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Prologo

El aprendizaje estadistico supervisado es un conjunto de técnicas para deducir una funcién a par-
tir de datos de entrenamiento y es una de las herramientas principales de la mineria de datos y del
aprendizaje automatico. Los datos de entrenamiento, ejemplos o instancias consisten en pares de ob-
jetos (normalmente vectores) en los que una componente del par son los datos de entrada y el otro,
los resultados deseados. El objetivo es crear o estimar una funcién capaz de predecir el valor deseado
correspondiente a cualquier objeto de entrada vélida después de haber visto una serie de ejemplos. Para
ello, tiene que generalizar a partir de los datos presentados anteriormente a las nuevas situaciones no
vistas previamente. La salida de la funcién puede ser un valor numérico (como en los problemas de
regresion) o una etiqueta de clase (como en los de clasificacién) [WAS].

En este contexto, las maquinas de vector soporte (Support Vector Machines, SVMs) son un con-
junto de algoritmos de aprendizaje estadistico supervisado pertenecientes a la familia de los clasificado-
res lineales desarrollados por Vladimir Vapnik y su equipo en los laboratorios AT &7 entorno a 1995.

Sin pérdida de generalidad, suponiendo que tenemos ejemplos de s6lo dos categorias una SVM
construye un hiperplano en un espacio de dimensionalidad muy alta o incluso infinita. Este hiperplano
separa de forma Sptima los puntos de una clase de la de otra. En el concepto de “separacién Sptima”
es donde reside la caracteristica fundamental de las SVM, se busca el hiperplano que tenga la maxima
distancia (margen) con los puntos que estén mds cerca de él mismo. Por eso también a veces se les
conoce a las SVM como clasificadores de margen maximo [WSVM].

Las SVM se desarrollaron inicialmente para resolver problemas de clasificacién. Sin embargo, se
han reformulado de multiples formas a lo largo de los afios, sus variantes mas conocidas son: SVM para
regresion, SVM para resolucion de ecuaciones integrales, SVM para estimar el soporte de una densidad,
SVMs que usan diferentes costes de margen blando y pardmetros. También se han ensayado otras for-
mulaciones del problema dual (ver [BL]). Las técnicas de 6ptimizacion cuadrética son fundamentales a
la hora de resolver estos problemas.

Actualmente, las SVM tienen utilidad en una extensa variedad de areas. Algunas de sus aplicaciones

mas importantes son el reconocimiento de caracteres, deteccién de intrusos, reconocimiento del habla o
la bioinformatica.
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Summary

The Support Vector Machine (SVM) algorithm is probably the most widely used kernel learning
algorithm. It achieves relatively robust pattern recognition performance using well established concepts
in optimization theory. The pattern recognition has a wide range of applications including optical cha-
racter recognition, intrusion detection, speech recognition, and bioinformatics.

Statistical learning is consolidated as a branch of Statistics around 1995 when Vladimir Vapnik pu-
blished his renowned book “The Nature of Statistical Learning Theory”. Supervised statistical learning
is the machine learning task of inferring a function from labeled training data. The training data consist
of a set of training examples. Each example or instance is a pair consisting of an input object, typically
a vector X, and a desired output value y. A supervised learning algorithm analyzes the training data and
produces an inferred function, which can be used for mapping new examples. An optimal scenario will
allow for the algorithm to correctly determine the class labels for unseen instances. This requires the
learning algorithm to generalize from the training data to unseen situations. The parallel task in human
and animal psychology is often referred to as concept learning.

This work shows an introduction to the extensive field of support vector machines and its utility as
classifiers. In addition, we will see a practical application in medicine to a clinical case of patients with
breast cancer. The model is build using learnig algorithms. In this way if a new patient is received, our
classifier will be able to predict if she is suffering a malignant or benign tumor.

In chapter 1, we present the earliest pattern regognition systems, binary classifiers. For each pat-
tern x € R? is given a class y € {—1,1}. These examples have the property of being perfectly and
linearly separable, so they will be classified without error by a linear discriminant function D(x) =
(Wix1 4 ... +wgxg) +b, where w € R and b is a real coefficient. When a training set is linearly sepa-
rable there usually is an infinity of separating hyperplanes. Vapnik and other authors propose to choose
the separating hyperplane that maximizes the margin, that is to say the hyperplane that leaves as much
room as possible between the hyperplane and the closest example. Formally, this situation is represen-
ted as an optimization problem in which we minimize the norm of the hyperplane’s directional vector w
under some constraints. However this state of perfect separability does not happen in real life. Usually
all examples may not be correctly classified. In that case we have two solutions, the choice of each one
depend on the degree of separability of the examples.

In the first situation, when the problem is very noisy is usually to address it by allowing some
examples to violate the margin constraints in the optimization problem. These potential violations are
represented using positive slack variables &;, i = 1,...,n. An additional parameter called cost C controls
the compromise between large margins and small margin violations.
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The formulation of the optimization problem is the following:

1 n

min §\|W||2+Ci§:1€i
1
sa  yi((wxi)+b)+&—12>0, Q)

£>0, i=1,...,n.

In the second case the set of examples cannot be separated by a linear function, so we use the so-
called kernel functions, which represent a scalar product. Kernel function induces a high dimensional
Hilbert space, called features space. Each pattern x is transformed into a feature vector ®(x) € R, so
the linear discriminant function will be D'(x) = (w191 (X+ - - - + Wy § (X)) + b. In the original space this
hyperplane will be transformed into a non linear decision boundary. The Reproducing Kernel Hilbert
Spaces theory states that, although the corresponding feature space has infinite dimension, if we know
the kernel function, all computations can be performed without ever computing a feature vector ®(x).

In both cases the optimization problem (primal) is transformed to its dual, so we can solve it by qua-
dratic optimization techniques. Dual problem is computationally easier because the number of variables
to optimize in the primal problem is directly proportional to the dimensionality of the examples while
in the dual problem it is directly proportional with the size of the sample, so the constraints are much
simple.

In chapter 2, we present two main extensions of SVM: multiclass classifiers and SVR for regres-
sion. Support vector machine originally separates the binary classes with a maximized margin criterion.
However, real-world problems often require the discrimination for k > 2 categories. The most used
multiclass solving technique is SInMSVM. This method designs a unique objective function that trains
simultaneously @ binary classifiers and through a voting strategy is assigned to each example its la-
bel. We obtain a quadratic optimization problem with a higher misclassification rate than other methods,
in exchange of, reducing the number of variables to the number of examples. In conclusion SimMSVM
approach can greatly speed up the training process, while maintaining a competitive classification accu-
racy.

The other extension, SVR, is the adaptation of the original SVM problem to solving a regression
problem. In this case we have y; € R, for i = 1... n, instead of a class label. We define a loss function
L. that controls the error between the predicted and actual value. This function only takes non-zero
values when the separation distance between the regression hyperplane and the example is greater than
the parameter €. In the same way to the classification problem the slack variables associated to each
example are used to allow certain prediction error.

In chapter 3 we make a brief summary about currently packages containing SVM related software
and specially for the statistical software package R, the 1071 library among others. Using a popular
dataset of patients with breast cancer, we optimize several models for different kernel functions and we
obtain the corresponding ROC curves to analyze the quality of each one. In all three models, we have
excellent results about the accuracity of the true diagnosis with respect to the type of tumor (malignant
or benign) for a new patient.
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Capitulo 1

SVM para clasificacion binaria

1.1. Ejemplos separables linealmente

Consideramos un conjunto de elementos representados por el par (Xj,y;) que llamaremos ejemplos,
cada uno con una serie de caracteristicas que se almacenan en un vector X;. Ademd4s tienen asignada una
categoria que es la segunda componente de (X;, y;). Observemos la figura 1.1 (a), tenemos dos clases de
ejemplos, si podemos separar todos los ejemplos a través de un hiperplano, de forma que, cada uno este
en el semiplano de la clase correcta, entonces diremos que el conjunto de ejemplos es separable.

Dado un conjunto separable de ejemplos, S = {(x1;y1), -, (Xn;¥n)}, donde x; € R? e y; € {—1,1},
se define un hiperplano de separacién como una funcién lineal que es capaz de separar dicho conjunto
sin error:

D(x;) = (wix1 + ... +wgxg) + b = (W, x;) + b, (1.1)

donde w € R? y b es un coeficiente real. Las restricciones que debe satisfacer un hiperplano de separa-
cién para todo ejemplo del conjunto de entrenamientos son:

w,Xj) +b >0, si y;=+I1,
w,xj) +b <0, si yi=—1
Equivalentemente,
yiD(x;) > 0, i=1,...,n. (1.2)

Sin embargo existen infinitos hiperplanos (ver figura 1.1 (b)) que satisfacen la restriccién anterior, de-
bemos buscar un criterio que nos proporcione una regla de decisién sobre el conjunto de ejemplos, de
forma que hallemos el hiperplano separador 6ptimo.
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(a) (b)

Figura 1.1: Hiperplanos de separacién en un espacio bidimensional de un conjunto de ejemplos separa-
bles en dos clases: (a) un hiperplano de separacién (b) algunos hiperplanos de separacion, de entre los
infinitos posibles. [Fuente: Figura 1 [C2014]]

Se define el margen 7, como la minima distancia entre el hiperplano de separacién y el ejemplo
mas préximo a €l de cualquiera de las dos clases. Vapnik y Lerner [VI.1963] propusieron en 1963
tomar como hiperplano separador 6ptimo aquel que maximizara el margen. En tal caso, el hiperplano
separador 6ptimo queda completamente caracterizado:

Proposicion. Un hiperplano separador se dird dptimo si y solo si equidista del ejemplo mds cercano
de cada clase.

Demostracion. La demostracion se puede hacer por reduccién al absurdo. Supongamos que la distancia
del hiperplano 6ptimo al ejemplo més cercano de la clase +1 fuese menor que la correspondiente al
ejemplo mds cercano de la clase -1. Esto significa que se puede alejar el hiperplano del ejemplo de la
clase +1 una distancia tal que la distancia del hiperplano a dicho ejemplo sea mayor que antes y, a su vez,
siga siendo menor que la distancia al ejemplo mds cercano de la clase -1. Llegamos a contradiccidn, pues
podemos aumentar el tamafio del margen cuando inicialmente suponiamos que éste era maximo. O

(a) (b)

Figura 1.2: Margen de un hiperplano de separacién: (a) hiperplano de separacion no-6ptimo y su margen
asociado (no mdximo) (b) hiperplano de separacién 6ptimo y su margen asociado (maximo). [Fuente:
Figura 2 [C2014]]
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Veamos la formulacién matematica de esta nueva restriccion sobre el hiperplano separador:
La distancia entre un hiperplano de separacién D(x) y un ejemplo x’ viene dada por

ID(x')]
w2’

que junto con (1.2) obtenemos que todos los ejemplos de entrenamiento deben cumplir:

yiD(xi) _

> i=1,...n (1.3)
[[wll2

De la expresion anterior se deduce que encontrar el hiperplano separador 6ptimo equivale a hallar el w
que maximiza el margen. Puesto que existen infinitas soluciones que difieren solo en la escala de w se
fija por convenio que

T||w|, = 1.

