
Algoritmos de Búsqueda Tabú
Aplicación en un problema de rutas

Anexo

Abel Naya Forcano
Trabajo de fin de grado en Matemáticas

Universidad de Zaragoza

Directores del trabajo:
Herminia I. Calvete
Ángel R. Francés

Julio de 2016

Una implementación del algoritmo
Taburoute

Este documento es un anexo al trabajo fin de grado ‘Algoritmos de Búsqueda Tabú. Aplicación en un
problema de rutas’. Contiene el código fuente, en el lenguaje de programación Java, de una implemen-
tación propia del algoritmo presentado en el articulo de Gendreau et al. (A tabu search heuristic for the
vehicle routing problem. Management Science, 40(10):1276–1290, 1994). Las 23 clases que componen
el programa son las siguientes:

1. EstructuraTabu.java . 1
2. Genius.java . 3
3. Grafo.java . 4
4. RP_insert.java . 8
5. RP_insert_1o2.java . 9
6. RP_insert_I.java . 10
7. RP_insert_II.java . 11
8. RP_insert_IIr.java . 12
9. RP_insert_Ir.java . 13
10. RP_remove.java . 14
11. RP_remove_0.java . 15
12. RP_remove_1.java . 16
13. RP_remove_I.java . 17
14. RP_remove_II.java . 18
15. RP_remove_IIr.java . 19
16. RP_remove_Ir.java . 20
17. Ruta.java . 21
18. RutaAbstracta.java . 38
19. RutaProxi.java . 42
20. Solucion.java . 45
21. SolucionAbstracta.java . 50
22. SolucionProxi.java . 51
23. TabuRoute.java . 55

III

TS-VRP - Abel Naya Forcano 1

Clase 1: EstructuraTabu.java
1 import java.util.HashMap;

2 import java.util.Map;

3
4 /**

5 * Especifica cuando la inserci ón de un nodo en una ruta en una

iteraci ón es Tabu

6 */

7 public class EstructuraTabu {

8
9 /**

10 * Representa un par nodo -ruta

11 */

12 private static class _Par {

13
14 private final int nodo , ruta;

15
16 @Override

17 public int hashCode () {

18 int hash = 7;

19 hash = 23 * hash + this.nodo;

20 hash = 23 * hash + this.ruta;

21 return hash;

22 }

23
24 @Override

25 public boolean equals(Object obj) {

26 if (obj == null) {

27 return false;

28 }

29 if (getClass () != obj.getClass ()) {

30 return false;

31 }

32 final _Par other = (_Par) obj;

33 if (this.nodo != other.nodo) {

34 return false;

35 }

36 if (this.ruta != other.ruta) {

37 return false;

38 }

39 return true;

40 }

41
42 public _Par(int nodo , int ruta) {

43 this.nodo = nodo;

44 this.ruta = ruta;

45 }

46
47 }

48
49 /**

50 * La estructura tab ú

51 */

52 private final Map <_Par , Integer > tabu;

53
54 /**

55 * Inicializa una estructura tabu donde ning ún movimiento es tab ú

56 */

2 Una implementación del algoritmo Taburoute

57 public EstructuraTabu () {

58 tabu = new HashMap <>();

59 }

60
61 /**

62 * Comprueba si insertar el nodo en la ruta en una iteraci ón es

tabu o no

63 */

64 boolean isTabu(int nodo , int ruta , int iteracion) {

65 Integer value = tabu.get(new _Par(nodo , ruta));

66
67 if (value == null) {

68 return false;

69 }

70
71 return iteracion <= value;

72 }

73
74 /**

75 * Marca como tabu la inserci ón del nodo en la ruta hasta la

iteraci ón dada

76 */

77 void setTabu(int nodo , int ruta , int iteracion) {

78 tabu.put(new _Par(nodo , ruta), iteracion);

79 }

80
81 }

TS-VRP - Abel Naya Forcano 3

Clase 2: Genius.java
1 /**

2 * Representa el algoritmo GENIUS

3 */

4 public class Genius {

5
6 /**

7 * Genera un nuevo array con los nodos reorganizados insertando los

8 * elementos de la secuencia mediante GENI y realizando US

posteriormente

9 */

10 public static int[] ejecutar(int[] sequence) {

11 int p = 5;

12 Ruta res = new Ruta();

13 for (int v : sequence) {

14 res.stringing(v, p)

15 .modificarRuta ();

16 }

17
18 res.us(p);

19
20 return res.toArray ();

21 }

22
23 }

4 Una implementación del algoritmo Taburoute

Clase 3: Grafo.java
1 import java.io.BufferedReader;

2 import java.util.Arrays;

3 import java.util.Comparator;

4 import java.util.Scanner;

5
6 /**

7 * Almacena los parametros del problema

8 */

9 public class Grafo {

10
11 /**

12 * Un valor considerado infinito

13 */

14 private static double infinity;

15
16 /**

17 * Numero de nodos

18 */

19 private static int n;

20
21 /**

22 * numero maximo de rutas

23 */

24 private static int mbar;

25
26 /**

27 * Matriz de adyacencia

28 */

29 private static double [][] cij;

30
31 /**

32 * Distancia maxima de las rutas

33 */

34 private static double l;

35
36 /**

37 * Capacidad maxima de las rutas

38 */

39 private static double q;

40
41 /**

42 * Capacidad de cada nodo

43 */

44 private static double [] qi;

45
46 /**

47 * Tiempo de servicio de cada nodo

48 */

49 private static double [] di;

50
51 /**

52 * Una lista de arrays de los vecinos mas cercanos

53 */

54 private static int [][] nearest;

55
56 /**

57 * Lee los parametros de un fichero

TS-VRP - Abel Naya Forcano 5

58 */

59 public static void inicializar(BufferedReader file) {

60 Scanner sc = new Scanner(file);

61 n = sc.nextInt ();

62 mbar = n;

63 q = sc.nextInt ();

64 l = sc.nextInt ();

65 int dropTime = sc.nextInt ();

66 nearest = new int[n + 1][n];

67 qi = new double[n + 1];

68 di = new double[n + 1];

69 cij = new double[n + 1][n + 1];

70 Integer [] nodos = new Integer[n + 1];

71 int x[] = new int[n + 1];

72 int y[] = new int[n + 1];

73 x[0] = sc.nextInt ();

74 y[0] = sc.nextInt ();

75 qi[0] = 0;

76 di[0] = 0;

77 nodos [0] = 0;

78 infinity = 0;

79 for (int c = 1; c <= n; ++c) {

80 x[c] = sc.nextInt ();

81 y[c] = sc.nextInt ();

82 qi[c] = sc.nextInt ();

83 di[c] = dropTime;

84 cij[c][c] = 0;

85 nodos[c] = c;

86 for (int d = 0; d < c; ++d) {

87 double dist = Math.sqrt(Math.pow(x[d] - x[c], 2) +

Math.pow(y[d] - y[c], 2));

88 dist = Math.round(dist * 10000d) / 10000d;

89 cij[c][d] = dist;

90 cij[d][c] = dist;

91 infinity += dist;

92 }

93 }

94 ComparadorNoDirigido comparador = new ComparadorNoDirigido ();

95 for (int c = 1; c <= n; ++c) {

96 comparador.setOrigen(c);

97 Arrays.sort(nodos , comparador);

98 int pos = 0;

99 for (int d : nodos) {

100 if (d == c) {

101 continue;

102 }

103 nearest[c][pos] = d;

104 pos++;

105 }

106 }

107 }

108
109 public static double getInfinity () {

110 return infinity;

111 }

112
113 public static int getN() {

114 return n;

6 Una implementación del algoritmo Taburoute

115 }

116
117 public static int getMbar () {

118 return mbar;

119 }

120
121 public static double getCij(int from , int to) {

122 return cij[from][to];

123 }

124
125 public static double getQi(int id) {

126 return qi[id];

127 }

128
129 public static double getDi(int id) {

130 return di[id];

131 }

132
133 public static double getQ() {

134 return q;

135 }

136
137 public static double getL() {

138 return l;

139 }

140
141 public static int[] getNearestNodos(int v) {

142 return nearest[v];

143 }

144
145 /**

146 * Muestra la informaci ón por pantalla

147 */

148 public static void showData () {

149 System.out.println("***************************");

150 System.out.println("********** Data ***********");

151 System.out.println("***************************");

152 System.out.println("INFINITY: " + infinity);

153 System.out.println("n: " + n);

154 System.out.println("mbar: " + mbar);

155 System.out.println("L: " + l);

156 System.out.println("Q: " + q);

157 System.out.println ();

158 System.out.println("Qi:");

159 System.out.println(Arrays.toString(qi));

160 System.out.println("Di:");

161 System.out.println(Arrays.toString(di));

162 System.out.println ();

163 System.out.println("Cij:");

164 for (double [] row : cij) {

165 for (double column : row) {

166 System.out.print(String.format(" %6.2f ", column));

167 }

168 System.out.print("\n");

169 }

170 System.out.println ();

171 System.out.println("nearest:");

172 for (int i = 1; i < nearest.length; ++i) {

TS-VRP - Abel Naya Forcano 7

173 System.out.println(i + ": " + Arrays.toString(nearest[i]));

174 }

175 }

176
177 /**

178 * Un comparador que ordena nodos basados en la menor distancia:

min{cij , cji}

179 */

180 private static class ComparadorNoDirigido implements

Comparator <Integer > {

181
182 private int origen;

183
184 public void setOrigen(int origen) {

185 this.origen = origen;

186 }

187
188 @Override

189 public int compare(Integer o1, Integer o2) {

190 double dif = Math.min(getCij(origen , o1), getCij(o1,

origen)) - Math.min(getCij(origen , o2), getCij(o2,

origen));

191 return dif > 0 ? 1 : dif < 0 ? -1 : 0;

192 }

193 }

194 }

8 Una implementación del algoritmo Taburoute

Clase 4: RP_insert.java
1 /**

2 * Una modificacion en la que se inserta el nodo en la ruta

3 */

4 public abstract class RP_insert extends RutaProxi {

5
6 public RP_insert(Ruta original , Nodo v, double deltaCost) {

7 super(original , v, deltaCost);

8 }

9
10 @Override

11 public double getSumQi () {

12 super.getSumQi ();

