Algoritmos de Busqueda Tabu
Aplicacion en un problema de rutas

Anexo

macultad de Ciencias
Universidad Zaragoza

s1s Universidad
18 Zaragoza

1542

Abel Naya Forcano
Trabajo de fin de grado en Matematicas
Universidad de Zaragoza

Directores del trabajo:
Herminia I. Calvete
Angel R. Francés
Julio de 2016

Una implementacion del algoritmo
Taburoute

Este documento es un anexo al trabajo fin de grado ‘Algoritmos de Biisqueda Tabt. Aplicacién en un
problema de rutas’. Contiene el cédigo fuente, en el lenguaje de programacién Java, de una implemen-
tacion propia del algoritmo presentado en el articulo de Gendreau et al. (A tabu search heuristic for the
vehicle routing problem. Management Science, 40(10):1276-1290, 1994). Las 23 clases que componen
el programa son las siguientes:

1. EBstructuraTabujava 1
2. GeNIUS.JAVA e e e e e e e e e e e e e e 3
3. Grafogjavao e e 4
4, RP_insertjava e 8
5. RP_insert_lo2.java e 9
6. RP_insert_Ljava. 10
7. RP_insert Iljava e 11
8. RP_insert_Ilrjava 12
9. RP_insert_Irjava e 13
10. RP_remove.java e 14
11. RP_remove_0java it e 15
12. RP_remove_ljava e 16
13. RP_remove_Ljava. e 17
14. RP_remove Iljava 18
15. RP_remove Ilrjava 19
16. RP_remove Irjava 20
17. Rutajava e e e 21
18. RutaAbstractajava e 38
19. RutaProxijava. e 42
20. Solucion.java e e e e e e 45
21. SolucionAbstracta.java e e 50
22. SolucionProXijava e e e 51
23. TabuRoutejava e 55

II1

wn A~ W N =

TS-VRP - Abel Naya Forcano

Clase 1: EstructuraTabu.java

import java.util.HashMap;
import java.util.Map;

/o *
* Especifica cuando la insercion de un nodo en una ruta en una
tteracion es Tabdbu
*/

public class EstructuraTabu {

VAL
* Representa un par nodo-ruta
*/

private static class _Par {
private final int nodo, ruta;

@0verride

public int hashCode () {
int hash = 7;
hash = 23 * hash + this.nodo;
hash = 23 * hash + this.ruta;
return hash;

}
@0verride
public boolean equals(Object obj) {
if (obj == null) A
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final _Par other = (_Par) obj;
if (this.nodo !'= other.nodo) {
return false;
}
if (this.ruta !'= other.ruta) {
return false;
}
return true;
}
public _Par(int nodo, int ruta) {
this.nodo = nodo;
this.ruta = ruta;
}
}
/% *
* La estructura tabu
*/

private final Map<_Par, Integer> tabu;

/**
* Inictaliza una estructura tabu donde ningun movimiento es tabd

*/

57
58
59
60
61
62

63
64
65
66
67
68
69
70
71
72
73
74
75

76
77
78
79
80
81

Una implementacion del algoritmo Taburoute

public EstructuraTabu() {
tabu = new HashMap<>();
}

/k*
* Comprueba st insertar el mnodo en la rTuta en una iteracion es
tabu o mno

*/

boolean isTabu(int nodo, int ruta, int iteracion) {
Integer value = tabu.get(new _Par(nodo, ruta));
if (value == null) {

return false;

}
return iteracion <= value;

}

/% %

* Marca como tabu la imsercidén del mnodo en la ruta hasta la
iteracidon dada
*/
void setTabu(int nodo, int ruta, int iteracion) {
tabu.put(new _Par(nodo, ruta), iteracion);

}

0NN KB W

10
11
12
13
14
15
16

18
19
20
21
22
23

TS-VRP - Abel Naya Forcano

Clase 2: Genius.java

/ ok *
* Representa el algoritmo GENIUS
*/

public class Genius {

/% %

* Genera un nuevo array con los nodos reorganizados

insertando

* elementos de la secuencta mediante GENI y realizando US

posteriormente
*/

public static int[] ejecutar (int []
int p = 5;
Ruta res = new Ruta();
for (int v : sequence) {

res.stringing (v, p)
.modificarRuta () ;

}
res.us(p);

return res.toArray();

sequence)

{

los

Nolie I e R L A

4 Una implementacion del algoritmo Taburoute
Clase 3: Grafo.java
import java.io.BufferedReader;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
VAT
* Almacena los parametros del problema
*/
public class Grafo {
/**
* Un walor comstiderado infinito
*/
private static double infinity;
/**
* Numero de mnodos
*/
private static int n;
/**
* numero maximo de rutas
*/
private static int mbar;
/**
* Matriz de adyacencia
*/
private static double[][] cij;
/**
* Distancta mazima de las rutas
*/
private static double 1;
/ ok *
* Capacidad mazima de las rutas
*/
private static double q;
/**
* Capacidad de cada nodo
*/
private static double[] qi;
VAE
* Tiempo de servicio de cada nodo
*/
private static double[] di;
/o *
* Una lista de arrays de los wvecinos mas cercanos
*/

private static int[][] nearest;

J**

* Lee los parametros de un fichero

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
&3
84
85
86
87

88
&9
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

TS-VRP - Abel Naya Forcano

*/

public static void inicializar (BufferedReader file) {

Scanner sc = new Scanner (file);

n = sc.nextInt();

mbar = n;

q = sc.nextInt ();

1 = sc.nextInt();

int dropTime = sc.nextInt();

nearest = new int[n + 1][n];

qi = new double[n + 1];

di = new doublel[n + 1];

cij = new double[n + 1][n + 17];
Integer [] nodos = new Integer[n + 1];
int x[] = new int[n + 1];

int y[] new int[n + 1];

x[0] = sc.nextInt();

y[0] = sc.nextInt();

qi[0] = 0;

di[0] = 0
nodos [0]
infinity
for (int

)

>

]
o o

1; ¢ <= n; ++c) {
x[c] sc.nextInt () ;

y [cl sc.nextInt () ;

gilc] = sc.nextInt();

dil[c] = dropTime;

cijlcllc]l = 0;

nodos [c] = c;

for (int d = 0; d < c; ++d) {

o

double dist = Math.sqrt(Math.pow(x[d] 2) +
Math.pow(y[d] - ylcl, 2));
dist = Math.round(dist * 10000d) / 100004d;
cijlclld] = dist;
cij[dllc] = dist;
infinity += dist;
}
}
ComparadorNoDirigido comparador = new ComparadorNoDirigido ();
for (int ¢ = 1; ¢ <= n; ++c) {
comparador .setOrigen(c);
Arrays.sort(nodos, comparador);
int pos = 0;
for (int d : nodos) {
if (d == ¢) {
continue;
}
nearest [c] [pos] = d;
pos++;
}
}

}

public static double getInfinity () {
return infinity;

}

public static int getN() {
return n;

6 Una implementacion del algoritmo Taburoute

115 X

116

117 public static int getMbar () {

118 return mbar;

119 by

120

121 public static double getCij(int from, int to) {
122 return cij[from][to];

123 }

124

125 public static double getQi(int id) {

126 return qil[id];

127 by

128

129 public static double getDi(int id) {

130 return dil[id];

131 by

132

133 public static double getQ() {

134 return q;

135 by

136

137 public static double getL() {

138 return 1;

139 }

140

141 public static int[] getNearestNodos (int v) {

142 return nearest([v];

143 by

144

145 /¥ *

146 * Muestra la informacidén por pantalla

147 */

148 public static void showData() {

149 System.out . prinmtlm (" sk sk skok koo sk ok s sk ok ok ok ok ook ok ok sk ok ok !
150 System.out.println ("**k*kk*xkxk*x Data *kkxkkkkkkx");
151 System.out.println("***************************");
152 System.out.println ("INFINITY: " + infinity);
153 System.out.println("n: " + n);

154 System.out.println("mbar: " + mbar);

155 System.out.println("L: " + 1);

156 System.out.println("Q: " + q);

157 System.out.println();

158 System.out.println("Qi:");

159 System.out.println(Arrays.toString(qi));

160 System.out.println("Di:");

161 System.out.println(Arrays.toString(di));

162 System.out.println();

163 System.out.println("Cij:");

164 for (double[] row : cij) {

165 for (double column : row) {

166 System.out.print (String.format("%6.2f ", column));
167 by

168 System.out.print ("\n");

169 b

170 System.out.println();

171 System.out.println("nearest:");

172 for (int i = 1; i < nearest.length; ++i) {

TS-VRP - Abel Naya Forcano

173
174
175
176
177
178

179
180

181
182
183
184
185
186
187
188
189
190

191
192
193
194 3}

System.out.println(i + + Arrays.toString(nearest[i]));

}

/k*
* Un comparador que ordena nodos basados en la menor distancia:
min{cij, cjilt
*/
private static class ComparadorNoDirigido implements
Comparator<Integer> {

private int origen;

public void setOrigen(int origen) {
this.origen = origen;

3

@0verride
public int compare(Integer ol, Integer o02) {
double dif = Math.min(getCij(origen, ol), getCij(ol,
origen)) - Math.min(getCij(origen, o02), getCij (o2,
origen));
return dif > 0 ? 1 : dif < 0 7 -1 : 0;

8 Una implementacion del algoritmo Taburoute

Clase 4: RP_insert.java
J k%

* Una modificacion en la que se inserta el nodo en la ruta
*/

public abstract class RP_insert extends RutaProxi {

Nolie I e R L A

public RP_insert (Ruta original, Nodo v, double deltaCost) {
super (original, v, deltaCost);

3

@0verride
public double getSumQi () {
super.getSumQi O ;

return getRuta().getSumQi() + Grafo.getQi(getV().getId());
@0verride
public double getSumDi () {

super .getSumDi () ;

return getRuta().getSumDi() + Grafo.getDi(getV().getId());

