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Clase 1: EstructuraTabu.java
1 import java.util.HashMap;

2 import java.util.Map;

3
4 /**

5 * Especifica cuando la inserci ón de un nodo en una ruta en una

iteraci ón es Tabu

6 */

7 public class EstructuraTabu {

8
9 /**

10 * Representa un par nodo -ruta

11 */

12 private static class _Par {

13
14 private final int nodo , ruta;

15
16 @Override

17 public int hashCode () {

18 int hash = 7;

19 hash = 23 * hash + this.nodo;

20 hash = 23 * hash + this.ruta;

21 return hash;

22 }

23
24 @Override

25 public boolean equals(Object obj) {

26 if (obj == null) {

27 return false;

28 }

29 if (getClass () != obj.getClass ()) {

30 return false;

31 }

32 final _Par other = (_Par) obj;

33 if (this.nodo != other.nodo) {

34 return false;

35 }

36 if (this.ruta != other.ruta) {

37 return false;

38 }

39 return true;

40 }

41
42 public _Par(int nodo , int ruta) {

43 this.nodo = nodo;

44 this.ruta = ruta;

45 }

46
47 }

48
49 /**

50 * La estructura tab ú

51 */

52 private final Map <_Par , Integer > tabu;

53
54 /**

55 * Inicializa una estructura tabu donde ning ún movimiento es tab ú

56 */
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57 public EstructuraTabu () {

58 tabu = new HashMap <>();

59 }

60
61 /**

62 * Comprueba si insertar el nodo en la ruta en una iteraci ón es

tabu o no

63 */

64 boolean isTabu(int nodo , int ruta , int iteracion) {

65 Integer value = tabu.get(new _Par(nodo , ruta));

66
67 if (value == null) {

68 return false;

69 }

70
71 return iteracion <= value;

72 }

73
74 /**

75 * Marca como tabu la inserci ón del nodo en la ruta hasta la

iteraci ón dada

76 */

77 void setTabu(int nodo , int ruta , int iteracion) {

78 tabu.put(new _Par(nodo , ruta), iteracion);

79 }

80
81 }
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Clase 2: Genius.java
1 /**

2 * Representa el algoritmo GENIUS

3 */

4 public class Genius {

5
6 /**

7 * Genera un nuevo array con los nodos reorganizados insertando los

8 * elementos de la secuencia mediante GENI y realizando US

posteriormente

9 */

10 public static int[] ejecutar(int[] sequence) {

11 int p = 5;

12 Ruta res = new Ruta();

13 for (int v : sequence) {

14 res.stringing(v, p)

15 .modificarRuta ();

16 }

17
18 res.us(p);

19
20 return res.toArray ();

21 }

22
23 }
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Clase 3: Grafo.java
1 import java.io.BufferedReader;

2 import java.util.Arrays;

3 import java.util.Comparator;

4 import java.util.Scanner;

5
6 /**

7 * Almacena los parametros del problema

8 */

9 public class Grafo {

10
11 /**

12 * Un valor considerado infinito

13 */

14 private static double infinity;

15
16 /**

17 * Numero de nodos

18 */

19 private static int n;

20
21 /**

22 * numero maximo de rutas

23 */

24 private static int mbar;

25
26 /**

27 * Matriz de adyacencia

28 */

29 private static double [][] cij;

30
31 /**

32 * Distancia maxima de las rutas

33 */

34 private static double l;

35
36 /**

37 * Capacidad maxima de las rutas

38 */

39 private static double q;

40
41 /**

42 * Capacidad de cada nodo

43 */

44 private static double [] qi;

45
46 /**

47 * Tiempo de servicio de cada nodo

48 */

49 private static double [] di;

50
51 /**

52 * Una lista de arrays de los vecinos mas cercanos

53 */

54 private static int [][] nearest;

55
56 /**

57 * Lee los parametros de un fichero
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58 */

59 public static void inicializar(BufferedReader file) {

60 Scanner sc = new Scanner(file);

61 n = sc.nextInt ();

62 mbar = n;

63 q = sc.nextInt ();

64 l = sc.nextInt ();

65 int dropTime = sc.nextInt ();

66 nearest = new int[n + 1][n];

67 qi = new double[n + 1];

68 di = new double[n + 1];

69 cij = new double[n + 1][n + 1];

70 Integer [] nodos = new Integer[n + 1];

71 int x[] = new int[n + 1];

72 int y[] = new int[n + 1];

73 x[0] = sc.nextInt ();

74 y[0] = sc.nextInt ();

75 qi[0] = 0;

76 di[0] = 0;

77 nodos [0] = 0;

78 infinity = 0;

79 for (int c = 1; c <= n; ++c) {

80 x[c] = sc.nextInt ();

81 y[c] = sc.nextInt ();

82 qi[c] = sc.nextInt ();

83 di[c] = dropTime;

84 cij[c][c] = 0;

85 nodos[c] = c;

86 for (int d = 0; d < c; ++d) {

87 double dist = Math.sqrt(Math.pow(x[d] - x[c], 2) +

Math.pow(y[d] - y[c], 2));

88 dist = Math.round(dist * 10000d) / 10000d;

89 cij[c][d] = dist;

90 cij[d][c] = dist;

91 infinity += dist;

92 }

93 }

94 ComparadorNoDirigido comparador = new ComparadorNoDirigido ();

95 for (int c = 1; c <= n; ++c) {

96 comparador.setOrigen(c);

97 Arrays.sort(nodos , comparador);

98 int pos = 0;

99 for (int d : nodos) {

100 if (d == c) {

101 continue;

102 }

103 nearest[c][pos] = d;

104 pos++;

105 }

106 }

107 }

108
109 public static double getInfinity () {

110 return infinity;

111 }

112
113 public static int getN() {

114 return n;
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115 }

116
117 public static int getMbar () {

118 return mbar;

119 }

120
121 public static double getCij(int from , int to) {

122 return cij[from][to];

123 }

124
125 public static double getQi(int id) {

126 return qi[id];

127 }

128
129 public static double getDi(int id) {

130 return di[id];

131 }

132
133 public static double getQ() {

134 return q;

135 }

136
137 public static double getL() {

138 return l;

139 }

140
141 public static int[] getNearestNodos(int v) {

142 return nearest[v];

143 }

144
145 /**

146 * Muestra la informaci ón por pantalla

147 */

148 public static void showData () {

149 System.out.println("***************************");

150 System.out.println("********** Data ***********");

151 System.out.println("***************************");

152 System.out.println("INFINITY: " + infinity);

153 System.out.println("n: " + n);

154 System.out.println("mbar: " + mbar);

155 System.out.println("L: " + l);

156 System.out.println("Q: " + q);

157 System.out.println ();

158 System.out.println("Qi:");

159 System.out.println(Arrays.toString(qi));

160 System.out.println("Di:");

161 System.out.println(Arrays.toString(di));

162 System.out.println ();

163 System.out.println("Cij:");

164 for (double [] row : cij) {

165 for (double column : row) {

166 System.out.print(String.format(" %6.2f ", column));

167 }

168 System.out.print("\n");

169 }

170 System.out.println ();

171 System.out.println("nearest:");

172 for (int i = 1; i < nearest.length; ++i) {
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173 System.out.println(i + ": " + Arrays.toString(nearest[i]));

174 }

175 }

176
177 /**

178 * Un comparador que ordena nodos basados en la menor distancia:

min{cij , cji}

179 */

180 private static class ComparadorNoDirigido implements

Comparator <Integer > {

181
182 private int origen;

183
184 public void setOrigen(int origen) {

185 this.origen = origen;

186 }

187
188 @Override

189 public int compare(Integer o1, Integer o2) {

190 double dif = Math.min(getCij(origen , o1), getCij(o1,

origen)) - Math.min(getCij(origen , o2), getCij(o2,

origen));

191 return dif > 0 ? 1 : dif < 0 ? -1 : 0;

192 }

193 }

194 }
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Clase 4: RP_insert.java
1 /**

2 * Una modificacion en la que se inserta el nodo en la ruta

3 */

4 public abstract class RP_insert extends RutaProxi {

5
6 public RP_insert(Ruta original , Nodo v, double deltaCost) {

7 super(original , v, deltaCost);

8 }

9
10 @Override

11 public double getSumQi () {

12 super.getSumQi ();

13
14 return getRuta ().getSumQi () + Grafo.getQi(getV().getId());

15 }

16
17 @Override

18 public double getSumDi () {

19 super.getSumDi ();

20
21 return getRuta ().getSumDi () + Grafo.getDi(getV().getId());

22 }

23
24 }
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Clase 5: RP_insert_1o2.java
1 /**

2 * La modificaci ón de una ruta que pasar á a tener los nodos dados en

orden

3 */

4 public class RP_insert_1o2 extends RP_insert {

5
6 private final Nodo[] orden;

7
8 public RP_insert_1o2(Nodo[] orden , Ruta original , Nodo v, double

deltaCost) {

9 super(original , v, deltaCost);

10 this.orden = orden;

11 }

12
13 @Override

14 public void internal_modificar () {

15
16 Nodo o = getRuta ().getOrigen ();

17
18 join(o, orden [0]);

19
20 for (int i = 0; i < orden.length - 1; i++) {

21 join(orden[i], orden[i + 1]);

22 }

23
24 join(orden[orden.length - 1], o);

25
26 getRuta ().actualizarInsertado(getV());

27 }

28
29 }
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Clase 6: RP_insert_I.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo I

en el sentido original

3 */

4 public class RP_insert_I extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9
10 public RP_insert_I(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk) {

11 super(original , v, deltaCost);

12 this.vi = vi;

13 this.vj = vj;

14 this.vk = vk;

15
16 }

17
18 @Override

19 public void internal_modificar () {

20 Ruta ruta = getRuta ();

21
22 Nodo v = getV();