13
14 return getRuta ().getSumQi () + Grafo.getQi(getV().getId());

15 }

16
17 @Override

18 public double getSumDi () {

19 super.getSumDi ();

20
21 return getRuta ().getSumDi () + Grafo.getDi(getV().getId());

22 }

23
24 }

TS-VRP - Abel Naya Forcano 9

Clase 5: RP_insert_1o2.java
1 /**

2 * La modificaci ón de una ruta que pasar á a tener los nodos dados en

orden

3 */

4 public class RP_insert_1o2 extends RP_insert {

5
6 private final Nodo[] orden;

7
8 public RP_insert_1o2(Nodo[] orden , Ruta original , Nodo v, double

deltaCost) {

9 super(original , v, deltaCost);

10 this.orden = orden;

11 }

12
13 @Override

14 public void internal_modificar () {

15
16 Nodo o = getRuta ().getOrigen ();

17
18 join(o, orden [0]);

19
20 for (int i = 0; i < orden.length - 1; i++) {

21 join(orden[i], orden[i + 1]);

22 }

23
24 join(orden[orden.length - 1], o);

25
26 getRuta ().actualizarInsertado(getV());

27 }

28
29 }

10 Una implementación del algoritmo Taburoute

Clase 6: RP_insert_I.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo I

en el sentido original

3 */

4 public class RP_insert_I extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9
10 public RP_insert_I(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk) {

11 super(original , v, deltaCost);

12 this.vi = vi;

13 this.vj = vj;

14 this.vk = vk;

15
16 }

17
18 @Override

19 public void internal_modificar () {

20 Ruta ruta = getRuta ();

21
22 Nodo v = getV();

23 Nodo viNext = vi.getNext ();

24 Nodo vjNext = vj.getNext ();

25 Nodo vkNext = vk.getNext ();

26
27 reverseNodos(viNext , vj);

28 reverseNodos(vjNext , vk);

29
30 join(vi, v);

31
32 join(v, vj);

33
34 join(viNext , vk);

35
36 join(vjNext , vkNext);

37
38 ruta.actualizarInsertado(getV());

39
40 }

41
42 }

TS-VRP - Abel Naya Forcano 11

Clase 7: RP_insert_II.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo

II en el sentido original

3 */

4 public class RP_insert_II extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9 private final Nodo vl;

10
11 public RP_insert_II(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk, Nodo vl) {

12 super(original , v, deltaCost);

13 this.vi = vi;

14 this.vj = vj;

15 this.vk = vk;

16 this.vl = vl;

17 }

18
19 @Override

20 public void internal_modificar () {

21 Ruta ruta = getRuta ();

22
23 Nodo v = getV();

24 Nodo viNext = vi.getNext ();

25 Nodo vjNext = vj.getNext ();

26 Nodo vkPrev = vk.getPrev ();

27 Nodo vlPrev = vl.getPrev ();

28
29 reverseNodos(viNext , vlPrev);

30 reverseNodos(vl, vj);

31
32 join(vi, v);

33
34 join(v, vj);

35
36 join(vl, vjNext);

37
38 join(vkPrev , vlPrev);

39
40 join(viNext , vk);

41
42 ruta.actualizarInsertado(getV());

43
44 }

45 }

12 Una implementación del algoritmo Taburoute

Clase 8: RP_insert_IIr.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo

II en el sentido contrario

3 */

4 public class RP_insert_IIr extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9 private final Nodo vl;

10
11 public RP_insert_IIr(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk, Nodo vl) {

12 super(original , v, deltaCost);

13 this.vi = vi;

14 this.vj = vj;

15 this.vk = vk;

16 this.vl = vl;

17 }

18
19 @Override

20 public void internal_modificar () {

21 Ruta ruta = getRuta ();

22
23 Nodo v = getV();

24 Nodo viNext = vi.getPrev ();

25 Nodo vjNext = vj.getPrev ();

26 Nodo vkPrev = vk.getNext ();

27 Nodo vlPrev = vl.getNext ();

28
29 reverseNodos(vi, vk);

30 reverseNodos(vkPrev , vjNext);

31
32 join(vi, v);

33
34 join(v, vj);

35
36 join(vl, vjNext);

37
38 join(vkPrev , vlPrev);

39
40 join(viNext , vk);

41
42 ruta.actualizarInsertado(getV());

43
44 }

45 }

TS-VRP - Abel Naya Forcano 13

Clase 9: RP_insert_Ir.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo I

en el sentido contrario

3 */

4 public class RP_insert_Ir extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9
10 public RP_insert_Ir(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk) {

11 super(original , v, deltaCost);

12 this.vi = vi;

13 this.vj = vj;

14 this.vk = vk;

15
16 }

17
18 @Override

19 public void internal_modificar () {

20 Ruta ruta = getRuta ();

21
22 Nodo v = getV();

23 Nodo viNext = vi.getPrev ();

24 Nodo vjNext = vj.getPrev ();

25 Nodo vkNext = vk.getPrev ();

26
27 reverseNodos(vi, vkNext);

28
29 join(vi, v);

30
31 join(v, vj);

32
33 join(viNext , vk);

34
35 join(vjNext , vkNext);

36
37 ruta.actualizarInsertado(getV());

38
39 }

40 }

14 Una implementación del algoritmo Taburoute

Clase 10: RP_remove.java
1 /**

2 * Una modificaci ón en la que se elimina el nodo de la ruta

3 */

4 public abstract class RP_remove extends RutaProxi {

5
6 public RP_remove(Ruta original , Nodo v, double deltaCost) {

7 super(original , v, deltaCost);

8 }

9
10 @Override

11 public double getSumQi () {

12 super.getSumQi ();

13
14 return getRuta ().getSumQi () - Grafo.getQi(getV().getId());

15 }

16
17 @Override

18 public double getSumDi () {

19 super.getSumDi ();

20
21 return getRuta ().getSumDi () - Grafo.getDi(getV().getId());

22 }

23 }

TS-VRP - Abel Naya Forcano 15

Clase 11: RP_remove_0.java
1 /**

2 * La modificacion de una ruta que pasar á a tener ú nicamente el origen

3 */

4 public class RP_remove_0 extends RP_remove {

5
6 public RP_remove_0(Ruta original , Nodo v, double deltaCost) {

7 super(original , v, deltaCost);

8 }

9
10 @Override

11 public void internal_modificar () {

12 Nodo origen = getRuta ().getOrigen ();

13
14 join(origen , origen);

15
16 getRuta ().actualizarRemovido(getV());

17 }

18
19 }

16 Una implementación del algoritmo Taburoute

Clase 12: RP_remove_1.java
1 /**

2 * La modificaci ón de una ruta que pasar á a tener un solo vé rtice

3 */

4 class RP_remove_1 extends RP_remove {

5
6 private final Nodo a;

7
8 public RP_remove_1(Nodo a, Ruta route , Nodo v, double deltaCost) {

9 super(route , v, deltaCost);

10 this.a = a;

11 }

12
13 @Override

14 public void internal_modificar () {

15 Ruta ruta = getRuta ();

16
17 Nodo origen = ruta.getOrigen ();

18
19 join(origen , a);

20 join(a, origen);

21
22 ruta.actualizarRemovido(getV());

23 }

24
25 }

TS-VRP - Abel Naya Forcano 17

Clase 13: RP_remove_I.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo I en el sentido original

3 */

4 public class RP_remove_I extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8
9 public RP_remove_I(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk) {

10 super(original , v, deltaCost);

11 this.vj = vj;

12 this.vk = vk;

13 }

14
15 @Override

16 public void internal_modificar () {

17 Ruta ruta = getRuta ();

18
19 Nodo vi = getV();

20 Nodo viNext = vi.getNext ();

21 Nodo viPrev = vi.getPrev ();

22 Nodo vjNext = vj.getNext ();

23 Nodo vkNext = vk.getNext ();

24
25 reverseNodos(viNext , vk);

26 reverseNodos(vkNext , vj);

27
28 join(viPrev , vk);

29
30 join(viNext , vj);

31
32 join(vkNext , vjNext);

33
34 ruta.actualizarRemovido(getV());

35
36 }

37
38 }

18 Una implementación del algoritmo Taburoute

Clase 14: RP_remove_II.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo II en el sentido original

3 */

4 public class RP_remove_II extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8 private final Nodo vl;

9
10 public RP_remove_II(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk, Nodo vl) {

11 super(original , v, deltaCost);

12 this.vj = vj;

13 this.vk = vk;

14 this.vl = vl;

15 }

16
17 @Override

18 public void internal_modificar () {

19 Ruta ruta = getRuta ();

20
21 Nodo vi = getV();

22 Nodo viNext = vi.getNext ();

23 Nodo viPrev = vi.getPrev ();

24 Nodo vjPrev = vj.getPrev ();

25 Nodo vkNext = vk.getNext ();

26 Nodo vlNext = vl.getNext ();

27
28 reverseNodos(viNext , vjPrev);

29 reverseNodos(vlNext , vk);

30
31 join(viPrev , vk);

32
33 join(vlNext , vjPrev);

34
35 join(viNext , vj);

36
37 join(vl, vkNext);

38
39 ruta.actualizarRemovido(getV());

40
41 }

42 }

TS-VRP - Abel Naya Forcano 19

Clase 15: RP_remove_IIr.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo II en el sentido contrario

3 */

4 public class RP_remove_IIr extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8 private final Nodo vl;

9
10 public RP_remove_IIr(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk, Nodo vl) {

11 super(original , v, deltaCost);

12 this.vj = vj;

13 this.vk = vk;

14 this.vl = vl;

15 }

16
17 @Override

18 public void internal_modificar () {

19 Ruta ruta = getRuta ();

20
21 Nodo vi = getV();

22 Nodo viNext = vi.getPrev ();

23 Nodo viPrev = vi.getNext ();

24 Nodo vjPrev = vj.getNext ();

25 Nodo vkNext = vk.getPrev ();

26 Nodo vlNext = vl.getPrev ();

27
28 reverseNodos(vl, vj);

29 reverseNodos(viPrev , vkNext);

30
31 join(viPrev , vk);

32
33 join(vlNext , vjPrev);

34
35 join(viNext , vj);

36
37 join(vl, vkNext);