[N

00 NN Lt AW

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

TS-VRP - Abel Naya Forcano

Clase 5: RP_insert_102.java

J k%

* La modificacidén de una ruta que pasard a tener los nodos dados en

orden
*/

public class RP_insert_102 extends RP_insert {

private final Nodo[] orden;

public RP_insert_102(Nodo[] orden, Ruta original,

deltaCost) {
super (original, v, deltaCost);
this.orden = orden;

@0verride
public void internal_modificar () {
Nodo o = getRuta().getOrigen();
join(o, orden[0]);
for (int i = 0; i < orden.length - 1;
join(orden[i], orden[i + 1]);
}

join(orden[orden.length - 1], o);

getRuta () .actualizarInsertado(getV());

i++) {

Nodo v,

double

10 Una implementacion del algoritmo Taburoute

Clase 6: RP_insert_I.java

1 /**
2 * La modificacion de una ruta insertando el nodo mediante GENI tipo I
en el sentido original

3 */

4 public class RP_insert_I extends RP_insert {

5

6 private final Nodo vij;

7 private final Nodo vj;

8 private final Nodo vk;

9

10 public RP_insert_I(Ruta original, Nodo v, double deltaCost, Nodo
vi, Nodo vj, Nodo vk) {

11 super (original, v, deltaCost);

12 this.vi = vi;

13 this.vj = vj;

14 this.vk = vk;

15

16 3

17

18 @0verride

19 public void intermnal_modificar () {

20 Ruta ruta = getRuta();

21

22 Nodo v = getV();

23 Nodo viNext = vi.getNext();

24 Nodo vjNext = vj.getNext();

25 Nodo vkNext = vk.getNext ();

26

27 reverseNodos (viNext, vj);

28 reverseNodos (vjNext , vk);

29

30 join(vi, v);

31

32 join(v, vj);

33

34 join(viNext, vk);

35

36 join(vjNext, vkNext);

37

38 ruta.actualizarInsertado (getV());

39

40 }

41

42

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

TS-VRP - Abel Naya Forcano

Clase 7: RP_insert_II.java
J k%

11

* La modificacion de una ruta insertando el nodo mediante GENI tipo

II en el sentido ortginal
*/

public class RP_insert_II extends RP_insert {

private final Nodo vi;
private final Nodo vj;
private final Nodo vk;
private final Nodo vl;

public RP_insert_II(Ruta original, Nodo v, double deltaCost,
vi, Nodo vj, Nodo vk, Nodo vl) {
super (original, v, deltaCost);

this.vi = vi;
this.vj = vj;
this.vk = vk;
this.vl = vl;
}
@Override

public void internal_modificar () {
Ruta ruta = getRuta();

Nodo v = getV();

Nodo viNext = vi.getNext ();
Nodo vjNext = vj.getNext();
Nodo vkPrev = vk.getPrev();
Nodo vl1Prev = vl.getPrev();

reverseNodos (viNext, vl1Prev);
reverseNodos (vl, vj);

join(vi, v);

join(v, vj);

join(vl, vjNext);
join(vkPrev, vl1Prev);
join(viNext, vk);

ruta.actualizarInsertado (getV());

Nodo

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

12 Una implementacion del algoritmo Taburoute

Clase 8: RP_insert_IIr.java
J k%

* La modificacion de una ruta insertando el nodo mediante GENI tipo

ITI en el sentido contrario
*/

public class RP_insert_IIr extends RP_insert {

private final Nodo vi;
private final Nodo vj;
private final Nodo vk;
private final Nodo vl;

public RP_insert_IIr (Ruta original, Nodo v, double deltaCost,
vi, Nodo vj, Nodo vk, Nodo vl) {
super (original, v, deltaCost);

this.vi = vi;
this.vj = vj;
this.vk = vk;
this.vl = vl;
}
@Override

public void internal_modificar () {
Ruta ruta = getRuta();

Nodo v = getV();

Nodo viNext = vi.getPrev();
Nodo vjNext = vj.getPrev();
Nodo vkPrev = vk.getNext ();
Nodo vl1Prev = vl.getNext();

reverseNodos (vi, vk);
reverseNodos (vkPrev, vjNext);

join(vi, v);

join(v, vj);

join(vl, vjNext);
join(vkPrev, vl1Prev);
join(viNext, vk);

ruta.actualizarInsertado (getV());

Nodo

1

\S}

O 0 N N L AW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

TS-VRP - Abel Naya Forcano

J k%

13

Clase 9: RP_insert_Ir.java

* La modificacion de una ruta insertando el nodo mediante GENI tipo I
en el sentido contrario

*/

public class RP_insert_Ir extends RP_insert {

private final Nodo vi;
private final Nodo vj;
private final Nodo vk;

public RP_insert_Ir (Ruta original,
vi, Nodo vj,
super (original, v, deltaCost);

this.vi
this.vj
this.vk
3
@0verride

public void internal_modificar () {

Ruta rut

Nodo v =

vi;
vy
vk;

Nodo viNext =

Nodo vjNext =
Nodo vkNext

reverseNodos (vi,

join(vi,

join(v,

join(viNext, vk);

Nodo vk) {

a = getRuta();
getV();
vi.getPrev();
= vj.getPrev();
= vk.getPrev();
vkNext) ;
v);
vi);
vkNext) ;

join(vjNext,

Nodo v, double deltaCost, Nodo

ruta.actualizarInsertado (getV());

14 Una implementacion del algoritmo Taburoute

Clase 10: RP_remove.java
J k%

* Una modificacién en la que se elimina el nodo de la ruta
*/

public abstract class RP_remove extends RutaProxi {

Nolie I e R L A

public RP_remove (Ruta original, Nodo v, double deltaCost) {
super (original, v, deltaCost);

3

@0verride
public double getSumQi () {
super.getSumQi O ;

return getRuta().getSumQi() - Grafo.getQi(getV().getId());
@0verride
public double getSumDi () {

super .getSumDi () ;

return getRuta().getSumDi() - Grafo.getDi(getV().getId());

Nolie I e R L A

TS-VRP - Abel Naya Forcano

Clase 11: RP_remove_0.java

J k%

* La modificacion de una ruta que pasard a tener Unicamente el origen

*/

public class RP_remove_0 extends RP_remove {
public RP_remove_O (Ruta original, Nodo v,
super (original, v, deltaCost);
¥
@0verride
public void intermnal_modificar () {
Nodo origen = getRuta().getOrigen();

join(origen, origen);

getRuta () .actualizarRemovido (getV());

double deltaCost) {

15

Nolie I e R L A

16 Una implementacion del algoritmo Taburoute

Clase 12: RP_remove_1.java
J k%

* La modificacidén de una ruta que pasard a tener un solo vértice
*/

class RP_remove_1 extends RP_remove {
private final Nodo a;
public RP_remove_1(Nodo a, Ruta route, Nodo v, double deltaCost) {

super (route, v, deltaCost);
this.a = a;

@0Override
public void intermnal_modificar () {
Ruta ruta = getRuta();

Nodo origen = ruta.getOrigen();

join(origen, a);
join(a, origen);

ruta.actualizarRemovido (getV());

TS-VRP - Abel Naya Forcano 17

Clase 13: RP_remove_I.java

1 /*x*

2 * La modificacion de una ruta eliminando el mnodo mediante Unstiringing
tipo I en el sentido original

3 %/

4 public class RP_remove_I extends RP_remove {

5

6 private final Nodo vj;

7 private final Nodo vk;

8

9 public RP_remove_I(Ruta original, Nodo v, double deltaCost, Nodo

vj, Nodo vk) {

10 super (original, v, deltaCost);

11 this.vj = vj;

12 this.vk = vk;

13 X

14

15 @0verride

16 public void internal_modificar () {

17 Ruta ruta = getRuta();

18

19 Nodo vi = getV();

20 Nodo viNext = vi.getNext ();

21 Nodo viPrev = vi.getPrev();

22 Nodo vjNext = vj.getNext ();

23 Nodo vkNext = vk.getNext ();

24

25 reverseNodos (viNext , vk);

26 reverseNodos (vkNext, vj);

27

28 join(viPrev, vk);

29

30 join(viNext, vj);

31

32 join(vkNext, vjNext);

33

34 ruta.actualizarRemovido (getV());

35

36 }

37

38

18 Una implementacion del algoritmo Taburoute

Clase 14: RP_remove_II.java

1 /*x*

2 * La modificacion de una ruta eliminando el mnodo mediante Unstiringing
tipo II en el sentido original

3 %/

4 public class RP_remove_II extends RP_remove {

5

6 private final Nodo vj;

7 private final Nodo vk;

8 private final Nodo vl;

9

10 public RP_remove_II(Ruta original, Nodo v, double deltaCost, Nodo

vj, Nodo vk, Nodo vl1l) {

11 super (original, v, deltaCost);

12 this.vj = vj;

13 this.vk = vk;

14 this.vl = vl;

15 }

16

17 @0verride

18 public void intermnal_modificar () {

19 Ruta ruta = getRuta();

20

21 Nodo vi = getV();

22 Nodo viNext = vi.getNext ();

23 Nodo viPrev = vi.getPrev();

24 Nodo vjPrev = vj.getPrev();

25 Nodo vkNext = vk.getNext ();

26 Nodo vlNext = vl.getNext();

27

28 reverseNodos (viNext , vjPrev);

29 reverseNodos (vlNext , vk);

30

31 join(viPrev, vk);

32

33 join(vlNext, vjPrev);

34

35 join(viNext, vj);

36

37 join(vl, vkNext);

38

39 ruta.actualizarRemovido (getV());

40

41 by

42

1

\S}

O 0 N N L AW

11
12
13
14
15
16
17
18
19
20
21
2
23
24
25
26
27
28
29
30
31
2
33
34
35
36
37
38
39
40
41
4
43

