtin
corresponda. Asi, la solucién (...,i,...,j—1,j,j+1,...) se transformarfaen (...,j—1,j,i,j+1,...).

En cada iteracién de un algoritmo simple se deberian generar todas las soluciones vecinas x, € N(x,)
de la solucién actual x,, y evaluar para cada una de ellas la funcién objetivo. La mejor de ellas, x,,, re-
emplazard a x, en la siguiente iteracion, incluso si f(x,) > f(x,). La eficiencia de este subproceso es
critica para la del algoritmo completo, pues es lo que mds veces se ejecuta. Por ello, suele ser sustituido
por un recorrido del conjunto de movimientos que se pueden aplicar a la solucién actual y por la eva-
luacioén del atractivo de cada uno de ellos. Esta alternativa ofrece varias ventajas. Por un lado, no obliga
a generar las soluciones vecinas, por lo que solo es necesario mantener una tnica solucién completa
en todo momento, la solucién actual, con el consiguiente ahorro de espacio y tiempo. Por otro, aunque
la medida mds obvia para evaluar el atractivo de un movimiento es la diferencia de los valores de la
funcién objetivo f(x,) — f(x,), se pueden utilizar otras alternativas en caso de que ésta no pueda ser
calculada directa y eficientemente, por ejemplo con algtn tipo de medida local.



TS-VRP - Abel Naya Forcano 13

2.1.3. Caracteristicas y estructura tabi

Como hemos sefialado, la bisqueda tabti recopila informacién para posteriormente utilizarla. La
forma maés basica de explotar esta informacién, que constituye el nicleo central de los algoritmos de
bisqueda tabu, es prohibir que ciertos acontecimientos ocurran, al menos durante un cierto tiempo.
Por ejemplo, tras abandonar un minimo local deberia prohibirse realizar en la siguiente iteracién el
movimiento inverso que nos ha sacado de él. Esta informacién que se recoge, y que debe ser adecuada
para alcanzar este objetivo, estd generalmente relacionada con atributos de los movimientos y de la
expresion de las soluciones.

Se define como restriccion tabii lo que se desea penalizar, por ejemplo aquellos movimientos que
desplacen de nuevo los trabajos que una permutacion (i, j) acaba de intercambiar. Y llamaremos atributo
tabii a la informacion que se almacena en la estructura tabd y que es necesaria para determinar si un
movimiento estd o no restringido, en el ejemplo anterior almacenariamos cada uno de los trabajos por
separado i y j. Otros ejemplos, utilizando el problema de planificacién, pueden ser: si definimos como
movimientos la insercién de un trabajo j en la posicion i desde la posicién &, se puede definir como
restriccion tabu que el trabajo j pase a estar en la posicion k, mediante el atributo tabi (j, k), con lo que
estarfamos evitando que el trabajo j vuelva de nuevo a la posicidn k durante algunas iteraciones. Si por
el contrario tomamos como movimientos las permutaciones de dos elementos (i, j), podemos definir
como restriccion tabu la propia permutacion (i, j), en cuyo caso los atributos tabu almacenados serian
las parejas (i, j).

La estructura tabu es el elemento principal de la bisqueda tabd. Consiste en un listado de atributos
tabii, normalmente restricciones que han sido marcadas como tabu en las iteraciones anteriores a la
actual. Su misién consiste en prohibir la visita de soluciones que han sido visitadas recientemente, o
que tienen caracteristicas muy similares a ellas. Por esto, el algoritmo descarta todos los movimientos
considerados ‘tabd’ salvo que se cumpla un criterio de aspiracion, que si se satisface permite revocar
el estatus de tabu y entonces el movimiento puede ser elegido, incluso si es tabi. En la mayoria de los
casos se toma como criterio de aspiracién que la solucién obtenida tras realizar el movimiento mejore
la mejor solucién obtenida hasta el momento.

A la hora de almacenar la lista de atributos tabd también existen distintos métodos. Se puede alma-
cenar cada elemento junto a un entero, indicando el nimero de iteraciones que debe permanecer tabi
al que llamaremos permanencia (tenure), y disminuir su valor en cada iteracion hasta que llegue a ce-
ro, momento en el que se quita de la lista. Si se opta por este método, es preferible almacenar en su
lugar el atributo tabu junto a la iteracién en la que dejard de ser tabu, es decir la iteracidon actual mas
la permanencia, con lo que no hace falta actualizar toda la estructura cada vez, inicamente al marcar
como tabu. Para comprobar si un atributo es tabu basta con comprobar si la iteracién actual supera o
no la iteracion almacenada. Si tomamos como ejemplo de atributos tabt las permutaciones de trabajos,
se puede utilizar un array de dos indices; y si optamos por marcar como tabu los trabajos por separado
basta un array de un solo indice. Otra alternativa consiste en utilizar una cola de prioridad con tamafio
fijo, a la cual se le van afiadiendo los atributos junto a la iteracién en la que se incluyeron (si el atributo
ya existe se elimina y se afiade de nuevo). En el momento en el que la lista supere el tamafio maximo
permitido se elimina aquel con menos prioridad, es decir, el primero que se afiadié. Los atributos tabd
serdn aquellos que que se encuentren en la lista, independientemente del nimero de iteraciones que
hayan pasado desde que se incluyeron. Esta estructura es similar a una lista FIFO (first-in first-out) pero
sin permitir duplicados.

2.1.4. Un algoritmo basico

En este apartado vamos a explicar como se realizarfa una implementacién bésica de un algoritmo
que utilice mecanismos de busqueda tabu. Para ello disponemos de una variable global que imple-
menta la estructura tabd y de dos funciones, esTabu(m,it) y hacerTabu(m,it), que operan sobre ella.
La primera determina si el movimiento m es o no tabu en la iteracién it; la segunda declara el movi-
miento m como tabu a partir de la iteracion if. También se tienen dos funciones criterioParada(it) y
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criterioAspiracion(m) que comprueban si se debe detener el algoritmo en la iteracién it y si el movi-
miento m debe ser elegido aunque sea tabu, respectivamente.

En primer lugar se inicializan las variables, la solucidén inicial pasa a ser tanto la solucién actual
como la mejor solucién encontrada y el nimero de iteraciones se inicializa a cero. En esta fase ningtin
movimiento es considerado tabd. Durante un nimero determinado de iteraciones, mientras no se cumpla
el criterio de parada, se realizan las siguientes etapas:

1. Se comprueban los movimientos que se pueden aplicar a la solucién actual y se toma el mejor de
ellos, recordando que aquellos considerados tabti se descartan salvo que cumplan el criterio de
aspiracion.

2. Una vez identificado el mejor movimiento, se le aplica a la solucién actual, modificindola, y se
actualiza la estructura tabi marcando este movimiento realizado como tabui.

3. Se comprueba si la solucién obtenida es mejor que la mejor encontrada hasta el momento, en
cuyo caso se almacena, y se aumenta el nimero de iteraciones.