23 Nodo viNext = vi.getNext ();

24 Nodo vjNext = vj.getNext ();

25 Nodo vkNext = vk.getNext ();

26
27 reverseNodos(viNext , vj);

28 reverseNodos(vjNext , vk);

29
30 join(vi, v);

31
32 join(v, vj);

33
34 join(viNext , vk);

35
36 join(vjNext , vkNext);

37
38 ruta.actualizarInsertado(getV());

39
40 }

41
42 }
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Clase 7: RP_insert_II.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo

II en el sentido original

3 */

4 public class RP_insert_II extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9 private final Nodo vl;

10
11 public RP_insert_II(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk, Nodo vl) {

12 super(original , v, deltaCost);

13 this.vi = vi;

14 this.vj = vj;

15 this.vk = vk;

16 this.vl = vl;

17 }

18
19 @Override

20 public void internal_modificar () {

21 Ruta ruta = getRuta ();

22
23 Nodo v = getV();

24 Nodo viNext = vi.getNext ();

25 Nodo vjNext = vj.getNext ();

26 Nodo vkPrev = vk.getPrev ();

27 Nodo vlPrev = vl.getPrev ();

28
29 reverseNodos(viNext , vlPrev);

30 reverseNodos(vl, vj);

31
32 join(vi, v);

33
34 join(v, vj);

35
36 join(vl, vjNext);

37
38 join(vkPrev , vlPrev);

39
40 join(viNext , vk);

41
42 ruta.actualizarInsertado(getV());

43
44 }

45 }
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Clase 8: RP_insert_IIr.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo

II en el sentido contrario

3 */

4 public class RP_insert_IIr extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9 private final Nodo vl;

10
11 public RP_insert_IIr(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk, Nodo vl) {

12 super(original , v, deltaCost);

13 this.vi = vi;

14 this.vj = vj;

15 this.vk = vk;

16 this.vl = vl;

17 }

18
19 @Override

20 public void internal_modificar () {

21 Ruta ruta = getRuta ();

22
23 Nodo v = getV();

24 Nodo viNext = vi.getPrev ();

25 Nodo vjNext = vj.getPrev ();

26 Nodo vkPrev = vk.getNext ();

27 Nodo vlPrev = vl.getNext ();

28
29 reverseNodos(vi, vk);

30 reverseNodos(vkPrev , vjNext);

31
32 join(vi, v);

33
34 join(v, vj);

35
36 join(vl, vjNext);

37
38 join(vkPrev , vlPrev);

39
40 join(viNext , vk);

41
42 ruta.actualizarInsertado(getV());

43
44 }

45 }
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Clase 9: RP_insert_Ir.java
1 /**

2 * La modificacion de una ruta insertando el nodo mediante GENI tipo I

en el sentido contrario

3 */

4 public class RP_insert_Ir extends RP_insert {

5
6 private final Nodo vi;

7 private final Nodo vj;

8 private final Nodo vk;

9
10 public RP_insert_Ir(Ruta original , Nodo v, double deltaCost , Nodo

vi, Nodo vj, Nodo vk) {

11 super(original , v, deltaCost);

12 this.vi = vi;

13 this.vj = vj;

14 this.vk = vk;

15
16 }

17
18 @Override

19 public void internal_modificar () {

20 Ruta ruta = getRuta ();

21
22 Nodo v = getV();

23 Nodo viNext = vi.getPrev ();

24 Nodo vjNext = vj.getPrev ();

25 Nodo vkNext = vk.getPrev ();

26
27 reverseNodos(vi, vkNext);

28
29 join(vi, v);

30
31 join(v, vj);

32
33 join(viNext , vk);

34
35 join(vjNext , vkNext);

36
37 ruta.actualizarInsertado(getV());

38
39 }

40 }
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Clase 10: RP_remove.java
1 /**

2 * Una modificaci ón en la que se elimina el nodo de la ruta

3 */

4 public abstract class RP_remove extends RutaProxi {

5
6 public RP_remove(Ruta original , Nodo v, double deltaCost) {

7 super(original , v, deltaCost);

8 }

9
10 @Override

11 public double getSumQi () {

12 super.getSumQi ();

13
14 return getRuta ().getSumQi () - Grafo.getQi(getV().getId());

15 }

16
17 @Override

18 public double getSumDi () {

19 super.getSumDi ();

20
21 return getRuta ().getSumDi () - Grafo.getDi(getV().getId());

22 }

23 }
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Clase 11: RP_remove_0.java
1 /**

2 * La modificacion de una ruta que pasar á a tener ú nicamente el origen

3 */

4 public class RP_remove_0 extends RP_remove {

5
6 public RP_remove_0(Ruta original , Nodo v, double deltaCost) {

7 super(original , v, deltaCost);

8 }

9
10 @Override

11 public void internal_modificar () {

12 Nodo origen = getRuta ().getOrigen ();

13
14 join(origen , origen);

15
16 getRuta ().actualizarRemovido(getV());

17 }

18
19 }
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Clase 12: RP_remove_1.java
1 /**

2 * La modificaci ón de una ruta que pasar á a tener un solo vé rtice

3 */

4 class RP_remove_1 extends RP_remove {

5
6 private final Nodo a;

7
8 public RP_remove_1(Nodo a, Ruta route , Nodo v, double deltaCost) {

9 super(route , v, deltaCost);

10 this.a = a;

11 }

12
13 @Override

14 public void internal_modificar () {

15 Ruta ruta = getRuta ();

16
17 Nodo origen = ruta.getOrigen ();

18
19 join(origen , a);

20 join(a, origen);

21
22 ruta.actualizarRemovido(getV());

23 }

24
25 }
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Clase 13: RP_remove_I.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo I en el sentido original

3 */

4 public class RP_remove_I extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8
9 public RP_remove_I(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk) {

10 super(original , v, deltaCost);

11 this.vj = vj;

12 this.vk = vk;

13 }

14
15 @Override

16 public void internal_modificar () {

17 Ruta ruta = getRuta ();

18
19 Nodo vi = getV();

20 Nodo viNext = vi.getNext ();

21 Nodo viPrev = vi.getPrev ();

22 Nodo vjNext = vj.getNext ();

23 Nodo vkNext = vk.getNext ();

24
25 reverseNodos(viNext , vk);

26 reverseNodos(vkNext , vj);

27
28 join(viPrev , vk);

29
30 join(viNext , vj);

31
32 join(vkNext , vjNext);

33
34 ruta.actualizarRemovido(getV());

35
36 }

37
38 }
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Clase 14: RP_remove_II.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo II en el sentido original

3 */

4 public class RP_remove_II extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8 private final Nodo vl;

9
10 public RP_remove_II(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk, Nodo vl) {

11 super(original , v, deltaCost);

12 this.vj = vj;

13 this.vk = vk;

14 this.vl = vl;

15 }

16
17 @Override

18 public void internal_modificar () {

19 Ruta ruta = getRuta ();

20
21 Nodo vi = getV();

22 Nodo viNext = vi.getNext ();

23 Nodo viPrev = vi.getPrev ();

24 Nodo vjPrev = vj.getPrev ();

25 Nodo vkNext = vk.getNext ();

26 Nodo vlNext = vl.getNext ();

27
28 reverseNodos(viNext , vjPrev);

29 reverseNodos(vlNext , vk);

30
31 join(viPrev , vk);

32
33 join(vlNext , vjPrev);

34
35 join(viNext , vj);

36
37 join(vl, vkNext);

38
39 ruta.actualizarRemovido(getV());

40
41 }

42 }
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Clase 15: RP_remove_IIr.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo II en el sentido contrario

3 */

4 public class RP_remove_IIr extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8 private final Nodo vl;

9
10 public RP_remove_IIr(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk, Nodo vl) {

11 super(original , v, deltaCost);

12 this.vj = vj;

13 this.vk = vk;

14 this.vl = vl;

15 }

16
17 @Override

18 public void internal_modificar () {

19 Ruta ruta = getRuta ();

20
21 Nodo vi = getV();

22 Nodo viNext = vi.getPrev ();

23 Nodo viPrev = vi.getNext ();

24 Nodo vjPrev = vj.getNext ();

25 Nodo vkNext = vk.getPrev ();

26 Nodo vlNext = vl.getPrev ();

27
28 reverseNodos(vl, vj);

29 reverseNodos(viPrev , vkNext);

30
31 join(viPrev , vk);

32
33 join(vlNext , vjPrev);

34
35 join(viNext , vj);

36
37 join(vl, vkNext);

38
39 ruta.actualizarRemovido(getV());

40
41 }

42
43 }
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Clase 16: RP_remove_Ir.java
1 /**

2 * La modificacion de una ruta eliminando el nodo mediante Unstringing

tipo I en el sentido contrario

3 */

4 public class RP_remove_Ir extends RP_remove {

5
6 private final Nodo vj;

7 private final Nodo vk;

8
9 public RP_remove_Ir(Ruta original , Nodo v, double deltaCost , Nodo

vj, Nodo vk) {

10 super(original , v, deltaCost);

11 this.vj = vj;

12 this.vk = vk;

13 }

14
15 @Override

16 public void internal_modificar () {

17 Ruta ruta = getRuta ();

18
19 Nodo vi = getV();

20 Nodo viNext = vi.getPrev ();

21 Nodo viPrev = vi.getNext ();

22 Nodo vjNext = vj.getPrev ();

23 Nodo vkNext = vk.getPrev ();

24
25 reverseNodos(viPrev , vjNext);

26
27 join(viPrev , vk);

28
29 join(viNext , vj);

30
31 join(vkNext , vjNext);

32
33 ruta.actualizarRemovido(getV());

34
35 }

36 }
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Clase 17: Ruta.java
1 import java.util.Iterator;

2 import java.util.TreeSet;