TS-VRP - Abel Naya Forcano

J k%

Clase 15: RP_remove_IIr.java

19

* La modificacion de una ruta eliminando el mnodo mediante Unstiringing

*/

tipo II en el sentido contrario

public class RP_remove_IIr extends RP_remove {

private final Nodo vj;
private final Nodo vk;
private final Nodo vl;

public RP_remove_IIr (Ruta original, Nodo v, double deltaCost,

vj, Nodo vk, Nodo vl1l) {

super (original, v, deltaCost);
this.vj = vj;

this.vk = vk;

this.vl = vl;

@0verride
public void internal_modificar () {
Ruta ruta = getRuta();

Nodo vi = getV();

Nodo viNext = vi.getPrev();
Nodo viPrev = vi.getNext ();
Nodo vjPrev = vj.getNext();
Nodo vkNext = vk.getPrev();
Nodo vlNext = vl.getPrev();

reverseNodos (vl, vj);
reverseNodos (viPrev, vkNext);

join(viPrev, vk);
join(vlNext, vjPrev);
join(viNext, vj);
join(vl, vkNext);

ruta.actualizarRemovido (getV());

Nodo

20 Una implementacion del algoritmo Taburoute

Clase 16: RP_remove_Ir.java

1 /*x*

2 * La modificacion de una ruta eliminando el mnodo mediante Unstiringing
tipo I en el sentido contrario

3 %/

4 public class RP_remove_Ir extends RP_remove {

5

6 private final Nodo vj;

7 private final Nodo vk;

8

9 public RP_remove_Ir (Ruta original, Nodo v, double deltaCost, Nodo

vj, Nodo vk) {

10 super (original, v, deltaCost);

11 this.vj = vj;

12 this.vk = vk;

13 X

14

15 @0verride

16 public void internal_modificar () {

17 Ruta ruta = getRuta();

18

19 Nodo vi = getV();

20 Nodo viNext = vi.getPrev();

21 Nodo viPrev = vi.getNext();

22 Nodo vjNext = vj.getPrev();

23 Nodo vkNext = vk.getPrev();

24

25 reverseNodos (viPrev, vjNext);

26

27 join(viPrev, vk);

28

29 join(viNext, vj);

30

31 join(vkNext , vjNext);

32

33 ruta.actualizarRemovido (getV()) ;

34

35 }

36

Nolie I e R L A

26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

TS-VRP - Abel Naya Forcano

Clase 17: Ruta.java

import java.util.Iterator;
import java.util.TreeSet;

/% %
* Representa wuna ruta real
*/
public class Ruta extends RutaAbstracta {
/% *
* El proxzimo id para la proxima ruta creada
*/
static private int id_ruta_Next = 1;
/% *
* el td de esta ruta
*/
private final int id_ruta;
J**
* numero de clientes (origen no inclutdo)
*/
private int size;
J**
¥ La lista de wvecinos mas cercanos de esta ruta
demas
*/
private final TreeSet<Nodo>[] vecinosSalida;
J**
¥ La lista de wvecinos mas cercanos de esta ruta
demas
*/
private final TreeSet<Nodo>[] vecinosLlegada;
/% *
* Cache de los walores
*/

private boolean cache;

private double cacheQi;
private double cacheCij;
private double cacheRCij;
private double cacheDi;

/% *
¥ La ltsta de nodos dado su id
*/

private Nodo[] nodos;

/o *
* Construye una ruta vacia. crea un nodo origen
*/
public Ruta() {
this(new int [0]);
¥

desde todos

hacia todos

los

los

21

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

22

/% *

* El constructor a partir del array de nodos

Una implementacion del algoritmo Taburoute

public Ruta(int[] array) {

}

J**

* Realiza la construccion de las estructuras auziliares pasando

id_ruta = id_ruta_Next++;

vecinosSalida = new TreeSet[Grafo.getN() + 1];
vecinosLlegada = new TreeSet[Grafo.getN() + 1];
nodos = new Nodo[Grafo.getN() + 1];

cache = false;

initializeFromArray (array);

el array.

* Se pterde la informacion anterior

private void initializeFromArray(int[] array) {

size = array.length;

vecinosSalida[0] = new TreeSet<>(getComparator (0, true));

vecinosLlegada [0] = new TreeSet<>(getComparator (0, false));

Nodo origen = new Nodo (0);

nodos [0] = origen;

for (int i = 0; i < vecinosSalida.length; ++i) {
vecinosSalida[i] = new TreeSet<>(getComparator (i, true));
vecinosLlegada[i] = new TreeSet<>(getComparator (i, false));

vecinosSalidal[i].add(origen) ;
vecinosLlegadal[i].add (origen);

}

Nodo pre = origen;

for (int v = 0; v < size; v++) {
int id = arrayl[v];
Nodo actual = new Nodo (id) ;
nodos [id] = actual;

pre.setNext (actual);
actual.setPrev(pre);

for (int i = 0; i < id; ++i) {
vecinosSalida[i].add (actual);
vecinosLlegada[i].add (actual);

}

for (int i = id + 1; i < vecinosSalida.length; ++i) {
vecinosSalidal[i].add (actual) ;
vecinosLlegadal[i] .add (actual);

}

pre = actual;

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167

TS-VRP - Abel Naya Forcano
}
pre.setNext (origen) ;
origen.setPrev(pre);
cache = false;
}
public Nodo getOrigen() {
return nodos [0];
}
/ ok *
* Afiade el mnodo al final de la ruta (entre el udltimo cliente y el
origen)
*/
public void afiadirAlFinal(int insertar) {
Nodo nuevo = new Nodo(insertar);
nodos [insertar] = nuevo;
Nodo prev = nodos[0].getPrev();
prev.setNext (nuevo) ;
nuevo.setPrev(prev) ;
nuevo .setNext (nodos [0]) ;
nodos [0] . setPrev (nuevo) ;
actualizarInsertado (nuevo);
¥
/k*
* agctualiza las wvartables auxiliares si el nodo ahora pertenece a
la ruta
*/
public void actualizarInsertado(Nodo insertado) {
nodos [insertado.getId()] = insertado;
size++;
for (int i = 0; i < vecinosSalida.length; ++i) {
if (i == insertado.getId()) {
continue;
}
vecinosSalida[i].add(insertado);
vecinosLlegada[i].add(insertado);
}
cache = false;
}
/k*
* agctualiza las wvartables auxiliares si el nodo ya mo pertenece a
la ruta
*/

public void actualizarRemovido (Nodo removido) {

23

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

24

Una implementacion del algoritmo Taburoute

nodos [removido.getId()] = null;

size—--;
for (int i = 0; i < vecinosSalida.length; ++i) {
if (i == removido.getId()) {
continue;
}

vecinosSalida[i].remove (removido);
vecinosLlegadal[i].remove (removido) ;

cache = false;

3

/% %
* Devuelve la suma de los (7.
* Valor guardado en cache
*/
@0verride
public double getSumQi () {
if (!cache) {
calculateCache () ;
¥
return cacheQi;

3

ok k
* Devuelve la suma de los Cij.
* Valor guardado en cache
*/
@0verride
public double getSumCij () {
if (!cache) {
calculateCache () ;
3

return cacheCij;

}

ok *
* Devuelve la suma de los Cij st se recorre la ruta al reves.
* Valor guardado en cache
*/
public double getReverseSumCij () {
if (!cache) {
calculateCache () ;
X

return cacheRCij;

}

ok *
* Devuelve la suma de los Di.
* Valor guardado en cache
*/
@0verride
public double getSumDi () {
if (!'cache) {

TS-VRP - Abel Naya Forcano

226 calculateCache () ;

227 b

228 return cacheDi;

229 I

230

231 Vel

232 * El numero de mnodos en la ruta sin incluir el origen

233 */

234 public int getSize () {

235 return size;

236 by

237

238 /¥ *

239 * Devuelve una lista con todos los wecinos de esta ruta ordenados
por distancia Ctj desde el nodo dado

240 */

241 private TreeSet<Nodo> getVecinosSalida(int nodo) {

242 return vecinosSalida[nodo];

243 }

244

245 /**

246 * Devuelve una lista con todos los wvecinos de esta rTuta ordenados
por distancia Cij hacia el mnodo dado

247 */

248 private TreeSet<Nodo> getVecinosLlegada(int nodo) {

249 return vecinosLlegada[nodo];

250 by

251

252 /¥ *

253 * Inicializa la vartable pos de los nodos de esta ruta

254 */

255 public void updateAllPos () {

256

257 Nodo it = getOrigen();

258

259 for (int i = 0; i <= getSize(); ++i) A

260 it.setPos (i) ;

261

262 it = it.getNext O);

263

264 }

265 by

266

267 /¥ *

268 * Devuelve un array con punteros a los nodos de la ruta en el
orden actual

269 */

270 private Nodo[] getArrayOfNodos () {

271 Nodo [] array = new Nodo[size + 1];

272

273 Nodo it = getOrigen();

274

275 for (int i = 0; i <= getSize(); ++i) {

276 array[i] = it;

277 it = it.getNext () ;

278 b

279

280 return array;

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

26

}

/k*
* Calcula y almacena el cache
*/

private void calculateCache () {

cacheCij = 0;
0;

cacheRCij =
cacheQi = 0;
cacheDi = 0;
Nodo it = nodos[0];

Nodo itNext = it.getNext () ;

for (int i = 0; i <= getSize();

Una implementacion del algoritmo Taburoute

++i) {

cacheCij += Grafo.getCij(it.getId(),
cacheRCij += Grafo.getCij(itNext.getId(),
cacheQi += Grafo.getQi(it.getId());
cacheDi += Grafo.getDi(it.getId());

itNext.getId());

it.getId ());

it = itNext;
itNext = itNext.getNext ();
X
cache = true;
b
ok k
* Una representacidén de la ruta en forma de String
*/
@0verride

public String toString() {
StringBuilder string =

new StringBuilder ();

string.append(’[’) .append(size).append(’]’).append(’\n’);