BisquedaTabi(entrada:solucionInicial; salida:mejorSolucion)

//inicializacién

solucionActual <- solucionInicial
mejorSolucion <- solucionInicial
estructuraTabu <- vacia

it <- 0

//iteracién
MIENTRAS NO criterioParada(it)
mejorMovimiento <- null

//evaluacién
PARA_CADA movimiento EN movimientos(solucionActual)
SI valor(movimiento) < valor(mejorMovimiento) Y
( NO esTabu(movimiento,it) 0 criterioAspiracion(movimiento) )
mejorMovimiento <- movimiento
FIN_SI
FIN_PARA_CADA

//modificacién
solucionActual <- aplicar(mejorMovimiento,solucionActual)
hacerTabu(mejorMovimiento,it)

//actualizacién

SI f(solucionActual) < f(mejorSolucion)
mejorSolucion <- solucionActual

FIN_SI

it<-it+1

FIN_MIENTRAS

2.2. Busqueda tabu avanzada

La forma de explotar la informacion recogida en la estructura tabu sélo permite tener en cuenta los
movimientos realizados recientemente, en unas pocas iteraciones previas a la actual. Por este motivo
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es habitual referirse a ella como memoria a corto plazo. Aunque en muchos problemas la estructura
tabu es suficiente para obtener buenas soluciones, en problemas mas complejos se requieren distintas
estrategias y estructuras adicionales para obtener un mayor rendimiento. En esta seccién haremos una
revisién de algunas de las muchas que se han presentado conforme los algoritmos han ido creciendo en
nivel de sofisticacion.

La mayor parte de las estrategias avanzadas que se incorporan a la bisqueda tabu requieren almace-
nar informacién a largo plazo, para asi disponer de datos sobre lo ocurrido desde el inicio del proceso.
El tipo de informacién que se almacena en estas estructuras puede ser muy variada y depende del obje-
tivo que se quiera alcanzar. Lo mds habitual es registrar la frecuencia de determinados acontecimientos,
por ejemplo el nimero de veces que cada movimiento ha sido escogido como el mejor, la frecuencia
con la que al ejecutar cada movimiento se ha alcanzado un minimo local o una mejor solucién, etc. Esta
informacidn puede ser explotada generalmente de dos formas opuestas: las estrategias de diversificacién
y las de intensificacion.

Las estrategias de diversificacion estdn disefiadas especificamente para escapar de ciclos, es decir,
repeticiones de forma continuada de un conjunto de soluciones, y dirigir la bisqueda hacia zonas todavia
no exploradas. En el proceso pueden aparecer ciclos si éstos tienen un tamafio mayor que la permanencia
de los atributos tabu o si se permite escoger vecinos con el mismo valor que la solucién actual, algo que
muchos autores no recomiendan realizar. Las estrategias de diversificacion suelen ser muy ttiles cuando
existen buenas soluciones que sélo pueden ser visitadas cruzando barreras o ‘montes’ de la topologia
del espacio de soluciones.

La forma mads sencilla de implementar una estrategia de diversificacion es modificar la funcién que
evalda el atractivo de los movimientos, penalizando aquellos que se han realizado més frecuentemente.
Otras implementaciones consisten en que, tras un cierto nimero de iteraciones, en lugar de realizar el
proceso de seleccion de vecinos se le aplica el movimiento menos usado a la solucién actual. En otras
ocasiones incluso, se reinicia el proceso entero como si se ejecutara de nuevo todo el algoritmo con la
mejor solucion encontrada como solucidn inicial.

Las estrategias de intensificacion tratan de modificar las reglas de eleccion de vecinos para favorecer
los mejores movimientos, los que mds frecuentemente han contribuido a mejorar la solucién actual, o la
aparicion de ciertos patrones frecuentes en las soluciones que en algiin momento fueron consideradas
las mejores. Visto de otro modo, lo que se intenta conseguir con esta estrategia es penalizar aquellos que
en el pasado no han dado lugar a buenas soluciones.

La implementacién mds habitual consiste, al igual que en las estrategias de diversificacion, en mo-
dificar el atractivo de los movimientos, por ejemplo suméndole una cantidad inversamente proporcional
al nimero de veces que el movimiento se ha realizado desde el inicio del algoritmo.

Finalmente, otro tipo de estrategia de intensificacién consiste en almacenar una lista de soluciones
de élite, ya sean soluciones suficientemente separadas, esto es, que el nimero de movimientos para
pasar de una a otra sea grande, o aquellas que en algin momento fueron la mejor solucién encontrada.
Después de que el criterio de parada detenga el algoritmo, se borra la memoria a largo plazo y se reinicia
el proceso desde la mejor solucion de esta lista, elimindndola de ella. Cuando la lista se queda vacia, o
tras un nimero fijado de iteraciones, el algoritmo se detiene.

Independientemente de las estrategias de diversificacién e intensificacion que puedan implementarse
con la memoria a largo plazo, y frecuentemente de forma simultdnea, se introducen alteraciones en el
esquema bdsico del algoritmo que en muchos problemas mejoran su rendimiento. Destacamos, por su
sencillez e impacto, dos de ellas.

Si se trabaja con una estructura tabu con tiempo de permanencia, es usual considerar un valor varia-
ble. Cada vez que se afiade un nuevo atributo a la estructura, su tiempo de permanencia se puede escoger
aleatoriamente dentro de un intervalo fijado o bien como una funcién de la valoracién del movimiento.

También es usual, especialmente cuando el entorno N(x,) de vecinos de la solucién actual es muy
numeroso, trabajar con un subconjunto de movimientos tentativos a explorar. La eleccién de este sub-
conjunto puede ser aleatoria, con tamaifio prefijado, o en funcién de la estructura del problema. Como
ejemplo de esta segunda opcidn, en el problema de planificacién de trabajos se pueden considerar tini-
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camente aquellos movimientos que adelanten la finalizacién de un trabajo cuya fecha limite haya sido
superada en la solucién actual. Otra alternativa mas simple, que se puede implementar junto a las an-
teriores, consiste en finalizar la comprobacién de movimientos al obtener uno que mejore la solucién
actual. Estas ticticas aceleran globalmente la ejecucion del algoritmo, pero pueden dejar inexplorados
movimientos que conduzcan a mejores soluciones, por lo que es recomendable complementarlos con
alguna estrategia de intensificacion.



Capitulo 3

Un algoritmo de busqueda tabu para el
problema de rutas de vehiculos

En este capitulo presentamos el algoritmo de bisqueda tabd TABURQUTE descrito en el articulo de
Gendreau ef al. (1994), asi como una implementacion propia realizada en el lenguaje de programacién
Java. Este algoritmo utiliza la metaheuristica de bisqueda tabu para resolver una variante del problema
CVRP asimétrico con tiempos de servicio, que presentamos en la seccidon 1.1. Mds concretamente, el
problema que TABUROUTE resuelve es el siguiente:

Sea G = (V,A) una red dirigida, donde V = {vy,...,v,} es el conjunto de nodos y A = {(v;,v;) 1 i #
Jj} es el conjunto de arcos. El nodo v denota el origen, del que parten m < m vehiculos idénticos (i
valor constante), y el resto son clientes. Cada nodo tiene asociado una demanda no negativa g; (qo = 0),
y un tiempo de servicio §; (6 = 0). Con cada arco (v;,v;) hay asociado un tiempo de transporte c;;.
El objetivo del problema es en encontrar un conjunto de rutas de minimo coste de forma que todas
ellas comiencen y terminen en el origen, todos los clientes sean visitados una y sélo una vez por algin
vehiculo y se cumplan las siguientes restricciones adicionales: 1) La suma total de las demandas de los
clientes de una ruta no puede superar la capacidad de los vehiculos Q, que se supone constante e igual
para todos ellos. 2) La longitud de la ruta, es decir la suma de los tiempos de servicio de los clientes
mas los tiempos de transporte de los arcos recorridos, no puede superar un valor fijado L.