38
39 ruta.actualizarRemovido(getV());

40
41 }

42
43 }

20 Una implementación del algoritmo Taburoute

Clase 16: RP_remove_Ir.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo I en el sentido contrario

3 */

4 public class RP_remove_Ir extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8
9 public RP_remove_Ir(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk) {

10 super(original , v, deltaCost);

11 this.vj = vj;

12 this.vk = vk;

13 }

14
15 @Override

16 public void internal_modificar () {

17 Ruta ruta = getRuta ();

18
19 Nodo vi = getV();

20 Nodo viNext = vi.getPrev ();

21 Nodo viPrev = vi.getNext ();

22 Nodo vjNext = vj.getPrev ();

23 Nodo vkNext = vk.getPrev ();

24
25 reverseNodos(viPrev , vjNext);

26
27 join(viPrev , vk);

28
29 join(viNext , vj);

30
31 join(vkNext , vjNext);

32
33 ruta.actualizarRemovido(getV());

34
35 }

36 }

TS-VRP - Abel Naya Forcano 21

Clase 17: Ruta.java
1 import java.util.Iterator;

2 import java.util.TreeSet;

3
4 /**

5 * Representa una ruta real

6 */

7 public class Ruta extends RutaAbstracta {

8
9 /**

10 * El proximo id para la proxima ruta creada

11 */

12 static private int id_ruta_Next = 1;

13
14 /**

15 * el id de esta ruta

16 */

17 private final int id_ruta;

18
19 /**

20 * numero de clientes (origen no incluido)

21 */

22 private int size;

23
24 /**

25 * La lista de vecinos mas cercanos de esta ruta desde todos los

demas

26 */

27 private final TreeSet <Nodo >[] vecinosSalida;

28
29 /**

30 * La lista de vecinos mas cercanos de esta ruta hacia todos los

demas

31 */

32 private final TreeSet <Nodo >[] vecinosLlegada;

33
34 /**

35 * Cache de los valores

36 */

37 private boolean cache;

38
39 private double cacheQi;

40 private double cacheCij;

41 private double cacheRCij;

42 private double cacheDi;

43
44 /**

45 * La lista de nodos dado su id

46 */

47 private Nodo[] nodos;

48
49 /**

50 * Construye una ruta vac ı́a. crea un nodo origen

51 */

52 public Ruta() {

53 this(new int [0]);

54 }

55

22 Una implementación del algoritmo Taburoute

56 /**

57 * El constructor a partir del array de nodos

58 */

59 public Ruta(int[] array) {

60 id_ruta = id_ruta_Next ++;

61
62 vecinosSalida = new TreeSet[Grafo.getN() + 1];

63 vecinosLlegada = new TreeSet[Grafo.getN() + 1];

64 nodos = new Nodo[Grafo.getN() + 1];

65
66 cache = false;

67
68 initializeFromArray(array);

69 }

70
71 /**

72 * Realiza la construccion de las estructuras auxiliares pasando

el array.

73 * Se pierde la informaci ón anterior

74 */

75 private void initializeFromArray(int[] array) {

76
77 size = array.length;

78
79 vecinosSalida [0] = new TreeSet <>(getComparator (0, true));

80 vecinosLlegada [0] = new TreeSet <>(getComparator (0, false));

81
82 Nodo origen = new Nodo (0);

83 nodos [0] = origen;

84
85 for (int i = 0; i < vecinosSalida.length; ++i) {

86 vecinosSalida[i] = new TreeSet <>(getComparator(i, true));

87 vecinosLlegada[i] = new TreeSet <>(getComparator(i, false));

88
89 vecinosSalida[i].add(origen);

90 vecinosLlegada[i].add(origen);

91 }

92
93 Nodo pre = origen;

94
95 for (int v = 0; v < size; v++) {

96 int id = array[v];

97 Nodo actual = new Nodo(id);

98 nodos[id] = actual;

99
100 pre.setNext(actual);

101 actual.setPrev(pre);

102
103 for (int i = 0; i < id; ++i) {

104 vecinosSalida[i].add(actual);

105 vecinosLlegada[i].add(actual);

106 }

107 for (int i = id + 1; i < vecinosSalida.length; ++i) {

108 vecinosSalida[i].add(actual);

109 vecinosLlegada[i].add(actual);

110 }

111
112 pre = actual;

TS-VRP - Abel Naya Forcano 23

113 }

114
115 pre.setNext(origen);

116 origen.setPrev(pre);

117
118 cache = false;

119 }

120
121
122 public Nodo getOrigen () {

123 return nodos [0];

124 }

125
126 /**

127 * A~nade el nodo al final de la ruta (entre el ú ltimo cliente y el

origen)

128 */

129 public void a~nadirAlFinal(int insertar) {

130 Nodo nuevo = new Nodo(insertar);

131 nodos[insertar] = nuevo;

132
133 Nodo prev = nodos [0]. getPrev ();

134
135 prev.setNext(nuevo);

136 nuevo.setPrev(prev);

137
138 nuevo.setNext(nodos [0]);

139 nodos [0]. setPrev(nuevo);

140
141 actualizarInsertado(nuevo);

142 }

143
144 /**

145 * actualiza las variables auxiliares si el nodo ahora pertenece a

la ruta

146 */

147 public void actualizarInsertado(Nodo insertado) {

148
149 nodos[insertado.getId()] = insertado;

150
151 size ++;

152
153 for (int i = 0; i < vecinosSalida.length; ++i) {

154 if (i == insertado.getId()) {

155 continue;

156 }

157 vecinosSalida[i].add(insertado);

158 vecinosLlegada[i].add(insertado);

159 }

160
161 cache = false;

162 }

163
164 /**

165 * actualiza las variables auxiliares si el nodo ya no pertenece a

la ruta

166 */

167 public void actualizarRemovido(Nodo removido) {

24 Una implementación del algoritmo Taburoute

168
169 nodos[removido.getId ()] = null;

170
171 size --;

172
173 for (int i = 0; i < vecinosSalida.length; ++i) {

174 if (i == removido.getId()) {

175 continue;

176 }

177 vecinosSalida[i]. remove(removido);

178 vecinosLlegada[i]. remove(removido);

179 }

180
181 cache = false;

182 }

183
184 /**

185 * Devuelve la suma de los Qi.

186 * Valor guardado en cache

187 */

188 @Override

189 public double getSumQi () {

190 if (! cache) {

191 calculateCache ();

192 }

193 return cacheQi;

194 }

195
196 /**

197 * Devuelve la suma de los Cij.

198 * Valor guardado en cache

199 */

200 @Override

201 public double getSumCij () {

202 if (! cache) {

203 calculateCache ();

204 }

205 return cacheCij;

206 }

207
208 /**

209 * Devuelve la suma de los Cij si se recorre la ruta al reves.

210 * Valor guardado en cache

211 */

212 public double getReverseSumCij () {

213 if (! cache) {

214 calculateCache ();

215 }

216 return cacheRCij;

217 }

218
219 /**

220 * Devuelve la suma de los Di.

221 * Valor guardado en cache

222 */

223 @Override

224 public double getSumDi () {

225 if (! cache) {

TS-VRP - Abel Naya Forcano 25

226 calculateCache ();

227 }

228 return cacheDi;

229 }

230
231 /**

232 * El numero de nodos en la ruta sin incluir el origen

233 */

234 public int getSize () {

235 return size;

236 }

237
238 /**

239 * Devuelve una lista con todos los vecinos de esta ruta ordenados

por distancia Cij desde el nodo dado

240 */

241 private TreeSet <Nodo > getVecinosSalida(int nodo) {

242 return vecinosSalida[nodo];

243 }

244
245 /**

246 * Devuelve una lista con todos los vecinos de esta ruta ordenados

por distancia Cij hacia el nodo dado

247 */

248 private TreeSet <Nodo > getVecinosLlegada(int nodo) {

249 return vecinosLlegada[nodo];

250 }

251
252 /**

253 * Inicializa la variable pos de los nodos de esta ruta

254 */

255 public void updateAllPos () {

256
257 Nodo it = getOrigen ();

258
259 for (int i = 0; i <= getSize (); ++i) {

260 it.setPos(i);

261
262 it = it.getNext ();

263
264 }

265 }

266
267 /**

268 * Devuelve un array con punteros a los nodos de la ruta en el

orden actual

269 */

270 private Nodo[] getArrayOfNodos () {

271 Nodo[] array = new Nodo[size + 1];

272
273 Nodo it = getOrigen ();

274
275 for (int i = 0; i <= getSize (); ++i) {

276 array[i] = it;

277 it = it.getNext ();

278 }

279
280 return array;

26 Una implementación del algoritmo Taburoute

281 }

282
283 /**

284 * Calcula y almacena el cache

285 */

286 private void calculateCache () {

287
288 cacheCij = 0;

289 cacheRCij = 0;

290 cacheQi = 0;

291 cacheDi = 0;

292
293 Nodo it = nodos [0];

294 Nodo itNext = it.getNext ();

295
296 for (int i = 0; i <= getSize (); ++i) {

297 cacheCij += Grafo.getCij(it.getId(), itNext.getId ());

298 cacheRCij += Grafo.getCij(itNext.getId(), it.getId());

299 cacheQi += Grafo.getQi(it.getId());

300 cacheDi += Grafo.getDi(it.getId());

301
302 it = itNext;

303 itNext = itNext.getNext ();

304 }

305
306 cache = true;

307 }

308
309 /**

310 * Una representaci ón de la ruta en forma de String

311 */

312 @Override

313 public String toString () {

314 StringBuilder string = new StringBuilder ();

315 string.append(’[’).append(size).append(’]’).append(’\n’);

316
317 Nodo it = nodos [0];

318 string.append("--> 0");

319
320 for (int i = 0; i <= getSize (); ++i) {

321 it = it.getNext ();

322 string.append(",").append(it.getId());

323 }

324 if (it.getId() != 0) {

325 return "ERROR:\n" + string.toString ();

326 }

327
328 string.append("\n<-- 0");

329 for (int i = 0; i <= getSize (); ++i) {

330 it = it.getPrev ();

331 string.append(",").append(it.getId());

332 }

333 if (it.getId() != 0) {

334 return "ERROR:\n" + string.toString ();

335 }

336
337 return string.toString ();