Nodo it = nodos[0];
string.append ("--> 0");

for (int i = 0; i <= getSize();
it = it.getNext ();

++i) {

string.append(",").append(it.getId());

3

if (it.getId() '= 0) {

return "ERROR:\n" + string.toString();

}

string.append ("\n<-- 0");
for (int i = 0; i <= getSize();
it = it.getPrev();

++i) {

string.append(",") .append(it.getId());

}

if (it.getId() !'= 0) {

return "ERROR:\n" + string.toString();

}

return string.toString();

339
340
341
342
343
344
345
346
347
348

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

386
387
388
389
390
391
392
393
394

TS-VRP -

/% %

Abel Naya Forcano 27

* Devuelve el id unico de esta ruta

*/

public int getId () {

}

/% *

return id_ruta;

* Devuelve un array con los clientes de la ruta (nodos salvo el

origen) empezando por el posterior al origen

* St la ruta estd vacia devuelve un array vacio

*/

public int[] toArray () {

}

int[] array = new intl[sizel;

Nodo it = nodos[0].getNext ();
for (int i = 0; i < size; ++i) {
array[i] = it.getId();
it = it.getNext ();

return array;

private Nodo getNodoFromId (int id) {

}

Nodo v = nodos[id];
return v;

L1177 7777777777777777777/777777777/
/////// ALGORITMOS /////////////
L1777 777777777777777777777777777/

/% %

* El algoritmo Unstringing+Stringing. Modifica la ruta

*/

public void us(int p) {

if (size < 2) {
return;//st el tamafio es 1 este algoritmo no merece la pena

}

Nodo [] taustar = getArray0fNodos () ;
double zstar = getSumCij ();

Nodo [] ordenFijo = getArray0fNodos ();

//guardamos el array antes, pues en cada iteracion el orden se
modificard

int t = 1;//modificacion, el origen no lo tocamos

while (t < ordenFijo.length) {

Nodo vt = ordenFijol[t];//El mnodo t

unstringing(vt.getId (), p).modificarRuta();
stringing_nodo(vt, p).modificarRuta();

28 Una implementacion del algoritmo Taburoute

395

396 if (getSumCij () < zstar) {

397 taustar = getArrayOfNodos ();

398 zstar = getSumCij ();

399 t = 1;

400 } else {

401 t++;

402 }

403

404 }

405

406 //reordenamos con la mejor ordenacion

407 for (int i = 1; i < taustar.length; i++) {

408 taustar[i - 1].setNext(taustar[i]);

409 taustar [i].setPrev(taustar[i - 1]);

410 }

411

412 taustar [taustar.length - 1].setNext(taustar [0]);

413 taustar [0] . setPrev(taustar [taustar.length - 1]);

414

415 }

416

417 /**

418 * El algoritmo Stringing.

419 * Devuelwve una ruta_delta rTesultado de aftadir el modo a la ruta

420 */

421 public RutaProxi stringing(int id, int p) {

422 return stringing_nodo (new Nodo(id), p);

423 }

424

425 private RutaProxi stringing_nodo(Nodo v, int p) {

426

427 //necesitamos al menos 3 elementos. El origen y dos mas

428 if (getSize() < 2) {

429 return stringing_minimal (v);

430 }

431

432 //Step 1

433 updateAllPos () ;

434

435 BestMove best = new BestMove();

436

437 //Step 2: find best mowve

438 stringing_direccional(v, p, false, best);

439

440 stringing_direccional(v, p, true, best);

441

442 //Step 3: return

443 if (best.vl == null) {

444 if (!best.reversed) {

445 return new RP_insert_I(this, v, best.deltaCost,
best.vi, best.vj, best.vk);

446 } else {

447 return new RP_insert_Ir(this, v, best.deltaCost,
best.vi, best.vj, best.vk);

448 }

449 } else {

450 if (!best.reversed) {

451

452
453

454
455
456
457
458
459

460
461
462
463
464
465

466
467
468
469
470

471

472
473
474
475

476
477
478

479
480
481
482

483
484
485
486
487
488

489
490

491
492
493

TS-VRP - Abel Naya Forcano

return new RP_insert_II(this, v, best.deltaCost,
best.vi, best.vj, best.vk, best.vl);
} else {
return new RP_insert_IIr(this, v, best.deltaCost,
best.vi, best.vj, best.vk, best.vl);

}

/%%
* Cuando hay uno o dos nodos dnicamente, calculamos la mejor
manera de insertar otro de forma exzacta
*/
private RutaProxi stringing_minimal (Nodo v) {
switch (getSize()) {
case O:
//solo esta el origen, insertar tal cual
return new RP_insert_102(new Nodo[]l{v}, this, v,
Grafo.getCij (0, v.getId()) +
Grafo.getCij(v.getId(), 0));
case 1:

//hay un nodo, insertar antes o despues

Nodo vi = getOrigen () .getNext ();

double costelnsertarAntes = -Grafo.getCij (O,
vi.getId()) + Grafo.getCij(0, v.getId()) +
Grafo.getCij(v.getId(), vi.getId());

double costelInsertarDespues =
-Grafo.getCij(vi.getId(), 0) +
Grafo.getCij(v.getId(), vi.getId()) +
Grafo.getCij(vi.getId(), 0);

if (costeInsertarAntes < costelnsertarDespues) {
//insertarlo antes
return new RP_insert_102(new Nodo[]l{v, vi}, this,
v, costelInsertarAntes);
} else {
//insertarlo despues
return new RP_insert_1o02(new Nodo[]{vi, v}, this,
v, costelnsertarDespues) ;

default:
throw new Error("no se reconoce el numero de nodos:
+ getSize());

3

/% *
* Metodo de ayuda.
* Es el algoritmo como tal y calcula la mejor solucion para una
direccion concreta
*/
private void stringing_direccional(Nodo v, int p, boolean reverse,
BestMove best) {

double reverseCost = 0;
if (reverse) {

29

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

516

517
518
519
520
521
522
523
524
525
526
527

528
529

530

531

532
533

534

535

536

537
538

539

30

Una implementacion del algoritmo Taburoute

reverseCost = -getSumCij () + getReverseSumCij ();

TreeSet <Nodo> viPossible = getVecinosSalida(v.getId());
TreeSet <Nodo> vjPossible getVecinosLlegada(v.getId());

Iterator<Nodo> vilterator = viPossible.iterator ();
for (int i = 0; i < p && vilterator.hasNext(); ++i) {
Nodo vi = vilterator.next();
Iterator<Nodo> vjlIterator = vjPossible.iterator ();
for (int j = 0; j < p && vjIterator.hasNext(); ++j) {
Nodo vj = vjlterator.next();
if (vi.getId() == vj.getId()) A{
continue;
}
Nodo viNext = getNext(vi, reverse);

Nodo vjNext getNext (vj, reverse);

TreeSet <Nodo> vkPossible =
getVecinosSalida(viNext.getId());

TreeSet <Nodo> vl1Possible =
getVecinosLlegada(vjNext.getId());

Iterator<Nodo> vkIterator = vkPossible.iterator ();
for (int k = 0; k < p && vkIterator.hasNext(); ++k) {
Nodo vk = vkIterator.next();
if (!isBetween(vj, vk, vi, reverse)) {
continue;
}

Nodo vkNext = getNext(vk, reverse);

//Type I insertion

if (vk.getId() !'= vi.getId() && vk.getId() !=

vj.getId () {

Double deltaCost = reverseCost;

deltaCost -= Grafo.getCij(vi.getId(),
viNext.getId());

deltaCost -= Grafo.getCij(vj.getId(),
vijNext.getId ());

deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId (D) ;

deltaCost += Grafo.getCij(vi.getId(),
v.getId());

deltaCost += Grafo.getCij(v.getId(),
vj.getId());

deltaCost += Grafo.getCij(viNext.getId(),
vk.getId());

deltaCost += Grafo.getCij(vjNext.getId(),
vkNext.getId ()) ;

deltaCost += costOfReverseing(viNext, vj,
reverse) ;

deltaCost += costOfReverseing(vjNext, vk,
reverse) ;

TS-VRP - Abel Naya Forcano

540
541 if (!best.filled || deltaCost <
best.deltaCost) {

542 best.fill(deltaCost, vi, vj, vk, null,
reverse) ;

543 }

544 by

545

546 Iterator<Nodo> vlIterator = vlPossible.iterator ();

547 for (int 1 = 0; 1 < p && vlIterator.hasNext();

++1) {

548 Nodo vl = vlIterator.next();

549 if (!isBetween(vi, vl, vj, reverse)) {

550 continue;

551 b

552

553 //Type II insertion

554 if (vk.getId() !'= vj.getId()

555 && vk.getId() !'= vjNext.getId()

556 && vl.getId() !'= vi.getId()

557 && vl.getId() !'= viNext.getId()) {

558

559 Double deltaCost = reverseCost;

560

561 deltaCost -= Grafo.getCij(vi.getId(),
viNext.getId ());

562 deltaCost -= Grafo.getCij(getPrev(vl,
reverse) .getId(), vl.getId());

563 deltaCost -= Grafo.getCij(vj.getId(),
vijNext.getId());

564 deltaCost -= Grafo.getCij(getPrev(vk,
reverse) .getId(), vk.getId());

565

566 deltaCost += Grafo.getCij(vi.getId(),
v.getId () ;

567 deltaCost += Grafo.getCij(v.getId(),
vj.getId());

568 deltaCost += Grafo.getCij(vl.getId(),
vjNext.getId ());

569 deltaCost += Grafo.getCij(getPrev (vk,

reverse) .getId(), getPrev(vl,
reverse) .getId());

570 deltaCost += Grafo.getCij(viNext.getId(),
vk.getId());

571

572 deltaCost += costOfReverseing(viNext,
getPrev(vl, reverse), reverse);

573 deltaCost += costOfReverseing(vl, vj,
reverse) ;

574

575 if (!'best.filled || deltaCost <
best.deltaCost) {

576 best.fill(deltaCost, vi, vj, vk, vl,

reverse) ;

577 }

578

579 }

580

32 Una implementacion del algoritmo Taburoute

581 3

582

583 }

584

585 by

586

587 }

588 }

589

590 /**

591 * Realiza el procedimiento unstringing.