3.1. Algoritmo

En esta seccién se da una vision general del algoritmo sin realizar ninguna consideracién sobre su
posible implementacién. Para ello usaremos la siguiente notacién. Una solucién S es un conjunto de
m rutas Ry, ...,R,, donde m € [1,m], y cada ruta es una lista ordenada de nodos R = (vo,Vv;,,...,V0),
tales que cada cliente v;, i = 1...n, es visitado por una y solo una ruta. Cuando un nodo v es visitado
en una ruta R, se dice que v pertenece a la ruta R y escribiremos v € R. Del mismo modo escribiremos
(vi,v j) € R si los nodos v; y v; son visitados consecutivamente y en ese orden en R, es decir, si el arco
es recorrido.

Estas rutas pueden ser factibles o no respecto de las restricciones de capacidad y longitud. Sobre el
conjunto de todas las rutas definimos dos funciones objetivo:

Y <

1 (Vi,Vj)ERr

F(S) =

(ngE

r

+Jrﬁr_il K( Y i+ ) 5,~> —Lr

V,’,Vj)ERr ViER,

F2(5)=F1(5)+O‘i [( Y 61i> -0

ViER,

donde o y B son dos pardmetros reales positivos y [x]T = max {0,x}. Obsérvese que las funciones
F| y F, coinciden para las soluciones factibles. De hecho, la funcién F; es la funcién objetivo que

17
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se pretende minimizar, mientras que la funcién F, contiene dos términos adicionales que penalizan el
exceso de capacidad y longitud, respectivamente, en las soluciones no factibles.

El algoritmo TABUROUTE recorre el conjunto de todas las soluciones, tanto las factibles como las
que no lo son, intentando mejorar en cada iteracion la solucién actual, que denotaremos por S. En todo
momento del algoritmo las expresiones F}" y F;' contendran, respectivamente, el menor valor de F; y de
F, encontrado hasta el momento. Del mismo modo S§* almacena la mejor solucién factible encontrada,
y §* la mejor solucién, factible o no.

3.1.1. Algoritmos principales

Procedemos a explicar con detalle el propdsito de los dos algoritmos principales. El algoritmo
TABUROUTE es el algoritmo principal, que se encarga de dirigir el proceso, y realiza llamadas a SEARCH
que se encarga de mejorar una solucién dada mediante estrategias de busqueda tabti. Ambos proce-
dimientos estdn descritos en el articulo de Gendreau et al. (1994) y se apoyan en los procedimientos
Stringing, Unstringing, US y GENIUS, presentes en el articulo de Gendreau et al. (1992), para reali-
zar operaciones con rutas de manera eficiente. Todos estos algoritmos tienen pardmetros de entrada que
se explicardn en sus respectivos apartados.

TABUROUTE Pardmetro de entrada: A.

Este algoritmo comienza inicializando las variables globales que afectardn a todo el proceso de
busqueda. Se asigna el valor 1 a ¢ y 3, mientras que a F}* y F,' se le asigna infinito. Después, en una
primera fase, se busca una primera solucién mediante la generacion de A soluciones en el espacio de
bisqueda. Para ello se realizan A iteraciones del siguiente proceso:

1. Se elije un nodo aleatorio v;.

2. A partir de la secuencia de nodos (vg,V,...,Vn,Vi,Vi—1), S€ genera un camino que pase por to-
dos ellos y que es solucién del TSP, utilizando GENIUS. El camino obtenido serd de la forma
(VOsVpys s Vp,)-

3. Empezando en vy se generan una solucién S con un maximo de 7z rutas. La primera ruta contendra
los primeros nodos del camino (vo, vp,,...,Vp, ,,Vvo) hasta aquel v, cuya inclusién haga que la ruta
deje de ser factible. El proceso se repite comenzando por v, hasta que todos los nodos han sido
utilizados (la solucidén serd factible), o hasta que /m — 1 rutas se han generado, en cuyo caso los
nodos restantes se afiaden a la ultima ruta (Ia solucién puede ser no factible).

4. Finalmente se llama a SEARCH con un conjunto de pardmetros P; para mejorar esta solucion,
actualizando los valores de Fi, F», S* y §* cuando sea necesario.

Una vez realizadas las A iteraciones, se toma la mejor solucién encontrada en todas ellas, que corres-
ponde con S* si F}* es finito, es decir se ha encontrado una solucién factible, o con S* en caso contrario.
A esta solucidn se le aplica de nuevo SEARCH con distintos pardmetros P». Es en esta fase donde el algo-
ritmo ocupa la mayor parte del tiempo y en la que, normalmente, se suele encontrar la mejor solucién
del proceso completo.

Por dltimo se realiza una tercera llamada a SEARCH usando de nuevo la mejor solucién encontrada
(S* o §* segin corresponda). En esta tltima fase se utilizan pardmetros P; elegidos para llevar a cabo
una estrategia de intensificacién, con la que se realiza una bisqueda exhaustiva en entornos cercanos.
Para terminar, el algoritmo devuelve la solucién almacenada en S* si F" es finito. En caso contrario no
se ha encontrado ninguna solucién factible.

SEARCH Pardmetros de entrada P = (W, q, p1, P2, Omin , Omax > &1 imax )-

El procedimiento SEARCH es el que implementa realmente la bisqueda tabd. Dada una solucién
inicial se encarga de mejorarla aplicando las técnicas de bisqueda tabu, utilizando como movimiento
la extraccion de un nodo v de su ruta R, y su reinsercion en otra distinta R;. La forma de evaluar el
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atractivo de estos movimientos es calcular la diferencia entre el valor de las funciones objetivo antes y
después de realizar la modificacion. Tras realizar un movimiento se marca como tabu la pareja (v,R,),
con lo que evitamos que el nodo eliminado vuelva a ser reinsertado en la misma ruta durante algunas
iteraciones.

Este procedimiento tiene como entrada un gran nimero de pardmetros: W es un subconjunto de
V\ {vo} que contiene los nodos que se permitirdn mover de su ruta actual; g es el nimero de nodos de
W que se utilizaran como candidatos; al insertar un nodo en una ruta diferente, ésta debe contener al
menos uno de sus p; vecinos mds cercanos; p; es el pardmetro utilizado en GENI; Opin Y Omax son los
limites del intervalo del valor de la permanencia; g es un factor de escala que modifica la funcién de
valoracién de movimientos; / es la frecuencia con la que los valores de & y 8 son actualizados; y 7max
es el maximo nimero de iteraciones que se permiten desde la dltima mejora en la funcién objetivo.