338 }

TS-VRP - Abel Naya Forcano 27

339
340 /**

341 * Devuelve el id único de esta ruta

342 */

343 public int getId() {

344 return id_ruta;

345 }

346
347 /**

348 * Devuelve un array con los clientes de la ruta (nodos salvo el

origen) empezando por el posterior al origen

349 * Si la ruta est á vac ı́a devuelve un array vac ı́o

350 */

351 public int[] toArray () {

352 int[] array = new int[size];

353
354 Nodo it = nodos [0]. getNext ();

355 for (int i = 0; i < size; ++i) {

356 array[i] = it.getId();

357 it = it.getNext ();

358 }

359
360 return array;

361 }

362
363 private Nodo getNodoFromId(int id) {

364 Nodo v = nodos[id];

365 return v;

366 }

367
368 // //////////////////////////////

369 /////// ALGORITMOS /////////////

370 // //////////////////////////////

371
372 /**

373 * El algoritmo Unstringing+Stringing. Modifica la ruta

374 */

375 public void us(int p) {

376
377 if (size < 2) {

378 return;//si el tama~no es 1 este algoritmo no merece la pena

379 }

380
381 Nodo[] taustar = getArrayOfNodos ();

382 double zstar = getSumCij ();

383
384 Nodo[] ordenFijo = getArrayOfNodos ();

385 // guardamos el array antes , pues en cada iteracion el orden se

modificar á

386
387 int t = 1;// modificacion , el origen no lo tocamos

388
389 while (t < ordenFijo.length) {

390
391 Nodo vt = ordenFijo[t];//El nodo t

392
393 unstringing(vt.getId(), p).modificarRuta ();

394 stringing_nodo(vt, p).modificarRuta ();

28 Una implementación del algoritmo Taburoute

395
396 if (getSumCij () < zstar) {

397 taustar = getArrayOfNodos ();

398 zstar = getSumCij ();

399 t = 1;

400 } else {

401 t++;

402 }

403
404 }

405
406 // reordenamos con la mejor ordenacion

407 for (int i = 1; i < taustar.length; i++) {

408 taustar[i - 1]. setNext(taustar[i]);

409 taustar[i]. setPrev(taustar[i - 1]);

410 }

411
412 taustar[taustar.length - 1]. setNext(taustar [0]);

413 taustar [0]. setPrev(taustar[taustar.length - 1]);

414
415 }

416
417 /**

418 * El algoritmo Stringing.

419 * Devuelve una ruta_delta resultado de a~nadir el nodo a la ruta

420 */

421 public RutaProxi stringing(int id, int p) {

422 return stringing_nodo(new Nodo(id), p);

423 }

424
425 private RutaProxi stringing_nodo(Nodo v, int p) {

426
427 // necesitamos al menos 3 elementos. El origen y dos mas

428 if (getSize () < 2) {

429 return stringing_minimal(v);

430 }

431
432 //Step 1

433 updateAllPos ();

434
435 BestMove best = new BestMove ();

436
437 //Step 2: find best move

438 stringing_direccional(v, p, false , best);

439
440 stringing_direccional(v, p, true , best);

441
442 //Step 3: return

443 if (best.vl == null) {

444 if (!best.reversed) {

445 return new RP_insert_I(this , v, best.deltaCost ,

best.vi, best.vj, best.vk);

446 } else {

447 return new RP_insert_Ir(this , v, best.deltaCost ,

best.vi, best.vj, best.vk);

448 }

449 } else {

450 if (!best.reversed) {

TS-VRP - Abel Naya Forcano 29

451 return new RP_insert_II(this , v, best.deltaCost ,

best.vi, best.vj, best.vk , best.vl);

452 } else {

453 return new RP_insert_IIr(this , v, best.deltaCost ,

best.vi, best.vj, best.vk , best.vl);

454 }

455 }

456 }

457
458 /**

459 * Cuando hay uno o dos nodos ú nicamente , calculamos la mejor

manera de insertar otro de forma exacta

460 */

461 private RutaProxi stringing_minimal(Nodo v) {

462 switch (getSize ()) {

463 case 0:

464 //solo esta el origen , insertar tal cual

465 return new RP_insert_1o2(new Nodo []{v}, this , v,

Grafo.getCij(0, v.getId()) +

Grafo.getCij(v.getId (), 0));

466 case 1:

467
468 //hay un nodo , insertar antes o despues

469 Nodo vi = getOrigen ().getNext ();

470 double costeInsertarAntes = -Grafo.getCij(0,

vi.getId()) + Grafo.getCij(0, v.getId()) +

Grafo.getCij(v.getId (), vi.getId());

471 double costeInsertarDespues =

-Grafo.getCij(vi.getId(), 0) +

Grafo.getCij(v.getId (), vi.getId()) +

Grafo.getCij(vi.getId(), 0);

472
473 if (costeInsertarAntes < costeInsertarDespues) {

474 // insertarlo antes

475 return new RP_insert_1o2(new Nodo []{v, vi}, this ,

v, costeInsertarAntes);

476 } else {

477 // insertarlo despues

478 return new RP_insert_1o2(new Nodo []{vi, v}, this ,

v, costeInsertarDespues);

479 }

480
481 default:

482 throw new Error("no se reconoce el numero de nodos: "

+ getSize ());

483 }

484 }

485
486 /**

487 * Metodo de ayuda.

488 * Es el algoritmo como tal y calcula la mejor solucion para una

direccion concreta

489 */

490 private void stringing_direccional(Nodo v, int p, boolean reverse ,

BestMove best) {

491
492 double reverseCost = 0;

493 if (reverse) {

30 Una implementación del algoritmo Taburoute

494 reverseCost = -getSumCij () + getReverseSumCij ();

495 }

496
497 TreeSet <Nodo > viPossible = getVecinosSalida(v.getId());

498 TreeSet <Nodo > vjPossible = getVecinosLlegada(v.getId());

499
500 Iterator <Nodo > viIterator = viPossible.iterator ();

501 for (int i = 0; i < p && viIterator.hasNext (); ++i) {

502 Nodo vi = viIterator.next();

503
504 Iterator <Nodo > vjIterator = vjPossible.iterator ();

505 for (int j = 0; j < p && vjIterator.hasNext (); ++j) {

506 Nodo vj = vjIterator.next();

507
508 if (vi.getId() == vj.getId ()) {

509 continue;

510 }

511
512 Nodo viNext = getNext(vi, reverse);

513 Nodo vjNext = getNext(vj, reverse);

514
515 TreeSet <Nodo > vkPossible =

getVecinosSalida(viNext.getId());

516 TreeSet <Nodo > vlPossible =

getVecinosLlegada(vjNext.getId());

517
518 Iterator <Nodo > vkIterator = vkPossible.iterator ();

519 for (int k = 0; k < p && vkIterator.hasNext (); ++k) {

520 Nodo vk = vkIterator.next();

521 if (! isBetween(vj, vk, vi , reverse)) {

522 continue;

523 }

524 Nodo vkNext = getNext(vk, reverse);

525
526 //Type I insertion

527 if (vk.getId() != vi.getId () && vk.getId() !=

vj.getId()) {

528 Double deltaCost = reverseCost;

529 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

530 deltaCost -= Grafo.getCij(vj.getId(),

vjNext.getId());

531 deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId());

532
533 deltaCost += Grafo.getCij(vi.getId(),

v.getId());

534 deltaCost += Grafo.getCij(v.getId(),

vj.getId());

535 deltaCost += Grafo.getCij(viNext.getId(),

vk.getId());

536 deltaCost += Grafo.getCij(vjNext.getId(),

vkNext.getId());

537
538 deltaCost += costOfReverseing(viNext , vj,

reverse);

539 deltaCost += costOfReverseing(vjNext , vk,

reverse);

TS-VRP - Abel Naya Forcano 31

540
541 if (!best.filled || deltaCost <

best.deltaCost) {

542 best.fill(deltaCost , vi, vj, vk, null ,

reverse);

543 }

544 }

545
546 Iterator <Nodo > vlIterator = vlPossible.iterator ();

547 for (int l = 0; l < p && vlIterator.hasNext ();

++l) {

548 Nodo vl = vlIterator.next();

549 if (! isBetween(vi, vl, vj , reverse)) {

550 continue;

551 }

552
553 //Type II insertion

554 if (vk.getId() != vj.getId ()

555 && vk.getId() != vjNext.getId()

556 && vl.getId() != vi.getId()

557 && vl.getId() != viNext.getId()) {

558
559 Double deltaCost = reverseCost;

560
561 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

562 deltaCost -= Grafo.getCij(getPrev(vl ,

reverse).getId(), vl.getId());

563 deltaCost -= Grafo.getCij(vj.getId(),

vjNext.getId());

564 deltaCost -= Grafo.getCij(getPrev(vk ,

reverse).getId(), vk.getId());

565
566 deltaCost += Grafo.getCij(vi.getId(),

v.getId());

567 deltaCost += Grafo.getCij(v.getId(),

vj.getId());

568 deltaCost += Grafo.getCij(vl.getId(),

vjNext.getId());

569 deltaCost += Grafo.getCij(getPrev(vk ,

reverse).getId(), getPrev(vl,

reverse).getId());

570 deltaCost += Grafo.getCij(viNext.getId(),

vk.getId());

571
572 deltaCost += costOfReverseing(viNext ,

getPrev(vl , reverse), reverse);

573 deltaCost += costOfReverseing(vl, vj,

reverse);

574
575 if (!best.filled || deltaCost <

best.deltaCost) {

576 best.fill(deltaCost , vi, vj, vk, vl,

reverse);

577 }

578
579 }

580

32 Una implementación del algoritmo Taburoute

581 }

582
583 }

584
585 }

586
587 }

588 }

589
590 /**

591 * Realiza el procedimiento unstringing.