Asi llegamos a la conclusién de que maximizar el margen equivale a disminuir la norma de w y por
tanto la condicién (1.3) queda

yD(xj)>1, i=1,....n (1.4)

La busqueda del hiperplano de separacion éptimo se formaliza como un problema de optimizacion de
tipo cuadrético:

min  f(w) = 1/2(|wl|2)* = 1/2((w,w))

1.5
s.a yi({w,xi) +b)—12>0, i=1,....n. (1.5

Observar que las restricciones de (1.2) quedan incluidas en (1.4). El hiperplano definido por w y b que
minimizan el problema (1.5) recibe el nombre de hiperplano de separacion de margen duro (hard
margen). Resolver este problema de optimizacion cuadritica es dificil debido a la complejidad de las
restricciones, por ello haremos uso de la teoria de optimizacion.

Un problema de optimizacién, primal, tiene una forma dual si la funcién a optimizar y las restric-
ciones son estrictamente convexas. En ese caso resolver el problema dual es equivalente a obtener la
solucién del primal (véase Apéndice A). En el caso que nos ocupa se puede demostrar que tanto la
funcién objetivo como las restricciones son funciones estrictamente convexas, por tanto admite un dual.
Para hallarlo haremos uso de la funcién de Lagrange:

-

L(w,b,a) =1/2((w,w)) — ¥ o;(yi({w,x;) +b) — 1), i=1,...,n, (1.6)

i=1

donde o; > 0 son los multiplicadores de Lagrange. Aplicamos las condiciones de Karush-Kuhn-Tucker
(KKT), derivando (1.6) respecto a las variables sobre las que optimizamos en el primal (primera condi-
cién de KKT) e igualando a cero los productos por los multiplicadores de Lagrange (condicién comple-
mentaria):

JL(w*,b*, )
ow

IL(W*,b*,a) &
————= =) oy; =0, i=1,...,n,
ab l:ZI 11

n
EW*—ZOCiy,'Xi:O, i=1,...,n,

=1 (1.7)

al(1—yi((w',xi) +b7)] =0,  i=1,...n. (1.8)
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De (1.7) obtenemos la expresion de w* en términos de los multiplicadores de Lagrange y sus restriccio-
nes,

n
wi =Y oyixi, i=1,....n, (1.9)
i=1
n
Y aiyi=0, i=1,...,n. (1.10)

i=1
Haciendo uso de (1.9) y (1.10) aplicados a (1.6) obtenemos la funcién a maximizar en el problema dual.
Anadiendo las restricciones de no negatividad asociadas a los multiplicadores de Lagrange junto con
(1.11) el problema dual es el siguiente:
; n 1 n
mix  L(o)=) a;— 3 Y aiagyivi((xi,x5))
i=1

b= (1.11)

n
s.a ZOQy,-ZO, o;>0,i=1,...,n
i=1
En general, la principal ventaja de resolver el problema dual es que el coste computacional es mucho
menor, esto se debe a que en el problema dual el nimero de variables es directamente proporcional al
tamafio de la muestra n, en cambio el problema primal lo es con la dimensionalidad de los ejemplos.

El vector direccional w* del hiperplano 6ptimo lo obtenemos sustituyendo la solucién del dual en
(1.9)

n
D(x) =Y ofyi((x,x;))+b*,  i=1,..,n (1.12)
i=1
Un ejemplo se dird separable si satisface la restriccion (1.4). Llamaremos vectores soporte (ver figura
1.3) a aquellos ejemplos que satisfacen (1.4) con igualdad. Caracterizamos estos ejemplos, para ello nos
fijamos de nuevo en la condicién complementaria de KKT (1.8) y se deduce que si en un ejemplo ¢; > 0
entonces
yi((w*,xi) +b%) =1,

por consiguiente, se puede afirmar que sélo los ejemplos que tengan asociado un ¢; > 0 serdn vectores
soporte y por tanto son los tnicos ejemplos que intervienen en la construccion del hiperplano. Ademads
al ser los més cercanos al hiperplano de separacion serdn los mas dificiles de clasificar.

Figura 1.3: Distancia de cualquier ejemplo, X, al hiperplano de separacién 6ptimo, viene dada por %.

En particular, si dicho ejemplo pertenece al conjunto de vectores soporte (identifcados por siluetas
solidas), la distancia a dicho hiperplano serd siempre m Ademés, los vectores soporte aplicados a la

funcién de decision siempre cumplen que |D(x;)| = 1. [Fuente: Figura 3 [C2014]]



Introduccién a las SVM - Elena Campo Ledén 5

La determinacion de b* la realizamos a partir de (1.8), de tal forma que si @; > 0, es decir, estamos
con un vector soporte del problema, en ese caso

yi((w",xi) +b%) = 1,

y si despejamos b*, obtenemos

b* = Yvs — <W*7Xvs>a

donde (xys, yys) representa la tupla de cualquier ejemplo que satisfaga la igualdad anterior, es decir que
sea vector soporte. En la practica es mas robusto obtener b* promediando a partir de todos los vectores
soporte, sea vs dicho conjunto de indices y N su cardinal, en tal caso

b= NL Y i — (W5 x0)).

VS icvs

1.2. Ejemplos cuasi-separables linealmente

En la realidad es muy frecuente disponer de ejemplos que no son perfecta y linealmente separa-
bles. Cortes y Vapnik [CV1995] demuestran en 1995 que este tipo de problemas son mejores de tratar
si permitimos que algunos ejemplos no verifiquen las restricciones sobre el margen formuladas en el
problema primal (1.5). Dicho de otra forma, podemos relajar el grado de separabilidad entre los con-
juntos de ejemplos permitiendo que haya errores de clasificaciéon en algunos ejemplos del conjunto de
entrenamiento. En este contexto se pueden dar dos situaciones para un ejemplo: cae dentro del margen
asociado a la clase correcta, de acuerdo a la frontera de decision que define el hiperplano de separacion
y en el otro caso, el ejemplo cae al otro lado de dicho hiperplano. En ambos casos se dice que el ejemplo
es no-separable, pero en el primer caso es clasificado de forma correcta y en el segundo, no lo es.

Para abordar este problema introducimos un conjunto de variables reales positivas &.,i = 1,...n
llamadas variables de holgura, cada una asociada a un ejemplo, de forma que podemos controlar el
numero de ejemplos no separables. Las restricciones relajadas que debera verificar cada ejemplo del
conjunto de entrenamientos seran:

yi({w,xi) +b*) > 1-&, i=1,...,n. (1.13)

Podemos entender la variable de holgura asociada a cada ejemplo (x;,y;) como la desviacién de la
situacién separable, medida desde el margen de la clase correspondiente a dicho ejemplo. Estas variables
representan el potencial incumplimiento de las restricciones sobre el margen para cada ejemplo. Los
ejemplos se pueden clasificar (ver figura 1.4) en separables si su variable de holgura correspondiente
toma valor cero, si toma valor entre cero y uno, no separables pero correctamente clasificados y si es
mayor que uno son ejemplos no separables y mal clasificados. Por tanto es facil deducir que Y}, &
permite medir el coste asociado al numero de ejemplos no-separables, cuanto mayor sea el valor de esta
suma, mayor sera el nimero de ejemplos no separables.
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Figura 1.4: Los ejemplos Xj, X y Xk son, cada uno de ellos, no separables (&;, &;, & > 0). Sin embargo, x;
estd correctamente clasificado, mientras que X; y Xk estdn en el lado incorrecto de la frontera de decision
y, por tanto, mal clasificados. [Fuente: Figura 4 [C2014]]

En el caso que nos ocupa la funcién a optimizar debe incluir los errores de clasificacién que comete
el hiperplano de separacion, es decir:

1 n
fw.8)=3lwl*+C Y& (1.14)
i=1

donde C es una constante suficientemente grande, cuyo valor se determina manualmente y que permite
controlar en qué grado influye el término del coste de ejemplos no-separables en la minimizacién de la
norma, es decir, permitird regular el compromiso entre el grado de sobreajuste del clasificador final y la
proporcién del nimero de ejemplos no separables (complejidad y error empirico o de entrenamiento).
La eleccion de una C u otra determinard en cierto modo la calidad del clasificador como veremos en el
ultimo capitulo. En consecuencia el nuevo problema de optimizacion es:

. 1 !
min EHWHZ—FCZ&
i=1
: (1.15
sa (W) +b) +E—120, )
& >0, i=1,...,n.

El hiperplano de separacion, definido por w y b, resultante de resolver el problema (1.15) se deno-
mina hiperplano de separacién de margen blando (soft margin).

Vapnik y Chervonenkis [VCh1989] demostraron en 1989 que el aumento de la complejidad de la
funcién separadora provoca una disminucion del error de clasificacién del conjunto de entrenamientos
sin embargo esto nos lleva a un sobreentrenamiento de la SVM de forma que aumenta el riesgo de error
cuando se aplica sobre ejemplos de prueba, es decir se pierde generalidad. Podemos ver la expresion a
minimizar en 1.15 como un compromiso entre la complejidad de la SVM inversamente proporcional a
|lw]|| y el sobreentrenamiento controlado por la suma de las variables de holgura.

La resolucién del problema primal (1.15) es similar al caso separable de la seccién anterior con la
principal diferencia de que al tener dos familias de restricciones en (1.15) aparecerdn dos familias de
multiplicadores de Lagrange. La resolucién detallada se puede consultar en [C2014]. El problema dual
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que se obtiene es:

) Iy
max ZOCI'—E Z o 0Ly;y (X, X;j)
i=1 ij=1

s.a Z a;y; =0, (1.16)

0<o<C, i=1,....n

Observar que ahora tenemos una clasificacién ain mas completa, que en el caso separable, de los vec-
tores soportes dado que los multiplicadores de Lagrange o; tienen cota superior. El razonamiento (ver
[C2014]) discurre paralelamente al de la obtencién de una expresion para el calculo de b* y se deduce
principalmente del criterio de optimalidad (1.13) y de aplicar las KKT al problema primal.