En primer lugar se inicializa r = 1 la variable que contiene el nimero de iteraciones realizadas. Dado
que el nimero de movimientos posibles es muy elevado, al comienzo de cada iteracion se construye una
lista de movimientos potenciales. Para ello, primero se seleccionan aleatoriamente ¢ nodos de W, y para
cada nodo v se evalda el coste de eliminarlo de su ruta actual R, e insertarlo en otra ruta R; que debe
contener alguno de sus p; vecinos mds cercanos, o en una ruta vacia si m < m. Para cada uno de estos
movimientos se repite el siguiente procedimiento:

1. Se calcula el coste de eliminar v de R, mediante Unstringing con pardmetro p; y de reinsertarlo
en R, mediante Stringing con pardmetro p;. Se obtiene la solucién S’

2. Si el movimiento es tabu, se descarta salvo que Fy(S") < F/", si §' es factible, o F>(S') < F5 sies
no factible.

3. Si no ha sido descartado, se le asigna un valor F(S') = F»(S') si Fa(S') < Fa(S), o F(§') =
F>(S') 4+ Amax v/m- g+ f, en caso contrario, donde Ap,x es la mayor diferencia observada en valor
absoluto entre el valor de F>(S) obtenido en dos iteraciones sucesivas. f, el nimero de veces que
el nodo v ha sido movido, dividido por ¢. De esta manera estamos aplicando una estrategia de
diversificacion, penalizando los movimientos que mas se han ejecutado si la solucién no mejora
la actual.

El movimiento que proporciona el menor valor de F es identificado. Llamaremos S a la solucién que
produce, que no necesariamente se implementa pues puede ser ventajoso intentar mejorar la solucién
S mediante el procedimiento US. Esta alternativa se realiza si se cumplen las siguientes condiciones:
a) F5(S) > F(S), b) S es factible, ¢) US no se ha utilizado en la iteracién anterior. Si alguna de estas
condiciones no se cumple, se sustituye S = S.

Si se ha realizado el movimiento, reinsertar v en R, se declara como tabu hasta la iteracion 7 + 0,
donde 6 € [Opin , Omax | entero tomado aleatoriamente.

Se actualizan las variables F}", F5', S*, S*, Amax » M y fv; y sit es muiltiplo de 4 se actualizan también
a y BB de la siguiente manera: se comprueba la factibilidad de las & soluciones anteriores, si todas ellas
han sido factibles respecto a la capacidad se ajusta o = 5, en caso de que todas hayan sido no factibles
se ajusta en su lugar por o = 2. Se realiza el procedimiento andlogo con 3, esta vez comprobando la
factibilidad respecto a la duracién de la ruta.

Para finalizar, si tanto F}* como F; no se han reducido en las ny,x iteraciones previas (criterio de
parada) el algoritmo termina. En otro caso se inicia una nueva iteracion.

3.1.2. Algoritmos auxiliares

Estos algoritmos, desarrollados por Gendreau et al. (1992), han sido disefiados para resolver el
problema TSP. Stringing y Unstringing se encargan, respectivamente, de insertar y eliminar nodos
de rutas, US trata de optimizar una ruta y GENIUS es un procedimiento para generar rutas a partir de una
lista de nodos.
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Stringing Pardametro de entrada: p.

Este procedimiento trata de insertar un nodo v en una ruta minimizando el coste. Esto se consigue
probando unas pocas alternativas particulares y eligiendo la mejor, en lugar de insertarlo entre dos nodos
consecutivos directamente. Existen dos tipos de inserciones, ademds de considerar ambos sentidos de
recorrido de la ruta.

En la primera, tipo I, se eligen tres nodos v;, v; y v, donde v, se encuentra entre v; y v; (para un
sentido concreto de la ruta) y se realizan las siguientes modificaciones: se eliminan los arcos (v;,vii1),
(vj,vjs1) Y (i, viy1); se ailaden los arcos (v;,v), (v,v}), (Vig1,vk) Y (Vjt1,Vi+1); Y se invierte el recorrido
de los caminos (Vit1,...,v;) Y (Vit1,..., V).

Para la segunda, tipo II, se elige un nodo extra v; entre v; y v; modificando la ruta de la siguiente
manera: se eliminan los arcos (vi,vis1), (vi—1,v1), (vj,vj41) ¥ (Vi—1,Vvi); se afiaden los arcos (v;,v),
(i), (vi,vig1)s (Vk=1,vi—1) Y (Vig1,vi); y se invierte el recorrido de los caminos (viyi,...,vi—1)y
(Viy. oo, v)).

- Via
I ==
/ ~~-
L Vi F Vi1
Vi s ; Vi
-
- - /
o -
- A

(b) Tipo II

(a) Tipo 1

Figura 3.1: Stringing

Como probar todas las combinaciones para una ruta con n nodos requiere orden O(n*), el algoritmo
tiene como entrada un pardmetro p pequeio y se toman Unicamente los p-nodos mas cercanos, aquellos
cuyas aristas (v,w) tienen el menor coste. En particular, llamando N,(v) a la lista de los p-vecinos mds
cercanos a v, se toma v;,v; € N,(v), vk € Ny(vig1) y vi € Np(vjs1).

Unstringing Pardmetro de entrada: p.

Este procedimiento trata de eliminar un nodo v; de una ruta minimizando el coste. Lo realiza de
manera andloga a Stringing, en este caso elimindndolo y probando unas pocas alternativas de reorde-
nar la ruta, en lugar de quitar el nodo directamente. Al igual que en Stringing existen dos formas de
realizar la comprobacién, y ademds hay que considerar ambos sentidos de recorrido de la ruta.

Para el tipo I se eligen v; € N,(vit1) ¥ vk € Np(vi—1) entre viy1 y vj_i, modificando la ruta de la
siguiente manera: se eliminan los arcos (vi—1,v;), (Vi,Vit1), (Vi,Vir1) Y (vj,vj+1); se afladen los arcos
(vi1,vk)s (Vig1,vj) Y (Vig1,vj+1); y se invierte el recorrido de los caminos (vii1,...,vk) Y (Vit1s---,Vj)-

Para el tipo II se toma en su lugar v entre v 1 y v;_» y ademds v; € Ny, (vi41) entre v; y vi_; con las
siguientes modificaciones: se eliminan los arcos (vi—1,v;), (vi,vit1), (vj—1,v}), Vi, vig1) Y (Vs Vier1); se
afiaden los arcos (vi—1,vk), (Vi41,vj—1), (Vit1,vj) ¥ (Vi,vit1); y se invierte el recorrido de los caminos
(V,‘+1, oo ,vjfl) y (Vl+17' .. ,Vk).

UsS

Este procedimiento trata de optimizar el coste de una ruta reordenando sus nodos mediante la apli-
cacién secuencial de los algoritmos Unstringing y Stringing a sus nodos. A pesar de que ambos
algoritmos son similares y aparentemente opuestos, la ruta obtenida tras eliminar e insertar un nodo no
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(@) Tipo I (b) Tipo II

Figura 3.2: Unstringing

es necesariamente la de partida. US aprovecha esta caracteristica para mejorar una ruta realizando el
procedimiento a todos los nodos uno a uno, pero como en ocasiones el quitar y afiadir un nodo empeora
el valor de la funcién objetivo, el algoritmo almacena la mejor ruta encontrada en cada momento. Cada
vez que al quitar y afadir un nodo la ruta mejora, ésta se almacena y se comienza el proceso de nue-
vo desde el primer nodo. Si se le ha realizado el procedimiento a todos los nodos sin obtener ninguna
mejora, el algoritmo termina devolviendo la mejor ruta guardada.

GENI y GENIUS Parametro de entrada: lista de nodos.