592 * Devuelve la ruta_delta que se crea al quitar el nodo de la ruta

593 */

594 public RutaProxi unstringing(int id , int p) {

595
596 Nodo v = getNodoFromId(id);

597
598 // necesitamos al menos tres elementos: el origen , el que

quitamos y otro

599 if (getSize () < 3) {

600 return unstringing_minimal(v);

601 }

602
603 updateAllPos ();

604
605 BestMove best = new BestMove ();

606
607 unstringing_direccional(v, p, false , best);

608
609 unstringing_direccional(v, p, true , best);

610
611 if (best.vl == null) {

612 if (!best.reversed) {

613 return new RP_remove_I(this , v, best.deltaCost ,

best.vj, best.vk);

614 } else {

615 return new RP_remove_Ir(this , v, best.deltaCost ,

best.vj, best.vk);

616 }

617 } else {

618 if (!best.reversed) {

619 return new RP_remove_II(this , v, best.deltaCost ,

best.vj, best.vk, best.vl);

620 } else {

621 return new RP_remove_IIr(this , v, best.deltaCost ,

best.vj, best.vk, best.vl);

622 }

623 }

624 }

625
626 /**

627 * cuando hay dos o tres nodos , lo quitamos de la mejor manera

posible

628 */

629 private RutaProxi unstringing_minimal(Nodo v) {

630 switch (getSize ()) {

631 case 1:

632

TS-VRP - Abel Naya Forcano 33

633 Double deltaCost = -Grafo.getCij(0, v.getId()) -

Grafo.getCij(v.getId (), 0);

634
635 // eliminarlo

636 return new RP_remove_0(this , v, deltaCost);

637
638 case 2:

639 //hay un nodo extra , lo juntamos con el cero

640 Nodo a = getOrigen ().getNext ();

641 if (a.getId() == v.getId()) {

642 a = a.getNext ();

643 }

644
645 deltaCost = -getSumCij () + Grafo.getCij(0, a.getId())

+ Grafo.getCij(a.getId (), 0);

646
647 return new RP_remove_1(a, this , v, deltaCost);

648
649 default:

650 throw new Error("no se reconoce el numero de nodos: "

+ getSize ());

651 }

652 }

653
654 /**

655 * Metodo de ayuda.

656 * Es el algoritmo como tal y calcula la mejor solucion para una

direccion concreta

657 */

658 private void unstringing_direccional(Nodo vi, int p, boolean

reverse , BestMove best) {

659
660 double reverseCost = 0;

661 if (reverse) {

662 reverseCost = -getSumCij () + getReverseSumCij ();

663 }

664
665 Nodo viNext = getNext(vi, reverse);

666 Nodo viPrev = getPrev(vi, reverse);

667
668 TreeSet <Nodo > vjPossible = getVecinosSalida(viNext.getId());

669 Iterator <Nodo > vjIterator = vjPossible.iterator ();

670 for (int i = 0; i < p && vjIterator.hasNext (); ++i) {

671 Nodo vj = vjIterator.next();

672 if (vj.getId() == vi.getId () || vj.getId() ==

viNext.getId() || vj.getId () == viPrev.getId()) {

673 continue;

674 }

675
676 Nodo vjNext = getNext(vj, reverse);

677 Nodo vjPrev = getPrev(vj, reverse);

678
679 TreeSet <Nodo > vkPossible =

getVecinosSalida(viPrev.getId());

680 Iterator <Nodo > vkIterator = vkPossible.iterator ();

681 for (int k = 0; k < p && vkIterator.hasNext (); ++k) {

682 Nodo vk = vkIterator.next();

683 if (vk.getId() == vi.getId ()) {

34 Una implementación del algoritmo Taburoute

684 continue;

685 }

686
687 Nodo vkNext = getNext(vk, reverse);

688
689 if (isBetween(viNext , vk, vjPrev , reverse)) {

690
691 //TYPE I

692 Double deltaCost = reverseCost;

693 deltaCost -= Grafo.getCij(viPrev.getId(),

vi.getId());

694 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

695 deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId());

696 deltaCost -= Grafo.getCij(vj.getId(),

vjNext.getId());

697
698 deltaCost += Grafo.getCij(viPrev.getId(),

vk.getId());

699 deltaCost += Grafo.getCij(viNext.getId(),

vj.getId());

700 deltaCost += Grafo.getCij(vkNext.getId(),

vjNext.getId());

701
702 deltaCost += costOfReverseing(viNext , vk, reverse);

703 deltaCost += costOfReverseing(vkNext , vj, reverse);

704
705 if (!best.filled || deltaCost < best.deltaCost) {

706 best.fill(deltaCost , null , vj, vk, null ,

reverse);

707 }

708
709 }

710
711 if (! isBetween(vjNext , vk , getPrev(viPrev , reverse),

reverse) || vjNext.getId() == viPrev.getId()) {

712 continue;

713 }

714
715 TreeSet <Nodo > vlPossible =

getVecinosLlegada(vkNext.getId());

716 Iterator <Nodo > vlIterator = vlPossible.iterator ();

717 for (int l = 0; l < p && vlIterator.hasNext (); ++l) {

718 Nodo vl = vlIterator.next();

719 if (vl.getId() == vi.getId ()) {

720 continue;

721 }

722
723 Nodo vlNext = getNext(vl, reverse);

724
725 if (! isBetween(vj, vl, getPrev(vk, reverse),

reverse)) {

726 continue;

727 }

728
729 //TYPE II

730 Double deltaCost = reverseCost;

TS-VRP - Abel Naya Forcano 35

731 deltaCost -= Grafo.getCij(viPrev.getId(),

vi.getId());

732 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

733 deltaCost -= Grafo.getCij(vjPrev.getId(),

vj.getId());

734 deltaCost -= Grafo.getCij(vl.getId(),

vlNext.getId());

735 deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId());

736
737 deltaCost += Grafo.getCij(viPrev.getId(),

vk.getId());

738 deltaCost += Grafo.getCij(vlNext.getId(),

vjPrev.getId());

739 deltaCost += Grafo.getCij(viNext.getId(),

vj.getId());

740 deltaCost += Grafo.getCij(vl.getId(),

vkNext.getId());

741
742 deltaCost += costOfReverseing(viNext , vjPrev ,

reverse);

743 deltaCost += costOfReverseing(vlNext , vk, reverse);

744
745 if (!best.filled || deltaCost < best.deltaCost) {

746 best.fill(deltaCost , null , vj, vk, vl,

reverse);

747 }

748
749 }

750
751 }

752 }

753 }

754
755 // ///////////////////////////////

756 ///// Funciones auxiliares //////

757 // ///////////////////////////////

758
759 /**

760 * Calcula la diferencia entre recorrer la subruta start -end en

direcci ón contraria menos recorrerla en direcci ón normal

761 */

762 private double costOfReverseing(Nodo start , Nodo end , boolean

reverse) {

763 Nodo it = start;

764 Nodo itNext = getNext(start , reverse);

765 double cost = 0;

766 while (it.getId() != end.getId ()) {

767 cost -= Grafo.getCij(it.getId(), itNext.getId());

768 cost += Grafo.getCij(itNext.getId(), it.getId());

769
770 it = itNext;

771 itNext = getNext(itNext , reverse);

772 }

773
774 return cost;

775 }

36 Una implementación del algoritmo Taburoute

776
777 /**

778 * funcion de ayuda: devuelve el nodo siguiente de la ruta

considerando el sentido:

779 * el nodo siguiente si recorremos normal , el anterior si

recorremos al reves

780 */

781 private Nodo getNext(Nodo v, boolean reverse) {

782 return reverse ? v.getPrev () : v.getNext ();

783 }

784
785 /**

786 * funcion de ayuda: devuelve el nodo anterior de la ruta

considerando el sentido:

787 * el nodo anterior si recorremos normal , el siguiente si

recorremos al reves

788 */

789 private Nodo getPrev(Nodo v, boolean reverse) {

790 return reverse ? v.getNext () : v.getPrev ();

791 }

792
793 /**

794 * Comprueba si los tres nodos est án en orden -abc - considerando

el sentido?

795 */

796 private boolean isBetween(Nodo a, Nodo b, Nodo c, boolean reverse)

{

797
798 int s = reverse ? -1 : 1;

799
800 int aP = a.getPos () * s;

801 int bP = b.getPos () * s;

802 int cP = c.getPos () * s;

803
804 // sentido normal

805 if (aP <= cP) {

806 // a c

807 return (aP <= bP && bP <= cP);// a b c = bien

808 } else {

809 //c a

810 return !(cP < bP && bP < aP);// c b a = mal

811 }

812
813 }

814
815 // ///////////////////////////////

816 /////// Clases auxiliares ///////

817 // ///////////////////////////////

818
819 /**

820 * Un movimiento indicando el nuevo coste ,

821 * vi,vj,vk, vl (si existe es el tipo II si no es el tipo I)

822 * y si se ha considerado el cambiar el sentido

823 */

824 private static class BestMove {

825
826 private double deltaCost;

827 private Nodo vi;

TS-VRP - Abel Naya Forcano 37

828 private Nodo vj;

829 private Nodo vk;

830 private Nodo vl;

831 private boolean reversed;

832
833 private boolean filled = false;

834
835 private void fill(double reduction , Nodo vi, Nodo vj, Nodo vk,

Nodo vl, boolean reversed) {

836 this.deltaCost = reduction;

837 this.vi = vi;

838 this.vj = vj;

839 this.vk = vk;

840 this.vl = vl;

841 this.reversed = reversed;

842
843 filled = true;

844 }

845
846 }

847 }

38 Una implementación del algoritmo Taburoute

Clase 18: RutaAbstracta.java
1 import java.util.Comparator;

2 import java.util.HashMap;

3
4 /**

5 * Representa una ruta gen érica.

6 * Contiene la subclase Nodo

7 */

8 public abstract class RutaAbstracta {

9
10 abstract double getSumQi ();

11
12 abstract double getSumDi ();

13
14 abstract double getSumCij ();

15
16 public boolean isFactible_capacidad () {

17 return getSumQi () <= Grafo.getQ();

18 }

19
20 public boolean isFactible_longitud () {

21 return getSumCij () + getSumDi () <= Grafo.getL();

22 }

23
24 public boolean isFactible () {

25 return isFactible_capacidad () && isFactible_longitud ();

26 }

27
28 public double getF1() {

29 return getSumCij ();

30 }

31
32 public double getF2() {

33 double res = getF1();

34 double temp;

35
36 temp = getSumQi () - Grafo.getQ();

37 if (temp > 0) {

38 res += TabuRoute.getAlpha () * temp;

39 }

40
41 temp = getSumCij () + getSumDi () - Grafo.getL();

42 if (temp > 0) {

43 res += TabuRoute.getBeta () * temp;

44 }

45
46 return res;

47 }

48
49 // ///////////////////////

50 /// clases auxiliares ///

51 // ///////////////////////

52
53 /**

54 * Representa un nodo de una ruta.