3
4 /**

5 * Representa una ruta real

6 */

7 public class Ruta extends RutaAbstracta {

8
9 /**

10 * El proximo id para la proxima ruta creada

11 */

12 static private int id_ruta_Next = 1;

13
14 /**

15 * el id de esta ruta

16 */

17 private final int id_ruta;

18
19 /**

20 * numero de clientes (origen no incluido)

21 */

22 private int size;

23
24 /**

25 * La lista de vecinos mas cercanos de esta ruta desde todos los

demas

26 */

27 private final TreeSet <Nodo >[] vecinosSalida;

28
29 /**

30 * La lista de vecinos mas cercanos de esta ruta hacia todos los

demas

31 */

32 private final TreeSet <Nodo >[] vecinosLlegada;

33
34 /**

35 * Cache de los valores

36 */

37 private boolean cache;

38
39 private double cacheQi;

40 private double cacheCij;

41 private double cacheRCij;

42 private double cacheDi;

43
44 /**

45 * La lista de nodos dado su id

46 */

47 private Nodo[] nodos;

48
49 /**

50 * Construye una ruta vac ı́a. crea un nodo origen

51 */

52 public Ruta() {

53 this(new int [0]);

54 }

55
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56 /**

57 * El constructor a partir del array de nodos

58 */

59 public Ruta(int[] array) {

60 id_ruta = id_ruta_Next ++;

61
62 vecinosSalida = new TreeSet[Grafo.getN() + 1];

63 vecinosLlegada = new TreeSet[Grafo.getN() + 1];

64 nodos = new Nodo[Grafo.getN() + 1];

65
66 cache = false;

67
68 initializeFromArray(array);

69 }

70
71 /**

72 * Realiza la construccion de las estructuras auxiliares pasando

el array.

73 * Se pierde la informaci ón anterior

74 */

75 private void initializeFromArray(int[] array) {

76
77 size = array.length;

78
79 vecinosSalida [0] = new TreeSet <>( getComparator (0, true));

80 vecinosLlegada [0] = new TreeSet <>( getComparator (0, false));

81
82 Nodo origen = new Nodo (0);

83 nodos [0] = origen;

84
85 for (int i = 0; i < vecinosSalida.length; ++i) {

86 vecinosSalida[i] = new TreeSet <>( getComparator(i, true));

87 vecinosLlegada[i] = new TreeSet <>( getComparator(i, false));

88
89 vecinosSalida[i].add(origen);

90 vecinosLlegada[i].add(origen);

91 }

92
93 Nodo pre = origen;

94
95 for (int v = 0; v < size; v++) {

96 int id = array[v];

97 Nodo actual = new Nodo(id);

98 nodos[id] = actual;

99
100 pre.setNext(actual);

101 actual.setPrev(pre);

102
103 for (int i = 0; i < id; ++i) {

104 vecinosSalida[i].add(actual);

105 vecinosLlegada[i].add(actual);

106 }

107 for (int i = id + 1; i < vecinosSalida.length; ++i) {

108 vecinosSalida[i].add(actual);

109 vecinosLlegada[i].add(actual);

110 }

111
112 pre = actual;
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113 }

114
115 pre.setNext(origen);

116 origen.setPrev(pre);

117
118 cache = false;

119 }

120
121
122 public Nodo getOrigen () {

123 return nodos [0];

124 }

125
126 /**

127 * A~nade el nodo al final de la ruta (entre el ú ltimo cliente y el

origen)

128 */

129 public void a~nadirAlFinal(int insertar) {

130 Nodo nuevo = new Nodo(insertar);

131 nodos[insertar] = nuevo;

132
133 Nodo prev = nodos [0]. getPrev ();

134
135 prev.setNext(nuevo);

136 nuevo.setPrev(prev);

137
138 nuevo.setNext(nodos [0]);

139 nodos [0]. setPrev(nuevo);

140
141 actualizarInsertado(nuevo);

142 }

143
144 /**

145 * actualiza las variables auxiliares si el nodo ahora pertenece a

la ruta

146 */

147 public void actualizarInsertado(Nodo insertado) {

148
149 nodos[insertado.getId()] = insertado;

150
151 size ++;

152
153 for (int i = 0; i < vecinosSalida.length; ++i) {

154 if (i == insertado.getId()) {

155 continue;

156 }

157 vecinosSalida[i].add(insertado);

158 vecinosLlegada[i].add(insertado);

159 }

160
161 cache = false;

162 }

163
164 /**

165 * actualiza las variables auxiliares si el nodo ya no pertenece a

la ruta

166 */

167 public void actualizarRemovido(Nodo removido) {
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168
169 nodos[removido.getId ()] = null;

170
171 size --;

172
173 for (int i = 0; i < vecinosSalida.length; ++i) {

174 if (i == removido.getId()) {

175 continue;

176 }

177 vecinosSalida[i]. remove(removido);

178 vecinosLlegada[i]. remove(removido);

179 }

180
181 cache = false;

182 }

183
184 /**

185 * Devuelve la suma de los Qi.

186 * Valor guardado en cache

187 */

188 @Override

189 public double getSumQi () {

190 if (! cache) {

191 calculateCache ();

192 }

193 return cacheQi;

194 }

195
196 /**

197 * Devuelve la suma de los Cij.

198 * Valor guardado en cache

199 */

200 @Override

201 public double getSumCij () {

202 if (! cache) {

203 calculateCache ();

204 }

205 return cacheCij;

206 }

207
208 /**

209 * Devuelve la suma de los Cij si se recorre la ruta al reves.

210 * Valor guardado en cache

211 */

212 public double getReverseSumCij () {

213 if (! cache) {

214 calculateCache ();

215 }

216 return cacheRCij;

217 }

218
219 /**

220 * Devuelve la suma de los Di.

221 * Valor guardado en cache

222 */

223 @Override

224 public double getSumDi () {

225 if (! cache) {
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226 calculateCache ();

227 }

228 return cacheDi;

229 }

230
231 /**

232 * El numero de nodos en la ruta sin incluir el origen

233 */

234 public int getSize () {

235 return size;

236 }

237
238 /**

239 * Devuelve una lista con todos los vecinos de esta ruta ordenados

por distancia Cij desde el nodo dado

240 */

241 private TreeSet <Nodo > getVecinosSalida(int nodo) {

242 return vecinosSalida[nodo];

243 }

244
245 /**

246 * Devuelve una lista con todos los vecinos de esta ruta ordenados

por distancia Cij hacia el nodo dado

247 */

248 private TreeSet <Nodo > getVecinosLlegada(int nodo) {

249 return vecinosLlegada[nodo];

250 }

251
252 /**

253 * Inicializa la variable pos de los nodos de esta ruta

254 */

255 public void updateAllPos () {

256
257 Nodo it = getOrigen ();

258
259 for (int i = 0; i <= getSize (); ++i) {

260 it.setPos(i);

261
262 it = it.getNext ();

263
264 }

265 }

266
267 /**

268 * Devuelve un array con punteros a los nodos de la ruta en el

orden actual

269 */

270 private Nodo[] getArrayOfNodos () {

271 Nodo[] array = new Nodo[size + 1];

272
273 Nodo it = getOrigen ();

274
275 for (int i = 0; i <= getSize (); ++i) {

276 array[i] = it;

277 it = it.getNext ();

278 }

279
280 return array;
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281 }

282
283 /**

284 * Calcula y almacena el cache

285 */

286 private void calculateCache () {

287
288 cacheCij = 0;

289 cacheRCij = 0;

290 cacheQi = 0;

291 cacheDi = 0;

292
293 Nodo it = nodos [0];

294 Nodo itNext = it.getNext ();

295
296 for (int i = 0; i <= getSize (); ++i) {

297 cacheCij += Grafo.getCij(it.getId(), itNext.getId ());

298 cacheRCij += Grafo.getCij(itNext.getId(), it.getId());

299 cacheQi += Grafo.getQi(it.getId());

300 cacheDi += Grafo.getDi(it.getId());

301
302 it = itNext;

303 itNext = itNext.getNext ();

304 }

305
306 cache = true;

307 }

308
309 /**

310 * Una representaci ón de la ruta en forma de String

311 */

312 @Override

313 public String toString () {

314 StringBuilder string = new StringBuilder ();

315 string.append(’[’).append(size).append(’]’).append(’\n’);

316
317 Nodo it = nodos [0];

318 string.append("--> 0");

319
320 for (int i = 0; i <= getSize (); ++i) {

321 it = it.getNext ();

322 string.append(",").append(it.getId());

323 }

324 if (it.getId() != 0) {

325 return "ERROR:\n" + string.toString ();

326 }

327
328 string.append("\n<-- 0");

329 for (int i = 0; i <= getSize (); ++i) {

330 it = it.getPrev ();

331 string.append(",").append(it.getId());

332 }

333 if (it.getId() != 0) {

334 return "ERROR:\n" + string.toString ();

335 }

336
337 return string.toString ();

338 }
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339
340 /**

341 * Devuelve el id único de esta ruta

342 */

343 public int getId() {

344 return id_ruta;

345 }

346
347 /**

348 * Devuelve un array con los clientes de la ruta (nodos salvo el

origen) empezando por el posterior al origen

349 * Si la ruta est á vac ı́a devuelve un array vac ı́o

350 */

351 public int[] toArray () {

352 int[] array = new int[size];

353
354 Nodo it = nodos [0]. getNext ();

355 for (int i = 0; i < size; ++i) {

356 array[i] = it.getId();

357 it = it.getNext ();

358 }

359
360 return array;

361 }

362
363 private Nodo getNodoFromId(int id) {

364 Nodo v = nodos[id];

365 return v;

366 }

367
368 // //////////////////////////////

369 /////// ALGORITMOS /////////////

370 // //////////////////////////////

371
372 /**

373 * El algoritmo Unstringing+Stringing. Modifica la ruta

374 */

375 public void us(int p) {

376
377 if (size < 2) {

378 return;//si el tama~no es 1 este algoritmo no merece la pena

379 }

380
381 Nodo[] taustar = getArrayOfNodos ();

382 double zstar = getSumCij ();

383
384 Nodo[] ordenFijo = getArrayOfNodos ();

385 // guardamos el array antes , pues en cada iteracion el orden se

modificar á

386
387 int t = 1;// modificacion , el origen no lo tocamos

388
389 while (t < ordenFijo.length) {

390
391 Nodo vt = ordenFijo[t];//El nodo t

392
393 unstringing(vt.getId(), p).modificarRuta ();

394 stringing_nodo(vt, p).modificarRuta ();
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395
396 if (getSumCij () < zstar) {

397 taustar = getArrayOfNodos ();

398 zstar = getSumCij ();

399 t = 1;

400 } else {

401 t++;

402 }

403
404 }

405
406 // reordenamos con la mejor ordenacion

407 for (int i = 1; i < taustar.length; i++) {

408 taustar[i - 1]. setNext(taustar[i]);

409 taustar[i]. setPrev(taustar[i - 1]);

410 }

411
412 taustar[taustar.length - 1]. setNext(taustar [0]);

413 taustar [0]. setPrev(taustar[taustar.length - 1]);

414
415 }

416
417 /**

418 * El algoritmo Stringing.