Ambos procedimientos resuelven el problema TSP, generando una ruta de longitud minima inser-
tando los nodos de entrada de forma secuencial, en una ruta inicialmente vacia, mediante el algoritmo
Stringing. La diferencia entre ambos es que GENIUS tiene un paso adicional: le aplica US a la ruta tras
la insercién de cada uno de los nodos, antes de pasar al siguiente.

3.1.3. Valores de los parametros

Los algoritmos utilizados admiten como entrada una serie de pardmetros. En nuestra implementa-
cién hemos utilizado los mismos valores que se describen en el articulo de Gendreau et al. (1994), que

detallamos a continuacién:
El dnico pardmetro de TABURQUTE es el niimero A de soluciones iniciales que se utilizardn. Tal y

como se indica en el articulo, es beneficioso usar un valor mayor que 1 y tan grande como %*. Hemos

tomado A = @

El subalgoritmo SEARCH tiene 9 pardmetros de entrada P = (W, q, p1, p2, Omin > Omax , &, Amax ) Y S€
llama en tres ocasiones diferentes, con pardmetros Pj, P> y P5. Si no se especifica lo contrario, se usa el
mismo valor en las tres ocasiones.

W es el conjunto de g nodos que se permitirdn mover durante la bisqueda. En P y P, hemos tomado
W =V \{vw} y ¢ =5m para asegurarnos de que al menos se selecciona un nodo de cada ruta. En P3,
intensificacién, se toman los 5 nodos con mayor f,, y ¢ = |W|. De esta manera se toman aquellos nodos
que mds se han movido durante todo el algoritmo, y por tanto es mds probable que den lugar a una
mejora de la solucién.

Los pardmetros p; y p» son los pardmetros usados en los algoritmos Unstringing y Stringing
respectivamente. Tal y como indica el articulo, tomar p, = 5 proporciona un equilibrio entre tiempo y
efectividad. Se define p; como p; = max {k, p,} donde k es el nimero de nodos de la ruta que contiene
el nodo que se va a eliminar.

Los valores de Oy, y Omax se utilizan como extremos del intervalo que indica el ndmero de ite-
raciones que un movimiento se mantiene tabu. Tal y como indican en Reeves (1993), se han tomado
Omin =35y Omax = 10.

El pardmetro g se utiliza como pardmetro de escala para la penalizacién de movimientos usados
frecuentemente. En nuestro caso g = 0,01.

Para el valor de A, que indica el nimero de iteraciones que deben pasar para cambiar el valor de
y B si las & soluciones previas han sido todas factibles o todas no factibles, hemos tomado & = 10.
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Por dltimo, el valor de np,x indica el nimero de iteraciones que deben suceder sin haber obtenido
una mejora para que el algoritmo se detenga. El tiempo de ejecucion del algoritmo estd directamente
relacionado con este pardmetro, si es muy bajo algunas soluciones buenas no serdn visitadas, y si es
muy alto el algoritmo trabajard durante mas tiempo sin obtener ninguna mejora. Para la implementacién
hemos tomado nyn.x =nenP;y Ps, Yy nmax = S0n en P, (diversificacién), pues es la parte mds importante
del algoritmo y donde la bisqueda debe ser mds exhaustiva.

3.2. Implementacion

Hemos realizado una implementacion en el lenguaje de programacién Java de los algoritmos an-
teriores para resolver el problema CVRP sobre grafos dirigidos. Esto nos ha permitido realizar una
aproximacion orientada a objetos y representar con relativa sencillez las rutas y las soluciones, asi como
la insercidn o la eliminacion de un nodo en una ruta antes de que estas operaciones de realicen de forma
efectiva. Concretamente hemos utilizado el patrén de programacion Proxi para este propdsito. No obs-
tante, nuestra implementacion no es totalmente orientada a objetos: para asegurar una mayor eficiencia
algunas clases, en particular Grafo y TabuRoute contienen variables globales de acceso publico.

En el anexo de este trabajo se encuentra el cédigo completo. En los parrafos siguientes presentamos
los detalles mas relevantes de las 23 clases que se han implementado, asi como su estructura.

RutaAbstracta

| Grafo | |TabuRoute| | Estructura tabu | | SolucionAbstracta |

| Solucion | |So|ucTonProxi| | Ruta | |RutaProxi|

| RP_insert | | RP_remove |

RP_insert_| | RP_remove_| |

RP_insert_i| RP_remove_li |

RP_insert_Ir

RP_remove_lIr

RPﬁinsertillrl RPiremovefllrl

RP_insert_loZl RP_remove_0 |

Grafo: Representa un problema CVRP, esto es, el nimero de nodos del grafo, la matriz de adyacencia,
el tiempo de servicio y la demanda de cada nodo, la capacidad de los vehiculos, el nimero de vehiculos
disponibles y la longitud maxima de cada ruta. También contiene el método utilizado para leer el fichero
que contiene estos valores. Todos los métodos y variables de esta clase son estéticos, lo que impide que
el algoritmo pueda ser ejecutado para varios problemas simultdneamente.

Ademds, para cada nodo v; se construye y almacena una lista de los nodos v;, con i # j, ordenada
de menor a mayor mediante min {c;;,cj;}, esto es, aquellos nodos mds cercanos en ambos sentidos de
recorrido. Esta estructura es utilizada para determinar en qué rutas puede ser insertado un nodo usando
Stringing, pues en lugar de comprobar si una ruta concreta contiene uno de sus p-nodos mas cercanos,
se toman directamente las rutas que contienen estos p-nodos.

TabuRoute: Contiene los algoritmos TABUROUTE y SEARCH, y es el encargado de iniciar todo el pro-
ceso y almacenar las variables Fy', F;, S* y §*, asf como ¢ y . Aligual que en Grafo, todos los métodos
y variables son estaticos.

EstructuraTabu: Representa la estructura de memoria que almacena los atributos tabu, parejas (no-
do,ruta), junto a la iteracién a partir de la cual dicho atributo dejard de ser tabu.
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RutaAbstracta: Es una clase abstracta que sirve de base para una jerarquia de clases que permiten
representar tanto rutas ‘reales’, con Ia lista de nodos, como rutas ‘virtuales’ resultado de realizar modi-
ficaciones, inserciones y eliminaciones de nodos, a rutas reales sin generar un nuevo objeto. Contiene
dos clases internas a las que tienen acceso sus clases derivadas: Nodo y NodoComparador. Los obje-
tos de la primera representan la pertenencia de un nodo a una ruta concreta, de modo que una ruta se
puede implementar como una lista circular doblemente enlazada de estos objetos. La segunda es una
implementacion de la interfaz Comparator de Java que nos permitird mantener una lista ordenada de
nodos.

El motivo por el que se ha elegido hacer una implementacién propia del tipo abstracto de datos ‘lista
circular doblemente enlazada’, en lugar de usar alguna de las clases disponibles en el lenguaje Java, es
asegurar el acceso directo a los nodos para realizar eficientemente las operaciones de eliminacién e
insercion.

Ruta: Representa una ruta ‘real’, una secuencia ordenada de nodos que empieza y termina en el
origen. Esta es la clase mds compleja del proyecto pues aparte de contener las funciones bésicas de una
ruta, como comprobar si es factible y hallar su coste, también contiene los algoritmos Stringing y
Unstringing.