592 * Devuelve la ruta_delta que se crea al quitar el nodo de la ruta

593 */

594 public RutaProxi unstringing(int id, int p) {

595

596 Nodo v = getNodoFromId(id);

597

598 //necesitamos al menos tres elementos: el origen, el que

quitamos y otro

599 if (getSize() < 3) {

600 return unstringing _minimal(v);

601 }

602

603 updateAllPos () ;

604

605 BestMove best = new BestMove();

606

607 unstringing_direccional (v, p, false, best);

608

609 unstringing_direccional (v, p, true, best);

610

611 if (best.vl == null) {

612 if (!best.reversed) {

613 return new RP_remove_I(this, v, best.deltaCost,
best.vj, best.vk);

614 } else {

615 return new RP_remove_Ir(this, v, best.deltaCost,
best.vj, best.vk);

616 3

617 } else {

618 if (!best.reversed) {

619 return new RP_remove_II(this, v, best.deltaCost,
best.vj, best.vk, best.vl);

620 } else {

621 return new RP_remove_IIr(this, v, best.deltaCost,
best.vj, best.vk, best.vl);

622 ¥

623 b

624 ¥

625

626 /¥

627 * cuando hay dos o tres mnodos, lo quitamos de la mejor manera

posible

628 */

629 private RutaProxi unstringing_minimal (Nodo v) {

630 switch (getSize()) {

631 case 1:

632

633

634
635
636
637
638
639
640
641
642
643
644
645

646
647
648
649
650

651
652
653
654
655
656

657
658

659
660
661
662
663
664
665
666
667
668
669
670
671
672

673
674
675
676
677
678
679

680
681
682
683

TS-VRP - Abel Naya Forcano 33

}

/**
* Metodo de ayuda.
* Es el algoritmo como tal y calcula la mejor solucion para una

Double deltaCost = -Grafo.getCij(0, v.getId()) -
Grafo.getCij(v.getId(), 0);

//eliminarlo
return new RP_remove_O(this, v, deltaCost);

case 2:
//hay un nodo extra, lo juntamos con el cero
Nodo a = getOrigen () .getNext ();
if (a.getId() == v.getId()) A
a = a.getlNext () ;
}

deltaCost = -getSumCij () + Grafo.getCij (0, a.getId())
+ Grafo.getCij(a.getId(), 0);

return new RP_remove_1(a, this, v, deltaCost);
default:

throw new Error("mo se reconoce el numero de nodos: "
+ getSize());

direccion concreta

private void unstringing_direccional(Nodo vi, int p, boolean

reverse, BestMove best) {

double reverseCost = 0;
if (reverse) {
reverseCost = -getSumCij () + getReverseSumCij ();
}
Nodo viNext = getNext(vi, reverse);
Nodo viPrev = getPrev(vi, reverse);

TreeSet <Nodo> vjPossible = getVecinosSalida(viNext.getId());
Iterator<Nodo> vjIterator = vjPossible.iterator();
for (int i = 0; i < p && vjIterator.hasNext(); ++i) {
Nodo vj = vjIterator.next();
if (vj.getId() == vi.getId() || vj.getId() ==
viNext.getId () || vj.getId() == viPrev.getId()) {
continue;

Nodo vjNext = getNext(vj, reverse);
Nodo vjPrev getPrev(vj, reverse);

TreeSet <Nodo> vkPossible =
getVecinosSalida(viPrev.getId());

Iterator<Nodo> vkIterator = vkPossible.iterator () ;

for (int kX = 0; k < p && vkIterator.hasNext(); ++k) {
Nodo vk = vkIterator.next();
if (vk.getId() == vi.getId()) {

34 Una implementacion del algoritmo Taburoute

684 continue;

685 }

686

687 Nodo vkNext = getNext(vk, reverse);

688

689 if (isBetween(viNext, vk, vjPrev, reverse)) {

690

691 //TYPE I

692 Double deltaCost = reverseCost;

693 deltaCost -= Grafo.getCij(viPrev.getId(),
vi.getId());

694 deltaCost -= Grafo.getCij(vi.getId(),
viNext.getId ());

695 deltaCost -= Grafo.getCij(vk.getId(),
vkNext.getId ());

696 deltaCost -= Grafo.getCij(vj.getId(),
vjNext.getId ());

697

698 deltaCost += Grafo.getCij(viPrev.getId(),
vk.getId());

699 deltaCost += Grafo.getCij(viNext.getId(),
vj.getId());

700 deltaCost += Grafo.getCij (vkNext.getId(),
vijNext.getId());

701

702 deltaCost += costOfReverseing(viNext, vk, reverse);

703 deltaCost += costOfReverseing(vkNext, vj, reverse);

704

705 if (!best.filled || deltaCost < best.deltaCost) {

706 best.fill(deltaCost, null, vj, vk, null,

reverse) ;

707 }

708

709 }

710

711 if (!isBetween(vjNext, vk, getPrev(viPrev, reverse),

reverse) || vjNext.getId() == viPrev.getId()) {

712 continue;

713 }

714

715 TreeSet <Nodo> v1Possible =

getVecinosLlegada (vkNext.getId ());

716 Iterator<Nodo> vlIterator = vlPossible.iterator();

717 for (int 1 = 0; 1 < p && vlIterator.hasNext(); ++1) {

718 Nodo vl = vlIterator.next();

719 if (vl.getId() == vi.getId()) {

720 continue;

721 }

722

723 Nodo vlNext = getNext(vl, reverse);

724

725 if (!isBetween(vj, vl, getPrev(vk, reverse),
reverse)) {

726 continue;

727 }

728

729 //TYPE II

730 Double deltaCost = reverseCost;

731

732

733

734

735

736
737

738

739

740

741
742

743
744
745
746

747
748
749
750
751
752
753
754
755
756
757
758
759
760

761
762

763
764
765
766
767
768
769
770
771
772
773
774
775

TS-VRP - Abel Naya Forcano 35

deltaCost -= Grafo.getCij(viPrev.getId (),
vi.getId());

deltaCost -= Grafo.getCij(vi.getId(),
viNext.getId ());

deltaCost -= Grafo.getCij(vjPrev.getId(),
vj.getId());

deltaCost -= Grafo.getCij(vl.getId(),
viNext.getId ());

deltaCost -= Grafo.getCij(vk.getId(),
vkNext.getId ());

deltaCost += Grafo.getCij(viPrev.getId (),
vk.getId ());

deltaCost += Grafo.getCij(vlNext.getId(),
vjPrev.getId());

deltaCost += Grafo.getCij(viNext.getId(),
vj.getId());

deltaCost += Grafo.getCij(vl.getId(),
vkNext.getId ());

deltaCost += costOfReverseing(viNext, vjPrev,
reverse) ;
deltaCost += cost0OfReverseing(vlNext, vk, reverse);

if (!'best.filled || deltaCost < best.deltaCost) {
best.fill(deltaCost, null, vj, vk, vl,
reverse) ;

}

SIS0 S S S
///// Funciones auziliares //////
/7SS S S S

/ ok k
* Calcula la diferencia entre recorrer la subruta start-end en
direcctén contraria menos recorrerla en direccidén normal
*/
private double costOfReverseing(Nodo start, Nodo end, boolean
reverse) {
Nodo it = start;
Nodo itNext = getNext(start, reverse);
double cost = 0;
while (it.getId() != end.getId()) {
cost -= Grafo.getCij(it.getId(), itNext.getId());
cost += Grafo.getCij(itNext.getId(), it.getId());

it = itNext;
itNext = getNext (itNext, reverse);

return cost;

776
77
778

779

780
781
782
783
784
785
786

787

788
789
790
791
792
793
794

795
796

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827

36

Una implementacion del algoritmo Taburoute

/**
* funcion de ayuda: devuelve el nodo sigutente de la ruta
constderando el sentido:
* el modo siguiente si Tecorremos normal, el anterior st
recorremos al Teves

*/
private Nodo getNext(Nodo v, boolean reverse) {
return reverse 7 v.getPrev() : v.getNext();
3
/* ok

* funcion de ayuda: devuelve el nodo anterior de la ruta
considerando el sentido:

* el modo anterior st recorremos normal, el siguiente st
recorremos al reves

*/
private Nodo getPrev(Nodo v, boolean reverse) {
return reverse 7 v.getNext() : v.getPrev();
}
/k*

* Comprueba st los tres nodos estdn en orden -abc- considerando
el sentido?
*/
private boolean isBetween(Nodo a, Nodo b, Nodo c, boolean reverse)

{

int s = reverse 7 -1 : 1;
int aP = a.getPos() * s;
int bP = b.getPos() * s;
int cP = c.getPos() * s;

//sentido mormal
if (aP <= cP) {

// a c

return (aP <= bP && bP <= cP);// a b c = bien
} else {

//c a

return !(cP < bP && bP < aP);// ¢ b a = mal

}

S/ 777 S S
/////// Clases auziliares ///////
L7777/ 777777/

VAL
* Un movimiento imdicando el nuevo coste,
* vi,vj,vk, vl (st existe es el tipo II si no es el tipo I)
* y si1 se ha considerado el cambiar el sentido
*/

private static class BestMove {

private double deltaCost;
private Nodo vi;

TS-VRP - Abel Naya Forcano

828 private Nodo Vvj;

829 private Nodo vk;

830 private Nodo vl;

831 private boolean reversed;

832

833 private boolean filled = false;

834

835 private void fill(double reduction, Nodo vi, Nodo vj, Nodo vk,
Nodo vl, boolean reversed) {

836 this.deltaCost = reduction;

837 this.vi = vi;

838 this.vj = vj;

839 this.vk = vk;

840 this.vl = vl;