419 * Devuelve una ruta_delta resultado de a~nadir el nodo a la ruta

420 */

421 public RutaProxi stringing(int id, int p) {

422 return stringing_nodo(new Nodo(id), p);

423 }

424
425 private RutaProxi stringing_nodo(Nodo v, int p) {

426
427 // necesitamos al menos 3 elementos. El origen y dos mas

428 if (getSize () < 2) {

429 return stringing_minimal(v);

430 }

431
432 //Step 1

433 updateAllPos ();

434
435 BestMove best = new BestMove ();

436
437 //Step 2: find best move

438 stringing_direccional(v, p, false , best);

439
440 stringing_direccional(v, p, true , best);

441
442 //Step 3: return

443 if (best.vl == null) {

444 if (!best.reversed) {

445 return new RP_insert_I(this , v, best.deltaCost ,

best.vi, best.vj, best.vk);

446 } else {

447 return new RP_insert_Ir(this , v, best.deltaCost ,

best.vi, best.vj, best.vk);

448 }

449 } else {

450 if (!best.reversed) {
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451 return new RP_insert_II(this , v, best.deltaCost ,

best.vi, best.vj, best.vk , best.vl);

452 } else {

453 return new RP_insert_IIr(this , v, best.deltaCost ,

best.vi, best.vj, best.vk , best.vl);

454 }

455 }

456 }

457
458 /**

459 * Cuando hay uno o dos nodos ú nicamente , calculamos la mejor

manera de insertar otro de forma exacta

460 */

461 private RutaProxi stringing_minimal(Nodo v) {

462 switch (getSize ()) {

463 case 0:

464 //solo esta el origen , insertar tal cual

465 return new RP_insert_1o2(new Nodo []{v}, this , v,

Grafo.getCij(0, v.getId()) +

Grafo.getCij(v.getId (), 0));

466 case 1:

467
468 //hay un nodo , insertar antes o despues

469 Nodo vi = getOrigen ().getNext ();

470 double costeInsertarAntes = -Grafo.getCij(0,

vi.getId()) + Grafo.getCij(0, v.getId()) +

Grafo.getCij(v.getId (), vi.getId());

471 double costeInsertarDespues =

-Grafo.getCij(vi.getId(), 0) +

Grafo.getCij(v.getId (), vi.getId()) +

Grafo.getCij(vi.getId(), 0);

472
473 if (costeInsertarAntes < costeInsertarDespues) {

474 // insertarlo antes

475 return new RP_insert_1o2(new Nodo []{v, vi}, this ,

v, costeInsertarAntes);

476 } else {

477 // insertarlo despues

478 return new RP_insert_1o2(new Nodo []{vi, v}, this ,

v, costeInsertarDespues);

479 }

480
481 default:

482 throw new Error("no se reconoce el numero de nodos: "

+ getSize ());

483 }

484 }

485
486 /**

487 * Metodo de ayuda.

488 * Es el algoritmo como tal y calcula la mejor solucion para una

direccion concreta

489 */

490 private void stringing_direccional(Nodo v, int p, boolean reverse ,

BestMove best) {

491
492 double reverseCost = 0;

493 if (reverse) {
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494 reverseCost = -getSumCij () + getReverseSumCij ();

495 }

496
497 TreeSet <Nodo > viPossible = getVecinosSalida(v.getId());

498 TreeSet <Nodo > vjPossible = getVecinosLlegada(v.getId());

499
500 Iterator <Nodo > viIterator = viPossible.iterator ();

501 for (int i = 0; i < p && viIterator.hasNext (); ++i) {

502 Nodo vi = viIterator.next();

503
504 Iterator <Nodo > vjIterator = vjPossible.iterator ();

505 for (int j = 0; j < p && vjIterator.hasNext (); ++j) {

506 Nodo vj = vjIterator.next();

507
508 if (vi.getId() == vj.getId ()) {

509 continue;

510 }

511
512 Nodo viNext = getNext(vi, reverse);

513 Nodo vjNext = getNext(vj, reverse);

514
515 TreeSet <Nodo > vkPossible =

getVecinosSalida(viNext.getId());

516 TreeSet <Nodo > vlPossible =

getVecinosLlegada(vjNext.getId());

517
518 Iterator <Nodo > vkIterator = vkPossible.iterator ();

519 for (int k = 0; k < p && vkIterator.hasNext (); ++k) {

520 Nodo vk = vkIterator.next();

521 if (! isBetween(vj, vk, vi , reverse)) {

522 continue;

523 }

524 Nodo vkNext = getNext(vk, reverse);

525
526 //Type I insertion

527 if (vk.getId() != vi.getId () && vk.getId() !=

vj.getId()) {

528 Double deltaCost = reverseCost;

529 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

530 deltaCost -= Grafo.getCij(vj.getId(),

vjNext.getId());

531 deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId());

532
533 deltaCost += Grafo.getCij(vi.getId(),

v.getId());

534 deltaCost += Grafo.getCij(v.getId(),

vj.getId());

535 deltaCost += Grafo.getCij(viNext.getId(),

vk.getId());

536 deltaCost += Grafo.getCij(vjNext.getId(),

vkNext.getId());

537
538 deltaCost += costOfReverseing(viNext , vj,

reverse);

539 deltaCost += costOfReverseing(vjNext , vk,

reverse);
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540
541 if (!best.filled || deltaCost <

best.deltaCost) {

542 best.fill(deltaCost , vi, vj, vk, null ,

reverse);

543 }

544 }

545
546 Iterator <Nodo > vlIterator = vlPossible.iterator ();

547 for (int l = 0; l < p && vlIterator.hasNext ();

++l) {

548 Nodo vl = vlIterator.next();

549 if (! isBetween(vi, vl, vj , reverse)) {

550 continue;

551 }

552
553 //Type II insertion

554 if (vk.getId() != vj.getId ()

555 && vk.getId() != vjNext.getId()

556 && vl.getId() != vi.getId()

557 && vl.getId() != viNext.getId()) {

558
559 Double deltaCost = reverseCost;

560
561 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

562 deltaCost -= Grafo.getCij(getPrev(vl ,

reverse).getId(), vl.getId());

563 deltaCost -= Grafo.getCij(vj.getId(),

vjNext.getId());

564 deltaCost -= Grafo.getCij(getPrev(vk ,

reverse).getId(), vk.getId());

565
566 deltaCost += Grafo.getCij(vi.getId(),

v.getId());

567 deltaCost += Grafo.getCij(v.getId(),

vj.getId());

568 deltaCost += Grafo.getCij(vl.getId(),

vjNext.getId());

569 deltaCost += Grafo.getCij(getPrev(vk ,

reverse).getId(), getPrev(vl,

reverse).getId());

570 deltaCost += Grafo.getCij(viNext.getId(),

vk.getId());

571
572 deltaCost += costOfReverseing(viNext ,

getPrev(vl , reverse), reverse);

573 deltaCost += costOfReverseing(vl, vj,

reverse);

574
575 if (!best.filled || deltaCost <

best.deltaCost) {

576 best.fill(deltaCost , vi, vj, vk, vl,

reverse);

577 }

578
579 }

580
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581 }

582
583 }

584
585 }

586
587 }

588 }

589
590 /**

591 * Realiza el procedimiento unstringing.

592 * Devuelve la ruta_delta que se crea al quitar el nodo de la ruta

593 */

594 public RutaProxi unstringing(int id , int p) {

595
596 Nodo v = getNodoFromId(id);

597
598 // necesitamos al menos tres elementos: el origen , el que

quitamos y otro

599 if (getSize () < 3) {

600 return unstringing_minimal(v);

601 }

602
603 updateAllPos ();

604
605 BestMove best = new BestMove ();

606
607 unstringing_direccional(v, p, false , best);

608
609 unstringing_direccional(v, p, true , best);

610
611 if (best.vl == null) {

612 if (!best.reversed) {

613 return new RP_remove_I(this , v, best.deltaCost ,

best.vj, best.vk);

614 } else {

615 return new RP_remove_Ir(this , v, best.deltaCost ,

best.vj, best.vk);

616 }

617 } else {

618 if (!best.reversed) {

619 return new RP_remove_II(this , v, best.deltaCost ,

best.vj, best.vk, best.vl);

620 } else {

621 return new RP_remove_IIr(this , v, best.deltaCost ,

best.vj, best.vk, best.vl);

622 }

623 }

624 }

625
626 /**

627 * cuando hay dos o tres nodos , lo quitamos de la mejor manera

posible

628 */

629 private RutaProxi unstringing_minimal(Nodo v) {

630 switch (getSize ()) {

631 case 1:

632
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633 Double deltaCost = -Grafo.getCij(0, v.getId()) -

Grafo.getCij(v.getId (), 0);

634
635 // eliminarlo

636 return new RP_remove_0(this , v, deltaCost);

637
638 case 2:

639 //hay un nodo extra , lo juntamos con el cero

640 Nodo a = getOrigen ().getNext ();

641 if (a.getId() == v.getId()) {

642 a = a.getNext ();

643 }

644
645 deltaCost = -getSumCij () + Grafo.getCij(0, a.getId())

+ Grafo.getCij(a.getId (), 0);

646
647 return new RP_remove_1(a, this , v, deltaCost);

648
649 default:

650 throw new Error("no se reconoce el numero de nodos: "

+ getSize ());

651 }

652 }

653
654 /**

655 * Metodo de ayuda.