Ademads, al igual que en la clase Grafo, para cada uno de los nodos v; del problema, se construyen
dos listas de nodos de la ruta v; € R, con i # j, ordenadas por ¢;; y ¢;; respectivamente. Esto se utiliza
en los algoritmos Stringing y Unstringing para hallar los vecindarios N, (v), que son los p primeros
elementos de una u otra lista.

RutaProxi: Esta clase representa una modificacién de una ruta existente. RutaProxi es una clase abs-
tracta implementada en 11 clases especificas que representan cada tipo de insercion y eliminacion. Cada
una de estas clases contiene informacidn sobre la ruta original, el movimiento que debe ser realizado,
y los valores de Fj y F, de la ruta que se obtendria tras la aplicacion del procedimiento, calculados a
partir de la diferencia con respecto a la ruta original. En ningtin momento se generan las rutas resultado,
unicamente se modifica la ruta original cuando se requiere, momento a partir del cual el objeto queda
inservible y lanza una excepcion si se intenta usar.

SolucionAbstracta: Al igual que RutaAbstracta, esta clase abstracta sirve de base a una jerarquia,
formada por las clases Solucion y SolucionProxi, que implementan el patrén de programacién Proxi.
Mientras que los objetos de la clase Solucion representan una solucién concreta, los de SolucionProxi
representan un movimiento completo sobre ella, tal y como se comenta a continuacién. En este caso no
ha sido necesario implementar ninguna estructura adicional.

Solucion: Representa una solucién concreta, un conjunto de rutas. También contiene una referencia a
una ruta siempre vacia (sélo el origen) para hacer mds sencilla la comprobacién de los candidatos.

SolucionProxi: Representa la modificacion de una solucién, en la que un nodo determinado se elimina
de la ruta que lo contiene y se afiade a otra ruta diferente. Equivale a la misma estructura que RutaProxi,
pero como en este caso la modificacion es tinica (un nodo se elimina de una ruta y se aflade en otra), esta
clase realiza la modificacién, lanzando una excepcion si un objeto se intenta usar tras haber modificado
la solucién de partida.

Genius: Contiene el algoritmo GENIUS. Dada una lista de nodos devuelve otra lista indicando el orden
de los nodos que tendrian si se generase una ruta mediante GENIUS.
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3.3. Resultados y analisis

Para comprobar la eficacia del algoritmo implementado, hemos utilizado los problemas del capitulo
11 del libro de Christofides et al. (1979). Estos problemas son los utilizados en el articulo del algoritmo
TABUROUTE de Gendreau et al. (1994), cuyos resultados hemos comparado. Estos problemas contienen
entre 50 y 199 nodos, sin incluir el origen. Los problemas 1-5 y 11-12 tienen tnicamente restricciones
de capacidad, siendo los problemas 6-10 y 13-14 los mismos, respectivamente, afladiendo restricciones
de longitud. En los problemas 1-10 los nodos estdn dispersos en el plano, mientras que en 11-14 se
encuentran agrupados.

Lo hemos ejecutado sobre un ordenador Intel Core 17-5500U CPU, 2401 Mhz, 7.2Gflops, utilizando
Java 1.8 (jdk1.8.0_92). Los pardmetros utilizados han sido siempre los mismos, mencionados en 3.1.3.
El valor de la distancia recorrida ha sido redondeado a 2 decimales y en las operaciones internas se ha
trabajado con 4 decimales.

Las siguientes tablas muestran las soluciones obtenidas en una tnica ejecucién del algoritmo:

Problema ntimero 1 ciudades 0 =160 L =999999.00
rutas visitadas capacidad tiempo
0 46 5 49 10 39 33 45 15 44 37 12 0 11 160 99,25
0 11 2 29 21 16 50 34 30 9 38 0 10 159 99,33
0 18 13 41 40 19 42 17 4 47 0 9 157 109,06
0 6 14 25 24 43 7 23 48 27 0 9 152 98,45
0 8 26 31 28 3 36 35 20 22 1 32 0 11 149 118,52
k=5 n=50 777 524,61
Problema nimero 2 ciudades Q=140 L =999999,00
rutas visitadas capacidad tiempo
0 57 15 37 20 70 60 71 69 36 5 29 0 11 139 114,76
0 16 23 56 41 64 42 43 63 0 8 134 108,59
0 72 39 9 25 55 31 10 58 0 8 139 110,55
0 53 11 66 65 38 0 5 129 77,16
0 30 48 47 21 61 22 1 73 0 8 140 92,72
0 68 2 74 28 62 33 6 0 7 139 62,25
0 17 40 12 26 67 75 0 6 137 43,41
0 7 35 14 59 19 54 13 27 0 8 140 97,20
0 51 49 24 18 50 32 44 3 0 8 135 89,66
0 34 46 8 52 45 4 0 6 132 47,39
k=10 n=75 1364 843,68
Problema nimero 3 ciudades Q =200 L =999999,00
rutas visitadas capacidad tiempo
0 6 99 61 16 86 38 44 14 43 42 87 13 0 12 194 111,50
0 94 95 97 92 37 98 100 91 85 93 59 96 0 12 199 59,35
0 89 18 83 60 5 84 17 45 8 46 36 47 48 82 7 52 0 16 200 124,38
0 31 10 32 90 63 64 49 19 11 62 88 0 11 175 124,65
0 76 77 3 78 34 35 71 65 66 20 30 70 1 69 27 0 15 192 123,46
0 50 51 9 81 33 79 29 24 68 80 12 28 0 12 188 98,97
0 4 56 23 67 39 25 55 54 26 0 9 153 107,17
0 58 2 57 15 41 22 75 74 72 73 21 40 53 0 13 157 83,10
k=8 n=100 1458 832,57
Problema nimero 4 ciudades Q=200 L =999999,00
rutas visitadas capacidad tiempo
0 53 58 137 2 115 57 144 87 97 92 59 95 117 13 0 14 195 66,00
0 93 85 91 141 44 140 38 14 119 100 37 98 0 12 196 93,15
0 27 69 122 30 128 131 32 90 63 126 108 10 31 127 0 14 200 88,51
0 111 50 102 33 81 120 9 103 51 1 132 0 11 191 74,38
0 96 104 99 61 16 86 113 17 84 5 118 60 0 12 198 81,45
0 105 40 21 73 72 74 75 133 22 41 145 15 43 142 42 0 15 190 98,84
0 28 76 80 150 68 121 29 24 134 54 109 12 138 0 13 190 76,50
0 26 149 130 55 25 139 39 67 23 56 4 110 0 12 191 108,63
0 89 147 6 94 112 0 5 99 29,40
0 116 77 3 79 129 78 34 135 35 136 65 71 66 20 70 101 0 16 200 122,37
0 88 148 62 107 11 64 49 143 36 47 19 123 7 0 13 196 120,33
0 146 52 106 82 48 124 46 45 125 8 114 83 18 0 13 189 89,95
k=12 n=150 2235 1049,51
Problema nimero 5 ciudades Q=200 L =999999,00
rutas visitadas capacidad tiempo
0 147 6 183 94 95 97 87 137 58 152 0 10 193 46,63
0 153 106 194 7 82 18 166 89 112 156 0 10 158 56,99
0 64 49 143 36 47 168 48 124 46 174 8 114 0 12 199 130,80
0 61 16 86 140 38 14 192 119 44 141 191 91 0 12 191 103,37
0 96 104 99 5 84 173 113 17 45 125 199 83 60 118 0 14 197 82,39
0 132 69 101 162 31 190 127 167 27 0 9 152 42,88
0 146 88 148 62 159 11 175 107 19 123 182 52 0 12 194 77,00
0 171 133 22 41 145 15 43 142 42 172 144 57 178 115 2 0 15 198 101,05
0 180 198 110 197 56 186 23 75 74 72 73 21 40 0 13 193 79,60
0 28 138 154 12 177 109 195 26 105 53 0 10 181 45,30
0 13 117 151 92 98 37 100 193 85 93 59 0 11 190 56,16
0 111 50 102 157 185 79 129 3 158 77 196 76 0 12 199 57,06
0 161 71 66 65 136 35 135 164 34 78 169 0 11 191 125,69
0 130 165 55 25 170 67 39 187 139 155 4 0 11 181 94,81
0 184 116 68 150 80 121 29 24 163 134 54 179 149 0 13 193 77,36
0 33 81 120 9 103 188 128 20 51 122 1 176 0 12 190 90,95
0 10 189 108 90 126 63 181 32 131 160 30 70 0 12 186 92,32