841 this.reversed = reversed;

842

843 filled = true;

844 }

845

846 }

847 }

Nolie I e R L A

38 Una implementacion del algoritmo Taburoute

Clase 18: RutaAbstracta.java

import java.util.Comparator;
import java.util.HashMap;

VAT
* Representa una ruta genérica.
* Contiene la subclase Nodo
*/
public abstract class RutaAbstracta {

abstract double getSumQi ();
abstract double getSumDi () ;
abstract double getSumCij();

public boolean isFactible_capacidad () {
return getSumQi () <= Grafo.getQ();
}

public boolean isFactible_longitud () {
return getSumCij () + getSumDi() <= Grafo.getL();
}

public boolean isFactible() {
return isFactible_capacidad() && isFactible_longitud();

}

public double getF1() {
return getSumCij ();
¥

public double getF2() {
double res = getF1();
double temp;

temp = getSumQi() - Grafo.getQQ;
if (temp > 0) {

res += TabuRoute.getAlpha() * temp;
}

temp = getSumCij () + getSumDi() - Grafo.getL();
if (temp > 0) {

res += TabuRoute.getBeta() * temp;
}

return res;

}

S/ S
/// clases auxziliares ///
L7777

VAT
* Representa un nodo de una ruta.
* Implementacidén de una lista doblemente enlazada.
*/

static class Nodo {

TS-VRP - Abel Naya Forcano

58

59 VAL

60 * El modo que representa (0 es el origen)
61 */

62 private final int id;

63

64 VAL

65 * El nmodo anterior

66 */

67 private Nodo prev = null;

68

69 /**

70 * El mnodo posterior

71 */

72 private Nodo next = null;

73

74 VEZS

75 * La posicion del nodo en la ruta.
76 * Valor modificado externamente
77 */

78 private int pos = -1;

79

80

81 public Nodo(int id) {

82 this.id = id;

83 b

84

85 public int getId() {

86 return id;

87 b

88

89 public Nodo getNext () {

90 return next;

91 }

92

93 public Nodo getPrev () {

94 return prev;

95 }

96

97 public void setPrev(Nodo prev) {
98 this.prev = prev;

99 b

100

101 public void setNext(Nodo next) {
102 this.next = next;

103 }

104

105 /**

106 * intercambia el nodo anterior con el posterior
107 */

108 public void reverse () {

109 Nodo temp = next;

110 next = prev;

111 prev = temp;

112 b

113

114 public int getPos () {

115 return pos;

116
117
118
119
120
121
122
123
124

125
126
127
128
129
130
131
132

133

134
135
136
137

138
139

140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

40

Una implementacion del algoritmo Taburoute

}

public void setPos(int pos) {
this.pos = pos;

3

@0verride
public String toString() {
return "(" + (prev == null ? "null" : prev.getId()) +
")y->" + id + "->(" + (mext == null ? "null"
next.getId()) + ") [" + pos + "1";

}

/k*
* Los contenedores de los comparadores
*/
private static final HashMap<Integer, NodoComparador>
comparatorsSalida = new HashMap<>();
private static final HashMap<Integer, NodoComparador>
comparatorsLlegada = new HashMap<>();

/ ok k
* Devuelve el comparador dado el de partida y la direccion.
* Sucestvas llamadas con los mismos parametros de entrada
devuelven el mismo objeto (cache)

*/
static public NodoComparador getComparator (int partida, boolean
salida) {
HashMap<Integer , NodoComparador> holder = salida 7
comparatorsSalida : comparatorsLlegada;
if (holder.containsKey(partida)) {
return holder.get (partida);
} else {
NodoComparador comp = new NodoComparador (partida, salida);
holder.put (partida, comp);
return comp;
X
X
/* *

* Un comparador de nodos dado uno de partida y la direccion
*/

static public class NodoComparador implements Comparator<Nodo> {

VEZS
* El nodo conm el que se compararan
x/
private final int partida;
/o *
* si comnsiderar partida-otro
*/

private final boolean salida;

private NodoComparador (int origin, boolean salida) {

TS-VRP - Abel Naya Forcano

167 this.partida = origin;

168 this.salida = salida;

169 }

170

171 @0verride

172 public int compare(Nodo vl1, Nodo v2) {

173 double dif = salida

174 ? Grafo.getCij(partida, vi.getId()) -
Grafo.getCij(partida, v2.getId())

175 : Grafo.getCij(vl.getId(), partida) -
Grafo.getCij(v2.getId(), partida);

176

177 //si 0 discriminar por id

178 if (dif == 0) {

179 dif = vl.getId() - v2.getId();

180 by

181

182 return dif > 0 ? //si es positivo

183 1 //devolvemos 1

184 : dif < 0 ? //st es mnegativo

185 -1 //devolvemos -1

186 : 0 //si no, tguales, O

187 ;

188 b

189

190 by

191 }

wn A~ W N =

42

Clase 19: RutaProxi.java

import java.util.ConcurrentModificationException;

/o *

* La interfaz de modificacion de una ruta.

* Representa una ruta resultado de realizar una modificacidn a una

ruta existente, sin realizar la modificaciodn.

Una implementacion del algoritmo Taburoute

*/
public abstract class RutaProxi extends RutaAbstracta {

/**
* El nodo que se moverd
*/

private final Nodo v;

/**
* La ruta original. Serd modificada
*/

private Ruta original;

/**
* La diferencia de los costes: nueva-antigua
*/

private final double deltaCost;

public RutaProxi(Ruta original, Nodo v, double

this.original = original;
this.deltaCost = deltaCost;
this.v = v;

public Ruta getRuta() {
checkModification();

return original;

}

public double getDeltaCost () {
checkModification();

return deltaCost;

}

public Nodo getV() {
checkModification () ;

return v;

}

/o *
* La suma de los Cij de la ruta modificada
*/
@0verride
public double getSumCij () {
checkModification () ;

deltaCost) {

TS-VRP - Abel Naya Forcano 43

57 return getRuta().getSumCij () + getDeltaCost ();

58 }

59

60 ok *

61 * La suma de los (i de la ruta modificada

62 */

63 @0verride

64 double getSumQi () {

65 checkModification () ;

66

67 return O;

68 by

69

70 /k*

71 * La suma de los Di de la ruta modificacion

72 */

73 @0verride

74 double getSumDi () {

75 checkModification () ;

76

77 return O;

78 by

79

80 / ok k

81 * Modifica la solucion original.

82 * Una wvez llamado esta funcion, todas las funciones de este

objeto lanzardan una ConcurrentModificationExzception

83 */

84 public void modificarRuta() {

85 checkModification () ;

86

87 internal_modificar () ;

88

89 original = null;

90 }

91

92 abstract void intermal_modificar ();

93

94 VAT

95 * Lanza una exzcepcidn ConcurrentModificationException st la ruta

ya ha sido modificada (no hay ruta original)

96 */

97 private void checkModification() {

98 if (original == null) {

99 throw new ConcurrentModificationException("Se ha intentado
acceder a una RutaProxi tras haber efectuado 1la
modificacién");

100 b

101 b

102

103 1777777777777

104 //Utilidades//

105 [1777777777777

106

107 VEL

108 * Cambia next<->prev en cada uno de los nodos desde from hasta to

incluidos
109 */

110
111
112
113
114
115

116
117
118
119
120
121
122
123
124
125
126
127
128

44

Una implementacion del algoritmo Taburoute

void reverseNodos (Nodo from, Nodo to) {

Nodo it = from;

while (it.getId()
it.reverse () ;

= to.getId () {

it = it.getPrev();//el anterior, que originalmente era el

siguiente
}
it.reverse () ;

3

/% %

* jJjunta los mnodos haciendo: from.mext=to to.prev=from

*/
void join(Nodo from,
from.setNext (to);
to.setPrev(from);

Nodo to) A{

Nolie I e R L A

53
54
55
56

TS-VRP - Abel Naya Forcano

Clase 20: Solucion.java

import java.util.Arrays;
import java.util.Collection;
import java.util.HashMap;

/* %
* Representa wuna solucidn: un conjunto de rutas
*/
public class Solucion extends SolucionAbstracta {
VAL
* El set de rutas.
*/
private final HashMap<Integer, Ruta> arrayRutas;
/* ok
* Una ruta vactia para realizar comprobaciones
*/

private Ruta rutaVacia;
//auziliares

/k*
* A qué ruta pertemece qué nodo
*/

private final int[] pertenencia;

VA
* Constructor base, genera una solucidn wvacia, sin nodos
*/
public Solucion() {
arrayRutas = new HashMap<>();

rutaVacia = new Ruta();

pertenencia = new int[Grafo.getN() + 1];
Arrays.fill (pertenencia, -1);

}

/k*
* Constructor fromArray ()
*/
public Solucion(int[]J[] Sstar) {
this () ;

for (int[] ruta : Sstar) {
afiadirRuta (new Ruta(ruta));
}
}

/o *
* Crea una solucion factible (o intenta serlo) dado el array de
nodos en orden
*/
public Solucion(int[] array) {
this () ;

45

57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
&3
84
85
86
87
88
&9
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

46

Una implementacion del algoritmo Taburoute

Ruta rutaActual = new Ruta();

int prelmnsertar array [0];
rutalActual.afiadirAlFinal (prelnsertar);

int pos = 1;

while (pos < array.length) {

int insertar = arrayl[pos];

if (getm() >= Grafo.getMbar()) {
break;

}

if (rutaActual.getSumQi() + Grafo.getQi(insertar) <=

Grafo.getQ() && rutaActual.getSumCij () -
Grafo.getCij(prelInsertar, 0) +
Grafo.getCij(prelnsertar, insertar) +
Grafo.getCij (insertar, 0) + rutaActual.getSumDi() +
Grafo.getDi(insertar) <= Grafo.getL()) {
rutalActual .afiadirAlFinal (insertar) ;
prelnsertar = insertar;
} else {
afiadirRuta(rutalActual) ;
rutaActual = new Ruta();
rutalActual .afiadirAlFinal (insertar) ;
prelnsertar = insertar;
}
pos++;
}
while (pos < array.length) {
int insertar = arrayl[pos];
rutaActual .afiadirAlFinal (insertar);
pos++;

}

afiadirRuta (rutalActual) ;

@0verride
public double getF1 () {
double res = 0;
for (Ruta r : arrayRutas.values()) {

res += r.getF1();
}

return res;

@0verride
public double getF2() {
double res = 0;
for (Ruta r : arrayRutas.values()) {

res += r.getF2();
}

return res;

TS-VRP - Abel Naya Forcano 47

110 /**

111 * Afiade la ruta a la lista de rutas.