656 * Es el algoritmo como tal y calcula la mejor solucion para una

direccion concreta

657 */

658 private void unstringing_direccional(Nodo vi, int p, boolean

reverse , BestMove best) {

659
660 double reverseCost = 0;

661 if (reverse) {

662 reverseCost = -getSumCij () + getReverseSumCij ();

663 }

664
665 Nodo viNext = getNext(vi, reverse);

666 Nodo viPrev = getPrev(vi, reverse);

667
668 TreeSet <Nodo > vjPossible = getVecinosSalida(viNext.getId());

669 Iterator <Nodo > vjIterator = vjPossible.iterator ();

670 for (int i = 0; i < p && vjIterator.hasNext (); ++i) {

671 Nodo vj = vjIterator.next();

672 if (vj.getId() == vi.getId () || vj.getId() ==

viNext.getId() || vj.getId () == viPrev.getId()) {

673 continue;

674 }

675
676 Nodo vjNext = getNext(vj, reverse);

677 Nodo vjPrev = getPrev(vj, reverse);

678
679 TreeSet <Nodo > vkPossible =

getVecinosSalida(viPrev.getId());

680 Iterator <Nodo > vkIterator = vkPossible.iterator ();

681 for (int k = 0; k < p && vkIterator.hasNext (); ++k) {

682 Nodo vk = vkIterator.next();

683 if (vk.getId() == vi.getId ()) {
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684 continue;

685 }

686
687 Nodo vkNext = getNext(vk, reverse);

688
689 if (isBetween(viNext , vk, vjPrev , reverse)) {

690
691 //TYPE I

692 Double deltaCost = reverseCost;

693 deltaCost -= Grafo.getCij(viPrev.getId(),

vi.getId());

694 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

695 deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId());

696 deltaCost -= Grafo.getCij(vj.getId(),

vjNext.getId());

697
698 deltaCost += Grafo.getCij(viPrev.getId(),

vk.getId());

699 deltaCost += Grafo.getCij(viNext.getId(),

vj.getId());

700 deltaCost += Grafo.getCij(vkNext.getId(),

vjNext.getId());

701
702 deltaCost += costOfReverseing(viNext , vk, reverse);

703 deltaCost += costOfReverseing(vkNext , vj, reverse);

704
705 if (!best.filled || deltaCost < best.deltaCost) {

706 best.fill(deltaCost , null , vj, vk, null ,

reverse);

707 }

708
709 }

710
711 if (! isBetween(vjNext , vk , getPrev(viPrev , reverse),

reverse) || vjNext.getId() == viPrev.getId()) {

712 continue;

713 }

714
715 TreeSet <Nodo > vlPossible =

getVecinosLlegada(vkNext.getId());

716 Iterator <Nodo > vlIterator = vlPossible.iterator ();

717 for (int l = 0; l < p && vlIterator.hasNext (); ++l) {

718 Nodo vl = vlIterator.next();

719 if (vl.getId() == vi.getId ()) {

720 continue;

721 }

722
723 Nodo vlNext = getNext(vl, reverse);

724
725 if (! isBetween(vj, vl, getPrev(vk, reverse),

reverse)) {

726 continue;

727 }

728
729 //TYPE II

730 Double deltaCost = reverseCost;
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731 deltaCost -= Grafo.getCij(viPrev.getId(),

vi.getId());

732 deltaCost -= Grafo.getCij(vi.getId(),

viNext.getId());

733 deltaCost -= Grafo.getCij(vjPrev.getId(),

vj.getId());

734 deltaCost -= Grafo.getCij(vl.getId(),

vlNext.getId());

735 deltaCost -= Grafo.getCij(vk.getId(),

vkNext.getId());

736
737 deltaCost += Grafo.getCij(viPrev.getId(),

vk.getId());

738 deltaCost += Grafo.getCij(vlNext.getId(),

vjPrev.getId());

739 deltaCost += Grafo.getCij(viNext.getId(),

vj.getId());

740 deltaCost += Grafo.getCij(vl.getId(),

vkNext.getId());

741
742 deltaCost += costOfReverseing(viNext , vjPrev ,

reverse);

743 deltaCost += costOfReverseing(vlNext , vk, reverse);

744
745 if (!best.filled || deltaCost < best.deltaCost) {

746 best.fill(deltaCost , null , vj, vk, vl,

reverse);

747 }

748
749 }

750
751 }

752 }

753 }

754
755 // ///////////////////////////////

756 ///// Funciones auxiliares //////

757 // ///////////////////////////////

758
759 /**

760 * Calcula la diferencia entre recorrer la subruta start -end en

direcci ón contraria menos recorrerla en direcci ón normal

761 */

762 private double costOfReverseing(Nodo start , Nodo end , boolean

reverse) {

763 Nodo it = start;

764 Nodo itNext = getNext(start , reverse);

765 double cost = 0;

766 while (it.getId() != end.getId ()) {

767 cost -= Grafo.getCij(it.getId(), itNext.getId());

768 cost += Grafo.getCij(itNext.getId(), it.getId());

769
770 it = itNext;

771 itNext = getNext(itNext , reverse);

772 }

773
774 return cost;

775 }
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776
777 /**

778 * funcion de ayuda: devuelve el nodo siguiente de la ruta

considerando el sentido:

779 * el nodo siguiente si recorremos normal , el anterior si

recorremos al reves

780 */

781 private Nodo getNext(Nodo v, boolean reverse) {

782 return reverse ? v.getPrev () : v.getNext ();

783 }

784
785 /**

786 * funcion de ayuda: devuelve el nodo anterior de la ruta

considerando el sentido:

787 * el nodo anterior si recorremos normal , el siguiente si

recorremos al reves

788 */

789 private Nodo getPrev(Nodo v, boolean reverse) {

790 return reverse ? v.getNext () : v.getPrev ();

791 }

792
793 /**

794 * Comprueba si los tres nodos est án en orden -abc - considerando

el sentido?

795 */

796 private boolean isBetween(Nodo a, Nodo b, Nodo c, boolean reverse)

{

797
798 int s = reverse ? -1 : 1;

799
800 int aP = a.getPos () * s;

801 int bP = b.getPos () * s;

802 int cP = c.getPos () * s;

803
804 // sentido normal

805 if (aP <= cP) {

806 // a c

807 return (aP <= bP && bP <= cP);// a b c = bien

808 } else {

809 //c a

810 return !(cP < bP && bP < aP);// c b a = mal

811 }

812
813 }

814
815 // ///////////////////////////////

816 /////// Clases auxiliares ///////

817 // ///////////////////////////////

818
819 /**

820 * Un movimiento indicando el nuevo coste ,

821 * vi,vj,vk, vl (si existe es el tipo II si no es el tipo I)

822 * y si se ha considerado el cambiar el sentido

823 */

824 private static class BestMove {

825
826 private double deltaCost;

827 private Nodo vi;
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828 private Nodo vj;

829 private Nodo vk;

830 private Nodo vl;

831 private boolean reversed;

832
833 private boolean filled = false;

834
835 private void fill(double reduction , Nodo vi, Nodo vj, Nodo vk,

Nodo vl, boolean reversed) {

836 this.deltaCost = reduction;

837 this.vi = vi;

838 this.vj = vj;

839 this.vk = vk;

840 this.vl = vl;

841 this.reversed = reversed;

842
843 filled = true;

844 }

845
846 }

847 }
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Clase 18: RutaAbstracta.java
1 import java.util.Comparator;

2 import java.util.HashMap;

3
4 /**

5 * Representa una ruta gen érica.

6 * Contiene la subclase Nodo

7 */

8 public abstract class RutaAbstracta {

9
10 abstract double getSumQi ();

11
12 abstract double getSumDi ();

13
14 abstract double getSumCij ();

15
16 public boolean isFactible_capacidad () {

17 return getSumQi () <= Grafo.getQ();

18 }

19
20 public boolean isFactible_longitud () {

21 return getSumCij () + getSumDi () <= Grafo.getL();

22 }

23
24 public boolean isFactible () {

25 return isFactible_capacidad () && isFactible_longitud ();

26 }

27
28 public double getF1() {

29 return getSumCij ();

30 }

31
32 public double getF2() {

33 double res = getF1();

34 double temp;

35
36 temp = getSumQi () - Grafo.getQ();

37 if (temp > 0) {

38 res += TabuRoute.getAlpha () * temp;

39 }

40
41 temp = getSumCij () + getSumDi () - Grafo.getL();

42 if (temp > 0) {

43 res += TabuRoute.getBeta () * temp;

44 }

45
46 return res;

47 }

48
49 // ///////////////////////

50 /// clases auxiliares ///

51 // ///////////////////////

52
53 /**

54 * Representa un nodo de una ruta.

55 * Implementaci ón de una lista doblemente enlazada.