Tenemos dos tipos de ejemplos de entrenamiento para los que ¢; > 0, luego satisfacen la restric-
cioén (1.13) con igualdad, es decir, son vectores soporte y por tanto intervienen en la construccién del
hiperplano separador 6ptimo:

» si0 < ) <C setiene que & = 0 por tanto son ejemplos separables. Se denotan vectores soporte
'""normales'' (free support vectors).

» si o = C, entonces 0 < &; luego son ejemplos no separables y clasificados correctamente si
0 < & < 1 o mal clasificados si & > 1. Reciben el nombre de vectores soporte acotados (bounded
support vectors).

Los ejemplos de entrenamiento tales que @; = 0, no son vectores soporte. Ademds, verifican & =0y
por tanto corresponden a los ejemplos separables.

1.3. Ejemplos no separables linealmente

Cuando el conjunto de ejemplos no se puede separar por medio de una funcién lineal, un hiperplano
separador, recurrimos a una nueva técnica consistente en la transformacién del espacio original mediante
una funcién no lineal hacia un espacio Hilbert dotado de un producto escalar denominado funcién kernel
(ver figura 1.5). Llamaremos espacio de entradas al espacio original de los ejemplos x. El espacio
transformado (de alta dimensionalidad) se 1lama espacio de caracteristicas y se definird a partir de un
conjunto de funciones base no lineales.

Espacio de entradas Espacio de caracteristicas
& 0,0t
O O O
O > o O
oHO" o o
OO
O
5% o 0O
o O
X, (1)
X ¢: X—>F F
X = (X4, %) B(x) = [®4(x), Dy{x]]

Figura 1.5: El problema de la bisqueda de una funcién de decision no lineal en el espacio de entradas,
se puede transformar en un nuevo problema consistente en la bisqueda de una funcién de decision lineal
(hiperplano) en un nuevo espacio transformado, el espacio de caracteristicas. [Fuente: Figura 5 [C2014]]
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Sea @ : X — .# la funcién de transformacion que hace corresponder a cada vector de entrada x con
un punto en el espacio de caracteristicas .%, donde ®(x) = [¢1(X),...,0,(X)] y I ¢;(x), i=1,...,m tal
que ¢;(x) es una funcion no lineal. Por definicién una funcién kernel es una funcion K : X x X — R
que a cada par de elementos del espacio de entrada X, le asigna, un valor real correspondiente al pro-
ducto escalar de las imdgenes de dichos elementos en el espacio de las caracteristicas .7 :

K(x,X) = (@(x), (X)) = ¢ (x)91(X) + -+ 9 (x) 8 (). (1.17)

La teoria de Espacios de Hilbert con Nicleo Reproductor [A1944], muestra que las funciones Ker-
nel se corresponden con un producto escalar y que este induce un espacio lineal con mayor dimensién
que el espacio original, posiblemente infinita. La respuesta de como transformar el espacio de entradas,
de dimension finita, en otro espacio de dimension infinita nos la da el siguiente teorema.

Teorema (de Aronszajn). Para cualquier funcion K : X x X — R que sea simetrica' y semidefinida
positiva®, existe un espacio Hilbert y una funcion ® : X — .F tal que

K(x,x)=(®(x),®(x')) Vxx eX. (1.18)

Boser, Guyon y Vapnik [BGV1992] demostraron en 1992 que como consecuencia de este teorema
para construir una funcién kernel no es necesario hacerlo a partir de un conjunto de funciones base
®(x) = [¢1(X),...,Pn(X)], simplemente basta definir una funcién que cumpla las dos condiciones del
teorema. De esta forma el kernel representa el producto escalar (¢ (x),¢(x')) que induce un espacio de
alta dimensionalidad. Por tanto, para evaluar una funcién kernel no se necesitara conocer dicho conjunto
de funciones base.

Este hecho nos permite reproducir cualquier algoritmo lineal en un espacio de Hilbert o equivalen-
temente para cualquier algoritmo existe una version no lineal, donde la transformacién (no lineal) es ®.
Este hecho se conoce como el truco de los kernels.

Algunos ejemplos de funciones kernel son:
» Kernel lineal: K(x,x') = (x,x/).
= Kernel polinémico de grado-p: K, (x,x’) = [y(x,x’) 4+ 1]”.

= Kernel gaussiano: K(x,x') = exp(—7||x —x||?), ¥ > 0. En la prictica, cualquier separador puede
construirse usando este kernel.

» Kernel sigmoidal: K(x,x’) = tanh(y(x,x’) + 7).

A los pardmetros 7y, T y p se les denomina pardmetros del kernel.

Una caracterizacién de las funciones kernel la proporciona el teorema de Mercer [J1982], que nos
asegura que toda funcién K (u,v) que verifica

/WK(U, v)g(u)g(v)dudv >0,

para toda funcién g(.) de cuadrado integrable, es una funcién kernel.

!'Una funcién K : X x X — R es simetrica si K(x,x') = K(x/,x) vx,x' € X
2Una funcién K : X x X — R es semidefinida positiva si Y 27:1 cicjK(xj,X;) > 0 para cualesquiera conjuntos
X1,...,Xn € X ycy,...,cn € R, siendon >0
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Volvemos a la formulacién del problema en el caso no separable linealmente. La idea es construir
un hiperplano de separacion lineal en el espacio de las caracteristicas. La frontera de decision lineal
obtenida en el nuevo espacio se transformard en una frontera de decision no lineal en el espacio original
de entradas. En este contexto el hiperplano separador en el espacio de caracteristicas viene dada por

D(x) = w1 01(X) + - + Wy O (X) = (W, P(x)). (1.19)

Observar que omitimos el pardmetro b dado que se puede incluir en la base de funciones de transforma-
cién con la funcién constante ¢; (x) = 1.

El planteamiento del problema es igual que en la seccidn anterior, basta sustituir en el dual (1.16) el
producto escalar por la funcién Kernel:

) n 1 &
max ZOC,'—E Z OCi(ij,'yjK(Xi,Xj)
i=1 ij=1

n
s.a Z o;y; =0, (1.20)

i=1

0<o<C, i=1,...n

La razén por la que, ahora, el problema de optimizacidn se expresa sélo en su forma dual, es la posible
dimensionalidad infinita del espacio de caracteristicas ya que la solucidn del dual no depende de la
dimensionalidad del espacio sino de la cardinalidad del conjunto de ejemplos.

La funcién de decision vendra dada por:

n
D(x) = Za;‘y,-K(x,xi), i=1,...,n, (1.21)
i=1

donde el valor de los pardmetros ¢;,i = 1,...n se obtendrdn como solucién al problema de optimizacién
cuadrética dado por (1.20). Como ya mencionamos, no existe una forma tedrica de encontrar el valor del
pardmetro de regularizacién C. Sélo existe la heuristica de usar un valor grande. La forma de determinar
C'y el resto de parametros del kernel se basa en técnicas de validacién cruzada como veremos en el
dltimo capitulo.

1.3.1. Solucién del problema OR-exclusivo mediante SVMs

El problema or-exclusivo pertenece al caso de problemas separables no-linealmente. Se define
como el problema de encontrar un hiperplano de separacion que clasifique sin error los siguientes 4
ejemplos:

Ejemplo [ x=(x;,x) |y |

1 (F1,+1) [ +1
2 (—1,+1) | -1
3 (—1,—1) | +1
4 (+1,—-1) | -1

Cuadro 1.1: ejemplos del problema OR-exclusivo

La resoluciéon que se propone para el problema es crear un clasificador SVM usando un Kernel
polinémico con p=2,y=1y 7= 1, K(x,x') = [(x,X') + 1]
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Una vez resuelto el problema dual

) s
max Y oi— 3 Y aiayiyiKa(x,xi)
i=1 ij1

4 1.22
s.a Z a;y; =0, ( )

i=1

0<o;<C, i=1,....4,

la solucién queda o; = 0,125, i = 1,...4 y la funcion de decisi6n lineal D(x) = 0,125Y} | y;K>(X,X;).
Dado que ningtin i cumple o = 0, podemos afirmar que todos los ejemplos son vectores soporte. Haga-
mos un estudio de la funcién kernel y el conjunto de funciones base (las operaciones se pueden consultar
en [C2014]).

K(x,x') = (®(x),®(x')) = Kz(x,X') =
= [(x,x) +1]> = ((1,V2x1,V2x2,V2x1x2, %1 2, %2%), (l,\@x’l,\/ixlz,ﬁxﬂx’z,xﬁz,xéz)).

La base de funciones de transformacion al espacio de caracteristicas es:

01 (x1,x2) = 1, §2 (x1,x2) = V21, §3 (x1,%2) = V22, P (x1,%2) = V2x120, Ps (x1,%2) = X126 (x1,%2) = X7

Finalmente, la funcién de decisién puede expresarse como

4 1
D(x) 0,125;y1Kz(X7X.) \6¢4(X)-

A partir de esto podemos afirmar que de las seis dimensiones del espacio de caracteristicas en el
que se ha transformado el espacio bidimensional original, la funcién de decision lineal se expresa en
términos de sdlo una ¢4. Basta una dimension del espacio transformado para separar los 4 ejemplos del
conjunto de entrenamiento original (ver figura 1.6). Es facil comprobar (ver [C2014]) que ¢4(x) =0 es
el hiperplano de separacién en el espacio de caracteristicas y ¢4(x) = v/2, ¢4(x) = —+/2 delimitan los
margenes. En el espacio original la funcién de decision no lineal es x;x; = 0 y los margenes son las
hipérbolas xjx; =1, xjx, = —1.

‘ .

| |
; ; Dix1,x2= -1 « D(x1,x2)= +1
| | 150
| | -
| | 4

|_
| < D(x)=0 | u ®
| ! 0.5F
& D(x)= -1 Dixj=+1 |
| | 9 0 T
} } k- Dx1x2)=0
| I 70 5,
| _ _ |
! T=v2 T=v2 ! .
L 1 -1r
: : @ [

& & -
Dix1x2F= +1 = « D(x1x2= -1
2 s s 0 05 ! 1.5 2 % s 4 085 0 05 1 15 2
(%) x1

(a) (b)

Figura 1.6: Solucién al problema XOR: (a) hiperplano de separaciéon en el espacio de caracteristicas,
junto con su margen asociado (los cuatro ejemplos son vectores soporte) (b) funcién de decisién no
lineal en el espacio de ejemplos original resultante de transformar el hiperplano obtenido en (a) en
coordenadas del espacio original.[Fuente: Figura 7 [C2014]]



Capitulo 2

Clasificacion multinomial y regresion

En este capitulo vamos a introducir dos extensiones de las SVM especialmente ttiles en la préctica:
la clasificacién en mas de dos categorias y la prediccion de una respuesta continua, es decir, un modelo
de regresion.