55 * Implementaci ón de una lista doblemente enlazada.

56 */

57 static class Nodo {

TS-VRP - Abel Naya Forcano 39

58
59 /**

60 * El nodo que representa (0 es el origen)

61 */

62 private final int id;

63
64 /**

65 * El nodo anterior

66 */

67 private Nodo prev = null;

68
69 /**

70 * El nodo posterior

71 */

72 private Nodo next = null;

73
74 /**

75 * La posicion del nodo en la ruta.

76 * Valor modificado externamente

77 */

78 private int pos = -1;

79
80
81 public Nodo(int id) {

82 this.id = id;

83 }

84
85 public int getId() {

86 return id;

87 }

88
89 public Nodo getNext () {

90 return next;

91 }

92
93 public Nodo getPrev () {

94 return prev;

95 }

96
97 public void setPrev(Nodo prev) {

98 this.prev = prev;

99 }

100
101 public void setNext(Nodo next) {

102 this.next = next;

103 }

104
105 /**

106 * intercambia el nodo anterior con el posterior

107 */

108 public void reverse () {

109 Nodo temp = next;

110 next = prev;

111 prev = temp;

112 }

113
114 public int getPos () {

115 return pos;

40 Una implementación del algoritmo Taburoute

116 }

117
118 public void setPos(int pos) {

119 this.pos = pos;

120 }

121
122 @Override

123 public String toString () {

124 return "(" + (prev == null ? "null" : prev.getId()) +

")->" + id + "->(" + (next == null ? "null" :

next.getId()) + ") [" + pos + "]";

125 }

126
127 }

128
129 /**

130 * Los contenedores de los comparadores

131 */

132 private static final HashMap <Integer , NodoComparador >

comparatorsSalida = new HashMap <>();

133 private static final HashMap <Integer , NodoComparador >

comparatorsLlegada = new HashMap <>();

134
135 /**

136 * Devuelve el comparador dado el de partida y la direccion.

137 * Sucesivas llamadas con los mismos parametros de entrada

devuelven el mismo objeto (cache)

138 */

139 static public NodoComparador getComparator(int partida , boolean

salida) {

140 HashMap <Integer , NodoComparador > holder = salida ?

comparatorsSalida : comparatorsLlegada;

141
142 if (holder.containsKey(partida)) {

143 return holder.get(partida);

144 } else {

145 NodoComparador comp = new NodoComparador(partida , salida);

146 holder.put(partida , comp);

147 return comp;

148 }

149 }

150
151 /**

152 * Un comparador de nodos dado uno de partida y la direcci ón

153 */

154 static public class NodoComparador implements Comparator <Nodo > {

155
156 /**

157 * El nodo con el que se compararan

158 */

159 private final int partida;

160 /**

161 * si considerar partida -otro

162 */

163 private final boolean salida;

164
165
166 private NodoComparador(int origin , boolean salida) {

TS-VRP - Abel Naya Forcano 41

167 this.partida = origin;

168 this.salida = salida;

169 }

170
171 @Override

172 public int compare(Nodo v1, Nodo v2) {

173 double dif = salida

174 ? Grafo.getCij(partida , v1.getId ()) -

Grafo.getCij(partida , v2.getId())

175 : Grafo.getCij(v1.getId(), partida) -

Grafo.getCij(v2.getId(), partida);

176
177 //si 0 discriminar por id

178 if (dif == 0) {

179 dif = v1.getId() - v2.getId();

180 }

181
182 return dif > 0 ? //si es positivo

183 1 // devolvemos 1

184 : dif < 0 ? //si es negativo

185 -1 // devolvemos -1

186 : 0 //si no, iguales , 0

187 ;

188 }

189
190 }

191 }

42 Una implementación del algoritmo Taburoute

Clase 19: RutaProxi.java
1 import java.util.ConcurrentModificationException;

2
3 /**

4 * La interfaz de modificacion de una ruta.

5 * Representa una ruta resultado de realizar una modificaci ón a una

ruta existente , sin realizar la modificaci ón.

6 */

7 public abstract class RutaProxi extends RutaAbstracta {

8
9 /**

10 * El nodo que se mover á

11 */

12 private final Nodo v;

13
14 /**

15 * La ruta original. Ser á modificada

16 */

17 private Ruta original;

18
19 /**

20 * La diferencia de los costes: nueva -antigua

21 */

22 private final double deltaCost;

23
24
25 public RutaProxi(Ruta original , Nodo v, double deltaCost) {

26 this.original = original;

27 this.deltaCost = deltaCost;

28 this.v = v;

29 }

30
31
32 public Ruta getRuta () {

33 checkModification ();

34
35 return original;

36 }

37
38 public double getDeltaCost () {

39 checkModification ();

40
41 return deltaCost;

42 }

43
44 public Nodo getV() {

45 checkModification ();

46
47 return v;

48 }

49
50 /**

51 * La suma de los Cij de la ruta modificada

52 */

53 @Override

54 public double getSumCij () {

55 checkModification ();

56

TS-VRP - Abel Naya Forcano 43

57 return getRuta ().getSumCij () + getDeltaCost ();

58 }

59
60 /**

61 * La suma de los Qi de la ruta modificada

62 */

63 @Override

64 double getSumQi () {

65 checkModification ();

66
67 return 0;

68 }

69
70 /**

71 * La suma de los Di de la ruta modificacion

72 */

73 @Override

74 double getSumDi () {

75 checkModification ();

76
77 return 0;

78 }

79
80 /**

81 * Modifica la solucion original.

82 * Una vez llamado esta funcion , todas las funciones de este

objeto lanzar án una ConcurrentModificationException

83 */

84 public void modificarRuta () {

85 checkModification ();

86
87 internal_modificar ();

88
89 original = null;

90 }

91
92 abstract void internal_modificar ();

93
94 /**

95 * Lanza una excepci ón ConcurrentModificationException si la ruta

ya ha sido modificada (no hay ruta original)

96 */

97 private void checkModification () {

98 if (original == null) {

99 throw new ConcurrentModificationException("Se ha intentado

acceder a una RutaProxi tras haber efectuado la

modificaci ón");

100 }

101 }

102
103 // ////////////

104 // Utilidades //

105 // ////////////

106
107 /**

108 * Cambia next <->prev en cada uno de los nodos desde from hasta to

incluidos

109 */

44 Una implementación del algoritmo Taburoute

110 void reverseNodos(Nodo from , Nodo to) {

111 Nodo it = from;

112
113 while (it.getId() != to.getId()) {

114 it.reverse ();

115 it = it.getPrev ();//el anterior , que originalmente era el

siguiente

116 }

117 it.reverse ();

118 }

119
120 /**

121 * junta los nodos haciendo: from.next=to to.prev=from

122 */

123 void join(Nodo from , Nodo to) {

124 from.setNext(to);

125 to.setPrev(from);

126 }

127
128 }

TS-VRP - Abel Naya Forcano 45

Clase 20: Solucion.java
1 import java.util.Arrays;

2 import java.util.Collection;

3 import java.util.HashMap;

4
5 /**

6 * Representa una soluci ón: un conjunto de rutas

7 */

8 public class Solucion extends SolucionAbstracta {

9
10 /**

11 * El set de rutas.

12 */

13 private final HashMap <Integer , Ruta > arrayRutas;

14
15 /**

16 * Una ruta vacia para realizar comprobaciones

17 */

18 private Ruta rutaVacia;

19
20 // auxiliares

21
22 /**

23 * A qu é ruta pertenece qu é nodo

24 */

25 private final int[] pertenencia;

26
27 /**

28 * Constructor base , genera una soluci ón vac ı́a, sin nodos

29 */

30 public Solucion () {

31 arrayRutas = new HashMap <>();

32
33 rutaVacia = new Ruta();

34
35 pertenencia = new int[Grafo.getN() + 1];

36 Arrays.fill(pertenencia , -1);

37
38 }

39
40 /**

41 * Constructor fromArray ()

42 */

43 public Solucion(int [][] Sstar) {

44 this();

45
46 for (int[] ruta : Sstar) {

47 a~nadirRuta(new Ruta(ruta));

48 }

49 }

50
51 /**

52 * Crea una solucion factible (o intenta serlo) dado el array de

nodos en orden

53 */

54 public Solucion(int[] array) {

55 this();

56

46 Una implementación del algoritmo Taburoute

57 Ruta rutaActual = new Ruta();

58
59 int preInsertar = array [0];

60 rutaActual.a~nadirAlFinal(preInsertar);

61
62 int pos = 1;

63
64 while (pos < array.length) {

65 int insertar = array[pos];

66 if (getm() >= Grafo.getMbar ()) {

67 break;

68 }

69 if (rutaActual.getSumQi () + Grafo.getQi(insertar) <=

Grafo.getQ() && rutaActual.getSumCij () -

Grafo.getCij(preInsertar , 0) +

Grafo.getCij(preInsertar , insertar) +

Grafo.getCij(insertar , 0) + rutaActual.getSumDi () +

Grafo.getDi(insertar) <= Grafo.getL()) {

70 rutaActual.a~nadirAlFinal(insertar);

71 preInsertar = insertar;

72 } else {

73 a~nadirRuta(rutaActual);

74 rutaActual = new Ruta();

75 rutaActual.a~nadirAlFinal(insertar);

76 preInsertar = insertar;

77 }

78 pos++;

79 }

80
81 while (pos < array.length) {

82 int insertar = array[pos];

83 rutaActual.a~nadirAlFinal(insertar);

84 pos++;

85 }

86
87 a~nadirRuta(rutaActual);

88 }

89
90
91 @Override

92 public double getF1() {

93 double res = 0;

94 for (Ruta r : arrayRutas.values ()) {

95 res += r.getF1();

96 }

97 return res;

98 }

99
100
101 @Override

102 public double getF2() {

103 double res = 0;

104 for (Ruta r : arrayRutas.values ()) {

105 res += r.getF2();

106 }

107 return res;

108 }

109

TS-VRP - Abel Naya Forcano 47

110 /**

111 * A~nade la ruta a la lista de rutas.