56 */

57 static class Nodo {
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58
59 /**

60 * El nodo que representa (0 es el origen)

61 */

62 private final int id;

63
64 /**

65 * El nodo anterior

66 */

67 private Nodo prev = null;

68
69 /**

70 * El nodo posterior

71 */

72 private Nodo next = null;

73
74 /**

75 * La posicion del nodo en la ruta.

76 * Valor modificado externamente

77 */

78 private int pos = -1;

79
80
81 public Nodo(int id) {

82 this.id = id;

83 }

84
85 public int getId() {

86 return id;

87 }

88
89 public Nodo getNext () {

90 return next;

91 }

92
93 public Nodo getPrev () {

94 return prev;

95 }

96
97 public void setPrev(Nodo prev) {

98 this.prev = prev;

99 }

100
101 public void setNext(Nodo next) {

102 this.next = next;

103 }

104
105 /**

106 * intercambia el nodo anterior con el posterior

107 */

108 public void reverse () {

109 Nodo temp = next;

110 next = prev;

111 prev = temp;

112 }

113
114 public int getPos () {

115 return pos;
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116 }

117
118 public void setPos(int pos) {

119 this.pos = pos;

120 }

121
122 @Override

123 public String toString () {

124 return "(" + (prev == null ? "null" : prev.getId()) +

")->" + id + "->(" + (next == null ? "null" :

next.getId()) + ") [" + pos + "]";

125 }

126
127 }

128
129 /**

130 * Los contenedores de los comparadores

131 */

132 private static final HashMap <Integer , NodoComparador >

comparatorsSalida = new HashMap <>();

133 private static final HashMap <Integer , NodoComparador >

comparatorsLlegada = new HashMap <>();

134
135 /**

136 * Devuelve el comparador dado el de partida y la direccion.

137 * Sucesivas llamadas con los mismos parametros de entrada

devuelven el mismo objeto (cache)

138 */

139 static public NodoComparador getComparator(int partida , boolean

salida) {

140 HashMap <Integer , NodoComparador > holder = salida ?

comparatorsSalida : comparatorsLlegada;

141
142 if (holder.containsKey(partida)) {

143 return holder.get(partida);

144 } else {

145 NodoComparador comp = new NodoComparador(partida , salida);

146 holder.put(partida , comp);

147 return comp;

148 }

149 }

150
151 /**

152 * Un comparador de nodos dado uno de partida y la direcci ón

153 */

154 static public class NodoComparador implements Comparator <Nodo > {

155
156 /**

157 * El nodo con el que se compararan

158 */

159 private final int partida;

160 /**

161 * si considerar partida -otro

162 */

163 private final boolean salida;

164
165
166 private NodoComparador(int origin , boolean salida) {
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167 this.partida = origin;

168 this.salida = salida;

169 }

170
171 @Override

172 public int compare(Nodo v1, Nodo v2) {

173 double dif = salida

174 ? Grafo.getCij(partida , v1.getId ()) -

Grafo.getCij(partida , v2.getId())

175 : Grafo.getCij(v1.getId(), partida) -

Grafo.getCij(v2.getId(), partida);

176
177 //si 0 discriminar por id

178 if (dif == 0) {

179 dif = v1.getId() - v2.getId();

180 }

181
182 return dif > 0 ? //si es positivo

183 1 // devolvemos 1

184 : dif < 0 ? //si es negativo

185 -1 // devolvemos -1

186 : 0 //si no, iguales , 0

187 ;

188 }

189
190 }

191 }
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Clase 19: RutaProxi.java
1 import java.util.ConcurrentModificationException;

2
3 /**

4 * La interfaz de modificacion de una ruta.

5 * Representa una ruta resultado de realizar una modificaci ón a una

ruta existente , sin realizar la modificaci ón.

6 */

7 public abstract class RutaProxi extends RutaAbstracta {

8
9 /**

10 * El nodo que se mover á

11 */

12 private final Nodo v;

13
14 /**

15 * La ruta original. Ser á modificada

16 */

17 private Ruta original;

18
19 /**

20 * La diferencia de los costes: nueva -antigua

21 */

22 private final double deltaCost;

23
24
25 public RutaProxi(Ruta original , Nodo v, double deltaCost) {

26 this.original = original;

27 this.deltaCost = deltaCost;

28 this.v = v;

29 }

30
31
32 public Ruta getRuta () {

33 checkModification ();

34
35 return original;

36 }

37
38 public double getDeltaCost () {

39 checkModification ();

40
41 return deltaCost;

42 }

43
44 public Nodo getV() {

45 checkModification ();

46
47 return v;

48 }

49
50 /**

51 * La suma de los Cij de la ruta modificada

52 */

53 @Override

54 public double getSumCij () {

55 checkModification ();

56
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57 return getRuta ().getSumCij () + getDeltaCost ();

58 }

59
60 /**

61 * La suma de los Qi de la ruta modificada

62 */

63 @Override

64 double getSumQi () {

65 checkModification ();

66
67 return 0;

68 }

69
70 /**

71 * La suma de los Di de la ruta modificacion

72 */

73 @Override

74 double getSumDi () {

75 checkModification ();

76
77 return 0;

78 }

79
80 /**

81 * Modifica la solucion original.

82 * Una vez llamado esta funcion , todas las funciones de este

objeto lanzar án una ConcurrentModificationException

83 */

84 public void modificarRuta () {

85 checkModification ();

86
87 internal_modificar ();

88
89 original = null;

90 }

91
92 abstract void internal_modificar ();

93
94 /**

95 * Lanza una excepci ón ConcurrentModificationException si la ruta

ya ha sido modificada (no hay ruta original)

96 */

97 private void checkModification () {

98 if (original == null) {

99 throw new ConcurrentModificationException("Se ha intentado

acceder a una RutaProxi tras haber efectuado la

modificaci ón");

100 }

101 }

102
103 // ////////////

104 // Utilidades //

105 // ////////////

106
107 /**

108 * Cambia next <->prev en cada uno de los nodos desde from hasta to

incluidos

109 */
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110 void reverseNodos(Nodo from , Nodo to) {

111 Nodo it = from;

112
113 while (it.getId() != to.getId()) {

114 it.reverse ();

115 it = it.getPrev ();//el anterior , que originalmente era el

siguiente

116 }

117 it.reverse ();

118 }

119
120 /**

121 * junta los nodos haciendo: from.next=to to.prev=from

122 */

123 void join(Nodo from , Nodo to) {

124 from.setNext(to);

125 to.setPrev(from);

126 }

127
128 }
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Clase 20: Solucion.java
1 import java.util.Arrays;

2 import java.util.Collection;

3 import java.util.HashMap;

4
5 /**

6 * Representa una soluci ón: un conjunto de rutas

7 */

8 public class Solucion extends SolucionAbstracta {

9
10 /**

11 * El set de rutas.

12 */

13 private final HashMap <Integer , Ruta > arrayRutas;

14
15 /**

16 * Una ruta vacia para realizar comprobaciones

17 */

18 private Ruta rutaVacia;

19
20 // auxiliares

21
22 /**

23 * A qu é ruta pertenece qu é nodo

24 */

25 private final int[] pertenencia;

26
27 /**

28 * Constructor base , genera una soluci ón vac ı́a, sin nodos

29 */

30 public Solucion () {

31 arrayRutas = new HashMap <>();

32
33 rutaVacia = new Ruta();

34
35 pertenencia = new int[Grafo.getN() + 1];

36 Arrays.fill(pertenencia , -1);

37
38 }

39
40 /**

41 * Constructor fromArray ()

42 */

43 public Solucion(int [][] Sstar) {

44 this();

45
46 for (int[] ruta : Sstar) {

47 a~nadirRuta(new Ruta(ruta));

48 }

49 }

50
51 /**

52 * Crea una solucion factible (o intenta serlo) dado el array de

nodos en orden

53 */

54 public Solucion(int[] array) {

55 this();

56
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57 Ruta rutaActual = new Ruta();

58
59 int preInsertar = array [0];

60 rutaActual.a~nadirAlFinal(preInsertar);

61
62 int pos = 1;

63
64 while (pos < array.length) {

65 int insertar = array[pos];

66 if (getm() >= Grafo.getMbar ()) {

67 break;

68 }

69 if (rutaActual.getSumQi () + Grafo.getQi(insertar) <=

Grafo.getQ() && rutaActual.getSumCij () -

Grafo.getCij(preInsertar , 0) +

Grafo.getCij(preInsertar , insertar) +

Grafo.getCij(insertar , 0) + rutaActual.getSumDi () +

Grafo.getDi(insertar) <= Grafo.getL()) {

70 rutaActual.a~nadirAlFinal(insertar);

71 preInsertar = insertar;

72 } else {

73 a~nadirRuta(rutaActual);

74 rutaActual = new Ruta();

75 rutaActual.a~nadirAlFinal(insertar);

76 preInsertar = insertar;

77 }

78 pos++;

79 }

80
81 while (pos < array.length) {

82 int insertar = array[pos];

83 rutaActual.a~nadirAlFinal(insertar);

84 pos++;

85 }

86
87 a~nadirRuta(rutaActual);

88 }

89
90
91 @Override

92 public double getF1() {

93 double res = 0;

94 for (Ruta r : arrayRutas.values ()) {

95 res += r.getF1();

96 }

97 return res;

98 }

99
100
101 @Override

102 public double getF2() {

103 double res = 0;

104 for (Ruta r : arrayRutas.values ()) {

105 res += r.getF2();

106 }

107 return res;

108 }

109
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110 /**

111 * A~nade la ruta a la lista de rutas.