k=17 n=199 3186 1360,35
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Problema nimero 6 ciudades Q=160 L = 200,00
rutas visitadas capacidad tiempo
0 32 11 16 29 21 50 34 30 9 38 0 10 141 195,33
0 12 37 44 15 45 33 39 10 49 5 0 10 155 199,12
0 14 25 13 41 40 19 42 17 0 8 131 189,94
0 27 48 8 26 7 43 24 23 6 0 9 133 190,64
0 2 20 35 36 3 28 31 22 1 0 9 137 198,08
0 46 47 4 18 0 4 80 82,33
k=6 n=50 771 1055,43
Problema nimero 7 ciudades Q=140 L =160,00
rutas visitadas capacidad tiempo
0 4 45 29 5 37 36 47 74 0 8 140 157,79
0 12 9 25 55 50 32 17 0 7 136 158,40
0 48 69 71 60 70 20 0 6 77 159,13
0 40 72 39 31 10 58 26 0 7 140 155,93
0 3 44 18 24 49 16 51 0 7 104 156,10
0 73 42 64 22 62 2 68 0 7 111 159,95
0 33 1 43 41 56 23 63 0 7 121 154,46
0 46 8 19 59 14 35 7 0 7 138 151,36
0 53 11 66 65 38 0 5 129 127,16
0 6 28 61 21 30 75 0 6 133 135,45
0 27 15 57 13 54 52 34 67 0 8 135 157,54
k=11 n=75 1364 1673,25
Problema nimero 8 ciudades Q=200 L =230,00
rutas visitadas capacidad tiempo
0 52 7 19 11 64 49 36 47 48 82 18 0 11 178 227,55
0 50 33 81 9 35 71 65 66 20 51 1 0 11 163 22793
0 27 69 70 30 32 90 63 10 62 88 31 0 11 155 200,12
0 12 80 68 24 29 34 78 79 3 77 76 28 0 12 169 210,26
0 54 55 25 39 67 23 56 4 26 0 9 153 197,08
0 95 97 92 37 98 100 91 85 93 59 94 0 11 188 168,46
0 58 2 57 41 22 75 74 72 73 21 40 53 0 12 149 194,83
0 6 96 99 5 84 17 45 46 8 83 60 89 0 12 113 212,04
0 61 16 86 38 44 14 43 15 42 87 13 0 11 190 228,60
k=9 n=100 1458 1866,87
Problema nimero 9 ciudades Q=200 L = 200,00
rutas visitadas capacidad tiempo
0 18 114 8 46 36 47 124 48 82 106 0 10 152 193,76
0 107 11 64 49 143 19 123 7 52 0 9 128 199,95
0 104 99 5 84 17 45 125 83 60 118 147 89 0 12 192 195,70
0 146 127 88 148 62 126 63 90 70 101 69 27 0 12 119 195,92
0 113 86 140 38 14 119 44 141 16 0 9 174 194,07
0 6 96 59 93 85 61 91 100 98 37 92 95 0 12 176 183,76
0 13 87 144 57 15 43 142 42 97 117 94 112 0 12 176 199,20
0 53 40 21 73 74 133 22 41 145 115 2 137 58 0 13 151 197,04
0 28 116 68 80 150 54 130 55 25 149 26 105 0 12 184 199,27
0 110 4 139 39 67 23 56 75 72 0 9 172 186,11
0 76 77 3 129 78 34 35 135 120 9 0 10 132 191,20
0 138 12 109 134 24 29 121 79 81 33 102 0 11 181 192,13
0 132 1 122 30 128 131 32 108 10 31 0 10 165 179,08
0 111 50 51 103 71 136 65 66 20 0 9 133 199,64
k=14 n=150 2235 2706,83
Problema ntimero 10 ciudades Q=200 L =200,00
rutas visitadas capacidad tiempo
0 89 166 114 8 174 46 45 125 199 83 60 118 0 12 196 199,58
0 64 49 143 36 47 168 124 0 7 105 182,61
0 27 132 176 1 185 79 129 3 158 77 196 76 28 0 13 194 192,64
0 146 52 153 106 194 7 182 148 88 31 190 127 69 0 13 197 191,81
0 165 55 25 170 67 39 187 139 155 4 0 10 162 194,62
0 6 99 104 59 93 85 100 37 98 151 92 97 117 0 13 182 187,94
0 137 2 178 115 145 41 22 133 74 171 152 58 0 12 191 186,69
0 180 198 110 197 56 23 186 75 72 73 21 40 0 12 185 199,88
0 159 62 11 175 107 19 123 48 82 18 0 10 190 182,49
0 154 138 12 80 150 177 109 195 149 26 105 53 0 12 199 170,32
0 111 184 116 68 121 29 24 163 134 54 130 179 0 12 197 198,22
0 160 131 32 181 63 126 90 108 10 189 0 10 160 191,62
0 156 0 1 19 14,47
0 13 87 144 57 15 43 142 42 172 95 94 112 0 12 193 199,63
0 183 96 61 16 86 113 17 173 84 5 147 0 11 194 192,68
0 20 188 103 161 71 65 66 128 0 8 160 191,38
0 169 78 34 164 135 35 136 9 120 0 9 138 191,63
0 193 91 191 141 44 140 38 14 119 192 0 10 142 191,63
0 167 162 101 70 30 122 51 81 33 157 102 50 0 12 182 193,27
k=19 n=199 3186 3453,11
Problema niimero 11 ciudades Q=200 L =999999,00
rutas visitadas capacidad tiempo
0 52 54 57 59 65 61 62 64 66 63 60 56 58 55
53 0 15 192 213,63
0 21 20 23 26 28 32 35 29 36 34 31 30 33 27
24 22 25 19 16 17 0 20 184 207,51
0 8 12 13 14 15 11 10 9 7 6 5 4 3 1
2 0 15 195 134,96
0 120 105 106 107 104 100 116 98 110 115 109 108 118 18
114 90 91 89 86 111 88 0 21 197 86,28
0 103 73 76 68 77 79 80 78 72 75 74 71 70 69
67 0 15 200 144,41
0 37 38 39 42 41 44 46 47 49 50 51 48 45 43
40 0 15 191 199,62
0 87 95 102 101 99 97 94 96 93 92 85 112 84 113
83 117 81 82 0 18 196 66,67
0 119 0 1 20 14,14