2.1. Caso multinomial

Las SVM fueron inicialmente disefiadas para clasificacion binaria. Sin embargo los problemas reales
a menudo requieren discernir en mas de dos categorias.

Para extender SVM al caso de clasificacién multiple han sido propuestos muchos modelos. A gran-
des rasgos podemos diferenciar las técnicas existentes en métodos directos e indirectos.

2.1.1. Métodos indirectos

Los problemas de clasificacién multiple se suelen descomponer en una sucesién de problemas bina-
rios de forma que podemos aplicar el método estandar de resolucién de SVM a cada uno por separado.
Los dos métodos mds representativos de esta técnica son uno frente al resto (1VR) y uno frente a uno
(1V1). Ambos métodos son casos particulares de los Cédigos Correctores de Errores de Salida (ECOC)
[BD1995], los cuales, descomponen el problema multiclase en un conjunto de problemas binarios.

Uno frente al resto (one-versus-rest)

Suponer que tenemos un problema de clasificacién con k clases diferentes, el método 1 VR construye
(entrena) k hiperplanos separadores. Para construir el m-ésimo clasificador binario, dado por f,,(x) =
Wm! ®(x) + b,, se consideran los ejemplos de entrenamiento de la m-ésima clase como de tipo positivo
y los restantes ejemplos de las kK — 1 clases como negativos. De entre los k clasificadores el que nos
proporciona el maximo valor de f;(Xpew), i € 1,...,k es elegido para determinar la etiqueta (clase) del
ejemplo de prueba Xpew. El principal problema de la técnica uno frente al resto es el desequilibrio del
conjunto de entrenamientos: si suponemos que de cada clase hay el mismo numero de ejemplos de
entrenamientos la ratio de ejemplos positivos frente a negativos sera de ﬁ por tanto la simetria del
problema original se pierde.

Uno frente a uno (one-versus-one)

Dada una clase el método uno frente a uno estudia todos los posibles pares de clases, entre la dada y
k(k—1)
2

cada una de las restantes induciendo un clasificador para cada uno de ellos. Se generan por tanto

11
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clasificadores. Consideramos un ejemplo de prueba Xpew y €valuamos cada clasificador, comparamos
ambas clases y a la clase ganadora se le da un voto, el ejemplo de prueba se clasificard en la clase que
mads votos tenga. El nimero de clasificadores creados con este método es mucho mayor que con el ante-
rior, sin embargo en el problema dual de optimizacién cuadratica el nimero de variables escala en cada
caso con el nimero de ejemplos y consideramos dos clases, por tanto el tamafio del problema es mucho
menor que en el caso 1VR. Esto hace posible un entrenamiento méas rapido. Para decidir la categoria de
cada ejemplo probamos k — 1 hiperplanos.

2.1.2. Métodos directos

Los métodos directos de clasificaciéon multiple basados en SVM enfocan el problema a un tnico
proceso de optimizacion, a través de combinar problemas de clasificacién binaria en una tinica funcién
objetivo, de forma que se logra simultdneamente una clasificacion de todas las clases. Sin embargo esto
conlleva una mayor complejidad a nivel computacional debido al tamafio del problema de optimizacién
cuadrdtica resultante.

SVM multinomial de Weston y Watkin

Vapnik [V1998], Weston y Watkin [WW1999] proponen que para un problema de clasificacion
de k-clases se disefie una tnica funcién objetivo que entrene las k SVMs binarias simultdneamente y
maximice los margenes de cada cada clase con el resto de ejemplos. A grandes rasgos, es la idea del
método uno frente al resto unificado en una sola funcién objetivo. Dado un conjunto de / ejemplos
S ={(x1,51),---,(x1,1)}, xi € R correspondientes a k clases distintas, y; € {1,...,k}, la formulacién
general del problema primal en el espacio de caracteristicas es:

) 1 k l
min 2 Y [wal?+CY Y Gy
m=1 i=11y, @1
s.a WYiT(I)(Xi) + byi S WYiTq)(Xi) + bt + 2— Ci,[7

Gi>0, i=1,...0,t€l,... k~y,

donde wy, son cada uno de los vectores direccionales del hiperplano separador en el espacio Hilbert
correspondiente para cada problema de clasificacién binario, b € R* son los términos independientes
para cada uno de los k clasificadores lineales, que se almacenan en un vector y la matriz { € R/*¥ las
variables de holgura. Las variables de holgura {; ,, = 1 — f,,(Xi) + f(Xi), m € 1,...,k~y;, si son positi-
vas representan la desviacidn respecto al margen correcto entre la clase i y otra clase m (ver figura 2.1).
Considerar la funcién [.]+ = max(0,.), definimos la funcion de pérdida como éi(l) = Yonty,[Cim]+- La
funcién de decision resultante es:

argmax f;,(X) = argmax(Wp’ ®(x) + b,,).
m m

La principal desventaja de este método es que el tiempo computacional puede ser muy grande dado
la enorme cantidad de variables en el problema de optimizacion cuadratica.
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SVM multinomial de Crammer y Singer

Crammer y Singer [CS2001] presentaron en 2001 el siguiente plantamiento:

k
min 5 Z meH2+CZ§,

—
s.a To(x;) — T(D(Xl) <1-6,,—-¢&,
i= 1 Ll te .k,

(2.2)

donde §; ; es la delta de Kronecker, y § € R’. Notar que las restricciones & >0, i = 1,...,l estdn
implicitamente en (2.2) cuando ¢t = y;. En este caso la funcién de pérdida se define como la mayor de
las variables de holgura, es decir, §i(2) = [maX,,£y, §im]+. La funcién de decision es:

argmax f,,(x) = argmax(wp,’ ®(x)).

Aunque este método nos de un conjunto compacto de restricciones, el nimero de variables en el
problema dual es todavia elevado [ X k.

La siguiente técnica se basa en estos algoritmos [CS2001] para desarrollar un método mas simplifi-
cado llamado SimMSVM, mediante la relajacién de las restricciones. Dicho de otro modo resolver un
unico problema de programacién cuadratica de / variables es suficiente para resolver un problema de
clasificacién multiclase.

SimMSVM

Con el objetivo de reducir el tamafio del problema, el nimero de restricciones debe ser proporcio-
nal al nimero de ejemplos / en lugar de / x k. Para construir el clasificador multiclase de SimMSVM
introducimos las siguientes funciones de pérdida relajadas,

3 1 4
5:'(‘):[]{? Z Gin]+-

m:17m7éyi

La pérdida sufrida es linealmente proporcional a la media de las distancias entre el ejemplo y el margen
correspondiente a su clase. La relacién entre las funciones de pérdida ?j 5, ,5 es la que sigue:

éi(l) > 5;'(2) > 5;'(3)-

Es de esperar que la funcién de pérdida relajada éi@) incurra en mas errores de clasificacion (recor-
dar capitulo 1) en el sentido de que la pérdida para cada ejemplo puede no estar entre O y 1, y por tanto
el ejemplo estar mal clasificado. Sin embargo en la practica estamos dispuestos a admitir cierto numero
tolerable de errores de clasificacion pues de esta forma obtenemos una velocidad significativa durante
el proceso de entrenamiento.
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Q Class 1

a a X2 A O Class 2
A "

fH=/3=0 A Class 3

Figura 2.1: Clasificacién multiclase. Representamos tres clases con circulos, rectingulos y tridngulos.
Las lineas de trazo grueso representan posibles frontera de decision. Las lineas punteadas son margenes
positivos para cada par de clases delimitadas por la frontera de decisién. Observar que para un ejemplo
correctamente clasificado como x; tenemos que &i(l) = éi(z) = &i@ = 0 puesto que las variables de
holgura son negativas {;, < 0, §; 3 < 0. En el caso opuesto el ejemplo x, esta mal clasificado y viola
las dos fronteras de los margenes (1 > 0, {3 > 0. Los tres métodos generan una pérdida [Modificado
de Fuente: Figura 2.1 [WX2014]]

Tras la aplicacién de las nuevas funciones de pérdida, el problema (2.2) de Crammer y Singer queda:

|k I
min 3 Zl EME —|—Czi§z
m= i=
1
sa Wy D(x)——— Y wi D(x;) < 1-&, @3

Para transformar el problema a su dual usamos los argumentos habituales de KKT (ver capitulo 2
de [WX2014]). La funcién de decision resultante es

argmax f," (x) = argmax Z 0" K (xi,X),
m moiyi=m

donde K (xj,Xj) es el elemento i,j de la matriz kernel.

Los métodos propuestos por Weston y Watkins, Crammer y Singer satisfacen el rango [0,1] de
la funcién de pérdida. Sin embargo en la préctica son de una gran complejidad a nivel computacional
debido al gran tamafio del problema de optimizacién cuadratica cuyo nimero de variables es el producto
del numero de ejemplos [ por el numero de clases k. SImMSVM reduce el tamafio del problema dual
de [ x k a [ variables introduciendo una cota del error de clasificacién relajada. En conjuntos de datos
reales SimMSVM alcanza una velocidad satisfactoria durante el proceso de entrenamiento, al mismo
tiempo que mantiene a la hora de clasificar una exactitud muy competitiva frente a los otros métodos de
resolucién de problemas multiclase.
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2.2. SVM para regresion

En esta seccion estudiaremos la aplicaciénde las SVM en la resolucién de problemas de regresion.
En estos casos, suelen llamarse SVR (Support Vector Regression).

Dado un conjunto de ejemplos de entrenamiento S = {(x1,y1) ... (Xn,¥n)}, donde x; € R? e y; € R,
en el que se asume que los valores y; de todos los ejemplos de S se pueden ajustar (o cuasi-ajustar)
mediante un hiperplano, nuestro objetivo es encontrar los pardmetros w = (wy,...,wy) que permitan
definir el hiperplano de regresion f(x) = (wix; + -+ wgxg) +b = (W,X) +b.

Definimos el ruido o perturbacién aleatoria € ~ .47 (0, ) como el error en la medicién del valor
y, es decir y = f(x) + €. Para permitir cierto ruido en los ejemplos de entrenamiento se puede relajar la
condicién de error entre el valor predicho por la funcién y el valor real. Para esto se utiliza la funcién
de perdida e-insensible, L., definida por:

Le(X)Z{ 0 sily—f(x)| <e, (2.4)

ly—f(x)| — € en otro caso.

Es una funcion lineal con una zona insensible de anchura 2€, en la que la funcién de pérdida toma valor
nulo. Eligiendo esta funcién permitimos cierta flexibilidad en la funcién solucién, de forma que todos
los ejemplos que quedan confinados en la regién tubular no seran considerados vectores soporte, pues
como hemos visto el coste asociado a la funcién de pérdida es 0. En la practica es muy dificil lograr
un modelo de regresion lineal con error de prediccion cero por ello recurriremos al concepto de margen
blando introducido en el capitulo 1.