112 * Se queda con el objeto

113 */

114 public void a~nadirRuta(Ruta nuevaRuta) {

115 int idRuta = nuevaRuta.getId();

116 arrayRutas.put(idRuta , nuevaRuta);

117
118 updateRouteWithId(idRuta);

119
120 }

121
122 /**

123 * El numero de rutas con al menos algun cliente

124 */

125 public int getm() {

126 return arrayRutas.size();

127 }

128
129 /**

130 * Si la soluci ón cumple la restricci ón de capacidad

131 */

132 public boolean isFactible_capacidad () {

133 for (Ruta r : arrayRutas.values ()) {

134 if (!r.isFactible_capacidad ()) {

135 return false;

136 }

137 }

138 return true;

139 }

140
141 /**

142 * Si la soluci ón cumple la restricci ón de longitud

143 */

144 public boolean isFactible_longitud () {

145 for (Ruta r : arrayRutas.values ()) {

146 if (!r.isFactible_longitud ()) {

147 return false;

148 }

149 }

150 return true;

151 }

152
153 /**

154 * Si la soluci ón es factible

155 */

156 @Override

157 public boolean isFactible () {

158 return isFactible_capacidad () && isFactible_longitud ();

159 }

160
161 /**

162 * Devuelve la ruta a la que pertenece el nodo dado

163 */

164 public int getIdOfRutaContainingNodo(int v) {

165 return pertenencia[v];

166 }

167
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168 /**

169 * Devuelve el id de la ruta vac ı́a, usado como ruta de comprobaci ón

170 */

171 public int getIdOfEmptyRoute () {

172 return rutaVacia.getId();

173 }

174
175 /**

176 * Devuelve la ruta de id dado

177 */

178 public Ruta getRouteOfId(int id) {

179 if (id == rutaVacia.getId()) {

180 return rutaVacia;

181 }

182
183 return arrayRutas.get(id);

184 }

185
186 /**

187 * Notifica de que la ruta ha cambiado

188 */

189 public void updateRouteWithId(int id) {

190
191 if (id == rutaVacia.getId()) {

192 if (rutaVacia.getSize () != 0) {

193 Ruta nueva = rutaVacia;

194 rutaVacia = new Ruta();

195 a~nadirRuta(nueva);

196 //se realiza una llamada a este metodo otra vez.

197 //Si la rutaVacia no se modifica hay un bucle infinito

198 }

199 }

200
201 Ruta ruta = getRouteOfId(id);

202
203 if (ruta.getSize () == 0) {

204 arrayRutas.remove(ruta.getId());

205 return;

206 }

207
208 int[] nodos = ruta.toArray ();

209 for (int nodo : nodos) {

210 pertenencia[nodo] = id;

211 }

212 }

213
214 /**

215 * Le aplica US a esta solucion

216 */

217 public void applyUS(int p) {

218 for (Ruta r : arrayRutas.values ()) {

219 r.us(p);

220 }

221
222 }

223
224 /**

225 * Devuelve una colecci ón con todas las rutas no vac ı́as de esta
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soluci ón

226 */

227 public Collection <Ruta > getAllRoutes () {

228 return arrayRutas.values ();

229 }

230
231 /**

232 * Devuelve un array representando la informaci ón de esta soluci ón:

233 * Cada elemento es un array que representa una ruta

234 */

235 public int [][] toArray () {

236 int [][] array = new int[arrayRutas.size()][];

237
238 int i = 0;

239 for (Ruta ruta : arrayRutas.values ()) {

240 array[i] = ruta.toArray ();

241 i++;

242 }

243
244 return array;

245 }

246
247 }
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Clase 21: SolucionAbstracta.java
1 public abstract class SolucionAbstracta {

2
3 /**

4 * devuelve el valor de F1 de esta solucion

5 */

6 public abstract double getF1();

7
8 /**

9 * Devuelve el valor de F2 de esta solucion

10 */

11 public abstract double getF2();

12
13 /**

14 * Si la soluci ón es factible

15 */

16 public abstract boolean isFactible ();

17
18 }
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Clase 22: SolucionProxi.java
1 import java.util.ConcurrentModificationException;

2
3 /**

4 * La clase que representa una modificaci ón de una soluci ón.

5 * Esta modificaci ón consiste en pasar un nodo de una ruta a otra

6 */

7 public class SolucionProxi extends SolucionAbstracta {

8
9 /**

10 * La solucion original

11 */

12 private Solucion base;

13
14 /**

15 * El nodo que se mover á

16 */

17 private int v;

18
19 /**

20 * La ruta de donde se quita el nodo

21 */

22 private RutaProxi rr;

23
24 /**

25 * El id de la ruta Rr

26 */

27 private int idRr;

28
29 /**

30 * La ruta en donde se a~nadir á el nodo

31 */

32 private RutaProxi rs;

33
34 /**

35 * El id de la ruta Rs

36 */

37 private int idRs;

38
39 /**

40 * Un valor , calculado externamente , que ’valora ’ este movimiento

41 */

42 private double f;

43
44
45 public SolucionProxi(Solucion base) {

46 this.base = base;

47 }

48
49 /**

50 * Constructor copia

51 */

52 public SolucionProxi(SolucionProxi original) {

53 base = original.base;

54 v = original.v;

55 rr = original.rr;

56 idRr = original.idRr;

57 rs = original.rs;
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58 idRs = original.idRs;

59 f = original.f;

60 }

61
62 /**

63 * Indica el nodo que se modificar á.

64 */

65 public void setNodo(int v) {

66 checkModification ();

67
68 this.v = v;

69 }

70
71
72 public int getNodo () {

73 checkModification ();

74
75 return v;

76 }

77
78
79 public int getRr() {

80 checkModification ();

81
82 return idRr;

83 }

84
85 /**

86 * Indica la ruta de la que se quitar á el nodo.

87 * Genera y almacena una ruta_delta con la informaci ón

88 */

89 public void setRr(int idRuta , int p) {

90 checkModification ();

91
92 idRr = idRuta;

93 rr = base.getRouteOfId(idRuta).unstringing(v, p);

94 }

95
96 /**

97 * Indica la ruta a la que se a~nadir á el nodo.

98 * Genera y almacena una ruta_delta con la informaci ón

99 */

100 public void setRs(int route , int p) {

101 checkModification ();

102
103 idRs = route;

104 rs = base.getRouteOfId(route).stringing(v, p);

105 }

106
107 /**

108 * Si la nueva soluci ón es factible o no

109 */

110 @Override

111 public boolean isFactible () {

112 checkModification ();

113
114 for (Ruta r : base.getAllRoutes ()) {

115 int id = r.getId();
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116 if (id == idRr || id == idRs) {

117 continue;

118 }

119 if (!r.isFactible ()) {

120 return false;

121 }

122 }

123
124 if (!rr.isFactible ()) {

125 return false;

126 }

127 if (!rs.isFactible ()) {

128 return false;

129 }

130 return true;

131 }

132
133 /**

134 * El valor de F1 de la nueva soluci ón

135 */

136 @Override

137 public double getF1() {

138 checkModification ();

139
140 double res = 0;

141 for (Ruta r : base.getAllRoutes ()) {

142 int id = r.getId();

143 if (id == idRr || id == idRs) {

144 continue;

145 }

146 res += r.getF1();

147 }

148
149 res += rr.getF1();

150 res += rs.getF1();

151 return res;

152 }

153
154 /**

155 * El valor de F2 de la nueva soluci ón

156 */

157 @Override

158 public double getF2() {

159 checkModification ();

160
161 double res = 0;

162 for (Ruta r : base.getAllRoutes ()) {

163 int id = r.getId();

164 if (id == idRr || id == idRs) {

165 continue;

166 }

167 res += r.getF2();

168 }

169
170 res += rr.getF2();

171 res += rs.getF2();

172 return res;

173 }
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174
175
176 public void setF(double f) {

177 checkModification ();

178
179 this.f = f;

180 }

181
182
183 public double getF() {

184 checkModification ();

185
186 return f;

187 }

188
189 /**

190 * Realiza la modificaci ón.

191 * Una vez llamado esta funcion , todas las funciones de este

objeto lanzar án una ConcurrentModificationException

192 */

193 public void modificarSolucion () {

194 checkModification ();

195
196 rr.modificarRuta ();

197 rs.modificarRuta ();

198 base.updateRouteWithId(idRs);

199 base.updateRouteWithId(idRr);

200
201 base = null;

202 }

203
204 /**

205 * Lanza una excepci ón ConcurrentModificationException si ya se ha

modificado este objeto (no hay solucion base)

206 */

207 private void checkModification () {

208 if (base == null) {

209 throw new ConcurrentModificationException("Se ha intentado

acceder a una SolucionProxi tras haber efectuado la

modificaci ón");

210 }

211 }

212 }
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Clase 23: TabuRoute.java
1 import java.util.ArrayList;

2 import java.util.Arrays;

3 import java.util.Collections;

4 import java.util.HashSet;

5 import java.util.Random;

6 import java.util.concurrent.ThreadLocalRandom;

7
8 /**

9 * Esta clase contiene los algoritmos principales del problema:

TabuRoute y Search

10 */

11 public class TabuRoute {

12
13 /**

14 * La solucion actual del problema , con la que los algoritmos

trabajan

15 */

16 private static Solucion s;

17
18 /**

19 * El mayor valor de F1 encontrado

20 */

21 private static double f1star;

22
23 /**

24 * El mayor valor de F2 encontrado

25 */

26 private static double f2star;

27
28 /**

29 * La mejor solucion factible encontrada

30 */

31 private static int [][] sstar;

32
33 /**

34 * La mejor soluci ón encontrada

35 */

36 private static int [][] stildestar;

37
38 /**

39 * El numero de veces que cada nodo ha sido movido. fv[0] no se usa

40 */

41 private static int[] fv;

42
43 // Variables de algoritmo

44
45 /**

46 * El valor alpha

47 */

48 private static double alpha;

49
50 /**

51 * El valor beta

52 */

53 private static double beta;

54
55
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56 public static double getAlpha () {

57 return alpha;

58 }

59
60
61 public static void setAlpha(double alpha) {

62 TabuRoute.alpha = alpha;

63 }

64
65
66 public static double getBeta () {

67 return beta;

68 }

69
70
71 public static void setBeta(double beta) {

72 TabuRoute.beta = beta;

73 }

74
75 /**

76 * Inicia el algoritmo de resolucion y devuelve la soluci ón.