112 * Se queda con el objeto

113 */

114 public void a~nadirRuta(Ruta nuevaRuta) {

115 int idRuta = nuevaRuta.getId();

116 arrayRutas.put(idRuta , nuevaRuta);

117
118 updateRouteWithId(idRuta);

119
120 }

121
122 /**

123 * El numero de rutas con al menos algun cliente

124 */

125 public int getm() {

126 return arrayRutas.size();

127 }

128
129 /**

130 * Si la soluci ón cumple la restricci ón de capacidad

131 */

132 public boolean isFactible_capacidad () {

133 for (Ruta r : arrayRutas.values ()) {

134 if (!r.isFactible_capacidad ()) {

135 return false;

136 }

137 }

138 return true;

139 }

140
141 /**

142 * Si la soluci ón cumple la restricci ón de longitud

143 */

144 public boolean isFactible_longitud () {

145 for (Ruta r : arrayRutas.values ()) {

146 if (!r.isFactible_longitud ()) {

147 return false;

148 }

149 }

150 return true;

151 }

152
153 /**

154 * Si la soluci ón es factible

155 */

156 @Override

157 public boolean isFactible () {

158 return isFactible_capacidad () && isFactible_longitud ();

159 }

160
161 /**

162 * Devuelve la ruta a la que pertenece el nodo dado

163 */

164 public int getIdOfRutaContainingNodo(int v) {

165 return pertenencia[v];

166 }

167

48 Una implementación del algoritmo Taburoute

168 /**

169 * Devuelve el id de la ruta vac ı́a, usado como ruta de comprobaci ón

170 */

171 public int getIdOfEmptyRoute () {

172 return rutaVacia.getId();

173 }

174
175 /**

176 * Devuelve la ruta de id dado

177 */

178 public Ruta getRouteOfId(int id) {

179 if (id == rutaVacia.getId()) {

180 return rutaVacia;

181 }

182
183 return arrayRutas.get(id);

184 }

185
186 /**

187 * Notifica de que la ruta ha cambiado

188 */

189 public void updateRouteWithId(int id) {

190
191 if (id == rutaVacia.getId()) {

192 if (rutaVacia.getSize () != 0) {

193 Ruta nueva = rutaVacia;

194 rutaVacia = new Ruta();

195 a~nadirRuta(nueva);

196 //se realiza una llamada a este metodo otra vez.

197 //Si la rutaVacia no se modifica hay un bucle infinito

198 }

199 }

200
201 Ruta ruta = getRouteOfId(id);

202
203 if (ruta.getSize () == 0) {

204 arrayRutas.remove(ruta.getId());

205 return;

206 }

207
208 int[] nodos = ruta.toArray ();

209 for (int nodo : nodos) {

210 pertenencia[nodo] = id;

211 }

212 }

213
214 /**

215 * Le aplica US a esta solucion

216 */

217 public void applyUS(int p) {

218 for (Ruta r : arrayRutas.values ()) {

219 r.us(p);

220 }

221
222 }

223
224 /**

225 * Devuelve una colecci ón con todas las rutas no vac ı́as de esta

TS-VRP - Abel Naya Forcano 49

soluci ón

226 */

227 public Collection <Ruta > getAllRoutes () {

228 return arrayRutas.values ();

229 }

230
231 /**

232 * Devuelve un array representando la informaci ón de esta soluci ón:

233 * Cada elemento es un array que representa una ruta

234 */

235 public int [][] toArray () {

236 int [][] array = new int[arrayRutas.size()][];

237
238 int i = 0;

239 for (Ruta ruta : arrayRutas.values ()) {

240 array[i] = ruta.toArray ();

241 i++;

242 }

243
244 return array;

245 }

246
247 }

50 Una implementación del algoritmo Taburoute

Clase 21: SolucionAbstracta.java
1 public abstract class SolucionAbstracta {

2
3 /**

4 * devuelve el valor de F1 de esta solucion

5 */

6 public abstract double getF1();

7
8 /**

9 * Devuelve el valor de F2 de esta solucion

10 */

11 public abstract double getF2();

12
13 /**

14 * Si la soluci ón es factible

15 */

16 public abstract boolean isFactible ();

17
18 }

TS-VRP - Abel Naya Forcano 51

Clase 22: SolucionProxi.java
1 import java.util.ConcurrentModificationException;

2
3 /**

4 * La clase que representa una modificaci ón de una soluci ón.

5 * Esta modificaci ón consiste en pasar un nodo de una ruta a otra

6 */

7 public class SolucionProxi extends SolucionAbstracta {

8
9 /**

10 * La solucion original

11 */

12 private Solucion base;

13
14 /**

15 * El nodo que se mover á

16 */

17 private int v;

18
19 /**

20 * La ruta de donde se quita el nodo

21 */

22 private RutaProxi rr;

23
24 /**

25 * El id de la ruta Rr

26 */

27 private int idRr;

28
29 /**

30 * La ruta en donde se a~nadir á el nodo

31 */

32 private RutaProxi rs;

33
34 /**

35 * El id de la ruta Rs

36 */

37 private int idRs;

38
39 /**

40 * Un valor , calculado externamente , que ’valora ’ este movimiento

41 */

42 private double f;

43
44
45 public SolucionProxi(Solucion base) {

46 this.base = base;

47 }

48
49 /**

50 * Constructor copia

51 */

52 public SolucionProxi(SolucionProxi original) {

53 base = original.base;

54 v = original.v;

55 rr = original.rr;

56 idRr = original.idRr;

57 rs = original.rs;

52 Una implementación del algoritmo Taburoute

58 idRs = original.idRs;

59 f = original.f;

60 }

61
62 /**

63 * Indica el nodo que se modificar á.

64 */

65 public void setNodo(int v) {

66 checkModification ();

67
68 this.v = v;

69 }

70
71
72 public int getNodo () {

73 checkModification ();

74
75 return v;

76 }

77
78
79 public int getRr() {

80 checkModification ();

81
82 return idRr;

83 }

84
85 /**

86 * Indica la ruta de la que se quitar á el nodo.

87 * Genera y almacena una ruta_delta con la informaci ón

88 */

89 public void setRr(int idRuta , int p) {

90 checkModification ();

91
92 idRr = idRuta;

93 rr = base.getRouteOfId(idRuta).unstringing(v, p);

94 }

95
96 /**

97 * Indica la ruta a la que se a~nadir á el nodo.

98 * Genera y almacena una ruta_delta con la informaci ón

99 */

100 public void setRs(int route , int p) {

101 checkModification ();

102
103 idRs = route;

104 rs = base.getRouteOfId(route).stringing(v, p);

105 }

106
107 /**

108 * Si la nueva soluci ón es factible o no

109 */

110 @Override

111 public boolean isFactible () {

112 checkModification ();

113
114 for (Ruta r : base.getAllRoutes ()) {

115 int id = r.getId();

TS-VRP - Abel Naya Forcano 53

116 if (id == idRr || id == idRs) {

117 continue;

118 }

119 if (!r.isFactible ()) {

120 return false;

121 }

122 }

123
124 if (!rr.isFactible ()) {

125 return false;

126 }

127 if (!rs.isFactible ()) {

128 return false;

129 }

130 return true;

131 }

132
133 /**

134 * El valor de F1 de la nueva soluci ón

135 */

136 @Override

137 public double getF1() {

138 checkModification ();

139
140 double res = 0;

141 for (Ruta r : base.getAllRoutes ()) {

142 int id = r.getId();

143 if (id == idRr || id == idRs) {

144 continue;

145 }

146 res += r.getF1();

147 }

148
149 res += rr.getF1();

150 res += rs.getF1();

151 return res;

152 }

153
154 /**

155 * El valor de F2 de la nueva soluci ón

156 */

157 @Override

158 public double getF2() {

159 checkModification ();

160
161 double res = 0;

162 for (Ruta r : base.getAllRoutes ()) {

163 int id = r.getId();

164 if (id == idRr || id == idRs) {

165 continue;

166 }

167 res += r.getF2();

168 }

169
170 res += rr.getF2();

171 res += rs.getF2();

172 return res;

173 }

54 Una implementación del algoritmo Taburoute

174
175
176 public void setF(double f) {

177 checkModification ();

178
179 this.f = f;

180 }

181
182
183 public double getF() {

184 checkModification ();

185
186 return f;

187 }

188
189 /**

190 * Realiza la modificaci ón.

191 * Una vez llamado esta funcion , todas las funciones de este

objeto lanzar án una ConcurrentModificationException

192 */

193 public void modificarSolucion () {

194 checkModification ();

195
196 rr.modificarRuta ();

197 rs.modificarRuta ();

198 base.updateRouteWithId(idRs);

199 base.updateRouteWithId(idRr);

200
201 base = null;

202 }

203
204 /**

205 * Lanza una excepci ón ConcurrentModificationException si ya se ha

modificado este objeto (no hay solucion base)

206 */

207 private void checkModification () {

208 if (base == null) {

209 throw new ConcurrentModificationException("Se ha intentado

acceder a una SolucionProxi tras haber efectuado la

modificaci ón");

210 }

211 }

212 }

TS-VRP - Abel Naya Forcano 55

Clase 23: TabuRoute.java
1 import java.util.ArrayList;

2 import java.util.Arrays;

3 import java.util.Collections;

4 import java.util.HashSet;

5 import java.util.Random;

6 import java.util.concurrent.ThreadLocalRandom;

7
8 /**

9 * Esta clase contiene los algoritmos principales del problema:

TabuRoute y Search

10 */

11 public class TabuRoute {

12
13 /**

14 * La solucion actual del problema , con la que los algoritmos

trabajan

15 */

16 private static Solucion s;

17
18 /**

19 * El mayor valor de F1 encontrado

20 */

21 private static double f1star;

22
23 /**

24 * El mayor valor de F2 encontrado

25 */

26 private static double f2star;

27
28 /**

29 * La mejor solucion factible encontrada

30 */

31 private static int [][] sstar;

32
33 /**

34 * La mejor soluci ón encontrada

35 */

36 private static int [][] stildestar;

37
38 /**

39 * El numero de veces que cada nodo ha sido movido. fv[0] no se usa

40 */

41 private static int[] fv;

42
43 // Variables de algoritmo

44
45 /**

46 * El valor alpha

47 */

48 private static double alpha;

49
50 /**

51 * El valor beta

52 */

53 private static double beta;

54
55

56 Una implementación del algoritmo Taburoute

56 public static double getAlpha () {

57 return alpha;

58 }

59
60
61 public static void setAlpha(double alpha) {

62 TabuRoute.alpha = alpha;

63 }

64
65
66 public static double getBeta () {

67 return beta;

68 }

69
70
71 public static void setBeta(double beta) {

72 TabuRoute.beta = beta;

73 }

74
75 /**

76 * Inicia el algoritmo de resolucion y devuelve la soluci ón.