Definimos las variables de holgura como la distancia al ejemplo medida desde la zona tubular del
hiperplano de regresion. Las variables de holgura & y & permitirdn cuantificar el error de prediccién
que se esta dispuesto a admitir para cada ejemplo de entrenamiento y con la suma de todas ellas el coste
asociado a los ejemplos con un error de prediccién no nulo. Tomaremos & > 0 cuando la prediccién del
ejemplo f(x;) es mayor que su valor real, y;, en una cantidad superior a € equivalentemente f(x;) —y; >
€. Andlogamente £~ > 0 cuando el valor real del ejemplo es mayor que su prediccién en una cantidad
superior a €, es decir, y; — f(Xj) > €. En cualquier otro caso las variables de holgura toman valor cero.
Notar que ambas variables no pueden tomar simultdneamente valor distinto de cero, ocurre siempre que

§i+‘§i_ =0 (ver figura 2.2).

Figura 2.2: SVR con margen blando: se muestra la relacién entre las variables de holgura, &, j+,
asociadas a ejemplos que quedan fuera de la zona tubular e-insensible y la funcién de pérdida, L.
[Fuente: Figura 8 [C2014]]
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Con todo esto ya podemos plantear el problema a optimizar. Nuestro objetivo es minimizar la su-
ma de las funciones de pérdida asociadas, cada una a un ejemplo del conjunto de entrenamientos '
"1 Le(yi, f(Xi)) = Yicsona no tbular |Yi — f(Xi)| — €. Esto es equivalente a maximizar la zona tubular
definida por la funcién de pérdida, en la cual esta toma valor nulo? por tanto maximizar € equivale a
minimizar ||w||. Todo ello unido a la penalizacién impuesta por las variables de holgura definen un pro-
blema de optimizacién andlogo al problema de clasificacion con margen blando (1.15) con la salvedad
de que ahora tenemos dos tipos de variables de holgura:

min ||W||2+CZ THET)

sa ((wxi)+b)—yi—e—&" <0, 2.5)
yi—((w,xq) +b) —e—&~ <0,
&TE >0, i=1,...,n.

La transformacién al problema dual (ver [C2014]) es andloga a las vistas hasta ahora con la diferencia
de que consideraremos cuatro familias de multiplicadores de Lagrange: o, o=, B, Bi~

) n _ n _ 1 n _ B
max Z(ai —o")yi—e€ Z(ai +o;") — 5 Z (o — O‘i+)(aj - O‘j+)<xi,Xj>
i=1 i=1 ij=1
! 2.6
s.a Z(OCI'JF—OQi) :0, (2.6)
i=1
0<ot, o <C,i=1,...,n
El regresor obtenido es:
n
Y (o (x, %) +b*. 2.7)

i=1

El valor 6ptimo de b* se obtiene (ver [C2014]) a partir de las restricciones resultantes de la aplicacién
de la segunda condiciéon KKT y las restricciones sobre el dual, de forma que:

b* =y, — (W*,x;) + €, si0< ot <C,
b* =y — (W' ,xj) — €, si0< o <C.

Observar que para definir el hiperplano de regresién tenemos en cuenta los ejemplos con funcién de
pérdida no nula, es decir, los que se encuentran en el exterior de la regién tubular. Visto en términos de
los pardmetros introducidos anteriormente, para los vectores soporte se deduce de las condiciones KKT
que o; " @;~ = 0, entonces

= para los ejemplos que estdn fuera de la zona tubular se cumplird & &~ =0,si1 & =0y &
entonces o;t =Cy ;" =0ysi& >0y & =0entonces o =Cy o™ =0.

= Jlos vectores soporte que caen justo en la frontera de la zona de sensibilidad verifican que si
0 < oyt < C entonces o;~ = 0, en ese caso debe ser §i+ =0y & = 0. Andlogamente para el
otro caso.

'En la préctica se minimiza Y iczona no tubular Vi — f (xi)2 dada la complejidad en el manejo del valor absoluto.
2Observar que la zona tubular juega en el problema de regresién el mismo papel que el margen 7 = m en el problema de
clasificacion.
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Los ejemplos para los que o™ = o~ = 0, no son considerados vectores soporte, se encuentran dentro
de la regidn tubular.

Kernelizacion de las SVR

Cuando los ejemplos no pueden ajustarse por una funcién lineal, recurrimos al igual que en el pro-
blema de clasificacion, al uso de funciones Kernel. A través de un Kernel adecuado se induce un espacio
Hilbert, denominado también espacio de caracteristicas, en este si es posible ajustar los ejemplos trans-
formados mediante un regresor lineal, que sera de la forma:

fx)=Y (i —a")K(x,x5). (2.8)

-

Il
—

Los coeficientes ; ", @~ se obtienen como resultado de resolver el problema dual que resulta de (2.6)
con los productos escalares sustituidos por las funciones Kernel.

n
max Z(Off — 0" )yi— €Z(Oﬂi7+06i+)—
i=1

s.a i(aﬁ — OCi_) = 0, (29)

En problemas de clasificacion tenemos que elegir un Kernel adecuado y un parametro C. Para re-
solver problemas de regresion mediante SVRs a lo anterior, se afiade la seleccién de un adecuado €.
Ambos pardmetros C y € afectan a la complejidad del modelo. En el caso de problemas de regresién
con ruido, el parametro € deberia ser elegido de forma que refleje la varianza del ruido de los datos.
Puesto que en la mayoria de casos précticos es posible obtener una medida aproximada de la varianza
del ruido a partir de los datos de entrenamiento. Para problemas de regresion sin ruido (problemas de
interpolacién) el valor € corresponde a la exactitud preestablecida de interpolacién, de forma que, cuan-
to mayor sea el valor de €, menor nimero de vectores soporte se necesitaran, y viceversa. Por otro lado,
la metodologia usada para seleccionar los valores 6ptimos de C y el resto de pardmetros del kernel, se
basa normalmente en técnicas de validacion cruzada al igual que en clasificacion.






Capitulo 3

Aplicaciones practicas

3.1. Introduccion al software para SVM

Los clasificadores SVM son uno de los métodos mas populares y eficientes de clasificacién y re-
gresion actualmente disponibles, su implementacion existe en practicamente todos los lenguajes de
programacién mas usados.

Las variaciones de SVM para los que existe soluciéon implementada son los siguientes:

» (-clasificacion: la descrita en el capitulo 1 con el pardmetro C que refleja el compromiso entre el
error de entrenamiento y la complejidad.

= v-clasificacién, este modelo permite un mayor control sobre el numero de vectores soporte espe-
cificando un pardmetro adicional v que aproxima la proporcién de vectores soporte.

= (Clasificacion de clase Unica (novelty detection). Este modelo trata de encontrar el soporte de una
distribucién y por lo tanto permite la deteccion de valores atipicos.

= clasificaciéon multiclase, vista en el capitulo 2.
= e-regresion, es la presentada en el capitulo 2.
= v-regresion, con modificaciones en el modelo, andlogas al caso de v- clasificacién.

En cuanto a los kernels, el gaussiano y el laplaciano son generalmente usados cuando no hay ningin
conocimiento previo del conjunto de datos dada su validez general. El kernel lineal es 1til cuando trata-
mos grandes vectores con datos muy dispersos, como es el problema de la categorizacién de un texto.
El kernel polinomial es comtinmente usado para el procesamiento de imagenes y el sigmoide para redes
neuronales. Por tltimo los splines y el kernel anova se suelen emplear en problemas de regresion. (ver
[KMH2006])

La mayor parte del software existente esta escrito en C o C++, como la biblioteca libsvm [M2015],
ganadora del premio "'IJCNN 2001 Challenge’, que proporciona una robusta y rapida implementacién de
SVM vy produce resultados muy competentes en la mayoria de problemas de regresion y clasificacién.
También destacan SVMlight, SVMTorch, Royal Holloway Support Vector Machines, mySVM y
M-SVM. Otras bibliotecas proveen de interfaces para MATLAB como The MathWorks, SVM and
Kernel Methods Matlab Toolbox o MATLAB Support Vector Machine Toolbox y la SVM toolbox
for Matlab (para mas detalle ver [KMH20006]).
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Actualmente existen en R cuatro bibliotecas con las funciones necesarias para estimar SVM.

= La primera implementacién de SVM en R se introdujo en la biblioteca e1071 que proporciona
una interfaz para libsvm. Incluye algoritmos para la resolucién del problema C-SVM clasifica-
cién, v-clasificacién. En regresion para e- clasificacion, v-clasificacion y novelty detection. Para
problemas multiclase tenemos los algoritmos de 1VR y 1V 1. Estos problemas los resuelve a tra-
vés del optimizador SMO (consultar Apéndice A).

= La biblioteca kernlab proporciona una interfaz para ksvm. Dispone de una gran cantidad de
funciones kernel y permite la resoluciéon de los problemas del apartado anterior y ademas C-
BSVM (C-clasificacién con una restriccion sobre las cotas) y su andlogo en regresiéon e-BSVM.
Ademais el optimizador utilizado también es SMO.

» klaR incluye una interfaz para SVMlight. Esta biblioteca es aplicable a C-SVM para clasificacién
y €-SVM en regresion. En clasificacion multiclase SVMlight usa el método 1VR. Los problemas
de optimizacion cuadratica anteriores se resuelven con el método chuncking (consultar Anexo A).

= Finalmente svmpath implementa un algoritmo con un coste computacional minimo, que resuelve
el problema de C-clasificacién en el caso binario para todos los valores del parametro regulador
del coste A = é En este caso los tnicos kernels utilizados son el gaussiano y el polinomial.

Resumiendo kernlab es una implementacion muy flexible que incluye la gran mayoria de formula-
ciones y kernels de SVM, sin embargo carece de la herramienta necesaria para la seleccién de un modelo
adecuado. 1071 incluye una herramienta de seleccién de modelos, pero no ofrece tanta flexibilidad en
la eleccién del kernel. La biblioteca klaR proporciona una interfaz muy bdsica para SVMlIight y esta
permitida solo para uso no comercial. svmpath se usa fundamentalmente como herramienta explorato-

ria para encontrar el valor éptimo del parametro regulador del coste A = é

3.2. Aplicacion al cancer de mama: datos WDBC

Veamos una aplicacién practica de las maquinas SVM en el campo de la medicina. Disponemos
del conjunto de datos wdbc.data que se puede encontrar en el repositorio UCI [UCIMLR]. Estos datos
proceden de un estudio realizado en la Universidad de Wisconsin, en 1995 con 569 pacientes diagnos-
ticadas con céncer de mama. Para cada paciente tenemos 32 variables: el nimero de historia clinica, el
diagndstico y atributos de interés médico relativos a las células tumorales. Todas las variables son de
tipo numérico excepto, la variable dicotémica Diagnosis (V2), que indica el diagndstico del tumor, ma-
ligno M o benigno B. La proporcién real de tumores es 357 benignos y 212 malignos (para més detalle
consultar Apéndice B).