112 * Se queda con el objeto

113 */

114 public void afiadirRuta(Ruta nuevaRuta) {

115 int idRuta = nuevaRuta.getId();

116 arrayRutas.put (idRuta, nuevaRuta);

117

118 updateRouteWithId (idRuta) ;

119

120 ¥

121

122 /**

123 * El numero de rutas con al menos algun cliente
124 */

125 public int getm() {

126 return arrayRutas.size();

127 by

128

129 /¥ *

130 * Si la solucion cumple la restriccion de capactidad
131 */

132 public boolean isFactible_capacidad () {

133 for (Ruta r : arrayRutas.values()) {

134 if (!r.isFactible_capacidad ()) {

135 return false;

136 ¥

137 b

138 return true;

139 }

140

141 /**

142 * St la solucidén cumple la rTestriccion de longitud
143 */

144 public boolean isFactible_longitud () {

145 for (Ruta r : arrayRutas.values()) {

146 if (!r.isFactible_longitud()) {

147 return false;

148 by

149 b

150 return true;

151 by

152

153 /* K

154 * St la solucidn es factibdble

155 */

156 @0verride

157 public boolean isFactible () {

158 return isFactible_capacidad() && isFactible_longitud();
159 by

160

161 /**

162 * Devuelve la ruta a la que pertenece el nodo dado
163 */

164 public int getIdOfRutaContainingNodo (int v) {
165 return pertenencialv];

166 }

167

48 Una implementacion del algoritmo Taburoute

168 /**

169 * Devuelve el id de la ruta vacia, usado como ruta de comprobacion
170 */

171 public int getIdOfEmptyRoute () {

172 return rutaVacia.getId();

173 3

174

175 /**

176 * Devuelve la ruta de <d dado

177 */

178 public Ruta getRouteO0fId(int id) {

179 if (id == rutaVacia.getId()) {

180 return rutaVacia;

181 b

182

183 return arrayRutas.get (id);

184 3

185

186 /¥

187 * Notifica de que la ruta ha cambiado
188 */

189 public void updateRouteWithId (int id) {
190

191 if (id == rutaVacia.getId()) {

192 if (rutaVacia.getSize() != 0) {
193 Ruta nueva = rutaVacia;

194 rutaVacia = new Ruta();

195 afiadirRuta (nueva) ;

196 //se realiza una llamada a este metodo otra wvez.
197 //8%t la rutaVacia no se modifica hay un bucle infintito
198 by

199 b

200

201 Ruta ruta = getRoute0fId(id);

202

203 if (ruta.getSize() == 0) {

204 arrayRutas.remove (ruta.getId());
205 return;

206 }

207

208 int [] nodos = ruta.toArray();

209 for (int nodo : nodos) {

210 pertenencial[nodo] = id;

211 }

212 X

213

214 /**

215 * Le aplica US a esta solucion

216 */

217 public void applyUS(int p) {

218 for (Ruta r : arrayRutas.values()) {
219 r.us(p);

220 b

221

222 X

223

224 /¥

225 * Devuelve una coleccidén con todas las rutas nmo wvacias de esta

TS-VRP - Abel Naya Forcano 49

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247 3}

solucion
*/
public Collection<Ruta> getAllRoutes () {
return arrayRutas.values();

3

VAT
* Devuelve un array representando la informacidn de esta solucion:
* Cada elemento es un array que representa una ruta
*/

public int [J[] toArray () {

int [1[] array = new int[arrayRutas.size()][];
int i = 0;
for (Ruta ruta : arrayRutas.values()) {
array[i] = ruta.toArray();
i++;
}

return array,;

50 Una implementacion del algoritmo Taburoute

Clase 21: SolucionAbstracta.java

public abstract class SolucionAbstracta {

J**
* devuelve el wvalor de F1 de esta solucion
*/

public abstract double getF1();

J**
* Devuelwve el wvalor de F2 de esta solucion
*/

public abstract double getF2();

J**
* Si la solucidon es factible
*/

public abstract boolean isFactible();

Nolie I e R L A

TS-VRP - Abel Naya Forcano

Clase 22: SolucionProxi.java

import java.util.ConcurrentModificationException;

/o *

* La clase que representa una modificacion de una soluciodn.
* Esta modificacidon consiste en pasar un nodo de una ruta a otra

*/

public class SolucionProxi extends SolucionAbstracta {

/% *

* La solucton original

*/

private Solucion base;

/% *

* El modo que se moverd

*/

private int v;

J**

* La ruta de donde se quita el

*/

nodo

private RutaProxi rr;

J**
* El1
*/

private int idRr;

J**

i2d de la ruta Rr

* La ruta en donde se aftadird el modo

*/

private RutaProxi rs;

J**
* E1
*/

private int idRs;

ok *
* Un walor,
*/

private double f;

calculado externamente,

7d de la ruta Rs

que ’wvalora’

public SolucionProxi(Solucion base) {

this.base =

}

/% %

base;

* Comnstructor copia

*/

public SolucionProxi(SolucionProxi original) {

base =
v =
rr =
idRr =
rs =

original.base;
original.v;
original.rr;
original.idRr;
original.rs;

este

movimiento

51

52 Una implementacion del algoritmo Taburoute

58 idRs = original.idRs;

59 f = original.f;

60 }

61

62 /k*

63 * Indica el modo que se modificard.

64 */

65 public void setNodo (int v) {

66 checkModification () ;

67

68 this.v = v;

69 by

70

71

72 public int getNodo () {

73 checkModification () ;

74

75 return v;

76 +

Tl

78

79 public int getRr () {

80 checkModification () ;

81

82 return idRr;

83 by

84

85 VAT

86 * Indica la ruta de la que se quitard el nodo.
87 * Genera Yy almacena una ruta_delta con la informacidn
88 */

89 public void setRr(int idRuta, int p) {

90 checkModification () ;

91

92 idRr = idRuta;

93 rr = base.getRoute0OfId(idRuta).unstringing(v, p);
94 }

95

96 VAT

97 * Indica la ruta a la que se afiadirTd el nodo.
98 * Genera y almacena una ruta_delta con la informacidn
99 */

100 public void setRs(int route, int p) {

101 checkModification () ;

102

103 idRs = route;

104 rs = base.getRoute0OfId(route).stringing(v, p);
105 by

106

107 /¥ *

108 * Si la nueva solucion es factible o no

109 */

110 @0Override

111 public boolean isFactible() {

112 checkModification () ;

113

114 for (Ruta r : base.getAllRoutes()) {

115 int id = r.getId () ;

TS-VRP - Abel Naya Forcano

116 if (id == idRr || id == idRs) {
117 continue;

118 }

119 if (!'r.isFactible()) {

120 return false;

121 }

122 }

123

124 if (!'rr.isFactible()) {

125 return false;

126 }

127 if (!'rs.isFactible()) {

128 return false;

129 }

130 return true;

131 }

132

133 /**

134 * El walor de F1 de la nueva solucion
135 */

136 @0verride

137 public double getF1() {

138 checkModification () ;

139

140 double res = 0;

141 for (Ruta r : base.getAllRoutes()) {
142 int id = r.getId();

143 if (id == idRr || id == idRs) {
144 continue;

145 }

146 res += r.getF1();

147 }

148

149 res += rr.getF1();

150 res += rs.getF1();

151 return res;

152 }

153

154 /**

155 * El walor de F2 de la nueva solucion
156 */

157 @0verride

158 public double getF2() {

159 checkModification () ;

160

161 double res = 0;

162 for (Ruta r : base.getAllRoutes()) {
163 int id = r.getId();

164 if (id == idRr || id == idRs) {
165 continue;

166 }

167 res += r.getF2();

168 }

169

170 res += rr.getF2();

171 res += rs.getF2(Q);

172 return res;

173 }

54 Una implementacion del algoritmo Taburoute

174

175

176 public void setF(double f) {

177 checkModification () ;

178

179 this.f = £;

180 by

181

182

183 public double getF() {

184 checkModification () ;

185

186 return f;

187 +

188

189 /o *

190 * Realiza la modificacion.