77 * Esta es la funci ón que se debe llamar tras haber inicializado

Grafo

78 */

79 public static int [][] ejecutar () {

80 return tabuRoute ((int) Math.floor(Math.sqrt(Grafo.getN()) /

2));

81 }

82
83 /**

84 * ************************

85 * El algoritmo taburoute

86 * ************************

87 * @param lambda el numero de soluciones iniciales distintas

88 */

89 private static int [][] tabuRoute(int lambda) {

90
91 //Step -1

92 stildestar = null;

93 sstar = null;

94 f2star = Grafo.getInfinity ();

95 f1star = Grafo.getInfinity ();

96 int n = Grafo.getN();

97 fv = new int[n + 1];

98
99 //Step 0

100 alpha = 1;

101 beta = 1;

102 f1star = Grafo.getInfinity ();

103
104 Random random = new Random ();

105
106 //Step 1

107 for (int step = 0; step < lambda; ++step) {

108 System.out.println("Landa " + step);

109 //Step 1 (a)

110 int i = random.nextInt(n) + 1;

111

TS-VRP - Abel Naya Forcano 57

112 //Step 1 (b)

113 int[] sequence = new int[n];

114 for (int j = i; j <= n; ++j) {

115 sequence[j - i] = j;

116 }

117 for (int j = 1; j < i; ++j) {

118 sequence[j + n - i] = j;

119 }

120
121 //Step 1 (b) y (c)

122 int[] tour = Genius.ejecutar(sequence);

123
124 //Step 1 (c)

125 s = new Solucion(tour);

126
127 if (s.isFactible () && s.getF1() < f1star) {

128 f1star = s.getF1();

129 sstar = s.toArray ();

130 // System.out.println (" Nueva

soluci ón:"+ Sstar.toString ());

131 }

132 if (s.getF2() < f2star) {

133 f2star = s.getF2();

134 stildestar = s.toArray ();

135 }

136
137 //Step 1 (d)

138 int[] todos = new int[n];

139 for (int ii = 0; ii < n; ++ii) {

140 todos[ii] = ii + 1;

141 }

142 search(todos , 5 * s.getm(), 0, 5, 5, 10, 0.01, 10, n);

143
144 }

145
146 //Step 1 (e)

147 //Error pdf: esto va fuera del bucle

148 if (f1star < Grafo.getInfinity ()) {

149 s = new Solucion(sstar);

150 } else {

151 s = new Solucion(stildestar);

152 }

153
154 //Step 2

155 System.out.println("Diversificaci ón");

156 int[] todos = new int[n];

157 for (int ii = 0; ii < n; ++ii) {

158 todos[ii] = ii + 1;

159 }

160 search(todos , 5 * s.getm(), 0, 5, 5, 10, 0.01, 10, 50 * n);

161 if (f1star < Grafo.getInfinity ()) {

162 s = new Solucion(sstar);

163 } else {

164 s = new Solucion(stildestar);

165 }

166
167 //Step 3

168 int[] handler = Arrays.copyOf(fv, n);

58 Una implementación del algoritmo Taburoute

169 Arrays.sort(handler);

170 int half = handler[n / 2];

171
172 int mostUsed = 0;

173 for (int ii = 0; ii < fv.length; ++ii) {

174 if (fv[ii] >= half) {

175 handler[mostUsed ++] = ii;

176 }

177 }

178
179 System.out.println("Intensificaci ón");

180 search(Arrays.copyOf(handler , mostUsed), mostUsed , 0, 5, 5,

10, 0.01, 10, n);

181 if (f1star < Grafo.getInfinity ()) {

182 return sstar;

183 } else {

184 return null;

185 }

186 }

187
188 /**

189 * *********************

190 * El algoritmo SEARCH

191 * *********************

192 *

193 * @param W El conjunto de nodos que se pueden mover

194 * @param q El numero de nodos que se moveran

195 * @param p1 =max{p2,k}

196 * @param p2 parametro de Stringing

197 * @param phiMin minimo valor de phi

198 * @param phiMax maximo valor de phi

199 * @param g parametro de escala

200 * @param h iteraciones tras las cuales se refrescara el valor de

alpha y beta

201 * @param nMax numero maximo de iteraciones a ejecutar tras la

ultima mejora

202 */

203 private static void search(int W[], int q, int p1, int p2, int

phiMin , int phiMax , double g, int h, int nMax) {

204
205 //step -1

206 boolean wasUSused = false;

207 double deltaMax = 0;

208 double prevF2;

209
210 boolean [] prevCapacityFeasible = new boolean[h];

211 prevCapacityFeasible [0] = s.isFactible_capacidad ();

212
213 boolean [] prevLengthFeasible = new boolean[h];

214 prevLengthFeasible [0] = s.isFactible_longitud ();

215 int recentChange = 0;

216
217 //step 0

218 int t = 1;

219 EstructuraTabu tabuStructure = new EstructuraTabu ();

220
221 while (true) {

222 // System.out.println(t);

TS-VRP - Abel Naya Forcano 59

223
224 //step 1

225 ArrayList <Integer > randomW = new ArrayList <>(W.length);

226 for (int e : W) {

227 randomW.add(e);

228 }

229 Collections.shuffle(randomW);

230 while (randomW.size() > q) {

231 randomW.remove(randomW.size() - 1);

232 }

233
234 SolucionProxi Sbar = null;

235
236 //step 2

237 for (int v : randomW) {

238
239 int Rr = s.getIdOfRutaContainingNodo(v);

240 p1 = Math.max(p2, s.getRouteOfId(Rr).getSize ());

241
242 int[] nearestV = Grafo.getNearestNodos(v);

243
244 HashSet <Integer > nearestRs = new

HashSet <>(nearestV.length);

245 for (int i = 0; i < nearestV.length && i < p1; i++) {

246 if (nearestV[i] == 0) {

247 continue;

248 }

249 nearestRs.add(

250 s.getIdOfRutaContainingNodo(nearestV[i]));

251 }

252
253 if (s.getm() < Grafo.getMbar ()) {

254 nearestRs.add(s.getIdOfEmptyRoute ());

255 }

256
257 SolucionProxi Sprime = new SolucionProxi(s);

258 Sprime.setNodo(v);

259 Sprime.setRr(Rr, p1);

260
261 for (int Rs : nearestRs) {

262 if (Rs == Rr) {

263 continue;

264 }

265
266 //Step 2 (a)

267 Sprime.setRs(Rs, p2);

268
269 //Step 2 (b)

270 if (tabuStructure.isTabu(v, Rs, t) &&

!(Sprime.isFactible () ? Sprime.getF1() < f1star

: Sprime.getF2() < f2star)) {

271 continue;

272 }

273
274 //Step 2 (c)

275 if (Sprime.getF2 () < s.getF2()) {

276 Sprime.setF(Sprime.getF2());

277 } else {

60 Una implementación del algoritmo Taburoute

278 Sprime.setF(Sprime.getF2() + deltaMax *

Math.sqrt(s.getm()) * g * fv[v] / t);

279 }

280
281 if (Sbar == null || Sprime.getF() < Sbar.getF()) {

282 Sbar = new SolucionProxi(Sprime);

283 }

284
285 }

286
287 }

288
289 //Step 3

290 prevF2 = s.getF2();

291
292 //Step 4

293 if (Sbar.getF2() > s.getF2 () && s.isFactible () &&

!wasUSused) {

294
295 s.applyUS(p2);

296
297 wasUSused = true;

298 } else {

299 //Step 5

300 tabuStructure.setTabu(Sbar.getNodo (), Sbar.getRr(), t

+ ThreadLocalRandom.current ().nextInt(phiMin ,

phiMax + 1));

301 fv[Sbar.getNodo ()]++;

302
303 Sbar.modificarSolucion ();

304 wasUSused = false;

305 }

306
307 if (s.isFactible () && s.getF1() < f1star) {

308 f1star = s.getF1();

309 sstar = s.toArray ();

310 // System.out.println (" Nueva

soluci ón:"+ Sstar.toString ());

311 recentChange = t;

312 }

313 if (s.getF2() < f2star) {

314 f2star = s.getF2();

315 stildestar = s.toArray ();

316 recentChange = t;

317 }

318
319 if (Math.abs(prevF2 - s.getF2()) > deltaMax) {

320 deltaMax = Math.abs(prevF2 - s.getF2());

321 }

322
323 //Step 6

324 prevCapacityFeasible[t % h] = s.isFactible_capacidad ();

325 prevLengthFeasible[t % h] = s.isFactible_longitud ();

326
327 if ((t + 1) % h == 0) {

328 int i;

329
330 for (i = prevCapacityFeasible.length - 1; i > 0; --i) {

TS-VRP - Abel Naya Forcano 61

331 if (prevCapacityFeasible[i] !=

prevCapacityFeasible[i - 1]) {

332 break;

333 }

334 }

335 if (i <= 0) {

336 if (prevCapacityFeasible [0]) {

337 alpha /= 2;

338 } else {

339 alpha *= 2;

340 }

341 }

342
343 for (i = prevLengthFeasible.length - 1; i > 0; --i) {

344 if (prevLengthFeasible[i] != prevLengthFeasible[i

- 1]) {

345 break;

346 }

347 }

348 if (i <= 0) {

349 if (prevLengthFeasible [0]) {

350 beta /= 2;

351 } else {

352 beta *= 2;

353 }

354 }

355
356 }

357
358 //Step 7

359 if (t - recentChange >= nMax) {

360 break;

361 }

362
363 t++;

364 }

365
366 }

367
368 }

	Una implementación del algoritmo Taburoute