Nuestro objetivo es a partir de este conjunto de datos construir una maquina SVM que diagnostique
con la mayor certeza posible el tipo de tumor que padece una nueva paciente. Para ello usaremos la
biblioteca e1071 disponible en R. Comenzaremos realizando una particién del conjunto de datos inicial
(dataset), en dos subconjuntos:

= trainset: son los ejemplos con los que entrenamos, es decir, con los que construiremos el modelo.
El tamafio de trainset es entorno al 70 % del volumen de ejemplos de dataset y son seleccionados
al azar.

= testset: ejemplos con los que comprobaremos la calidad de la maquina obtenida. Es el 30 % res-
tante de dataset.

Las ordenes que usamos en R son las siguientes (fijando previamente una semilla para garantizar la
reproducibilidad de los resultados obtenidos):
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index <- 1:nrow(dataset)

set.seed(150516)

testindex <- sample(index, trunc(length(index)*30/100))
testset <- dataset[testindex,]

trainset <- dataset[-testindex,]

La busqueda de los pardmetros dptimos, tanto del kernel como el del coste C, se realiza mediante
técnicas de validacion cruzada con k = 10 bloques. La funcién tune.svm crea un mallado de tantas
dimensiones como pardmetros a optimizar. Para cada tupla del mallado, se divide el conjunto de datos
trainset en k bloques. Se ajustan k£ modelos de SVM considerando como conjuntos de de entrenamiento
k-1 bloques, y con el k-ésimo bloque, se prueba el modelo hallado, obteniéndose el error. El error de
la validacion cruzada para esa tupla de pardmetros del mallado, se halla realizando la media aritmética
de los errores de los k modelos. La salida que da R es la tupla de pardmetros del kernel y el coste, que
proporcionan el minimo error.

En este caso, estudiaremos la calidad del clasificador sobre tres tipos de kernels: polindmico, radial
y sigmoide. Aplicamos tune.svm sobre trainset para obtener los pardmetros Optimos propios de cada
kernel (las ordenes que mostraremos a lo largo del capitulo son para un kernel radial. El script completo
con las sentencias para el kernel sigmoide y polinémico se pueden consultar en el Apéndice C).

set.seed(150516)
tunedl <- tune.svm(V2~., data = trainset, gamma = 107(-6:2), cost =107(0:3),
kernel="radial")

Obtenemos la siguiente tabla:

’ Kernel ‘ Error éptimo ‘ Y ‘ C ‘ T ‘ p ‘
Radial 0,0225 0,001 | 100 | — | —
Sigmoide 0,025 0,001 | 1000 | —1 | —
Polinémico | 0,0225 0,01 |10 1 2

Cuadro 3.1: parametros éptimos para cada tipo de kernel seleccionado. R denota a los pardmetros de la
siguiente forma y = gamma, C = cost, T = coef(, p = degree

Seguidamente usamos la funcidén svm para ajustar el modelo 6ptimo para cada kernel.

modell <- svm(V2~., data = trainset, kernel = "radial", gamma = 0.001,
cost = 100, probability=TRUE)

Para comparar la calidad de cada modelo generado, libre del peligro de un sobreajuste, usamos las
funciones predict y tab aplicadas sobre testset que nos proporcionan una matriz de confusion, una
herramienta muy ttil en la visualizacion del rendimiento de un algoritmo de aprendizaje estadistico.

predictionl <- predict(modell, testset[,-2],probability = TRUE)
tabl <- table(pred = predictionl, true = testset[,2])

Sin pérdida de generalidad, en el dmbito médico podemos considerar cuatro posibles conceptos
asociados a cada elemento de la matriz de confusién:

= Verdadero Positivo (TP), el paciente da positivo en la prueba diagndstica de la enfermedad,
siendo cierto que la padece. En nuestro caso, se le predice tumor maligno, cuando realmente lo
tiene.
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= Falso Positivo (FP), el paciente da positivo, siendo falso que padece la enfermedad. Se le predice
que tiene tumor maligno, cuando tiene tumor benigno.

= Verdadero negativo (TN), el paciente da negativo, siendo verdad que no posee la enfermedad.
Se le predice tumor benigno, siendo cierto.

= Falso negativo (FN), el paciente da negativo en la prueba, cuando realmente esta enfermo. Se le
predice que tiene tumor maligno, cuando tiene tumor benigno.

Esta informacidn la recoge la matriz de confusion de la siguiente forma:

Clase Verdadera
P n

Verdadero Falso
Positivo Positivo
(TP) (FP)

-

Clase
Hipotética

Falso Verdadero
N| Negativo | Negativo
(FN) (IN)

Total Columnas P N

Figura 3.1: matriz de confusién

Ahora, a partir de la matriz mostrada en la Figura 3.1, es posible obtener una serie de métricas utiles
para estimar el rendimiento del clasificador:

= Sensibilidad: es la probabilidad de que para un sujeto enfermo se obtenga en una prueba diag-
néstica un resultado positivo. La sensibilidad caracteriza la capacidad de la prueba para detectar
la enfermedad en sujetos enfermos.

TP

Sensibilidad = ————
TP+FN

= Especificidad: es la probabilidad de que un sujeto sano tenga un resultado negativo en la prueba.
La especificidad caracteriza la capacidad de la prueba para detectar la ausencia de la enfermedad
en sujetos sanos.

L TN
Especificidad = —————
TN+FP
= Precision:
. TP
Precision = ——
TP+FP

En el cuadro 3.2 podemos comparar nuestros clasificadores en funcién de la sensibilidad, especifi-
cidad y precision.

Modelo Sensibilidad | Especificidad | Precisiéon | AUC

Kernel Radial 0,9531 0,9811 0,9682 0,9847
Kernel Sigmoide 0,9531 0,9716 0,9531 0,9828
Kernel Polinémico | 0,9687 0,9716 0,9538 0,9844

Cuadro 3.2: sensibilidad, especificidad, precision y AUC para cada modelo estimado.

Puesto que los valores anteriores son mejores cuanto mas proximos estan a 1, observamos que los
tres clasificadores son buenos, sin embargo, para compararlos y decidir cual de ellos es el mejor, nece-
sitamos introducir una nueva herramienta, las curvas ROC.
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Una curva ROC (Receiver Operating Characteristics), es una descripcion bidimensional del ren-
dimiento de un clasificador, basada en la evolucién conjunta de la sensibilidad y la especificidad. El
andlisis de las curvas ROC ha sido principalmente usado en el 4rea de la medicina con el fin de anali-
zar la utilidad de una prueba diagndstica. El objetivo es determinar el ”punto de corte” para el que se
alcanza la sensibilidad y especificidad mds alta. Para formular el diagnéstico de una determinada enfer-
medad, la prueba diagnostica se apoya sobre ese punto de corte a partir del cudl se decide la presencia
del diagnostico [F2005]. Recientemente, el uso de curvas ROC se ha generalizado al 4rea del aprendi-
zaje estadistico, debido a que a partir del andlisis de las métricas anteriores se obtiene la evaluacion del
rendimiento de un modelo de clasificacién.

Para construir la curva ROC usamos la funcién roc de la biblioteca pROC, previamente habremos
tomado de prediction el bloque de probabilidades relativo a la probabilidad estimada de que la varia-
ble diagnosis tome valor M. La razén de tomar probabilidades es que de esta forma podemos hacer un
barrido con todos los posibles puntos de corte. Cada punto de corte se corresponde con un punto en la
curva ROC, para el que se calcula el indice de Youden, definido como Sensibilidad + Especificidad-1.
Se elige como punto de corte dptimo el que maximiza el indice anterior. Observar que en la matriz de
confusién el punto de corte esta preestablecido en 0.5 de forma que si un ejemplo supera dicho umbral
se considera automdticamente que da positivo en la prueba.

pred.probl<-attr(predictionl, "probabilities") [,1]
library (pROC)
rocCurvel <- roc(response=testset[,2],predictor=pred.probl)

El indicador mas utilizado para la comparacion de distintas curvas ROC es el 4rea bajo la curva
ROC o AUC. El AUC de un clasificador es equivalente a la probabilidad de que el clasificador ordene o
puntide un ejemplo positivo elegido aleatoriamente mds alto que uno negativo. La funcién auc nos da el
drea bajo la curva y ci.auc el intérvalo de confianza de este indicador.

auc(rocCurvel)
ci.roc(rocCurvel)

En medicina un test se considera excelente cuando el AUC esta entre 0.97 y 1. Observando la colum-
na AUC del cuadro 3.2 podemos deducir que la calidad de nuestros clasificadores es excelente, siendo
el mejor el de kernel radial.

Por ltimo representamos la curva ROC usando la orden plot:

plot (rocCurvel,legacy.axes=TRUE, print.thres=TRUE)
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Figura 3.2: Curva ROC obtenida en R, representa el rendimiento del modelo con kernel radial.
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En la figura 3.2 observamos que el punto de corte para el que se maximiza el indice de Youden es
0.624, para el que se alcanza una sensibilidad y especificidad de 0.953 y 1. Por tanto se produce una
ligera mejora respecto a los resultados obtenidos por defecto con el umbral 0.5. En principio podriamos
tomar como punto de corte para la prueba diagnédstica el obtenido mediante curvas ROC.

Nuestros resultados, tras haber optimizado por validacién cruzada los pardmetros del modelo nos
dan un rendimiento muy similar al obtenido en [AAS2012], donde se usan métodos de clasificacién
combinados con el objetivo de mejorar el rendimiento individual de cada uno.
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Apéndice A
Optimizacion cuadratica

En este anexo se hace un resumen de las principales ideas de la teoria de optimizacién, orientado a
la resolucién de problemas asociados con el uso de SVMs (para mayor detalle consultar [F1987]).