191 * Una wvez llamado esta funcion, todas las funciones de este

objeto lanzardn una ConcurrentModificationException

192 */

193 public void modificarSolucion() {

194 checkModification () ;

195

196 rr.modificarRuta () ;

197 rs.modificarRuta () ;

198 base.updateRouteWithId(idRs);

199 base.updateRouteWithId (idRr) ;

200

201 base = null;

202 }

203

204 /**

205 * Lanza una excepctidon ConcurrentModificationException st ya se ha

modificado este objeto (no hay solucion base)

206 */

207 private void checkModification() {

208 if (base == null) {

209 throw new ConcurrentModificationException("Se ha intentado
acceder a una SolucionProxi tras haber efectuado la
modificacién");

210 }

211 }

212}

Nolie I e R L A

10

12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

TS-VRP - Abel Naya Forcano

import
import
import
import
import
import

VAE

java.
java.
java.
java.
java.
java.

util.
util.
util.
util.

util

Clase 23: TabuRoute.java

Arraylist;
Arrays;
Collections;
HashSet;

.Random;
util.

concurrent.ThreadLocalRandom;

* Esta clase contiene los algoritmos principales del problema:
TabuRoute y Search

*/

public class TabuRoute {

/% *

* La soluction actual del problema, con la que los algoritmos

*/

trabajan

private static Solucion s;

/% %

* El mayor walor de F1 encontrado

*/

private static double flstar;

/% *

* El mayor wvalor de F2 encontrado

*/

private static double f2star;

J**

* La mejor solucion factible encontrada

*/

private static int[][] sstar;

J**

* La mejor solucidn encontrada

*/

private static int[][] stildestar;

J**

* El numero de veces que cada nodo ha sido movido. fu[0] no se

*/

private static int[] fv;

//Variables de algoritmo

/% %

* El wvalor alpha

*/

private static double alpha;

/% *

* El wvalor beta
*/

private static double beta;

55

usa

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

56

Una implementacion del algoritmo Taburoute

public static double getAlpha() {
return alpha;

}

public static void setAlpha(double alpha) {
TabuRoute.alpha = alpha;

}

public static double getBeta() {
return beta;

}

public static void setBeta(double beta) {
TabuRoute.beta = beta;
}

/**
* Inicia el algoritmo de resolucion y devuelve la solucidn.
* Esta es la funcidén que se debe llamar tras haber inicializado
Grafo
*/
public static int[][] ejecutar () {
return tabuRoute ((int) Math.floor (Math.sqrt(Grafo.getN()) /
2));
¥

/% *

Kk ok ok ok ok ok ok ok ok K ok oK ok ok Kk ok ok ok ok ok ok ok ok K

* El algoritmo taburoute
I R

* @param lambda el numero de soluciones inticiales distintas
*/
private static int[][] tabuRoute(int lambda) {

//Step -1
stildestar = null;
sstar = null;

f2star = Grafo.getInfinity();
fistar = Grafo.getInfinity();
int n = Grafo.getN(Q);

fv = new int[n + 1];

//Step 0

alpha = 1;

beta = 1;

fistar = Grafo.getInfinity();

Random random new Random () ;

//Step 1

for (int step
System.out.println("Landa
//Step 1 (a)

int i = random.nextInt(n) + 1;

0; step < lambda; ++step) {
" + step);

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

TS-VRP - Abel Naya Forcano

//Step 1 (b)

int [] sequence = new int[n];

for (int j = i; j <= n; ++j) {
sequencel[j - i] = j;

}

for (int j = 1; j < i; ++j) {
sequence[j + n - i] = j;

}

//Step 1 (b) y (c)

int [] tour = Genius.ejecutar (sequence);

//Step 1 (c)

s = new Solucion(tour);

if (s.isFactible() && s.getF1() < fistar) {

fistar = s.getF1();
sstar = s.toArray();
//System.out.printin ("Nueva

solucidn:"+Sstar.toString ());

}

if (s.getF2() < f2star) {
f2star = s.getF2();
stildestar = s.toArray();

}

//Step 1 (d)

int [] todos = new int[n];
for (int ii

= 0; ii < n; ++ii) {
todos [ii] = ii + 1;

}
search(todos, 5 * s.getm(), 0, 5,

}

//Step 1 (e)
//Error pdf: esto wva fuera del bucle
if (fistar < Grafo.getInfinity()) A
s = new Solucion(sstar);
} else {
s = new Solucion(stildestar);

}

//Step 2
System.out.println("Diversificacién")
int[] todos = new int[n];
for (int ii = 0; ii < n; ++ii) {
todos[ii] = ii + 1;
}
search(todos, 5 * s.getm(), 0, 5, 5,
if (filstar < Grafo.getInfinity()) {
s = new Solucion(sstar);
} else {
s = new Solucion(stildestar) ;

}

//Step 3
int [] handler = Arrays.copyOf (fv, n);

5,

)

10,

10, 0.01,

0.01,

10,

10, n);

50 * n);

57

58 Una implementacion del algoritmo Taburoute

169 Arrays.sort (handler);

170 int half = handler[n / 2];

171

172 int mostUsed = O;

173 for (int ii = 0; ii < fv.length; ++ii) {

174 if (fv[ii] >= half) {

175 handler [mostUsed++] = iij;

176 by

177 b

178

179 System.out.println("Intensificacién");

180 search (Arrays.copyOf (handler, mostUsed), mostUsed, 0, 5, 5,
10, 0.01, 10, n);

181 if (flstar < Grafo.getInfinity()) {

182 return sstar;

183 } else {

184 return null;

185 b

186 }

187

188 /o *

189 KR K K KK K KKK K K KKK K K KK

190 * FEl algoritmo SEARCH

191 ok ok ok ok o K K R K K K K K K Ok Ok K O

192 *

193 * @param W El conjunto de mnodos que se pueden mover

194 * @param q El numero de mnodos que se moveran

195 * @param pl =max{p2,kl}

196 * @param p2 parametro de Stringing

197 * @param phiMin minimo valor de pht

198 * @param phiMax maxzimo valor de pht

199 * @param g parametro de escala

200 * @param h <teraciones tras las cuales se refrescara el wvalor de

alpha y beta
201 * @param nMax numero maximo de iteraciones a ejecutar tras la
ultima mejora

202 */

203 private static void search(int W[], int q, int pl, int p2, int
phiMin, int phiMax, double g, int h, int nMax) {

204

205 //step -1

206 boolean wasUSused = false;

207 double deltaMax = 0;

208 double prevF2;

209

210 boolean[] prevCapacityFeasible = new boolean[h];

211 prevCapacityFeasible [0] = s.isFactible_capacidad();

212

213 boolean[] prevlengthFeasible = new boolean[h];

214 prevliengthFeasible [0] = s.isFactible_longitud();

215 int recentChange = 0;

216

217 //step 0O

218 int t = 1;

219 EstructuraTabu tabuStructure = new EstructuraTabu();

220

221 while (true) {

222 //System.out.println(t);

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
2717

TS-VRP - Abel Naya Forcano

//step 1

ArraylList<Integer> randomW = new ArrayList<>(W.length);

for (int e

W) {

randomW. add (e) ;

}

Collections.shuffle (randomW) ;
while (randomW.size() > q) {

randomW.remove (randomW.size() - 1);
+
SolucionProxi Sbar = null;
//step 2

for (int v

int Rr

randomW) {

= s.getId0OfRutaContainingNodo (v);

pl = Math.max(p2, s.getRouteOfId(Rr).getSize());

int [] nearestV = Grafo.getNearestNodos(v);

HashSet<Integer> nearestRs = new
HashSet <>(nearestV.length);

for (int i = 0; i < nearestV.length && i < pl; i++) {
if (nearestV[i] == 0) {

3

continue;

nearestRs.add (

}

s.getId0fRutaContainingNodo (nearestV[i]))

if (s.getm() < Grafo.getMbar()) {
nearestRs.add(s.getId0fEmptyRoute ());

}

SolucionProxi Sprime = new SolucionProxi(s);
Sprime.setNodo (v);
Sprime.setRr(Rr, pl);

for (int Rs : nearestRs) {
if (Rs == Rr) {

3

continue;

//Step 2 (a)
Sprime.setRs(Rs, p2);

//Step 2 (b)
if (tabuStructure.isTabu(v, Rs, t) &&

3

! (Sprime.isFactible() 7?7 Sprime.getF1() < flstar
Sprime.getF2() < f2star)) {
continue;

//Step 2 (c)
if (Sprime.getF2() < s.getF2()) {

Sprime.setF(Sprime.getF2());

} else {

59

’

278

279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

60

Una implementacion del algoritmo Taburoute

Sprime.setF(Sprime.getF2() + deltaMax x*
Math.sqrt(s.getm()) * g * fvlv] / t);

}
if (Sbar == null || Sprime.getF() < Sbar.getF()) {
Sbar = new SolucionProxi(Sprime);
}
}
}
//Step 3
prevF2 = s.getF2();
//Step 4

if (Sbar.getF2() > s.getF2() && s.isFactible() &&
lwasUSused) {

s.applyUsS(p2);
wasUSused = true;

} else {
//Step &

tabuStructure.setTabu(Sbar.getNodo (), Sbar.getRr(), t

+ ThreadLocalRandom.current () .nextInt (phiMin,
phiMax + 1));
fv[Sbar.getNodo ()]++;

Sbar .modificarSolucion();
wasUSused = false;

3

if (s.isFactible () && s.getF1() < fistar) {
fistar = s.getF1();
sstar = s.toArray();
//System.out.println("Nueva

solucidn:"+Sstar. toString ());

recentChange = t;

}

if (s.getF2() < f2star) {
f2star = s.getF2();
stildestar = s.toArray();
recentChange = t;

}

if (Math.abs(prevF2 - s.getF2()) > deltaMax) {
deltaMax = Math.abs(prevF2 - s.getF2());
}

//Step 6
prevCapacityFeasible [t % h] = s.isFactible_capacidad();
prevlengthFeasible[t % h] = s.isFactible_longitud();

if ((t + 1) % h == 0) {
int i;

for (i = prevCapacityFeasible.length - 1; i > 0; --1i)

TS-VRP - Abel Naya Forcano

331 if (prevCapacityFeasible[i] !=
prevCapacityFeasible[i - 1]) {

332 break;

333 }

334 b

335 if (1 <= 0) {

336 if (prevCapacityFeasible [0]) {

337 alpha /= 2;

338 } else {

339 alpha *= 2;

340 by

341 }

342

343 for (i = prevlengthFeasible.length - 1; i > 0; --i) {

344 if (prevlLengthFeasible[i] != prevlLengthFeasible[i
- 11 A

345 break;

346 }

347 b

348 if (i <= 0) {

349 if (prevlLengthFeasible [0]) {

350 beta /= 2;

351 } else {

352 beta *= 2;

353 }

354 b

355

356 3

357

358 //Step 7

359 if (t - recentChange >= nMax) {

360 break;

361 }

362

363 t++;

364 ¥

365

366 by

367

368 |}

	Una implementación del algoritmo Taburoute