77 * Esta es la funci ón que se debe llamar tras haber inicializado

Grafo

78 */

79 public static int [][] ejecutar () {

80 return tabuRoute ((int) Math.floor(Math.sqrt(Grafo.getN()) /

2));

81 }

82
83 /**

84 * ************************

85 * El algoritmo taburoute

86 * ************************

87 * @param lambda el numero de soluciones iniciales distintas

88 */

89 private static int [][] tabuRoute(int lambda) {

90
91 //Step -1

92 stildestar = null;

93 sstar = null;

94 f2star = Grafo.getInfinity ();

95 f1star = Grafo.getInfinity ();

96 int n = Grafo.getN();

97 fv = new int[n + 1];

98
99 //Step 0

100 alpha = 1;

101 beta = 1;

102 f1star = Grafo.getInfinity ();

103
104 Random random = new Random ();

105
106 //Step 1

107 for (int step = 0; step < lambda; ++step) {

108 System.out.println("Landa " + step);

109 //Step 1 (a)

110 int i = random.nextInt(n) + 1;

111
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112 //Step 1 (b)

113 int[] sequence = new int[n];

114 for (int j = i; j <= n; ++j) {

115 sequence[j - i] = j;

116 }

117 for (int j = 1; j < i; ++j) {

118 sequence[j + n - i] = j;

119 }

120
121 //Step 1 (b) y (c)

122 int[] tour = Genius.ejecutar(sequence);

123
124 //Step 1 (c)

125 s = new Solucion(tour);

126
127 if (s.isFactible () && s.getF1() < f1star) {

128 f1star = s.getF1();

129 sstar = s.toArray ();

130 // System.out.println (" Nueva

soluci ón:"+ Sstar.toString ());

131 }

132 if (s.getF2() < f2star) {

133 f2star = s.getF2();

134 stildestar = s.toArray ();

135 }

136
137 //Step 1 (d)

138 int[] todos = new int[n];

139 for (int ii = 0; ii < n; ++ii) {

140 todos[ii] = ii + 1;

141 }

142 search(todos , 5 * s.getm(), 0, 5, 5, 10, 0.01, 10, n);

143
144 }

145
146 //Step 1 (e)

147 //Error pdf: esto va fuera del bucle

148 if (f1star < Grafo.getInfinity ()) {

149 s = new Solucion(sstar);

150 } else {

151 s = new Solucion(stildestar);

152 }

153
154 //Step 2

155 System.out.println("Diversificaci ón");

156 int[] todos = new int[n];

157 for (int ii = 0; ii < n; ++ii) {

158 todos[ii] = ii + 1;

159 }

160 search(todos , 5 * s.getm(), 0, 5, 5, 10, 0.01, 10, 50 * n);

161 if (f1star < Grafo.getInfinity ()) {

162 s = new Solucion(sstar);

163 } else {

164 s = new Solucion(stildestar);

165 }

166
167 //Step 3

168 int[] handler = Arrays.copyOf(fv, n);
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169 Arrays.sort(handler);

170 int half = handler[n / 2];

171
172 int mostUsed = 0;

173 for (int ii = 0; ii < fv.length; ++ii) {

174 if (fv[ii] >= half) {

175 handler[mostUsed ++] = ii;

176 }

177 }

178
179 System.out.println("Intensificaci ón");

180 search(Arrays.copyOf(handler , mostUsed), mostUsed , 0, 5, 5,

10, 0.01, 10, n);

181 if (f1star < Grafo.getInfinity ()) {

182 return sstar;

183 } else {

184 return null;

185 }

186 }

187
188 /**

189 * *********************

190 * El algoritmo SEARCH

191 * *********************

192 *

193 * @param W El conjunto de nodos que se pueden mover

194 * @param q El numero de nodos que se moveran

195 * @param p1 =max{p2,k}

196 * @param p2 parametro de Stringing

197 * @param phiMin minimo valor de phi

198 * @param phiMax maximo valor de phi

199 * @param g parametro de escala

200 * @param h iteraciones tras las cuales se refrescara el valor de

alpha y beta

201 * @param nMax numero maximo de iteraciones a ejecutar tras la

ultima mejora

202 */

203 private static void search(int W[], int q, int p1, int p2, int

phiMin , int phiMax , double g, int h, int nMax) {

204
205 //step -1

206 boolean wasUSused = false;

207 double deltaMax = 0;

208 double prevF2;

209
210 boolean [] prevCapacityFeasible = new boolean[h];

211 prevCapacityFeasible [0] = s.isFactible_capacidad ();

212
213 boolean [] prevLengthFeasible = new boolean[h];

214 prevLengthFeasible [0] = s.isFactible_longitud ();

215 int recentChange = 0;

216
217 //step 0

218 int t = 1;

219 EstructuraTabu tabuStructure = new EstructuraTabu ();

220
221 while (true) {

222 // System.out.println(t);
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223
224 //step 1

225 ArrayList <Integer > randomW = new ArrayList <>(W.length);

226 for (int e : W) {

227 randomW.add(e);

228 }

229 Collections.shuffle(randomW);

230 while (randomW.size() > q) {

231 randomW.remove(randomW.size() - 1);

232 }

233
234 SolucionProxi Sbar = null;

235
236 //step 2

237 for (int v : randomW) {

238
239 int Rr = s.getIdOfRutaContainingNodo(v);

240 p1 = Math.max(p2, s.getRouteOfId(Rr).getSize ());

241
242 int[] nearestV = Grafo.getNearestNodos(v);

243
244 HashSet <Integer > nearestRs = new

HashSet <>(nearestV.length);

245 for (int i = 0; i < nearestV.length && i < p1; i++) {

246 if (nearestV[i] == 0) {

247 continue;

248 }

249 nearestRs.add(

250 s.getIdOfRutaContainingNodo(nearestV[i]) );

251 }

252
253 if (s.getm() < Grafo.getMbar ()) {

254 nearestRs.add(s.getIdOfEmptyRoute ());

255 }

256
257 SolucionProxi Sprime = new SolucionProxi(s);

258 Sprime.setNodo(v);

259 Sprime.setRr(Rr, p1);

260
261 for (int Rs : nearestRs) {

262 if (Rs == Rr) {

263 continue;

264 }

265
266 //Step 2 (a)

267 Sprime.setRs(Rs, p2);

268
269 //Step 2 (b)

270 if (tabuStructure.isTabu(v, Rs, t) &&

!( Sprime.isFactible () ? Sprime.getF1() < f1star

: Sprime.getF2() < f2star)) {

271 continue;

272 }

273
274 //Step 2 (c)

275 if (Sprime.getF2 () < s.getF2()) {

276 Sprime.setF(Sprime.getF2());

277 } else {
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278 Sprime.setF(Sprime.getF2() + deltaMax *

Math.sqrt(s.getm()) * g * fv[v] / t);

279 }

280
281 if (Sbar == null || Sprime.getF() < Sbar.getF()) {

282 Sbar = new SolucionProxi(Sprime);

283 }

284
285 }

286
287 }

288
289 //Step 3

290 prevF2 = s.getF2();

291
292 //Step 4

293 if (Sbar.getF2() > s.getF2 () && s.isFactible () &&

!wasUSused) {

294
295 s.applyUS(p2);

296
297 wasUSused = true;

298 } else {

299 //Step 5

300 tabuStructure.setTabu(Sbar.getNodo (), Sbar.getRr(), t

+ ThreadLocalRandom.current ().nextInt(phiMin ,

phiMax + 1));

301 fv[Sbar.getNodo ()]++;

302
303 Sbar.modificarSolucion ();

304 wasUSused = false;

305 }

306
307 if (s.isFactible () && s.getF1() < f1star) {

308 f1star = s.getF1();

309 sstar = s.toArray ();

310 // System.out.println (" Nueva

soluci ón:"+ Sstar.toString ());

311 recentChange = t;

312 }

313 if (s.getF2() < f2star) {

314 f2star = s.getF2();

315 stildestar = s.toArray ();

316 recentChange = t;

317 }

318
319 if (Math.abs(prevF2 - s.getF2()) > deltaMax) {

320 deltaMax = Math.abs(prevF2 - s.getF2());

321 }

322
323 //Step 6

324 prevCapacityFeasible[t % h] = s.isFactible_capacidad ();

325 prevLengthFeasible[t % h] = s.isFactible_longitud ();

326
327 if ((t + 1) % h == 0) {

328 int i;

329
330 for (i = prevCapacityFeasible.length - 1; i > 0; --i) {
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331 if (prevCapacityFeasible[i] !=

prevCapacityFeasible[i - 1]) {

332 break;

333 }

334 }

335 if (i <= 0) {

336 if (prevCapacityFeasible [0]) {

337 alpha /= 2;

338 } else {

339 alpha *= 2;

340 }

341 }

342
343 for (i = prevLengthFeasible.length - 1; i > 0; --i) {

344 if (prevLengthFeasible[i] != prevLengthFeasible[i

- 1]) {

345 break;

346 }

347 }

348 if (i <= 0) {

349 if (prevLengthFeasible [0]) {

350 beta /= 2;

351 } else {

352 beta *= 2;

353 }

354 }

355
356 }

357
358 //Step 7

359 if (t - recentChange >= nMax) {

360 break;

361 }

362
363 t++;

364 }

365
366 }

367
368 }
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