Sean fy gi, i =0,...,n funciones convexas, consideramos el siguiente problema de optimizacién
denominado problema primal:

(A.1)

N
2
o9
/—.\
>
N—
IA
I=)
I
—
B

donde f es la funcion a optimizar y las g; son las restricciones. La solucion del problema primal, x*,
cumplird que g;(x*) <0y f(x*) < f(x) Vx t.q. gi(x) <0, donde i = 1,...,n. Se define la funcién de
Lagrange como:

L(x,0) = f(x) + z gi(x),

donde los coeficientes ¢; > 0 reciben el nombre de multiplicadores de Lagrange. Esta funcién incorpora
la funcién objetivo o funcién a optimizar y las funciones restriccién en una Unica funcién. A partir de la
funcién de Lagrange se puede definir el problema dual como:

max o(a) = inf L(x, )
xeQ (A.Z)
s.a o;(x) >0, i=1,...,n.

La teoria de la optimalidad asegura que bajo ciertas condiciones resolver el problema dual es equivalente
a hallar la solucién del primal asociado y viceversa. La ventaja de esta transformacién es que normal-
mente el problema dual es mas facil de resolver que el primal. Los dos siguiente teoremas muestran la
relacién existente entre las soluciones de los dos problemas.

Teorema. Sean Xy & vectores tales que satisfacen las restricciones respectivas del problema primal y
dual, es decir, g;(x) <0y a; >0, coni=1,...,n, entonces p(a) < f(x).

Del teorema anterior se pueden extraer dos corolarios. El primero establece que el problema dual
estd acotado superiormente por el problema primal. El segundo permite afirmar que si @(&) = f(x),
entonces @ y X son soluciones, respectivamente, del problema dual y primal.

Este teorema establece una heuristica para resolver, simultineamente, el problema primal y dual.
De forma que estaremos mds cerca de la solucién, a medida que la diferencia sea més pequeiia. La solu-
ci6n se alcanza cuando la diferencia |@(@) — f(x)| sea mds pequeiia. La solucién se alcanza cuando la
diferencia es nula. Esta solucién corresponde a un punto silla de la funcién lagrangiana, caracterizado
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por ser simultdneamente un minimo de L(X, &) respecto de X y un maximo de L(x, &) respecto de o.

El segundo teorema, denominado teorema de Karush-Kuhn-Tucker establece las condiciones sufi-
cientes (condiciones KKT) para que un punto x* sea solucioén del problema primal.

Teorema (de Karush-Kuhn-Tucker). Si en el problema primal (A.1), las funciones f : R? — Ry

gi:RY— R i=1,...,n son todas ellas funciones convexas, y existen constantes 0 >0, i=0,...,n
tales que:
If(x") -~ 98i(x")
o =0, i=1,....d
8Xj + l:ZI 1 axj .] Y )

o gi(x*) =0, i=1,...,n,

entonces (X*, ") es la solucion dptima del problema.

La primera condicién surge como consecuencia de la definicién de la funcién ¢ (@) como el infimo
de la funcién Lagrangiana, punto en el que las derivadas parciales respecto de x deben ser cero. La
segunda condicién, denominada condicién complementaria, es la que garantizard que los 6ptimos del
problema primal y dual coincidan (@(a*) = f(x*)), ya que, de ser cierta la condicion, todos los suman-
dos del sumatorio de la funcién Lagrangiana serian nulos.

El interés del Teorema de Karush-Kuhn-Tucker es que establece las condiciones que han de cum-
plirse para poder resolver el problema primal gracias al dual. Asi, partiendo del problema primal, se
construye la funcién lagrangiana. Seguidamente, se aplica la primera condicién del teorema de KKT a
dicha funcién y esto permite obtener un conjunto de relaciones que, sustituidas en la funcién de Lagran-
ge, hardn desaparecer todas las variables primales de dicha funcién. Este paso es equivalente a calcular
o(o) = infcq L(x, o). La funcién dual asi obtenida, s6lo dependeré de los multiplicadores de Lagran-
ge. También es posible que, del conjunto de relaciones obtenido al aplicar la primera condicién KKT,
surjan restricciones adicionales para las variables duales (multiplicadores de lagrange).

Finalmente la solucién del problema primal la obtenemos sustituyendo el resultado obtenido al
resolver el problema dual, en las relaciones que anteriormente se obtuvieron al aplicar la primera con-
dicién KKT a la funcién lagrangiana.

En el caso de que la funcién f sea cuadrdtica y las g; restricciones lineales, el problema (A.1) se

dice que es de optimizacién cuadrética:

1
min  f(x)= EXTQX—i—ch
sa  g(x)=a'x+b;<0, i=1,.. .k, (A.3)
hi(x) = di" x+¢; =0, i=1,...,1,

donde los vectores x, ¢, a; y d; € R?, la matriz Q € R™*" es semidefinida positiva y b; y e; son constantes.
Puesto que hay dos tipos de restricciones tenemos dos familias de multiplicadores de Lagrange «; y f3;,
de forma que la funcién de Lagrange queda:

k !
L(x,a,B) = f(x) + ; aigi(x) + ;ﬁihi(x)7

donde o = (aq,...,00)", 0 >0parai=1,....ky B = (B1,...,B)".
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Cuando el problema de optimizacién es cuadritico, como caso particular del Teorema de Karush-
Kuhn-Tucker se deduce el siguiente corolario:

Corolario. Sea el problema de optimizacion cuadrdtica (A.3), la solucidon dptima (X*, ", B*) existe si
y solo si se satisfacen las siguientes condiciones:

If(x") ia%'i(X*)Jr - Oh(XT)

o +i:1 i 0Xj +i:IBl X - S b
o gi(x*) =0, i=1,...,k

o >0, i=1,...,k,

hi(x*) =0, i=1...,1

Una vez hemos transformado el problema (A.3) a su dual se procede a su resolucion mediante
técnicas de programacién cuadritica. Realizamos una breve resefia sobre algunos de los algoritmos mds
utilizados, para mayor detalle consultar [KMH2006],[AFP].

= El método chunking, permite resolver un problema de optimizacion cuadritico con un pequeiio
conjunto (chunk) de variables o ejemplos de entrenamiento en nuestro caso. Si particularizamos a
la resolucién de problemas cuadraticos de SVMs, los ejemplos cuyos multiplicadores de Lagrange
asociados, ¢, toman valor 0 o C, son excluidos y el problema de optimizacién se resuelve con
el resto de ejemplos. Este procedimiento se repite hasta que se alcanza la solucién 6ptima del
problema cuadratico.

= SMO (Sequential Minimization Optimization). Este algoritmo esta basado en el método anterior
con la diferencia de que ahora, en cada iteracion, se resuelve de forma analitica un problema
cuadratico usando unicamente dos ejemplos (conjunto activo). De esta forma en cada iteracion
se actualizan los valores de los @; correspondientes a los ejemplos para los que se ha resuelto el
problema. Actualmente, las bibliotecas mas potentes, con las funciones necesarias para estimar
SVM, utilizan SMO como optimizador cuadrético.
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Apéndice B

Descripcion variables del conjunto de
datos

Los datos de Wisconsin Diagnostic Breast Cancer (WDBC) fueron recogidos para un estudio rea-
lizado por el Dr. William H. Wolberg, W. Nick Street y Olvi L. Mangasarian, investigadores de la
universidad de Wisconsin en Noviembre de 1995. El objetivo de dicho estudio consistia en diagnosticar
mediante técnicas de aprendizaje estadistico el tipo de tumor de mama de cada paciente dependiendo de
las caracteristicas de los nidcleos celulares extraidos.

Para cada uno de los 569 pacientes se tomé una imagen de tejido tumoral procedente de la mama.
De las 32 variables del conjunto de datos las dos primeras son relativas a la identificacién del paciente
y el diagndstico de su tumor:

= Nuamero de historia clinica.

= Diagnéstico o diagnosis del tumor del paciente (M = maligno, B = benigno). Esta variable se
denota V2 en el conjunto de datos dataset, indica la etiqueta de cada ejemplo.

En cada imagen se recogi6 informacién sobre 10 caracteristicas de cada niicleo celular del tejido:
= radio, es la media de las distancias del centro a los puntos de su perimetro.
= textura, es la desviacién estdndar de los valores de la escala de gray.
= perimetro.
= drea.

= suavidad, es la variacién local de las longitudes del radio.

r perl’metro2

» compactitud, definida por = ==

= concavidad, es la severidad de las porciones concavas del contorno.
= puntos céncavos, es el nimero de porciones céncavas del contorno.
= simetria.

= dimensiodn fractal, definida por coastline ap proximation — 1.

Los datos que visualizamos se obtuvieron computando para cada una de las caracteristicas anteriores
la media, la desviacion tipica y el peor valor de los nicleos de la imagen, de forma que obtenemos 30
variables. A modo de ejemplo la variable 3 indica la media de los radios, la 13 la desviacién estandar de
los radios y la 23 el peor de los radios en la imagen de cada paciente. Ademds cada uno de los valores
que toman las variables esta codificado con 4 digitos y no hay datos ausentes.
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Apéndice C

Script R y salidas no incluidas en la
memoria

C.1. Script

dataset <- read.csv("C:/Users/Vaio/Desktop/TFG/aplicaciones practicas
TFG/dataset.txt", header=FALSE)
View(dataset)

#separamos dataset en un conjunto de entrenamiento y otro de prueba, fijando
una semilla

index <- 1l:nrow(dataset)

set.seed(150516)

testindex <- sample(index, trunc(length(index)*30/100))
testset <- dataset[testindex,]

trainset <- dataset[-testindex,]

#instalamos el paquete e1071 y lo cargamos

install.packages(’e1071’, dependencies = TRUE)
library(e1071)

#para el kernmel radial hallamos los parametros gamma y coste usando la técnica
de validacién cruzada
#fijamos la semilla antes de cada simulacién

set.seed(150516)

tunedl <- tune.svm(V2~., data = trainset, gamma = 107(-6:2), cost = 107(-1:3),
kernel="radial")

summary (tunedl)

#obtenemos para el kernel radial los parametros optimos gamma=0.001,coste=100

#para ellos, creamos el modelo tomando probability=TRUE asi podremos hacer
un barrido con todos los puntos de corte en las curvas ROC.
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modell <- svm(V2~., data = trainset, kernel = "radial", gamma = 0.001 ,
cost = 100, probability=TRUE)

summary (model1l)
#usando la orden predict y tab construimos la matriz de confusién

predictionl <- predict(modell, testset[,-2],probability = TRUE)
tabl <- table(pred = predictionl, true = testset[,2])
show(tabl)

#cogemos la parte de probabilidades de prediction y la primera columna
asociada a M

pred.probl<-attr(predictionl,"probabilities") [,1]
#construimos la curva ROC

library (pROC)

rocCurvel <- roc(response=testset[,2],predictor=pred.probl)
auc(rocCurvel)

ci.roc(rocCurvel)
plot(rocCurvel,legacy.axes=TRUE,print.thres=TRUE)