k=8 n=120 1375 1067,22
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Problema nimero 12 ciudades Q=200 L =999999,00
rutas visitadas capacidad tiempo
0 98 96 95 94 92 93 97 100 99 0 9 190 95,94
0 5 3 7 8 11 9 6 4 2 1 75 0 11 170 56,17
0 67 65 63 74 62 66 0 6 150 43,59
0 43 42 41 40 44 46 45 48 51 50 52 49 47 0 13 160 64,81
0 57 59 60 58 56 53 54 55 0 8 200 101,88
0 13 17 18 19 15 16 14 12 10 0 9 200 96,04
0 34 36 39 38 37 35 31 33 32 0 9 200 97,23
0 21 22 23 26 28 30 29 27 25 24 20 0 11 170 50,80
0 69 68 64 61 72 80 79 77 73 70 71 76 78 81 0 14 200 137,02
0 90 87 86 83 82 84 85 88 89 91 0 10 170 76,07
k=10 n=100 1810 819,56
Problema nimero 13 ciudades Q=200 L =720,00
rutas visitadas capacidad tiempo
0 102 101 99 100 116 98 110 115 97 94 93 96 95 0 13 132 702,67
0 92 89 91 90 114 118 18 84 112 85 86 111 88 0 13 128 692,61
0 73 71 74 72 75 78 80 79 77 76 68 0 11 141 686,49
0 57 62 64 66 63 60 56 58 55 53 0 10 114 705,09
0 42 48 45 43 40 59 65 61 54 52 0 10 147 719,34
0 39 38 47 51 50 49 46 44 41 37 0 10 122 689,69
0 16 19 22 24 25 23 26 21 20 17 0 10 123 673,33
0 28 32 35 31 27 30 33 34 36 29 0 10 61 696,34
0 87 109 108 6 5 1 2 83 113 117 81 82 0 12 145 716,44
0 7 9 10 4 3 11 15 14 13 12 8 0 11 144 672,77
0 105 106 107 104 103 67 70 69 120 119 0 10 118 618,44
k=11 n=120 1375 7573,21
Problema nimero 14 ciudades Q=200 L =1040,00
rutas visitadas capacidad tiempo
0 67 65 63 62 74 72 61 64 68 66 0 10 190 958,14
0 75 96 95 97 100 99 2 1 3 5 0 10 180 990,29
0 98 94 93 92 85 84 82 83 86 87 0 10 200 1014,88
0 57 55 54 53 56 58 60 59 0 8 200 821,88
0 29 34 37 38 39 36 30 28 26 23 0 10 160 991,84
0 80 79 77 73 70 71 76 78 81 0 9 150 937,30
0 69 41 40 44 45 48 51 50 0 8 80 783,29
0 13 17 18 19 15 16 14 12 10 0 9 200 906,04
0 7 8 11 9 6 4 91 88 89 90 0 10 150 982,01
0 32 33 35 31 52 49 47 46 42 43 0 10 190 990,01
0 20 24 27 25 22 21 0 6 110 575,03
k=11 n=100 1810 9950,71

A continuacién, comparamos el resultado de la funcién objetivo, la suma del tiempo de todas las
rutas, entre los resultados que mencionan en Gendreau et al. (1994) y los obtenidos por la implementa-
cion desarrollada en esta memoria. Cabe mencionar que en todas las tablas que aqui presentamos hemos
incluido el tiempo de servicio 6 de los nodos, mientras que en Gendreau et al. (1994) hay que sumarlos
aparte. En los problemas 1, 6 y 12 se obtiene el mismo resultado mientras que en el resto la diferencia
relativa es menor que el 4 %.

Problema
Gendreau et al. (1994)
Implementacién desarrollada
Diferencia relativa

Problema
Gendreau et al. (1994)
Implementaci6n desarrollada
Diferencia relativa

1
524,61
524,61

0%

12
819,56
819,56

0%

2
835,32
843,68

1%

13
754593
7573,21

0.36 %

3
826,14
832,57
0.78 %

14
9866,37
9950,71

0.85%

4 5
1031,07 1311,35
1049,51 1360,35
1.79% 3.74%

6
1055,43
1055,43

0%

7
1659,68
1673,25
0.82%

8
1865,94
1866,87
0.05%

2662,89
2706,83
1.65%

9

10
3394,75
3453,11

1.72%

11

1042,11
1067,22
2.41%

Finalmente mostramos la comparacidn, para cada uno de los problemas, entre el tiempo de cdlculo
indicado en Gendreau et al. (1994) y el de nuestra implementacién. Debe tenerse en cuenta que el tiempo
utilizado depende esencialmente de la potencia y velocidad de los procesadores de los ordenadores
empleados. Todos los tiempos se dan en segundos redondeados a dos decimales.

Problema
Gendreau et al. (1994)
Implementacion desarrollada

1

2

3

360 3228 1104
9,90 30,85 65,91

4
3528
243,57

5
54
246,78

6
810
12,44

7
3276
30,61

8
1536
36,84

9
4260
101,11

10
5988
195,70

11
1332
79,76

12
960
32,09

13
3552
47,99

14
3942
36,06
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Siglas

ACO - Ant Colony Optimization, 10 VRPDDP - VRP with Divisible Deliveries and Pic-
ARP - Arc Routing Problems, 5 kups, 5
VRPM - VRP with Multiple use of vehicles, 6
CG - Generacion de columnas, 8 VRPMS - VRP with Multiple Synchronization cons-
ConVRP - Consistent VRP, 7 traints, 7
CVRP - Capacitated Vehicle Routing Problem, 1 yvRPSPD - VRP with Simultaneous Pickup and De-
livery, 5

DA - Deterministic Annealing, 9

) B VRPTW - VRP with Time Windows, 6
DARP - Dial-a-Ride Problem, 5

EA - Evolutionary Algorithms, 10

GA - Genetic Algorithms, 10
GRP - General Routing Problems, 5

HFVRP - Heterogeneous or mixed Fleet VRP, 6

ILS - Iterated Local Search, 10
IRP - Inventory Routing Problem, 6

MDVRP - Multi(ple) Depot VRP, 6

MVCTP - Multi-Vehicle Covering Tour Problem,
5

MVRPB - Mixed VRPB, 5

PCVRP - Prize-Collecting VRP, 6
PDP - Pickup-and-Delivery Problem, 5
PTP - Profitable Tour Problem, 6
PVRP - Periodic VRP, 6

SA - Simulated Annealing, 9
SDVRP - Split Delivery VRP, 6

TOP - Team Orienteering Problem, 6
TP - Problema de transporte, 7

TS - Tabu Search, 9, 11

TSP - Traveling Salesman Problem, 2

VNS - Variable Neighborhood Search, 10
VRP - Vehicle Routing Problems, 1
VRP1, 2

VRP2, 3

VRP3, 3

VRP4, 4

VRP5, 4

VRPB - VRP with Backhauls, 5
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