#kernel sigmoide

set.seed(150516)

tuned2 <- tune.svm(V2~., data = trainset, gamma = 10°(-6:2), cost =10"(-1:3),
coef0=(-2:2) ,kernel="sigmoid")

summary (tuned2)

model2 <- svm(V2~., data = trainset, kernel = "sigmoid", gamma = 0.001 ,
cost = 1000, coef0=-1, probability=TRUE)
summary (model?2)

prediction2 <- predict(model2, testset[,-2],probability = TRUE)
tab2 <- table(pred = prediction2, true = testset[,2])
show (tab2)

pred.prob2<-attr(prediction2,"probabilities") [, 1]

library (pROC)

rocCurve2 <- roc(response=testset[,2],predictor=pred.prob2)
auc (rocCurve?2)

ci.roc(rocCurve2)
plot(rocCurve2,legacy.axes=TRUE,print.thres=TRUE)

#tkernel polinomial

set.seed(150516)
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tuned3 <- tune.svm(V2~., data = trainset, gamma = 107(-5:0), cost =10"(1:3),

coef0=(-1:1) ,degree=(0:4) ,kernel="polynomial")
summary (tuned3)

model3 <- svm(V2~., data = trainset, kernel = "polynomial", gamma

cost = 10, coefO=1, degree=2 , probability=TRUE)
summary (model3)

prediction3<- predict(model3, testset[,-2],probability = TRUE)
tab3 <- table(pred = prediction3, true = testset[,2])
show(tab3)

pred.prob3<-attr(prediction3, "probabilities") [, 1]

library (pROC)

rocCurve3 <- roc(response=testset[,2],predictor=pred.prob3)
auc (rocCurve3)

ci.roc(rocCurve3)
plot(rocCurve3,legacy.axes=TRUE,print.thres=TRUE)

C.2. Salidas no incluidas en la memoria

Radial

> library(el071)

> set.seed(150516)

> tunedl <- tune.svm(V2~., data = trainset, gamma = 10°(-6:2),
cost = 107(-1:3) ,kernel="radial")

> summary (tunedl)

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

gamma cost
0.001 100

best performance: 0.0225

Detailed performance results:

gamma cost error dispersion
1 1e-06 1le-01 0.3709615 0.07259428
2 1e-05 1e-01 0.3709615 0.07259428
3 1le-04 1le-01 0.3709615 0.07259428
4 1e-03 1e-01 0.2832051 0.07817465
5 1e-02 1le-01 0.0525000 0.03809710
6 1le-01 1e-01 0.0775641 0.04624279
7 1e+00 1e-01 0.3709615 0.07259428
8 1le+01 1e-01 0.3709615 0.07259428
9 1let+02 1e-01 0.3709615 0.07259428

0.01

s’
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10 1e-06 1e+00 0.3709615 0.07259428
11 1e-05 1e+00 0.3709615 0.07259428
12 1e-04 1e+00 0.2755769 0.08212662

> modell <- svm(V2~., data = trainset, kernel = '"radial",
gamma = 0.001 , cost = 100, probability=TRUE)
> summary (modell)

Call:
svm(formula = V2 ~ ., data = trainset, kernel = "radial", gamma = 0.001,
cost = 100, probability = TRUE)

Parameters:
SVM-Type: C-classification
SVM-Kernel: radial
cost: 100
gamma: 0.001

Number of Support Vectors: 39

( 19 20 )

Number of Classes: 2

Levels:

B M

> predictionl <- predict(modell, testset[,-2],probability = TRUE)
> tabl <- table(pred = predictionl, true = testset[,2])

> show(tabl)

true
pred B M

B 104 3

M 2 61

#Sensibilidad=61/(61+3)= 0,9531
#Especificidad=104/(104+2)= 0,9811
#Precisién=61/(61+2)= 0,9682

> pred.probl<-attr(predictionl,"probabilities")[,1]

> library(pROC)

> rocCurvel <- roc(response=testset[,2],predictor=pred.probl)
> auc(rocCurvel)

Area under the curve: 0.9847

> ci.roc(rocCurvel)

95\% CI: 0.9614-1 (DeLong)

> plot(rocCurvel,legacy.axes=TRUE,print.thres=TRUE)
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Call:
roc.default(response = testset[, 2], predictor = pred.probl)

Data: pred.probl in 106 controls (testset[, 2] B) < 64 cases (testset[, 2] M).
Area under the curve: 0.9847

10

0.624(1.000,0.953)

08
1

06

Sensitivity

00

0.0 02 04 06 08 10

Figura C.1: Curva ROC obtenida en R, representa de rendimiento del modelo con kernel radial.

Sigmoide

> set.seed(150516)

> tuned2 <- tune.svm(V2~., data = trainset, gamma = 107(-6:2), cost =10"(-1:3),

coef0=(-2:2) ,kernel="sigmoid")

> summary (tuned?2)
Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation

- best parameters:

gamma coef(O cost

0.001 -1 1000

- best performance: 0.025

- Detailed performance results:

gamma coefO cost error dispersion
1 1le-06 -2 1e-01 0.37096154 0.07259428
2 1e-05 -2 1e-01 0.37096154 0.07259428
3 1le-04 -2 1e-01 0.37096154 0.07259428
4 1e-03 -2 1e-01 0.37096154 0.07259428
5 1le-02 -2 1e-01 0.36339744 0.07649301
6 1e-01 -2 1e-01 0.10012821 0.04393591
7  1e+00 -2 1e-01 0.09769231 0.04770196
8 1le+01 -2 1e-01 0.08269231 0.02893860
9 1le+02 -2 1le-01 0.08256410 0.04081006
10 1le-06 -1 1e-01 0.37096154 0.07259428
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11 1e-05 -1 1e-01 0.37096154 0.07259428
12 1e-04 -1 1e-01 0.37096154 0.07259428
> model2 <- svm(V2~., data = trainset, kernel = "sigmoid", gamma = 0.001,

cost = 1000, coef0=-1, probability=TRUE)
> summary(model2)

Call:
svm(formula = V2 ~ ., data = trainset, kernel = "sigmoid", gamma = 0.001,
cost = 1000, coef0 = -1, probability = TRUE)

Parameters:
SVM-Type: C-classification
SVM-Kernel: sigmoid

cost: 1000
gamma: 0.001
coef.0: -1

Number of Support Vectors: 34

( 15 19 )

Number of Classes: 2

Levels:

B M

> prediction2 <- predict(model2, testset[,-2],probability = TRUE)
> tab2 <- table(pred = prediction2, true = testset[,2])

> show(tab2)

true
pred B M

B 103 3

M 3 61

#Sensibilidad=61/(61+3)= 0,953125
#Especificidad =103/(103+3)= 0,9716
#Precisién=61/(61+3)= 0,953125

> pred.prob2<-attr(prediction2,"probabilities") [, 1]

> library(pROC)

> rocCurve2 <- roc(response=testset[,2],predictor=pred.prob2)
> auc(rocCurve2)

Area under the curve: 0.9828

> ci.roc(rocCurve2)

95\% CI: 0.9581-1 (DeLong)
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> plot(rocCurve?2,legacy.axes=TRUE,print.thres=TRUE)

Call:
roc.default(response

testset[, 2], predictor = pred.prob2)

39

Data: pred.prob2 in 106 controls (testset[, 2] B) < 64 cases (testset[, 2] M).

Area under the curve

0.9828

10

08
L

Se nsitivity

02 04
Il

0o

0B
L

0.674(1.000,0.953)

0.0 02 04

06 08

Figura C.2: Curva ROC obtenida en R, representa de rendimiento del modelo con kernel sigmoide.

Polinomial

tuned3 <- tune.svm(V2~., data

> summary (tuned3)

Parameter tuning of ‘svm’:

= trainset, gamma =
coef0=(-1:1) ,degree=(0:4) ,kernel="polynomial")

- sampling method: 10-fold cross validation

- best parameters:

degree gamma coefO cost

2 0.01 1

10

- best performance: 0.0225

- Detailed performance results:
degree gamma coefO cost

1e-05
1le-05
1le-05
1le-05
1e-05
le-04
le-04
le-04
le-04
le-04

©O© 00 NO Ok W N -
S WNEP, O WwNDE-e O

[y
o

10
10
10
10
10
10
10
10
10
10

O O O O O O O o oo

error

.37096154
.36596154
.37096154
.15269231
.38852564
.37096154
.06250000
.65685897
.05000000
.69942308

dispersion

0.07259428
0.07675757
0.07259428
0.06584304
0.05716796
0.
0
0
0
0

07259428

.04750731
.07181271
.035635534
.05443097

10~ (-5:0), cost =10"(1:3),
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11 0 1e-03 -1 10 0.37096154 0.07259428
12 1 1e-03 -1 10 0.03000000 0.02581989
> model3 <- svm(V2~., data = trainset, kernel = "polynomial", gamma = 0.01,

cost = 10, coefO=1, degree=2 , probability=TRUE)
> summary(model3)

Call:
svm(formula = V2 ~ ., data = trainset, kernel = "polynomial", gamma = 0.01,
cost = 10, coefO = 1, degree = 2, probability = TRUE)

Parameters:
SVM-Type: C-classification
SVM-Kernel: polynomial

cost: 10
degree: 2
gamma: 0.01
coef.0: 1

Number of Support Vectors: 43

(18 25 )

Number of Classes: 2

Levels:

B M

> prediction3<- predict(model3, testset[,-2],probability = TRUE)
> tab3 <- table(pred = prediction3, true = testset[,2])

> show(tab3)

true
pred B M

B 103 2

M 3 62

#Sensibilidad =62/ (62+2)=0.9687

#Especificidad =103/(103+3)=0.9716
#Precisi6én=62/(62+3)=0.9538

> pred.prob3<-attr(prediction3,"probabilities") [, 1]
> library(pROC)

> rocCurve3 <- roc(response=testset[,2],predictor=pred.prob3)
> auc(rocCurve3)

Area under the curve: 0.9844

> ci.roc(rocCurve3)

95\% CI: 0.9609-1 (DeLong)

> plot(rocCurve3,legacy.axes=TRUE,print.thres=TRUE)



Introduccién a las SVM - Elena Campo Ledén 41

Call:
roc.default(response = testset[, 2], predictor = pred.prob3)

Data: pred.prob3 in 106 controls (testset[, 2] B) < 64 cases (testset[, 2] M).
Area under the curve: 0.9844

1.0

(0.5695 (1.000, 0.953)

0.8

Sensitivity

0.4

0o
1

0.0 0.z 0.4 0.6 0.8 1.0
1- Specificity

Figura C.3: Curva ROC obtenida en R, representa de rendimiento del modelo con kernel polinomial.
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